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The aim of this work is to propose a new development of the fuel cell characterization tool based on Voltage Singularity Spectrum (VSS), a pattern that can advantageously be estimated from the "free" evolution of the stack voltage. A Polymer Electrolyte Membrane Fuel Cell (PEMFC) designed to operate in micro Combined Heat and Power units is investigated to create an experimental database made of normal and abnormal operating conditions. Some VSS signatures based on Wavelet Leader Multifractal Analysis (WLMA) are computed on low-and high-frequency filtered stack voltage signals reflecting different physical phenomena dynamics. The resulting low-and high-frequency VSS computed for six different operating conditions are then compared to the Electrochemical Impedance Spectra (EIS) recorded in the same conditions. In this way, we intend to establish some links between the VSS patterns and the EIS based on well-known physical analyses. We also show that the dominant singularity strengths of the low (and possibly also high) frequency VSS can be considered as relevant clustering features to identify various PEMFC operating states (linked with poorer / better air diffusion, with lower / higher MEA hydration), as it is usually done with the use of the characteristic resistances intercepted on the EIS graph x-axis.

Introduction

Considerable worldwide attention has recently been focused on decentralized power stations and individual household generators based on Fuel Cell (FC) units fed with natural gas as fuel and energy storage medium. In particular, Japan has expended substantial effort in developing the ENE-FARM project, which hits around 140 000 residential thermoelectric FC generators with an ambition to reach 1.4 million units by 2020 and 5.3 million by 2030 [START_REF] Hart | Fuel Cell Industry Review[END_REF]. In Europe, decentralized power generator technologies have been supported by two major programs: the CALLUX German project (2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016) involving approximatively 800 FC heating appliances installed in individual households [START_REF] Ramesohl | Callux -The German Lighthouse Project for Market Introduction for Domestic Fuel Cell CHP Systems[END_REF], and the ENE FIELD project (2012-2017), which deployed up to 1000 thermoelectric FC systems for the residential sector in 11 European countries [START_REF] Hart | Fuel Cell Industry Review[END_REF][START_REF] Afhypac | Projet ene.field : un nouvel élan ![END_REF].

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is considered as a really promising energy system for decentralized power production, as a substitute for conventional technologies for the tertiary sector (e.g. Combined Heat and Power -CHP [START_REF] Kaur | Review on hydrogen storage materials and methods from an electrochemical viewpoint[END_REF][START_REF] Lauinger | A linear programming approach to the optimization of residential energy systems[END_REF]; also called cogeneration). Small scale FC systems, named µCHP (or micro cogeneration), with typical power range less than 50kW for power and heat generation are dedicated to residential and tertiary sector buildings [START_REF] Rosato | Performance assessment of a micro-cogeneration system under realistic operating conditions[END_REF]. The main advantage of a PEMFC system lies in its high energy conversion efficiency. For example, Panasonic claims that its 2015 model achieves 95% combined heat and electrical efficiency [START_REF] Curtin | Fuel Cell Technologies Market Report[END_REF], and brings forward its capability to reduce environmental impacts shown by low pollutant and acoustic emissions. The possibility to be used for cogeneration applications and to exploit reforming processes allows the use of more traditional / conventional fuels and/or bio fuels as energy storage media (e.g. natural gas, methanol, biogas, biohydrogen, etc. [START_REF] Bharathiraja | Biohydrogen and Biogas -An overview on feedstocks and enhancement process[END_REF][START_REF] Guan | Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system[END_REF]), proving high flexibility and achieving a reduction in the number of required external components [START_REF] Curtin | Fuel Cell Technologies Market Report[END_REF].

Despite of the desirable properties cited above, one of the primary barriers to achieve widespread commercialization of PEMFC systems is the durability, which is one of the most important issues to be addressed in the various industrial sectors [START_REF] Mench | Polymer Electrolyte Fuel Cell Degradation[END_REF]. Indeed, FC lifespan increase becomes a predominant challenge in research and industry, ranging from 5000 operating hours for car applications (20000 hours for bus applications) to 40000 -70000 operating hours for stationary applications. For example, Panasonic showcased a prototype of a hydrogen FC, under development in the framework of its new ENE FARM project, with a lifetime of 70000 hours [START_REF] Curtin | Fuel Cell Technologies Market Report[END_REF].

To achieve these durability and reliability targets, it is essential to monitor the State of Health (SoH) of the FC system during its operation in the application environment. Numerous works dealing with this issue can be found in the literature. These works aim to improve the PEMFC performances as well as to increase the durability by proposing relevant diagnosis techniques and strategies. The model-based approaches [START_REF] Polverino | A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems[END_REF][START_REF] Mainka | One-dimensional Model of Oxygen Transport Impedance Accounting for Convection Perpendicular to the Electrode[END_REF][START_REF] Chevalier | Detection of Cells Stateof-Health in PEM Fuel Cell Stack Using EIS Measurements Coupled with Multiphysics Modeling[END_REF][START_REF] Petrone | A review on model-based diagnosis methodologies for PEMFCs[END_REF] are part of these techniques. They are very cumbersome and complex because they require an in-depth knowledge of the multi-physical mechanisms (thermal, electrical, electrochemical, and fluidic ones) and they are based on numerous parameters governing the operation of a FC system.

Hence, more and more attention is paid to data-driven techniques [START_REF] Mao | Fault diagnosis of practical polymer electrolyte membrane (PEM) fuel cell system with data-driven approaches[END_REF][START_REF] Li | Data-driven diagnosis of PEM fuel cell: A comparative study[END_REF][START_REF] Zheng | Brain-inspired computational paradigm dedicated to fault diagnosis of PEM fuel cell stack[END_REF] because of their simplicity regarding the implementation and the good performances obtained, without deep system structure knowledge and achieved by efficient signal processing methods as: Fourier transform [START_REF] Maizia | Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise[END_REF], multiresolution analysis [START_REF] Pahon | A signal-based method for fast PEMFC diagnosis[END_REF], singularity analysis [START_REF] Benouioua | Multifractal analysis of stack voltage based on wavelet leaders: A new tool for PEMFC diagnosis[END_REF][START_REF] Benouioua | Fuel cell diagnosis method based on multifractal analysis of stack voltage signal[END_REF][START_REF] Benouioua | PEMFC stack voltage singularity measurement and fault classification[END_REF][START_REF] Benouioua | Multifractal Analysis of Stack Voltage Based on Wavelet Leaders: A New Tool for PEMFC Diagnosis[END_REF][START_REF] Benouioua | The dynamic multifractality in PEMFC stack voltage signal as a tool for the aging monitoring[END_REF][START_REF] Benouioua | On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths[END_REF]. For fault identification and isolation tasks, some works use Electrochemical Impedance Spectra (EIS) [START_REF] Becherif | Determination of the health state of fuel cell vehicle for a clean transportation[END_REF] as normal or faulty operation signatures to supply artificial intelligence algorithms (based for instance on fuzzy logic [START_REF] Hissel | Fuzzy-Clustering durability diagnosis of Polymer Electrolyte Fuel Cells dedicated to transportation applications[END_REF] or neural networks [START_REF] Kim | State-of-Health diagnosis based on hamming neural network using output voltage pattern recognition for a PEM fuel cell[END_REF])

