N
N

N

HAL

open science

How to speed Connected Component Labeling up with
SIMD RLE algorithms

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne

» To cite this version:

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne. How to speed Connected Component Label-
ing up with SIMD RLE algorithms. Workshop on Programming Models for SIMD /Vector Processing

(WPMVP@PPoPP), Feb 2020, San Diego, Californie, United States. hal-02492824

HAL Id: hal-02492824
https://hal.science/hal-02492824
Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02492824
https://hal.archives-ouvertes.fr

How to speed Connected Component Labeling up with SIMD
RLE algorithms

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne
firstname . name@lip6.fr
LIP6 — Sorbonne University, CNRS

ABSTRACT

The research in Connected Component Labeling, although old, is
still very active and several efficient algorithms for CPUs and GPUs
have emerged during the last years and are always improving the
performance. This article introduces a new SIMD run-based algo-
rithm for CCL. We show how RLE compression can be SIMDized
and used to accelerate scalar run-based CCL algorithms. A bench-
mark done on Intel, AMD and ARM processors shows that this new
algorithm outperforms the State-of-the-Art by an average factor
of X1.7 on AVX2 machines and X1.9 on Intel Xeon Skylake with
AVX512.

INTRODUCTION & STATE OF THE ART

Connected Component Labeling (CCL) is a fundamental algorithm
in computer vision, and is often required for real-time applications.
It consists in assigning a unique number to each connected com-
ponent of a binary image.

CCL algorithms are often required to be optimized to run in real-
time and have been ported on a wide set of parallel machines [1][2].
After an era on single-core processors, where many sequential al-
gorithms were developed [3] and codes were released [4], new par-
allel algorithms were developed on multicore processors [5][6].

Today, the majority of CCL algorithms for CPUs are direct, by
opposition to iterative ones — where the number of iterations (the
number of image passes to process it) depends on the image struc-
ture — and require only 2 passes thanks to an equivalence table.

But direct algorithms [7] are dominated by their control flow
and can not be easily parallelized — unlike the iterative ones. That
is the reason why the first algorithms designed for SIMD proces-
sors [8][9] and GPUs [10] were iterative. Now these algorithms
are also direct [11] [12][13] and thanks to the parallelism of these
architectures, they are very fast.

In the meantime, two new single-threaded algorithms for CPUs
named DRAG [14] and Spaghetti [15] were published. Thanks to
advanced algorithmic tricks based on block-processing and large
decision trees to avoid comparisons and memory accesses, these
algorithms outperformed all published pixel-based algorithms on
CPUs.

All these recent algorithms for CPUs, SIMD CPUs and GPUs
share a common denominator: they all process pixels one by one
(DRAG and Spaghetti use 2x2-pixel blocks). Only LSL [16][17]
uses RLE and run-based processing to reduce the amount of mem-
ory accesses. This approach was reused for HA, the first run-based
algorithm for GPU [18].

In this article, we introduce a new run-based algorithm for SIMD
processors which rely on classical SIMD instructions available on
all SIMD family and without specific scatter-gather instructions.

Section 1 deals with binary RLE compression and present a way
to improve it with SIMD and how to use it for labeling. Section 2
sums up pixel-based algorithms and introduces our new run-based
SIMD algorithm. Section 3 presents an exhaustive benchmark to
compare the latest pixel-based and run-based algorithms for CPUs
where the results are detailed and analyzed.

1 RUN-LENGTH ENCODING

Run-Length Encoding (RLE)[19][20] is a basic lossless data com-
pression initially used to compress binary signals and images. It is
the basis of more advanced compression algorithms like LZ78[21]
or bitmap index for databases[22]. It can also be used for non-
compression algorithms like auto-correlation[23]. In the last years,
people started to study again RLE-based algorithms[24][25][26] to
take advantage of the recent SIMD instruction sets.

RLE consists in grouping consecutive elements with the same
value in segments (or runs) and keeping only the information about
the segments (position, size and value). As RLE was primarily de-
signed for element streams, position is usually not kept and just
inferred from the sum of the previous segment sizes.

In this paper, we consider binary image inputs. Therefore, we do
not need to store explicitly values of the segments, and we store
start and stop positions of the segments instead of length in order
to speed partial decoding up. Note that the start position of a seg-
ment is the stop position of the previous segment, thus no space is
wasted compared to actual length encoding.

We use semi-open intervals (left-closed, right-opened) in order
to increase the symmetry between 0-segments and 1-segments and
thus simplify both the implementations and the explanations. In
addition, as the input image is the result of thresholding on a 8-bit
gray image, the input is kept with 1 pixel per byte. Finally, as we
encode line of images, we restrict our segment positions to 16-bit
integers. All our implementations are adjustable to wider arrays
and non-binary inputs.

Most RLE encoders follow the same pattern: detect edges (when
the value changes), compute the position of the edges, and store
them contiguously. The edge detection can be done by testing if
the current element has the same value as its predecessor. This can
be achieved using a & (xor) in binary.

