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We introduce a coupled PDE-ODEs model to describe mixed traffic with humans and autonomous vehicles. The partial differential equation describes the bulk of human traffic while the ordinary differential equations characterize the trajectories of possibly many autonomous vehicles. The coupled PDE-ODE model is introduced, and existence of solutions for this model is shown, along with a proposed algorithm to construct approximate solutions. We propose a control strategy for the speeds of the autonomous vehicles to minimize total fuel consumption. Existence of solutions for the optimal control problem is proved, and show numerically that a greater reduction in total fuel consumption is possible with more AVs acting as moving bottlenecks.

Introduction

In recent years, increasing attention has been placed on transportation systems and their management due the increasing number of disrupting technologies developing in this field with potential to alleviate traffic congestion and pollution. One idea that has emerged is the possibility to use a small number of autonomous vehicles in the traffic flow to act as controllers, and control the predominately human-piloted flow of traffic. Despite the many efforts conducted with field experiments (see for example [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF]) as well as simulations-based applications [START_REF] Knorr | Reducing traffic jams via vanets[END_REF][START_REF] Davis | Effect of adaptive cruise control systems on traffic flow[END_REF][START_REF] Guériau | How to assess the benefits of connected vehicles? a simulation framework for the design of cooperative traffic management strategies[END_REF][START_REF] Talebpour | Influence of connected and autonomous vehicles on traffic flow stability and throughput[END_REF], a comprehensive macroscopic theory for control of traffic via autonomous vehicles is still missing. Historically, common traffic control strategies involve ramp-metering and variable speed limits (VSL), which have been extensively studied in the literature, see [START_REF] Alessandri | Nonlinear optimization for freeway control using variablespeed signaling[END_REF][START_REF] Kolb | Capacity drop and traffic control for a second order traffic model[END_REF][START_REF] Hegyi | Optimal coordination of variable speed limits to suppress shock waves[END_REF][START_REF] Carlson | Optimal motorway traffic flow control involving variable speed limits and ramp metering[END_REF][START_REF] De | Best-effort highway traffic congestion control via variable speed limits[END_REF][START_REF] Csikós | Freeway shockwave control using ramp metering and variable speed limits[END_REF][START_REF] Domíngeuz Frejo | Global versus local MPC algorithms in freeway traffic control with ramp metering and variable speed limits[END_REF][START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF] and reference therein. In the last decade researchers started studying as well control problems related to scalar or systems of conservation laws with literature coming from control and mathematical communities, see [START_REF] Karafyllis | Feedback control of nonlinear hyperbolic pde systems inspired by traffic flow models[END_REF][START_REF] Karafyllis | Feedback control of scalar conservation laws with application to density control in freeways by means of variable speed limits[END_REF][START_REF] Strub | Weak formulation of boundary conditions for scalar conservation laws: An application to highway traffic modelling[END_REF][START_REF] Yu | Traffic congestion control on aw-rasclezhang model: Full-state feedback[END_REF][START_REF] Ulbrich | A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms[END_REF][START_REF] Ulbrich | Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservations laws[END_REF][START_REF] Reilly | Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering[END_REF][START_REF] Jacquet | Optimal control of scalar one-dimensional conservation laws[END_REF][START_REF] Banda | Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws[END_REF].

More recently, new disruptive technologies such as autonomy and adaptive cruise control (ACC) have paved the road for new types of control. In particular, one can look at Lagrangian control where a certain number of vehicles are controlled within the bulk traffic flow to act as bottlenecks. Recently, two seminal works [START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF][START_REF] Čičić | Traffic regulation via individually controlled automated vehicles: a cell transmission model approach[END_REF] have proposed strategies to control traffic using such an approach. Both these works look to control traffic via means of autonomous vehicles. In particular, [START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF] uses a model predictive control (MPC) approach to achieve a reduction in fuel consumption in congested traffic due to the presence of a fixed bottleneck on the highway. While in [START_REF] Čičić | Traffic regulation via individually controlled automated vehicles: a cell transmission model approach[END_REF], Čicic et al. dissipate traffic jam via the use of controlled autonomous vehicles in a discretized setting using the well-known Cell Transmission Model (CTM) [START_REF] Daganzo | The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF]. In this paper, we study a control problem for a coupled Partial Differential Equation-Ordinary Differential Equations (PDE-ODEs) system with application to traffic flow with autonomous vehicles (AVs). This is done by starting from existing models for moving bottlenecks [START_REF] Lebacque | Introducing Buses into First-Order Macroscopic Traffic Flow Models[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]. These models are developed from the classical Lighthill-Whitham-Richards (LWR) PDE [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] and are augmented with the dynamics of a slower-moving vehicle in the bulk traffic flow that creates a moving bottleneck. The underlying idea behind this paper is to exploit the dynamics of the slower-moving vehicle by controlling it to drive according to a specific control law. In this way the interaction between the controlled vehicle and the surrounding flow can be used to modify the traffic density to improve congestion and reduce emissions. We consider the speed of the moving bottleneck as the control variable. The main contribution of the paper is two-fold. First, we extend existing models of moving bottleneck to the problem of multiple moving bottleneck. Then, we analytically prove the existence of solution for the coupled PDE-ODE model and for the optimal control problem. And we show numerically how to solve the optimal control problem. The paper is organized as follows: Section 2 sets up the problem and shows how to analytically find solutions to the Riemann problem of PDE-ODE systems. In Section 3 we show how to compute approximate solutions to the coupled PDE-ODE system, and in Section 4 we introduce an optimal control problem and prove that this optimal control problem has at least one solution. Section 5 shows the numerical scheme and the simulations.