or conventional pattern recognition approaches (based on Support Vector Machines (SVM) [START_REF] Li | Online implementation of SVM based fault diagnosis strategy for PEMFC systems[END_REF], knearest neighbors (knn) methods) [START_REF] Benouioua | Multifractal analysis of stack voltage based on wavelet leaders: A new tool for PEMFC diagnosis[END_REF][START_REF] Benouioua | PEMFC stack voltage singularity measurement and fault classification[END_REF].

At the same time, some specific efforts are devoted to the development of non (or less) invasive measurement tools to collect some useful data for the FC diagnosis algorithms. In [START_REF] Rubio | Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[END_REF], Rubio et al.

provide a good overview of these methods. Some of them (e.g. neutron imaging techniques to investigate the water distribution, magnetic field sensors external to the FC to measure the local current density distributions) require some complex equipment and significant expenses that cannot be incorporated into actual FC system operations. A more elegant, non-invasive approach is to listen to the electrochemical device, recording and analyzing the noise generated [START_REF] Maizia | Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise[END_REF][START_REF] Rubio | Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[END_REF]. Especially the FC voltage noise shall be collected and analyzed because the generator is expected to include a cell or a stack voltage monitoring system.

In [START_REF] Rubio | Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[END_REF], the diagnosis of PEMFC (single cell equipment with an electrode surface of 50 cm²) is explored by comparing Fourier and wavelet transform analyses of cell voltage noise to electrochemical impedance data. The experimental noise data are collected for a range of air Relative Humidity (RH)

and stoichiometry rates including conditions leading to electrode flooding, membrane dehydration and air starvation failure modes. The noise data are recorded in every experiment during 300 s but only the last 50 s are considered in the signal processing analyses. This 50 s time window is found to be large enough to estimate the cell state. The main conclusion of the work is that the wavelet transform procedure is preferred to Fourier analysis because it is suitable for real-time use and yields a relatively greater sensitivity to operating condition variations. The authors indicate also that the changes in the wavelet coefficient standard deviations for selected noise frequencies are sufficient to reconstruct the original FC operating conditions state.

In [START_REF] Maizia | Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise[END_REF], Maizia et al. develop a methodology of spectral analysis and evaluate the possible nonstationarity character of a PEMFC voltage signal to investigate some water management issues. The experiments are conducted on a single cell with an electrode area of 25 cm² and by applying three current levels (0 A, 2.5 A, and 8 A). According to Maizia et al., the data acquisition for each operating point needs to be performed during 2 h to obtain a clean and rich signal, especially at low frequency. Some power spectral density of voltage fluctuations are then calculated using Fast Fourier Transform. The results obtained indicate that the power spectral density can be used for the detection of an incorrect FC water balance (especially, in drying conditions with low RH rates of 20% at anode and cathode).

To monitor and diagnose the PEMFC system SoH, we propose to use an innovative data driven approach that is the singularity analysis. This method consists in analyzing the morphology of the FC voltage signal, monitored at the stack terminals, and more precisely the pointwise singularities stamped in the signal recorded for various operating conditions. The singularity features of the voltage are then summarized in the form of concave arcs estimated thanks to a set of mathematical equations, known as the multifractal formalism [START_REF] Benouioua | Multifractal analysis of stack voltage based on wavelet leaders: A new tool for PEMFC diagnosis[END_REF][START_REF] Benouioua | Fuel cell diagnosis method based on multifractal analysis of stack voltage signal[END_REF][START_REF] Benouioua | PEMFC stack voltage singularity measurement and fault classification[END_REF][START_REF] Benouioua | Multifractal Analysis of Stack Voltage Based on Wavelet Leaders: A New Tool for PEMFC Diagnosis[END_REF][START_REF] Benouioua | The dynamic multifractality in PEMFC stack voltage signal as a tool for the aging monitoring[END_REF][START_REF] Benouioua | On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths[END_REF]. Each arc is a plot of the fractal dimension D(h) vs. the Hölder exponent h. Building a singularity spectrum consists in associating to each Hölder exponent h the Hausdorff dimension D(h) of the sets of points which exhibit the same value of h.

This advanced analysis tool, named Voltage Singularity Spectrum (VSS), has multiple interests. First, the tool is based on a thorough analysis of the sole stack voltage roughness. It is not required to monitor any other FC operating parameters while other signal-based diagnosis strategies might be based on the measurement of additional physical values, as the gas pressure drop at cathode for instance [START_REF] Pahon | A signal-based method for fast PEMFC diagnosis[END_REF].

Moreover, we have already shown that the VSS tool can be used with a complete stack (i.e. an assembly of individual cells), and not only with a single electrochemical cell [START_REF] Maizia | Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise[END_REF][START_REF] Rubio | Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[END_REF]. Nor is it necessary to monitor the individual cell voltages in the stack to make the diagnosis, as it is the case for instance with a diagnosis based on statistical approaches and individual cell voltage distributions. Second, the tool is obtained using a non-intrusive manner and without affecting in any way the FC operation; only the "free" evolution of FC stack voltages is considered. Indeed, no external additional AC-excitation has to be superimposed to the existing DC load current as it is the case in the usual EIS operation mode; no accurate controls of FC current or voltage and thus no additional and expensive equipment (e.g. electrochemical impedance spectrometer) are required.

A first version of the voltage singularity analysis method was described in [START_REF] Benouioua | Fuel cell diagnosis method based on multifractal analysis of stack voltage signal[END_REF]. The computing of the VSS was based on continuous wavelet transform applied to a stack voltage recorded at a frequency close to 11 Hz. The characterization of various FC operating states through the multifractal formalism was applied to an 8-cell stack designed for automotive applications and fed with pure hydrogen. A preliminary comparison between VSS patterns and EIS signatures was proposed for four different operating conditions. The design of a complete FC diagnosis strategy was proposed, including its different steps, namely: signal acquisition, signature calculations, and classifications of the FC operating states (using pattern recognition methods as SVM and knn). The results of such a FC diagnosis strategy (including an additional step of optimal VSS feature selection technique) applied to the 8-cell stack data base were published in [START_REF] Benouioua | PEMFC stack voltage singularity measurement and fault classification[END_REF]. The faults considered (variations of gas stoichiometry rates, of gas pressure level, stack temperature, CO content in the fuel) were quite simple as no combination of faults (i.e. by considering two or more failures simultaneously during the FC operation) was considered.