1.1 Scalar RLE encoder

The code of the scalar implementation is given in Algorithm 1. It
is a simple code that has few optimizations. Namely, we applied
scalarization by keeping X[i] in register and rotating registers to

Conference’17, July 2017, Washington, DC, USA

Algorithm 1: Scalar RLE (LSL step 1a)

er <0

// prolog
x1 <= 0 // previous value of X (x1 = X;[j — 1])
for j =0tow—1do

x0 < X;i[j] //currentvalue

f «— Xo © x1 //edge detection

if f # 0 then

RLCjler] « j
L er —er+1

R R R T N

10 ER;[j] <« er
11 X1 <= Xo // register rotation

12 // epilog

13 X0 < 0 //nextvalue of X (x1 = X;[w])
u f e x0®x;

15 RLCi[er] «w

16 er —er+f

17 ner «er

18 return ner

jo12 3456 7 89

xil 0] AT T [
xi-n D] 0] T[T

xilexi-11[A] [[A]a] [a] [«]1]

(xiexg-1)-ifo] | [s]a] [e] [8lo] |
RLC[ofs4 68 [o]

Figure 1: Example of a segment and its associated run-length
encoding with a semi-open interval [0,3[4,6[8,9] with a
SIMD4 compress

keep previous value in register. Note how the previous value is
initialized to O and thus effectively skipping the first segment if its
value is 0.

1.2 SIMD RLE encoder

An RLE encoder is not trivially “SIMDizable”. The complexity of
SIMD implementations is due to the irregularity of the problem:
fixed-length input produces variable-length output. This is visible
in the scalar code where the store and increment is within a branch.

We tested multiple ways to write SIMD RLE encoders: with a
finite state machine, with scatter and with compress. For brevity
and because its the fastest in most cases, we will focus on compress
only.

The first step is to detect the edges (the positions where the
value changes). This is done by comparing the input vector with
itself shifted by one element to the “future” (we compare each el-
ement with its predecessor). The resulting vector contains ones
where the input value at this position is different than at the pre-
vious position, indicating where the edges are.

Then, the vector of positions ([0, 1,2, 3...]) is compressed ac-
cording to the edge vector. Meaning: the positions that are not
edges (whose corresponding element in the edge vector is 0) are
removed, and the remaining positions are packed contiguously on
left of the resulting vector. This resulting vector is directly the RLE
of the input. A diagram showing this algorithm is provided in Fig-
ure 1.

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne

Listing 1: compress-based RLE encoder targeting SSE

1 int16_t4 detect_segment(

2 int w, uint8_t4 X, int16_tx RLC) {
3 __m128i last = _mm_setzero_si128();

4 __m128i incr8 = _mm_setl_epil16(8);

5 __m128i J = _mm_set_epil6(7, 6, ..., 1, 0);

6 for (int i = @; i < w; i += 8) {

7 __m128i in = _mm_loadl_epi64 ((__m128i4)(X+i));
8 in = _mm_cvtepi8_epil6(in);

9 // edge detection

10 __m128i prev = _mm_alignr_epi8(in, last, 14);
11 __m128i f = _mm_cmpeq_epi8(in, prev);

12 f = _mm_xor_si128(f, _mm_set_epi8(-1));

13 last = in;

14 // compress and store indices

15 RLC = compress_storeu_ml6_epil16(RLC, J, f);

16 J = _mm_add_epil6(J, incr8);

18 *RLC++ = w;
19 return RLC;
20 }

There are several ways to implement this algorithm. The sim-
plest one is given in Listing 1. This implementation loads 8-bit ele-
ments and first converts them into 16-bit elements. Then, the whole
processing is done on 16-bit elements.

One can do the edge detection and the conversion into a mask
on 8-bit elements, and then split the mask in two and do two sep-
arate compress on 16-bit elements like above.

We have actually tested the two version above, and a third one
where the compress is done directly on 8-bit elements. But only
the version using 8-bit masks and 16-bit positions is considered
in this paper for the sake of brevity and simplicity and because it
appears to be the fastest one.

1.3 Emulating compress

No current hardware has native support for 8-bit and 16-bit ele-
ment compress, and few have native support for wider elements
(AVX512 and SVE). So we need to emulate those narrow element
compress on all architecture. We tested many ways to implement
compress like scalar emulation, Lookup Tables (LUT)[27] or hier-
archical shifts[28, Chapter 7-4].

We report here the best versions for each considered platforms.
For all the versions considered here, popcount is used to know
the number of active elements, and the store is full-width and un-
aligned. This full-width store implies that some junks elements will
be stored, but they will either be overwritten by the next store or
they will never be read (past the end).

1.3.1 AVX512. We can compress 32-bit elements with the AVX512
instruction _mm512_maskz_compress_epi32. This can be used to
compress narrower elements. The way to do it is to widen ele-
ments from 16 bits to 32 bits, use the native 32-bit compress, and
then narrow 32-bit elements back to 16 bits. Compressing 8-bit ele-
ments can be done in the same way. Note that this implementation
requires wider vectors to apply the compress, and thus can only
process up to 16 elements (AVX512 registers can hold 16 32-bit ele-
ments). This technique would be directly applicable to SVE as well.

How to speed Connected Component Labeling up with SIMD RLE algorithms

Listing 2: LUT-based compress for SSE

int16_t4 _mm_compress_storeu_m16_epil6(
int16_tx p, __m128i v
m = _mm_packs_epil6(m,
int mi = _mm_movemask_epi8(m);

1

2 m128i m) {
3

4

5 __m128i perm = _mm_load_si128 ((__m128i4)LUT16x8[mil);
6

7

8

9

P—

_mm_setzero_si128());

v = _mm_shuffle_epi8 (v, perm);
_mm_storeu_si128 ((__m128ix)p, V);
return p + __builtin_popcount(mi);

}

1.3.2 SSSE3 — AVX2. Without native support for compress, the
best way is to use a LUT to compute the permutation that has the
same effect as the compress. The LUT-based implementation con-
verts the edge mask into a scalar integer, then uses this integer to
find the right permutation rule from within the LUT. This permuta-
tion is then applied using _mm_shuffle_epi8. The code is shown
in Listing 2. No AVX or AVX2 instruction seems to profit to such a
code.

1.3.3 ARMv8. On ARM, the best way is also to use a LUT. The
instruction vatbl1q_u8 is used to apply a run-time permutation.

However the implementation is more complex due to the ab-
sence of an instruction converting a mask vector into an integer
(_mm_movemask_epi8 on SSE). This conversion needs to be emu-
lated by setting elements to 1,2, 4, 8..., apply the mask and either
reduce add (vaddv_u16) or reduce or (no specific instruction). Ex-
tra care is required for uint8x16_t as there are more elements in
the vector than bits per elements.

1.4 SIMD RLE decoder

In its simplest form, RLE decoding just consists of iterating over the
segments and memseting the segment value from the start position
to the stop position of the segment. If the segment value is encoded
in a type larger than 8 bits, this cannot be done with an actual call
to memset, but the idea remains the same.

One way to accelerate the decoding is to approximate memset by
rounding the segment size up to a multiple of the SIMD cardinal. In
that way, the expansion of a single segment involves less tests and
branches. This code remains correct if the segments are iterated in
order as the eventual extra elements written by the previous SIMD
store are overridden by the current SIMD store. A diagram of this
algorithm is provided in Figure 2.

The efficiency of this optimization highly depends on segment
size and cannot be faster than the scalar memset-like code for seg-
ments of size 1.

2 CONNECTED COMPONENTS LABELING

2.1 Pixel-based Algorithms: Rosenfeld

Usually, CCL algorithms are split into three steps and perform two
image scans like the pioneer algorithm by Rosenfeld [7]. Let us
define some notations (Figure 3). Let py, ex be the current pixel
and its label. Let pg, pp, pe, pg be the neighbor pixels, and a, b, ¢, d
their associated labels. T is the equivalence table, e a label and r
its root. The first scan (or first labeling) assigns a temporary/provi-
sional label to each CC and some equivalences between labels are

Conference’17, July 2017, Washington, DC, USA

2 3 45

RLc [0 HEEI

4 56 7 8 9 101112

[vio]—1111 [|
[1

L v[3]—0000] 1

[
1]o
l

L vigp1111 [1 1] 1]

l
|
L vt [1[1]
1
|

L vio1—0000[1 [1]1]
vl

12 I
[ofoTo] [.[.[.[.[-
D] [][]

L vi6]—0000 [1 [1]1]]1]1[o|o|o|o|...]...]...\
(] [e
llllll o]
| ENEN

Figure 2: RLE decoder with 4-block SIMD

image of pixels image of pixels image of labels

ol1/olol1|/olololo|1 predecessor predecessor
olol1]o[1]olo[1fo[1 pixe;l;spp|labelasbc|
111 fol1 o111] tpjpictdex
ojof{ofo|1[1|1|o]o]0O = =
G Thi—r"1

current pixel current label

of[t]ofol2]o|o|o]o[3 oft]ofo|2]o|o|o|of2

oo4i200503[:>001i2052&2

4 4 4jol2(o]5]|5]3]8 11 1foj2lof2 2 22

ofofolo|2 2 2fo]o]o0 ofoJolo|2 2 2fo]o]o0

image of labels image of labels

\TFe][OM [2]2]1]3] [:> \Tre][gl: lilzl:lz\

equivalence table

Figure 3: Example of 8-C connected component labeling
with Rosenfeld algorithm: binary image (top), image of tem-
porary labels (bottom left), image of final labels (bottom
righ) after the transitive closure of the equivalence table

built if needed (Figure 3 and Algorithm 2). The second step solves
the equivalence table (Algorithm 3) by computing the transitive
closure (TC) of the graph associated to the label equivalence. The
third step performs a second scan (or second labeling) that replaces
temporary labels of each CC with their root (Algorithm 4).

In Figure 3, we can see that the right CC requires three labels (2,
3 and 5). At the mask position the equivalence between 3 and 5 is
detected and stored into the equivalence table T. At the end of the
first scan, the equivalence table is solved and applied to the image
(like a Look-Up-Table).

2.2 Run-based algorithm: classic LSL

LSL is also composed of three steps. The first step is a two-fold step:
there is first a segment detection (Algorithm 1) and then a segment
Unification (Algorithm 6). The specificity of LSL is to be run-based
and to use a line-relative labeling (Figure 4). From two consecutive
lines X;_1, X;, two relative labelings (ER;, ER;—1) are produced
where runs (or segments) have odd numbers. In the same way, the
associated “run-length coding” are produced (tables RLC;_1, RLC;).
The table ERA; holds the translation between Relative and Abso-
lute labels: ea = ERAj[er/2]. To find out how which labels of the
previous line are connected to the current segment (Unification),
one has to read the value of relative labels from table ER;_1 at the
positions given by RLC;, and translates them into absolute labels

Conference’17, July 2017, Washington, DC, USA

Algorithm 2: Rosenfeld - first labeling (step 1)