A second version of the voltage singularity analysis method was described in [START_REF] Benouioua | Multifractal Analysis of Stack Voltage Based on Wavelet Leaders: A New Tool for PEMFC Diagnosis[END_REF]. In this case, the multifractal analysis was based on wavelet leaders with the aim to ensure a more rapid and efficient computing of the VSS. The method was still applied to an 8-cell stack voltage recorded at a frequency close to 11 Hz. The proposed PEMFC diagnosis tool allowed identifying simple operating failure cases and even more complicated situations that contain several failure types. In [START_REF] Benouioua | The dynamic multifractality in PEMFC stack voltage signal as a tool for the aging monitoring[END_REF], we could show that the dynamic multifractality of the stack voltage can also be considered as a relevant tool for the monitoring of the FC aging state. The computed VSS patterns were compared with EIS signatures recorded at threetime intervals of a 124 h aging test. However, only the low frequency shapes of the EIS signatures could be considered in the comparisons since the VSS were still calculated from stack voltages recorded at 11

Hz. The portability of a diagnosis strategy based on VSS features and machine learning approaches was examined in [START_REF] Benouioua | On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths[END_REF] by considering two 11 Hz test databases collected with two different PEMFC stacks.

The first assembly was designed for automotive applications and fed with pure hydrogen while the second one was dedicated to stationary use (µCHP application) and fed with a mixture of hydrogen and CO2, simulating a reformat produced from natural gas.

In The article also aims to highlight any possible relations existing between VSS and EIS signatures, and we will indicate how VSS parameters (e.g. dominant irregularity h0 of the VSS computed at low and high frequency) could be used for diagnostic purpose, like it can be done using any parameters of the EIS patterns (e.g. membrane and polarisation resistances.) The results obtained through the VSS signatures will be discussed and compared with EIS records in Section 4. Finally, major conclusions and perspectives will be reported in Section 5.

Experimental

Description of the investigated PEMFC stack

The experimented stack is a 12-cell PEMFC designed to operate in μCHP mode. The stack is fed by air at cathode, and at anode by a fuel mixture (75 % of hydrogen -H2 and 25 % of carbone dioxide -CO2) simulating a reformat of natural gas. The FC is marketed by Riesaer Brennstoffzellentechnik

GmbH and Inhouse Engineering GmbH, Germany. It is made of graphite gas distributor plates. Its size is 270 mm x 170 mm x 270 mm. The electrode active surface is 196 cm 2 . The stack operates with a nominal current of 80 A. A summary of the FC nominal operating parameters, and including other main characteristics, is given in Table 1. On the tested FC, two coupling-blocks are embedded at stack inlets and outlets in order to integrate (Fig. 2):

-gas pressure and temperature sensors at stack inlets and outlets,

-humidity sensors at stack inlets, -pressure and temperature sensors on the water-cooling circuit. Right: stack instrumented and integrated in the testbench.

Testbench architecture description

The above-described FC was experimented with a testbench developed in the FC platform of Belfort, France. It includes mainly (Fig. 3):

-a complete gas conditioning sub-system including gas humidifiers at anode and cathode, -a teststand section dedicated to the control of the temperature inside the stack and including the FC primary water circuit.

-an electric / electronic management sub-system, -an electronic load (TDI Dynaload RBL488 SERIES 800 W) to impose the current in the FC stack.

The monitoring and the control of the FC testbench parameters are done with National Instruments materials and using a dedicated software. A friendly Human-Machine Interface (HMI) was also developed in-lab using Labview TM .

The FC stack voltage terminals are connected to a SCXI-1313 high-voltage attenuator terminal block used in combination with a SCXI-1125 isolated analog input conditioning module. This latter analog input is then numerised by a 12-bit analog I/O PXI-6070E. The final resolution obtained for the FC voltage record is close to 7 mV.

The testbench is also coupled with an electrochemical test station from Materials Mates (MM2) Italia.

This material allows to record impedance spectra of the complete FC stack simultaneously with spectra of the individual cells.

Fig. 3. Picture of the PEMFC teststand with its different sub-systems.

PEMFC test protocol

When any FC operational parameters are incorrectly deflected from their nominal (or normal) values and are not adjusted, the stack performance may be severely affected. The damages could be irreversible and even dramatically reduce the FC lifetime. Therefore, the purpose of the experimental protocol was to introduce different controlled health states into the PEMFC stack by configuring various operating parameters. Two PEMFC health states were set: no stack failure state (the FC is operating under normal parameters) and with stack failure state (the FC is operating under abnormal / severe parameters).

Several scenarios of FC system failure were associated to different settings of physical parameters applied through the control-command interface of the testbench, namely: cathode stoichiometry rate (λc), cooling circuit temperature (T), and Relative Humidity (RH) level. The set of the PEFMC tests both performed in the reference conditions and using the degrading operating parameters is reported in Table 2. These tests duplicate various states and faults (actually relative slight deviations from the reference conditions), which are representative for the application environment of μCHP appliance. The following additional explanations are given about the various operating scenarios considered in the experimental campaign.

-The reference Operating Condition (OC1) correspond to the "no fault case" (air flow rate of 31.8

Nl/min, fuel flow rate of 8.7 Nl/min, and dew point temperatures of 60°C). Note that the operating conditions selected in this study as the reference ones do not necessarily induce optimal performances of the FC stack.

-The failure of the air supply system is reflected by an abnormal value of the λc parameter. This dysfunction may be related with a bad adjustment of the compressor speed (i.e. problem with the control of the compressor), with a mechanical failure in the compressor head, or with a possible leakage in the -The failure of the cooling circuit is featured by the stack temperature (T). This failure can be caused by a slower velocity of the pump in the cooling circuit, a damage on the primary or secondary heat exchanger, or by any control-command problem. The defaults of the cooling circuit temperature are induced with T = 65°C (Operating Condition OC4: temperature lower than the reference value) or with T = 72°C (Operating Condition OC5: temperature higher than the reference level).