Input: a, b, c, d, four labels, py, the current pixel in (i, j)
1 if py # 0 then

2 a<—E;_1[j-1]

3 b — E;_1[j]

4 c— E;i1[j+1]

5 d«— E;[j-1]

6 if (@a=b=c=d=0)then

7 ne < ne+1

8 ey «— ne

9 else

10 rq < Find(a)

11 rp < Find(b)

12 re < Find(c)

13 rq < Find(d)

14 ex «— min*(rq, rp, re, rq) /ignore values < 0
15 if (rg #0andr, # ex)then T[ry]| « ex
16 if (rp 20 andry, # ex)then T[rp] «— ex
17 if (re # 0 and r. # ex)then T[r.] « ey
18 | if (rqa #0andrg # ex)then T[rg] « ex
19 else

20 L ex —0

21 Ei[j] «— ex //temporary root

Algorithm 3: sequential solve of equivalences (step 2)

1 fore =1 to ne do
2 | Tle] « T[T[e]]

Algorithm 4: relabeling (step 3)

1 fori=0toh—-1do
2 for j=0tow—1do
3 L Eiljl « TIE]]

Algorithm 5: Find(e)

Input: e alabel, T the equivalence table
Result: r, the root of e

1re—e

2 while T[r] # r do

3 L r« T[r]

4 returnr

to update the equivalence table T. An alternate algorithm to Unifi-
cation is the finite state machine of Figure 5. It is described in the
next section.

The second step is the same as the pixel-based algorithm (Al-
gorithm 3). The third step is also RLE-accelerated: it is a simple
RLE decoder where each label is replaced by its root (Algorithm 7).
Compared to the implementation in [17], table RLC encodes semi-
open intervals and the associative table ERA is packed and does not
contain zero (so accesses look like ERA[er/2] instead of ERA[er])
and LEA is no more used.

2.3 New SIMDized Faster LSL

For our new implementation of a Faster LSL, the SIMDized seg-
ment detection (RLE encoder: step 1a) and Segment expansion (RLE
decoder: step 3) are used. We have also developed an alternative

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne

j 01234567829

Xiq
X
j 012345
V ALCfoTa[4 6B o
10123456789{7&%210
ERi.1J1[1]1]2]3[38]4]|4]5]6
ER; (ofof1[1[1][1][1]1]1]1
Qeo123
O

e 012 o
unification
ERA;_{ [1 2]3‘ G
ERA; |1

Figure 4: LSL tables

Algorithm 6: LSL Unification U0 (step 1b)

1 forer =1toner — 1 step 2 do

2 // semi open interval segment extraction [jo,]1[
3 Jo < RLCi[er — 1]

1 j1 < RLCjler]

5 // check extension in case of 8-connect algorithm
6 if jo > O then jj « jo —1

7 if j1 < wthenj; « j; +1

8 ero < ER;-1[jo]

9 er1 «— ER;_1[j1 — 1] // right compensation
10 // check label parity: segments are odd

1 if e,o iseventhen e,g «— €,0 + 1

12 if e,1 iseventhen e,; «— e,1 — 1

13 if e,1 > e,o then

14 eq «— ERA;_1]er0/2]

15 a «— Find(eq)

16 for e, = e,o + 2 to e, step 2 do
17 eap «— ERA;_1[err/2]

18 ay < Find(eay)

19 // Union: min extraction and propagation
20 if a < aj then

21 L Tlag] « a

22 if a > aj then

23 Tla] « ax

24 L a <« ay

25 ERA;ler/2] < a // the global min
26 else

27 // new label

28 ne < ne+1

29 | ERA;[er/2] « ne

Algorithm 7: LSL relabeling (step 3)

1 fori=0toh—1do
J1<0
for er = 1to ner — 1 step 2do // number of segment on line i
Jjo < RLCi[er —1]
Eilj1 : jo[«= O // The first BG segment might be empty
ea «— ERA;[er/2]
r « Tlea]
J1 < RLC;ler]
Eiljo : jile=r 1/ FG segment

% N A e R W N

-
S

Ei[j1 : w[<= 0 //The last BG segment might be empty

How to speed Connected Component Labeling up with SIMD RLE algorithms

- C
(a=new label) 'y <l
[0} &/
Ga=ERA_ler2)\ — 1 L
) | ERA[er/2]=3 X o
r=Find(ea) - 4y
a=r
2 3 C ‘j - last segment
[0}

r=Find(ea’)
a=Union(a,r

next er
er «—er+2
Jjo < RLCjiler — 1]
Jj1 < RLCiler]

next er’

init

er —1

jo « RLCiler — 1]

J1 ¢ RLC;ler]

er’ «—1

]6 «— RLCj_1[er’ - 1]
J3 < RLC;_1[er’]

er’ «—er’ +2
Jo & RLCi-1[er’ = 1]
],1 «— RLCj_1[er’]

Figure 5: LSL Unification U1 with finite state machine (step
1b)

Unification step. It is a Finite state machine (Figure 5) that is close
to the merge-sort algorithm: it iterates over segments of both cur-
rent and previous lines at the same time.

This FSM uses gotos for its transitions for two reasons: first
it avoids to compute more complex tests associated to a central-
ized dispatch (with a switch-cases construction) and second, dis-
tributed dispatches are more friendly for the branch predictor of
the CPU that can learn the most probable transition for each state.

In order to skip a test within next er’, we insert a virtual seg-
ment at the end of the previous line that is located after the end of
the line. Therefore, there is always a “ next er’ ” that is after any
segment of the current line and we do not need to test if there is
remaining segments on the previous line. Indeed, once we reached
this virtual segment, the state machine will never get into a next
er' state.

3 BENCHMARKS
3.1 Protocol

In order to compare our new LSL implementation with State-of-
the-Art algorithms and former LSL implementations, the bench-
mark uses the protocol shared by all recent publications: binary
images with various granularity. First because it simplifies the anal-
ysis of results: OpenMP (or pthread) combined with SIMD put a
high level of stress on memory resulting in a loss of parallelism
for compute-bound algorithms like CCL. Second, because DRAG
[14] and Spaghetti [15], the current State-of-the-Art algorithms,
are only available in a mono-threaded implementation within the
open-source YACCLAB library [29].

For reproducible results, MT19937 pseudo-random generator was

used to generate 2048x2048 images of varying density d € [0%; 100%]

and granularity g € [1; 16]. The image density is the ratio of black

Conference’17, July 2017, Washington, DC, USA

AGX (X5.1) ZEN (x5.0)
16 16 [§ %30
L | |4 x16
14 14 1 %25
S 12 1 [7x14 12
£ L 4| =1 x20
510 x12 10
2 8F 4[4 x10 8 4 %15
e
o 6 1 |4 6
X8 4 x10
4F 1 e 4
2F e 2 1 X5
13 x4 5|
0% 100% 0% 100%
BDW (x5.0) SKX (x8.4)
16 16
1 x225 g
14 o 14 F 47>
1 X
L 14 %30
> 12 {x17.5 12
50 a5 10 F 4 [q %25
Z 8 4 x12.5 8 7 |5 %20
o 6 4 %10 6 1[4 x15
4 {x7.5 4t 1«10
2 1 X5 2F i
L I3 X5
0% 100% 0% 100%
density density

Figure 6: Speedup of the SIMD RLE encoder compared to the
scalar RLE encoder on all benchmarked architectures for
g €[1,16]

and white pixels in the image. An image of granularity g is com-
posed of gxg macro-pixels set to 1 or 0. Natural and structured
images lead to processing times roughly equal to those of random
images with g = 4, while g = 1 generates unstructured images to
stress the algorithms and especially those manipulating run length
structures.

All the versions (including YACCLAB ones) have been compiled
with GCC 8 at -03. The time is measured with rdtsc on x86 plat-
forms and with clock_gettime on ARM platforms. Each image is
processed multiple times, and the minimum time per image is kept.
In order to have comparable measurements on different machines,

time - freq)
width - height’*

A first benchmark was done to evaluate the SIMD speedup for
segment detection (step 1a). A second benchmark was done to eval-
uate the three steps of each algorithms.

The evaluated architectures are the Nvidia Jetson AGX ARMvS.2
Neon (AGX) for embedded system, Intel Broadwell Xeon E5-2640
v4 with AVX2 (BDW), Intel Skylake Xeon Xeon Gold 6126 with
AVX512 (SKX) and AMD Epyc EPYC 7301 with AVX2 (ZEN) for
workstation and server. The frequencies have been forced fixed to
their nominal value.

the timings are given in cycles per pixel (cpp =

3.2 RLE encoder

In Figure 6, we present the speedup of our best SIMD RLE encoder
compared to the scalar RLE encoder that was used in the former
LSL. This plot really shows all the benefits of our SIMD approach:
in average most machines get a X5 speedup. On Skylake Xeon, we
achieved x8 thanks to AVX512 (X6 without).

The SIMD RLE encoder is constant time while the scalar is not:
the more random the input is, the slower the encoder is. It is mainly
due to the branch in the scalar implementation. This explains that

Conference’17, July 2017, Washington, DC, USA

the highest speedup is achieved for granularity g = 1 and density
around d = 50%, where the input values are the most random. For
the same reason, the speedup is minimal for d = 0% or d = 100%.

The AVX512 implementation needs 5 cycles per iteration on the
shuffle unit (1 for mask cmp, 2 for widening and 2 for compress).
This gives us a lower bound at 5/16 =~ 0.31 cpp, where our ac-
tual code runs at 0.34 cpp on SKX. This makes the AVX512 RLE
encoder compute bound. A fortiori, the other SIMD encoders are
also compute bound as they are slower.

3.3 Step processing time

The contribution of each step of the processing to the total time is
shown in Figure 7 for both the reference LSL and our new SIMD
LSL. We can clearly see the non-constant run time of the scalar RLE
encoder mentioned above, while our SIMD RLE processing time is
completely flat.

In scalar, we can see that the RLE, the unification and the re-
labeling steps are faster at higher granularity, while on our SIMD
version, RLE is at the same level, and the relabeling is only slightly
faster. In all cases, the SIMD relabeling (RLE decoder) is at least
as fast as the scalar one. Both relabeling are equally fast at high
granularity (g > 8): the compiler was able to vectorize the scalar
version of the RLE decoder.

Surprisingly, our new unification U1 used in SIMD seems slower
than U0 used in the reference, despite the full CCL with U1 being
faster than with U0 as explained in Section 3.4. This is a conse-
quence of the ER table absence. To process the U0 unification, the
RLE encoder is required to compute this table ER. When using U1,
we can skip this part of the computation in the RLE encoder. As
a matter of fact, the RLE encoder without ER is almost 2x faster
than the RLE encoder with ER.