-The failure of the gas humidification section leads to the flooding or the drying of the PEMFC core (MEA). This abnormal FC SoH can be detected by the measurement of the high frequency (close to 1 kHz) cell resistance that leads to an estimation of the amount of water in the membrane. This failure scenario is featured by the Relative Humidity (RH) parameter (or possibly by the dew point temperature in the humidification section of the system). This failure associated to the bad humidification of the gases can be related with a dysfunction of the humidification unit. The default of the Relative Humidity is obtained with RH = 54 % (Operating Condition OC6: towards a stack flooding, dew point temperature of 65°C instead of 60°C as in the reference case). The experiments carried out are used to create an extensive database, which includes many physical signals measured from the stack and testbench ancillaries such as gas pressures, flows, temperatures, humidity rates, power, individual cells voltages… In general, all the data are acquired with a sampling frequency of 3 Hz. However, the voltage stack signal considered as the useful signal for our diagnosis algorithms is recorded using LabView with a higher frequency (fs) of 3 kHz, both for nominal and faulty operating conditions. Note that the selected frequency value is close to the one chosen by Maiza et al.

in [START_REF] Maizia | Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise[END_REF] to study the FC electrochemical noise (data acquisition at 2 kHz), but slightly lower than the sample rate of 10 kHz used in the work of Rubio et al. [START_REF] Rubio | Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[END_REF]. Some examples of the acquired stack voltage signals are shown in Fig. 4. The voltage analysis is made in the Matlab TM environment. According to the EIS procedure, the AC sine wave is generated and imposed over the DC excitation.

The AC sine wave magnitude is equal to ±10% of the DC load value. Modulated frequencies between 10 kHz and 0.1 Hz are applied and 10 points / decade are selected. This leads to 50 measurement points for a complete spectrum (i.e. a display of the stack impedance Z using a Nyquist plot, for the frequency range considered). The record duration for a spectrum equals to 8 min approximately.

How to build the low-and high-frequency VSS signatures?

A signal is the physical representation of information, which is transmitted from its source to the user. Therefore, the stack voltage signal can be considered as an informative signal, which contains relevant information on the FC SoH. We consider that any change in the operating conditions of the PEMFC affects the amplitude of the voltage signal produced and its morphology (Fig. 4). A fine analysis of this signal using adequate tools allows the extraction of relevant features to perform the PEMFC SoH monitoring. This was already shown by the results of singularity analyses applied to FC voltage signals obtained in a previous study with a PEMFC dedicated to a transport application, depicted in [START_REF] Benouioua | Multifractal analysis of stack voltage based on wavelet leaders: A new tool for PEMFC diagnosis[END_REF][START_REF] Benouioua | Fuel cell diagnosis method based on multifractal analysis of stack voltage signal[END_REF][START_REF] Benouioua | PEMFC stack voltage singularity measurement and fault classification[END_REF][START_REF] Benouioua | Multifractal Analysis of Stack Voltage Based on Wavelet Leaders: A New Tool for PEMFC Diagnosis[END_REF][START_REF] Benouioua | The dynamic multifractality in PEMFC stack voltage signal as a tool for the aging monitoring[END_REF][START_REF] Benouioua | On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths[END_REF].

In these previous works, the analyzed voltage signals were acquired at a frequency of 11Hz. Thus, the voltage signals obtained contained information describing the low frequency (1Hz -5.5Hz) dynamics of the PEMFC physical phenomena, such as mass transport phenomena.

In the present work, the investigated voltage signal is recorded at a higher frequency of 3 kHz from a PEMFC designed for a μCHP application. In this case, it is therefore possible to access to a wider range of frequency dynamics related with the physical phenomena occurring in this PEMFC. For example, the high frequency resistance (or internal resistance) related with the FC membrane SoH can typically be measured at a frequency close to 1 kHz (usually between 1 kHz and 10 kHz) [START_REF] Becherif | Determination of the health state of fuel cell vehicle for a clean transportation[END_REF][START_REF] Rubio | Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise[END_REF][START_REF] Cooper | Electrical test methods for on-line fuel cell ohmic resistance measurement[END_REF].

In this work and in a first approach, we intend to focus on high and low frequency electrochemical phenomena (i.e. linked with the FC membrane SoH on the one hand, and with mass transports on the other hand) and we aim to distinguish FC operating states linked with these two distinct frequency ranges. At this stage of our work, the study of intermediate frequency phenomena (with a coupling of charge transfers and mass transports) remains an issue for future researches.

As mentioned in the introduction of the article, the first step of the diagnosis strategy (Fig. 1) deals with the voltage signal deep analysis and it contains two analysis blocks (Block 1.1: signal filtering, and Block 1.2: singularity computation). These blocks are described hereafter.

-Block 1.1 → High frequency voltage signal filtering. The application of a pre-processing operation based on the filtering of the original high frequency voltage signal is a natural option to separate the high frequency information (frequency range above 1 kHz, a value related with the membrane resistance value and its water content) from the low frequency one, enclosed in the signal (frequency range below 1 Hz, a value linked with mass transport phenomena). This information reflects the high and low frequency dynamics of the FC physical phenomena. The signal filtering is realized using a Butterworth filter, one of the filters commonly used in filtering processes of digital signals, which is easy to synthetize [START_REF] Wang | Study and design of exponential and Butterworth low-pass filters used for digital speckle interference fringe filtering[END_REF][START_REF] Mello | Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram[END_REF].

The original voltage signal is filtered twice. First, the Butterworth high-pass filtering, which allows to pass high frequency and to stop low frequency components, is applied on the original signal. The original signal is filtered a second time with the Butterworth low-pass filter to pass the low frequency components only.

As a short description of the filter used, a low-pass analogical Butterworth filter, of N positive integer order (in our case, N = 1), obeys the following function in the frequency domain:

|𝑅(𝑗𝜔)| 2 = 1 1+( 𝜔 𝜔 𝑐 ) 2𝑁 (1) 
Where:

|𝑅(𝑗𝜔)| 2 is the square magnitude of the frequency response of the filter, 𝜔 = 2𝜋𝑓 is the angular frequency (rad / s), with f the frequency (Hz), 𝜔 𝑐 is the filter cutoff frequency (rad / s), and 𝑗 2 = -1.

This low-pass filter is used as a prototype for the construction of other filter's class by mathematical methods of frequency transformation [START_REF] Challis | The design of digital filters for biomedical signal processing. Part 2: Design techniques using the Z-Plane[END_REF].