We can observe that the allocation takes roughly as much time
as our new RLE encoder. This means that in practice, our new ver-
sion can be a few dozen percents faster in most cases. For produc-
tion code, this is not an issue because the processed images will
all have the same size. Actually, even if they are not the same size,
we could reuse the same buffers for smaller images avoiding re-
allocations in most cases.

The longest step of our new SIMD implementation is the relabel-
ing. However, this step is often not required in practice as we are
usually interested in the computation of features associated to the
connected components (those can be computed during unification)
like the bounding box, and the first statistical raw moments. Con-
sequently, one should be interested only in the RLE + unification
timing. the relabeling step has to be considered for CC labeling in
order to compare to State-of-the-Art, and should not for CC anal-
ysis.

As a side note, the relabeling step is mostly a streaming algo-
rithm with a light processing and thus is naturally memory bound.
The relabeling of 32000x32000 images achieves 10.7 GB/s on SKX,
which is exactly the STREAM write bandwidth on a single core.
The unification processing time is dominated by the control struc-
ture of the algorithm.

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne

| RLE Unification Relabeling Allocation ‘
LSLrefg =2 LSLSIMD U1g=2
15 T T T 15 T T T
2 /\
£
gwor 1 10 1
S N
£ 7 T N\
g 5k 5k P | N
o
0 0
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
LSLrefg=4 LSLSIMD U1g=4
15 T T T 15 T T T
=
Q.
<
gwor 1 10 1
» AT
‘@
S 5t . 5 .
:
[oN) /_—\\
0 0
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
LSLrefg=8 LSLSIMD U1g =38
15 T T T 15 T T T
=
Q.
<
g1wor . 10 .
o
£
a
g 5 ;/:_7\'_ 5 _
e
Q.
’_d__'—_'\'\
I \ i
00% 25% 50% 75% 100% 00% 25% 50% 75% 100%
LSL ref g = 16 LSLSIMD U1g =16
15 T T T 15 T T T
=
j=N
<
g10r . 10 1
o
£
a
g st m— . 5F .
< 1 —
Q.
r-— |
0 4 0 \ \ i
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
density density

Figure 7: Impact of each step on the processing time for the
reference LSL and the SIMD LSL U1 on Skylake Xeon for
g €{2,4,8,16}

3.4 Granularity comparison

The processing time of the full CCL on SKX is given by Figure 8
forg € {2,4,8,16}. We can clearly see that the scalar LSL is slower
than both DRAG and Spaghetti, which are themselves outperformed
by our new SIMD LSL at any density. LSL SIMD is faster than
Rosenfeld SIMD for g > 2. Rosenfeld SIMD is actually 1.30x faster
than LSL SIMD for g = 1 in average. Indeed, lower granularity
stresses run-based algorithms much more.

Our new unification U1 has roughly the same speed than U0 at
g = 2, while it is always faster for higher granularity. As explained
in the previous section, this is not because U1 is intrinsically faster,

How to speed Connected Component Labeling up with SIMD RLE algorithms

| SL ref DRAG LSL SIMD U0
Rosenfeld SIMD === Spaghetti === LSL SIMD U1
g=2 g=4
T T T
15 .
=
Q.
<
g 10 1
o
£
: 5 /\
2 L 4
S /
= /_\
0 I 0 I B 1
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
g=3_8 g=16
15 T T T 15 T T T
=
Q.
<
giwor 1 10 .
o
£
@
S 5f /‘\ 5 4
e e ——
a
e S I e ——
0 i i i 0 i i i
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
density density

Figure 8: Processing time of the different CCL algorithms
on a Skylake Xeon for 2048x2048 with g € {2,4, 8,16} (the
dotted line is the practical speed limit associated to memory
bandwidth)

but because U1 does not require the computation of ER. For g = 1,
the unification time is predominant and U0 is then 1.14x faster
than Ul. We can also see that the timings of all versions at d =
50% are lower at higher granularity: the input values are more
predictable for the branch predictor, and the segments are fewer
(each one is longer). On the opposite, the timings at d = 0% and
d = 100% do not change with the granularity: an empty image
remains empty at other granularity. The timings are flattened by
the higher granularity.

3.5 Average processing time

Figure 9 shows for each granularity and target architecture the
average processing time of the CCL algorithms. We can clearly
see the following ordering: LSL ref is slower than both DRAG and
Spaghetti which are both slower than SIMD U0 and U1 on all x86
machines. However, we can see that LSL ref gets faster than both
DRAG and Spaghetti on AGX for g > 6. We believe that those algo-
rithms under-perform on ARM because they were developed and
optimized exclusively on Intel platform. One can note that on AGX,
DRAG is actually a bit faster than Spaghetti while it is the opposite
on all x86 platforms.

As stated earlier, we can see that Rosenfeld SIMD is faster than
LSL SIMD for g = 1, and slower afterwards. This algorithm gets
close to Spaghetti but slower for g > 4. We can also see that U0 is
faster than U1l for g = 1 on all platforms. For g > 2, U1 is faster
than U0 as already explained. The average average-timings in cpp
are given in Table 1 for all densities and g € [1, 16]. The same table
in ms/image is given in Table 2. We can see that our best algorithm
- LSL SIMD U1 - outperforms all the others on all tested platforms.