The results obtained with the Butterworth high-pass filtering (cut-off frequency of 1 kHz), applied to the original voltage signal of Fig. 5 The singularity analysis, also named "multifractal analysis", describes the time (t) based fluctuations of the signal given by a function X(t). This is achieved by comparing the local variations of X(t) around fixed time position t0, against a local power law behavior: X(𝑡 0 ) belongs to 𝐶 𝛼 (𝑡 0 ) with 𝛼 ≥ 0 if there are a positive constant C and a polynomial P, satisfying deg(𝑃) < 𝛼, such that: This can be explained by the fact that the high frequency information seems to be the most prominent component in the non-filtered signal and the low frequency information is hidden. Hence, the interest of the signal filtering pre-processing operation to access to a wide range of frequency components for the voltage signal studied.

|𝑋(𝑡) -𝑃 𝑡 0 (𝑡)| ≤ 𝐶|𝑡 -𝑡 0 | 𝛼 (2) 

4.

VSS -EIS comparisons and use of pattern parameters for diagnostic purpose

For a further analysis, the results of the VSS are compared with the EIS in Fig. 8. Both analysis tools are applied for the same Operating Conditions (OC) of the studied FC (1 normal and 5 abnormal OC).

In this section, the real parts Re(Z) in the Nyquist diagram corresponding respectively to the highand low-frequency resistances (Hf-Re(Z) and Lf-Re(Z)) are extracted from the EIS, at the two frequency intervals [1 -1.5] kHz and [0.1 -1] Hz (Fig. 8). These values are compared to the singularity feature h0, which reveals the dominant singularity strength or the prominent irregularity degree in the signal and can be measured on the Hf-VSS and Lf-VSS. The resulting values of Hf-Re(Z), Lf-Re(Z), and h0 are reported in Fig. 8 in the form of bar diagrams for the 6 studied OC. The results obtained for the two frequency intervals are analyzed and discussed below.

-Low frequency interval results (see. Fig. 8 (middle)): In this case, the FC normal operating conditions OC1 produce a voltage signal that contains irregular points with a dominant singularity strength h0 = 0.48 corresponding to a low frequency resistance Lf-Re(Z) = 35 mΩ. For the abnormal OC (OC2, OC3, …, OC6), we can observe that the magnitude of the stems representing the dominant singularity strengths h0 follows a reverse tendency compared to those indicating the low frequency resistances (viz. related with the mass transport resistance and the polarization resistance Lf-Re(Z)). In other words, a high magnitude of the stems representing Re(Z) corresponds to a low magnitude of the stems describing h0. For a low value of Re(Z), a high value of h0 is exhibited. As an example, let us consider two abnormal FC states of health (SoH). The first state is the abnormal operating conditions OC3 (viz. the oxygen starvation, with λc = 1.6). The low frequency resistance Lf-Re(Z) estimated for these conditions equals 50 mΩ. This value is greater than the one computed for the air oversupply abnormal state of the FC operated under OC2 (with λc = 2.6), which equals 30 mΩ. On the contrary, the value of the OC3 singularity feature h0 (= 0.45) is lower than h0 (= 0.56) for OC2.

-High frequency interval results (see. Fig. 8 (down)): The FC operated under OC1 produces a very rough voltage signal, with h0 = 0.2 corresponding to a high frequency resistance Hf-Re(Z) = 7 mΩ. For other OC situations, an inverse trend between the bar diagrams related to Hf-Re(Z) (internal resistance of the FC) and the singularity feature h0 estimated from the Hf-VSS can possibly be noticed. However, the values of the two parameters do not exhibit large changes for the different OC. This can be explained by the fact that the FC membrane SoH is not affected by the small changes in abnormal OC.

After a finer analysis of these results, we conclude that:

-A high value of h0 reveals a regular voltage signal, for which low resistance values of Lf-Re(Z)

and Hf-Re(Z) were measured using the EIS.

-A low value of h0 reveals a strong irregular voltage signal, for which high resistance values of Lf-Re(Z) and Hf-Re(Z) were measured in the EIS.

At this stage, the h0 parameter can already be considered as a good indicator of the FC SoH. In the following part, we intend to provide a more detailed analysis and comparison of the VSS and EIS results obtained, for the following purposes:

to better highlight the links between the Lf-h0 and Lf-Re(Z) parameters on the one hand, between the Hf-h0 and Hf-Re(Z) parameters on the other hand, with a view to diagnosis, to show how the Lf-h0 and Hf-h0 parameters can possibly be used to characterize some of the FC SoH, as it can usually be done using well-suited EIS parameters [START_REF] Hissel | Fuzzy-Clustering durability diagnosis of Polymer Electrolyte Fuel Cells dedicated to transportation applications[END_REF].

To reach these aims, the dominant singularity strengths h0 computed for the 6 Operating Conditions (OC1, …, OC6) are plotted as a function of the corresponding impedance real parts Re(Z) with the aim of looking for any possible relations between the two types of parameters. The plot and analysis are done both at low frequency (plot of Lf-h0 vs. Lf-Re(Z), Fig. 9) and high frequency (plot of Hf-h0 vs. Hf-Re(Z), Fig. 10). Analysis of the Hf-h0 vs. Hf-Re(Z) plot (Fig. 10):

Analysis of the

Overall, the graph (Fig. 10 a) or b)) shows that higher values of Hf-h0 are obtained for lower resistance values of Hf-Re(Z). However, compared to the Lf-h0 vs. Lf-Re(Z) plot, the trend is not so clear:

Hf-h0 does not appear as a monotonous decreasing function of Hf-Re(Z). Nevertheless, as we did for the Lf-h0 feature, we intend to show how the Hf-h0 parameter could be used for the determination of the FC SoH, as it is usually done with the Hf-Re(Z) parameter. Indeed, the Hf-Re(Z) parameter can be monitored to detect various operating conditions linked with different hydration states of the MEA. For example, on the Hf-h0 vs. Hf-Re(Z) plot, we observe that a lower FC operating temperature set for OC4 (T = 65°C) and a higher gas hygrometry rate applied for OC6 (RH = 54%) lead to a reduction of the Hf-Re(Z) value (case of a better MEA hydration and decrease of the HF membrane resistance). On the contrary, we can also observe that a temperature higher than the reference one (for OC5 with T = 72°C) induces an increase of the Hf-Re(Z) value (case of lower MEA hydration, drying of the membranes). parameter. However, as it was already observed from Fig. 8 and also mentioned at the beginning of this paragraph, the correlation between Hf-h0 and Hf-Re(Z) is not as good as the one established between Lf-h0 and Lf-Re(Z). Several explanations can be given on this issue. As previously stated, the values of the two parameters could not exhibit large, significant variations during the experiments because only small condition changes were applied for the abnormal OC. No pronounced drying or flooding events were induced in the tests, which makes the analysis all the more difficult. Besides, for the high frequency domain considered (at a signal frequency close to 1 kHz), the potential impacts of the FC operating environment (i.e. the effects of the auxiliaries, components of the FC test bed) on the "free evolution"

of the stack voltage are more difficult to understand from a physical point of view, and to measure as well. Further investigations at different levels are needed on this issue. A more accurate measurement and data acquisition chain would be needed, for instance to have the opportunity to highlight and evaluate any possible influence of the load current noise on the FC stack morphology. 