Conference’17, July 2017, Washington, DC, USA

| SL ref DRAG LSL SIMD U0
Rosenfeld SIMD === Spaghetti === LSL SIMD U1
AGX ZEN

processing time (cpp)

processing time (cpp)

granularity granularity

Figure 9: Average processing time (cpp) for 2048x2048 im-
ages with g € [1, 16] (the dotted line is the practical speed
limit associated to memory bandwidth)

[cycle/pixel [[AGX [ZEN [BDW | SKX |
[LSL ref [16] [[599 [528 | 646 [641 |
| Rosenfeld SIMD [11] [NATT N/A T NA | 447 |
[DRAG [14] [] 533 [460] 538 [559 |
| Spaghetti [15] || 547 [433 | 514 | 498 |
LSL SIMD U0 294 [269 [344 | 3.04
LSL SIMD U1 272 | 253 | 3.10 | 2.70
LSL SIMD U1 -alloc 238 | 229 | 261 | 236
LSL SIMD U1 -relabeling 1.18 0.99 1.18 1.09

Table 1: Average processing time (cpp) for the full CCL for
2048%2048 images with g € [1,16]

[ms/image [[AGX [ZEN [BDW [SKX |
[LSL ref [16] [[111 [101 [7.97] 103 |
[Rosenfeld SIMD [11] [NA T NA T NA 721]
[DRAG [14] [[987 [876 | 6.64 [9.02 |
| Spaghetti [15] [101 | 826 [633 | 8.03 |
LSL SIMD U0 545 | 512 | 4.24 | 4.9
LSL SIMD U1 5.04 | 481 | 3.82 | 4.36
LSL SIMD U1 -alloc 441 [436 | 321 | 3381
LSL SIMD U1 -relabeling [[218 | 1.89 | 146 [176

Table 2: Average processing time (ms) for the full CCL for
2048%2048 images with g € [1, 16]

We achieve the complete CCL with allocations under 3 cycles per
pixel on recent platforms. If one is only interested in the features of
the connected components, then they do not need relabeling and
can get RLE + unification in just under 1.2 cycles per pixel, while
the features will be computed on the fly.

Conference’17, July 2017, Washington, DC, USA

AGX (x2.2) ZEN (x1.7)
16 %3 16! 7
X2
14 4 H x2.75 14 g
S 12p 1[4 %25 12 I 1Hx1.8
T 10 4 |H x2.25 10 E
2 x1.6
g 8 F 4 |4 x2 3 J
5 6F 4 [7x1.75 q 1 [x1.4
4F 4 |1 <15 4 F E
2 (. 1 ERES 2 1
[o] | N Y
0% 100% 0% 100%
BDW (x1.7) SKX (x1.9)
16 16
14 F 1 [q %2 14 F 14 %2
12 F 8 12 8
> X1.8 x1.8
Sop u 8 10 | 8
= - E X1.6 - E
2 s 8 x1.6
% 6 [3 6 1
x1.4
4 E 4F B X1.4
4 H x1.2 L g
2 2 : o Ex12
0% 100% 0% 100%
density density

Figure 10: Speedup of LSL SIMD U1l compared against
Spaghetti (with memory allocations) for g € [1, 16]

3.6 Speedup against State-of-the-Art

Figure 10 shows the speedup of our best LSL SIMD against the best
State-of-the-Art algorithm Spaghetti. On AVX2 machines (ZEN and
BDW), we achieve an average speedup about X1.7. On SKX, we
can take advantage of AVX512 and thus achieve x1.9. On AGX, we
achieve a higher speedup about x2.2 due to the suspected under-
performance of YACCLAB algorithms on this platform.

We can see that the lowest speedup is for g = 1 and d ~ 90%.
The highest speedups are achieved for relatively high granularity
(g9 > 3) and high densities.

CONCLUSION

In this paper we have introduced a SIMD version of LSL that is
accelerated thanks to SIMD RLE compression and decompression.
This algorithm is available for SSE, AVX, AVX512 and Neon and
can be easily ported on Altivec thanks to vec_perm instruction or
SVE (by emulating missing compress store). It has been evaluated
on Intel, AMD and ARM architectures. In average, our binary RLE
encoder is X5 faster and has a data-independent processing time.
The complete CCL is then from X1.7 up to x1.9 faster than the
2019 State-of-the-Art algorithms.

REFERENCES

[1] D. A. Bader and J. Jaja, “Parallel algorithms for image histogramming and con-
nected components with an experimental study,” Parallel and Distributed Com-
puting, vol. 35,2, pp. 173-190, 1995.

[2] A.Lindner, A. Bieniek, and H. Burkhardt, “PISA - parallel image segmentation
algorithms,” pp. 1-10, Springer, 1999.

B3

[4

[5]

[10

(11]

(12]

(14

[15

[16

(17]

oy
&

Florian Lemaitre, Arthur Hennequin, Lionel Lacassagne

L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-component
labeling problem: a review of state-of-the-art algorithms,” Pattern Recognition,
vol. 70, pp. 25-43, 2017.

F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Toward reliable experiments
on the performance of connected components labeling algorithms,” Journal of

Real-Time Image Processing (JRTIP), p(l:a. 1-16, 2018.
M. Niknam, P. Thulasiraman, and S. Camorlinga, “A parallel algorithm for con-

nected component labeling of gray-scale images on homogeneous multicore
architectures,” Journal of Physics - High Performance Computing Symposium
(HPCS), 2010.