Conclusions

There is currently an urgent need for non-invasive condition monitoring techniques for FCs used in commercial applications such as µCHP appliances and the idea of processing the natural fluctuations at the stack terminals, without external disturbance, in order to estimate the FC SoH is very attractive. In this context, the proposed work offers an alternative signal analysis tool useful for the characterization and SoH monitoring of a PEMFC fed with a hydrogen-rich mix. The developed tool is based on the measurement of the singularity strength h0 in a stack voltage signal recorded at a 3 kHz frequency; the selected frequency allows accessing to low and high frequency dynamics (i.e. respectively below 1 Hz and above 1 kHz) linked with physical phenomena occurring in the FC. The objective of accessing to these dynamics has to be met with the constraints of implementing a non-invasive and free of any FC disturbance analysis tool. In this respect, the Voltage Singularity Spectrum (VSS) can be estimated using a non-intrusive manner and without affecting in any way the FC operation.

The work is structured in two main phases:

-An experimental phase: a PEMFC dedicated to a µCHP application is operated using a fuel mixture with 75% of H2 and 25% of CO2 under normal and abnormal Operating Conditions (OC).

-A data analysis phase: this objective is achieved by the thorough analysis of the collected data enabled by the powerful WLMA. The latter is adopted to access to the latent information enclosed in the high frequency recorded stack voltage signal. This information is extracted from low and high frequency filtered signals. Then, two groups of VSS are computed for the two frequency ranges (Lf-VSS and Hf-VSS) and their dominant singularity strengths (Lf-h0 and Hf-h0) are extracted.

The comparison of the VSS and EIS signatures obtained for the 6 OC shows the usefulness of the proposed SoH monitoring tool. Indeed, a first opposite trend is observed when the amplitudes of the Re(Z) parameters extracted from the EIS (i.e. the Lf-Re(Z) and Hf-Re(Z) resistances intercepted on the EIS x-axis at low and high frequencies) are compared respectively with the Lf-h0 and Hf-h0 features estimated from the VSS. This first comparison suggests that it is possible to relate the shape and the morphology of the stack voltage signal (described through the VSS pattern and in particular by its h0 feature) with different physical phenomena involved in the FC (linked with the shape of the EIS plot, and especially with the locations of Lf-Re(Z) and Hf-Re(Z) on the EIS Nyquist graphs).

On the basis of this first VSS -EIS comparison, a second and more detailed analysis is done to explore any possible relations existing between Lf-Re(Z) and Lf-h0 on the one hand, and between Hf-Re(Z) and

Hf-h0 on the other hand. This last analysis is based on a data clustering process applied to the Lf-Re(Z), Lf-h0, Hf-Re(Z), and Hf-h0 parameters to generate some clusters related with different FC operating states (associated to the "normal", "poorer diffusion", "better diffusion", "lower MEA hydration", "better MEA hydration" labels). The results of the clustering indicate that the Lf-h0 feature can be considered, almost like the Lf-Re(Z) parameter, to identify some OC related with the use of various cathode stoichiometry rates (inducing different air diffusion rates). To extrapolate, one can assume that the Lf-h0 feature could also be used to detect any other low frequency phenomena (e.g. diffusion at anode) that were not taken into consideration in our study. The results of the clustering process also indicate that the Hf-h0 feature can potentially be considered, almost like the Hf-Re(Z) parameter, to identify some OC related with different hydration states of the MEA.

To conclude, with this work, we could establish some relations between the VSS patterns, computed from high and low filtered voltage signals, and the popular EIS signatures. We could also show that the dominant singularity strengths of the Lf-VSS (and possibly also the Hf-VSS) can be considered as relevant features to characterize and detect some FC operating states (e.g. lower / higher air diffusion, may be also lower / higher MEA hydration), as it is usually done with the use of characteristic points in the EIS plots (as the resistances intercepted on the EIS x-axis: Lf-Re(Z) and Hf-Re(Z)). Once more, the interest of using VSS features instead of EIS ones is that only the "free" evolution of the FC stack voltage can be considered and that there is no need of additional current excitation (as it is the case with the EIS applied in galvanostatic mode). Besides, the performing time of a full VSS computation is about 5 s (including the record of 10000 voltage samples at 3 kHz), against the duration of the EIS record that needs approximately 8 min in our study.

As an outlook and to complete the proposed diagnosis strategy presented in Fig. 1, it would be possible to conduct a work on the FC fault discrimination and detection using Machine Learning approaches. In that way, relevant singularity features extracted from the Lf VSS and Hf-VSS could be classified into different classes related to normal and abnormal OC with more complicated situations combining two or three FC faults occurring simultaneously, as it was already done in [START_REF] Benouioua | On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths[END_REF] but only on the basis of VSS recorded at a frequency of 11 Hz (and without applying any filtering process). It is expected that applying the new method described in this article will improve the classification of the FC operating states through the better differentiation of FC physical phenomena involving either low or high frequency dynamics. 

3 .Fig. 1 .

 31 Fig. 1. Synoptic diagram illustrating the two different steps of the proposed diagnostic strategy. This article deals with the step 1 of the global approach.

  air section upstream of the stack. The failure of the air supply section may have different consequences for the FC stack behavior: more or less pronounced cases of oxidant starvation, Membrane Electrode Assembly -MEA drying for too high cathode stoichiometry values, flow-field channels obstruction by liquid water for too low cathode stoichiometry rates. The default related with a higher cathode stoichiometry factor is obtained with λc = 2.6 (Operating Condition OC2: O2 over-supply, with an air flow rate of 41.5 Nl/min). The default related with a lower cathode stoichiometry factor is obtained with λc = 1.6 (Operating Condition OC3: O2 under-supply (slight starvation), with an air flow rate of25.8 Nl/min instead of 31.8 Nl/min).

Fig. 4 .

 4 Fig. 4. Typical stack voltage signals of the studied PEMFC operated in normal and abnormal Operating Conditions (OC1, … , OC6), with fs = 3 kHz.

  (a), are shown in Fig. 5 (c1). The low frequency signal, resulting from the Butterworth low-pass filtering with a cut-off frequency of 1 Hz, is shown in Fig. 5 (c2). The frequency responses of the two applied Butterworth filter classes are plotted in Fig. 5 (b1 and b2).
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 5 Fig. 5. Stack voltage signal filtering process using two classes of Butterworth filter: a) original voltage signal, b1) high-pass filter frequency response and c1) the corresponding filtered voltage signal, b2) low-pass filter frequency response and c2) the resulting filtered signal.
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 7 Fig.7. Results of the VSS obtained for normal (Ref) and abnormal Operating Conditions (OC), for: a) raw voltage signals with fs =3 kHz, b) high and low filtered voltage signals (respectively Hf-VSS and Lf-VSS).

Fig. 8 .

 8 Fig. 8. Comparative study between VSS and EIS analysis tools. Up: VSS results vs. EIS ones are represented for 6 OC of the FC (1 normal and 5 abnormal OC). Middle: Bar diagram plots given for dominant singularity strengths from Lf-VSS, compared to low frequency resistances Lf-Re(Z) from EIS (Lf = [0.1 -1] Hz). Below: Bar diagram plots for dominant singularity strengths from Hf-VSS, compared to high frequency resistances Hf-Re(Z) from EIS (Hf = [1 -1.5] kHz). Horizontal dashed lines (--) of the bar diagrams highlight both dominant singularity strength and resistance values resulting from the FC normal OC.
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 9 Fig. 9. For the 6 Operating Conditions (OC), plot of Lf-h0, the dominant singularity strength measured on the Lf-VSS, as a function of Lf-Re(Z), the resistance intercepted on the EIS x-axis at low frequency. a) Up: clustering of the OC done from the Lf-Re(Z) data. b) Down: clustering of the OC done from the Lf-h0 data.

  The operating conditions OC3, OC1, and OC2 lead to intermediate Hf-Re(Z) values which cannot be related with better or lower MEA hydration. In order to highlight these three groups of Hf-Re(Z) values, and in a similar way to what was done for Lf-Re(Z), we apply the kmeans data clustering process to generate three clusters (with the labels: "better MEA hydration", "normal MEA hydration", "lower MEA hydration") from the 6 Hf-Re(Z) values. The resulting clustering is displayed in the graph Hf-h0 vs. Hf-Re(Z) (Fig.10 a)). Then, the same clustering process is applied to the six OC, described by the six related Hf-h0 values (Fig.10 b)). The clustering results obtained from the Hf-Re(Z) values and from the Hf-h0 values are slightly different. With the Hf-h0 values, a cluster is associated to OC4 and OC6, corresponding to the "better MEA hydration" case. Another cluster ("normal" one) consists of OC3 and OC1, while a third cluster including OC2 and OC5 shows the lowest Lf-h0 values and is related with the "lower MEA hydration / drying" case. When comparing the two clustering results obtained from the Hf-Re(Z) values and from the Hf-h0 values, it can be observed that there is a kind of confusion or uncertainty for OC2 which can be considered as belonging either to the "normal case" cluster or to the "lower MEA hydration / drying" cluster. The other OC are classified in the same manner, whatever the parameter considered (Hf-Re(Z) or Hf-h0). A this stage, this clustering study indicates that the Hf-h0 feature could possibly be used to diagnose the MEA hydration state, at least for the three "extreme" cases considered (OC4 and OC6 on the one hand, OC5 on the other hand), and similarly to what can be done from the EIS Hf-Re(Z)

Fig. 10 .

 10 Fig. 10. For the 6 Operating Conditions (OC), plot of Hf-h0, the dominant singularity strength measured on the Hf-VSS, as a function of Hf-Re(Z), the resistance intercepted on the EIS x-axis at high frequency. a) Up: clustering of the OC done from the Hf-Re(Z) data. b) Down: clustering of the OC done from the Hf-h0 data.
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 23 Fig. 2. Pictures of the investigated PEMFC stack designed for μCHP operation mode. Left: stack only. Right: stack instrumented and integrated in the testbench.
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 4 Fig. 4. Typical stack voltage signals of the studied PEMFC operated in normal and abnormal operating conditions, with fs = 3 kHz.
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 5 Fig. 5. Stack voltage signal filtering process using two classes of Butterworth filter: a) original voltage signal, b1) high-pass filter frequency response and c1) the corresponding filtered voltage signal, b2) low-pass filter frequency response and c2) the resulting filtered signal.
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 6 Fig. 6. Typical curves of the stack voltage signal (left) and its corresponding VSS (right).
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 7 Fig. 7. Results of the VSS obtained for normal (Ref) and abnormal Operating Conditions (OC), for: a) raw voltage signals with fs =3 kHz, b) high and low filtered voltage signals (respectively Hf-VSS and Lf-VSS).
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 8 Fig. 8. Comparative study between VSS and EIS analysis tools. Up: VSS results vs. EIS ones are represented for 6 OC of the FC (1 normal and 5 abnormal OC). Middle: Bar diagram plots given for dominant singularity strengths from Lf-VSS, compared to low frequency resistances Lf-Re(Z) from EIS (Lf = [0.1 -1] Hz). Below: Bar diagram plots for dominant singularity strengths from Hf-VSS, compared to high frequency resistances Hf-Re(Z) from EIS (Hf = [1 -1.5] kHz). Horizontal dashed lines (--) of the bar diagrams highlight both dominant singularity strength and resistance values resulting from the FC normal OC.
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 9 Fig. 9. For the 6 Operating Conditions (OC), plot of Lf-h0, the dominant singularity strength measured on the Lf-VSS, as a function of Lf-Re(Z), the resistance intercepted on the EIS x-axis at low frequency. a) Up: clustering of the OC done from the Lf-Re(Z) data. b) Down: clustering of the OC done from the Lf-h0 data.
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 10 Fig. 10. For the 6 Operating Conditions (OC), plot of Hf-h0, the dominant singularity strength measured on the Hf-VSS, as a function of Hf-Re(Z), the resistance intercepted on the EIS x-axis at high frequency. a) Up: clustering of the OC done from the Hf-Re(Z) data. b) Down: clustering of the OC done from the Hf-h0 data.

  

  

  

Table 1 .