S. Gupta, D. Palsetia, M. A. Patwary, A. Agrawal, and A. Choudhary, “A new
parallel algorithm for two-pass connected component labeling,” in Parallel & Dis-
tributed Processing Symposium Workshops (IPDPSW), pp. 1355-1362, IEEE, 2014.
A. Rosenfeld and J. Platz, “Sequential operator in digital pictures processing,’
Journal of ACM, vol. 13,4, pp. 471-494, 1966.

F. Wende and T. Steinke, “Swendsen-wang multi-cluster algorithm for the 2d/3d
Ising Model on Xeon Phi and GPU,” in International Conference on High Perfor-
mance Computing (SuperComputing) (ACM, ed.), pp. 1-12, 2013.

L. Lacassagne, L. Cabaret, F. Hebache, and A. Petreto, “A new SIMD iterative
connected component labeling algorithm,” in ACM Workshop on Programming
Models for SIMD/Vector Processing (PPoPP), pp. 1-8, 2016.

A. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected component label-
ing on a 2d grid using CUDA,” Journal of Parallel and Distributed Computing,
vol. 71, pp. 615-620, 2011.

A. Hennequin, 1. Masliah, and L. Lacassagne, “Designing efficient SIMD algo-
rithms for direct connected component labeling,” in ACM Workshop on Program-
ming Models for SIMD/Vector Processing (PPoPP), pp. 1-8, 2019.

Y. Komura, “GPU-based cluster-labeling algorithm without the use of conven-
tional iteration: application to swendsen-wang multi-cluster spin flip algorithm,”
Computer Physics Communications, pp. 54-58, 2015.

D.P. Playne and K. Hawick, “A new algorithm for parallel connected-component
labelling on GPUs,” IEEE Transactions on Parallel and Distributed Systems, 2018.

F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, “Connected components labeling
on DRAGs,” in International Conference on Pattern Recognition (ICPR) (IEEE, ed.),
pp. 121-126, 2018.

F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti labeling: Directed
acyclic graphs for block-based connected components labeling,” Transactions on
Image Processing, vol. PP, pp. 1-14, 2019.

L. Lacassagne and A. B. Zavidovique, “Light speed labeling for RISC architec-
tures,” in IEEE International Conference on Image Analysis and Processing (ICIP),
2009.

L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel Light Speed Labeling for
connected component analysis on multi-core processors,” Journal of Real-Time
Image Processing (JRTIP), vol. 15, no. 1, pp. 173-196, 2018.

A. Hennequin, Q. L. Meunier, L. Lacassagne, and L. Cabaret, “A new direct con-
nected component labeling and analysis algorithm for GPUs,” in IEEE Interna-
tional Conference on Design and Architectures for Signal and Image Processing
(DASIP), pp. 1-6, 2018.

A. H. Robinson and C. Cherry, “Results of a prototype television bandwidth com-
pression scheme,” Proceedings of the IEEE, vol. 55,3, pp. 8-19, 1967.

T. A. Welch, “A technique for high-performance data compression,” Computer,
vol. 17,6, pp. 8-19, 1984.

J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate
coding,” Transactions on Information Theory, vol. 24,5, pp. 530,536, 1978.

C.-Y. Chan and Y. E. Ioannidis, “Bitmap index design and evaluation,” in ACM
SIGMOD Record, vol. 27, pp. 355-366, ACM, 1998.

J. Willms, “Autocorrelations of binary sequences and run structure,” Transactions
on Information Theory, vol. 59,8, pp. 4985-1993, 2013.

D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques, and G. Ssi-
Yan-Kai, “Roaring bitmaps: Implementation of an optimized software library,”
Software: Practice and Experience, vol. 48, no. 4, pp. 867-895, 2018.

A. Ungethum, J. Pietrzyk, P. Damme, D. Habich, and W. Lehner, “Conflict
detection-based run-length encoding - avx-512 cd instruction set in action,” in
International Conference on Data Engineering Workshops (ICDEW), pp. 96-101,
IEEE, 2019.

H. Lang, L. Passing, A. Kipf, P. Boncz, T. Neumann, and A. Kemper, “Make the
most out of your simd investments: counter control flow divergence in compiled
query pipelines,” Journal on Very Large Data Bases (VLDB), pp. 1-18, 2019.

D. Lemire, “Lemire’s simdprune https://github.com/lemire/simdprune,” 2019.

H. S. Warren, Hacker’s Delight. Addison-Wesley Professional, 2nd ed., 2012.

C. Grana, “YACCLAB https://github.com/prittt/YACCLAB,” 2016.

https://github.com/lemire/simdprune
https://github.com/prittt/YACCLAB

	Abstract
	1 Run-Length Encoding
	1.1 Scalar RLE encoder
	1.2 SIMD RLE encoder
	1.3 Emulating compress
	1.4 SIMD RLE decoder

	2 Connected Components Labeling
	2.1 Pixel-based Algorithms: Rosenfeld
	2.2 Run-based algorithm: classic LSL
	2.3 New SIMDized Faster LSL

	3 Benchmarks
	3.1 Protocol
	3.2 RLE encoder
	3.3 Step processing time
	3.4 Granularity comparison
	3.5 Average processing time
	3.6 Speedup against State-of-the-Art

	References