 1 Summary of the experimented stack characteristics and reference operating parameters.

	PEMFC application field	μCHP
	Manufacturer	Inhouse Engineering GmbH -Germany
	Number of cells	12
	Active surface of electrode	196 cm 2
	Gas distributor plates	Graphite
	Fuel used during testing	75% H2 + 25% CO2 (in Volume)
	Coolant flow (deionized water)	3 l/min
	Anode stoichiometry (75% H2 and 25 % CO2)	1.3
	Cathode stoichiometry (air)	2
	Relative pressure for H2 inlet	11 kPa
	Relative pressure for air inlet	5 kPa
	Max. anode -cathode pressure gap	20 kPa

FC temperature (at outlet of the cooling circuit) 70°C

Anode Relative Humidity (80°C) 50%

Cathode Relative Humidity (80°C) 50%

Load current 80 A Fig.

2

. Pictures of the investigated PEMFC stack designed for μCHP operation mode. Left: stack only.

Table 2 .

 2 The Operating Conditions (OC1, … , OC6) induced during the experimental campaign conducted with the investigated PEMFC. The parameter values in bold and underlined correspond to the introduced faults.

		OC1	OC2	OC3	OC4	OC5	OC6
	λc	2	2.6	1.6	2	2	2
	T (°C)	70	70	70	65	72	70
	RH (%)	50	50	50	50	50	54

Table 1 .

 1 Summary of the experimented stack characteristics and nominal operating parameters.

Table 2 .

 2 The Operating Conditions (OC1, … , OC6) induced during the experimental campaign conducted with the investigated PEMFC. The parameter values in bold and underlined correspond to the introduced faults.
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The Hölder exponent is defined as the largest  such as: ℎ(𝑡 0 ) = 𝑠𝑢𝑝{𝛼: 𝑋 ∈ 𝐶 𝛼 (𝑡 0 )}.

The singularity strength regarding the variability of the regularity of X(t) vs. t is usually described through the so-called singularity spectrum. Building a singularity spectrum consists in associating to each Hölder exponent h the Hausdorff dimension D(h) of the sets of points which exhibit the same value of h. This can be achieved using the Wavelet Leader Multifractal Formalism [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF][START_REF] Abry | Lois d'échelle, Fractales et ondelettes[END_REF]. Detailed descriptions of the theoretical and practical relevance and benefits of the use of wavelet leaders for singularity analysis are depicted in [START_REF] Benouioua | Multifractal analysis of stack voltage based on wavelet leaders: A new tool for PEMFC diagnosis[END_REF][START_REF] Benouioua | Fuel cell diagnosis method based on multifractal analysis of stack voltage signal[END_REF][START_REF] Benouioua | PEMFC stack voltage singularity measurement and fault classification[END_REF][START_REF] Benouioua | Multifractal Analysis of Stack Voltage Based on Wavelet Leaders: A New Tool for PEMFC Diagnosis[END_REF][START_REF] Benouioua | The dynamic multifractality in PEMFC stack voltage signal as a tool for the aging monitoring[END_REF][START_REF] Benouioua | On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths[END_REF][START_REF] Kestener | Characterizing complexity in solar magnetogram data using a wavelet-based segmentation method[END_REF][START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF][START_REF] Abry | Lois d'échelle, Fractales et ondelettes[END_REF]. In Fig. 6, an example of singularity spectrum obtained from a voltage signal, named Voltage Singularity Spectrum (VSS), is shown and some singularity features are highlighted. The singularity feature h0 reflects the dominant singularity strength in the signal, which means a singularity value that is the most prominent in the signal support. The multifractal behavior of the signal, exhibited by the shape of the VSS in the form of a concave arc, reveals the existence of a certain order in its structure, which obeys a scale invariance property. 2.

model can be computed from the six value pairs; this linear model already leads to a good coefficient of determination (R-squared) equal to 0.669 (adjusted R-Squared of 0.586). For the record, the R-squared coefficient indicates the proportionate amount of variation in the response variable Y explained by the independent variables X in the linear regression model. The larger the R-squared is, the more variability is explained by the linear regression model. It would obviously be possible to propose a higher order model for the relationship between Lf-h0 and Lf-Re(Z). However, at his stage of our work, this model would not have any particular physical significance. We therefore prefer to show by other means how the Lf-h0 feature could be used to establish the FC SoH diagnosis, as it is often done with the Lf-Re(Z) parameter. Indeed, the variation of the Lf-Re(Z) parameter can be exploited to detect various FC operating conditions linked with different gas supplies. For instance, on the graph Lf-h0 vs. Lf-Re(Z), we observe that a high cathode stoichiometry rate applied for OC2 (λc = 2.6) leads to a reduction of the Lf-Re(Z) value (case of a higher, better oxygen diffusion). In contrast, we can also observe that a low cathode stoichiometry rate applied for OC3 (λc = 1.6) induces an increase of the Lf-Re(Z) value (case of a lower oxygen diffusion). The operating conditions OC1, OC5, OC4, and OC6 lead to intermediate Lf-Re(Z) values which cannot really be related with better or poorer oxygen diffusion. In order to highlight these three groups of Lf-Re(Z) values in a more formal framwork, we propose to apply a simple data clustering process to generate the three clusters (with the labels: "better diffusion", "normal", "poorer diffusion") from the 6 Lf-Re(Z) values. The clustering is achieved using the kmeans method in the Matlab TM environment and the result is displayed in the graph Lf-h0 vs. Lf-Re(Z) (Fig. 9 a)). The same clustering process can be applied to the six OC, described by the six related Lf-h0 values (Fig. 9 b)). The resulting clustering is slightly different from the previous one. Again, a cluster is associated to OC2 (λc = 2.6) with Lf-h0 = 0.56, corresponding to the "better diffusion" case. Another cluster (the "normal" one) consists of OC4 and OC5, while a third cluster including OC4, OC6, and OC3, shows the lowest Lf-h0 values and is related with the "poorer diffusion" case. When comparing the clustering results obtained from the Lf-Re(Z) values on the one hand and from the Lf-h0 values on the other hand, it can be observed that there is a kind of confusion or uncertainty for OC4 and OC6, which can be considered as belonging either to the "normal case" cluster or to the "poorer diffusion" cluster (in fact, they correspond to intermediate cases between the OC1-OC5 group, and OC3). The other OC are classified in the same way, whatever the parameter considered (Lf-Re(Z) or Lf-h0). At this late stage, our study indicates that the Lf-h0 feature can be considered to diagnose the impact of λc on the diffusion in the FC, at least for the two "extreme" cases (λc = 2.6 and λc = 1.6), and in the same way as what can be done from the Lf-Re(Z) parameter measured through EIS.