2 Description of the model

Coupled PDE-ODE model for traffic with autonomous vehicles

We study a coupled PDE-ODE system modeling the impact of N ∈ IN\{0} autonomous vehicles (AVs) on traffic flow. More precisely, the PDE is the conservation law used in the LWR model [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] that describes the evolution of traffic flow:

∂ t ρ (t, x) + ∂ x f (ρ (t, x)) = 0, t > 0, x ∈ IR, ρ(0, x) = ρ 0 (x), x ∈ IR. (1) 
Let ρ max and V max be respectively the constant maximal density and the constant maximal speed of a road. Then above, ρ = ρ(t, x) ∈ [0, ρ max ] denotes the macroscopic traffic density for every time t ≥ 0 and position x ∈ IR. The flux function f is defined such that f (ρ) = ρv(ρ) with v the mean speed of cars. In this case, we assume that the speed v depends linearly on the density of cars as follows:

v(ρ) = V max 1 - ρ ρ max . For i ∈ {1, • • • , N }, the trajectory of the i th autonomous vehicle is modeled by the following ODE ẏi (t) = min{V i (t), v(ρ(t, y i (t)+))}, t > 0, y i (0) = y 0 i . (2) 
Above, v(ρ(t, y i (t)+)) := lim x→yi(t)

x>y i (t)
ρ(t, x), which indicates that the autonomous vehicle is affected only by the den-sity downstream. The i th AV drives at its maximum desired speed V i except when the traffic in front is too dense. In that case, the autonomous vehicle has to reduce its velocity accordingly.

To describe the influence of the i th AV on the evolution of traffic we introduce the following flux constraint:

f (ρ (t, y i (t))) -ẏi (t)ρ (t, y i (t)) ≤ F α ( ẏi (t)) , t > 0.
(3) Where the term F α , that indicates the maximal flux allowed in the i th autonomous vehicle reference frame, is defined as follows:

F α ( ẏi (t)) := α max ρ∈[0,ρmax] (f (ρ) -ẏi (t)ρ) .
In particular, the road capacity is reduced by a factor α ∈ (0, 1) due to the presence of the AVs. The complete model then becomes:

                 ∂ t ρ (t, x) + ∂ x f (ρ (t, x)) = 0 ẏi (t) = min{V i (t), v(ρ(t, y i (t)+))} f (ρ (t, y i (t))) -ẏi (t)ρ (t, y i (t)) ≤ F α ( ẏi (t)) ρ(0, x) = ρ 0 (x) y i (0) = y 0 i (4)
A similar coupled PDE-ODE system (4) was introduced in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF] for a single AV and a constant maximum speed. For simplicity of notation, in the rest of this section we drop the index i and denote V i = V . Let us fix ρα (V ) and ρα (V ) the two density values solutions of F α (V ) + V ρ = f (ρ) such that ρα (V ) < ρα (V ). And let ρ * the solution of V ρ = f (ρ) (see Figure 1). We compute ρα (V ), ρα (V ) and ρ * using the fact that f is strictly concave and v(ρ) = V max 1 -ρ ρmax . For every V ∈ [0, V max ], we obtain:

ρα (V ) = ρ max (V max -V ) 1 - √ 1 -α 2V max , (5) ρα 
(V ) = ρ max (V max -V ) 1 + √ 1 -α 2V max , (6) 
ρ * (V ) = ρ max 1 - V V max . (7) 
Moreover, we denote by σ(ρ 1 , ρ 2 ) := f (ρ1)-f (ρ2) ρ1-ρ2 the Rankine-Hugoniot speed of the front wave (ρ 1 , ρ 2 ).

The Riemann problem with moving constraints

Let us recall how to construct the solution of a Riemann problem for a constrained system. Consider the coupled PDE-ODE (1)-( 2)-( 3) system equipped with Riemann

ρ Fα(V ) ρα (V ) ρα (V ) ρ * (V ) Fα(V ) + V ρ V ρ ρ max f (ρ)
Fig. 1. The flux function f and ρα(V ) ρα(V ) ρ * (V ).

type initial data

ρ 0 (x) = ρ L if x < 0 ρ R if x > 0 and y 0 = 0. ( 8 
)
Following [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]Section 3] and [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF], we denote by R the standard Riemann solver for the simple PDE (1) with ρ 0 as in [START_REF] Csikós | Freeway shockwave control using ramp metering and variable speed limits[END_REF] and we denote by R V the constrained Riemann problem. 2)-( 3) and ( 8) is defined as follows:

Definition 1. Let V ∈ [0, V max ]. The constrained Rie- mann solver R V : [0, ρ max ] 2 → L 1 loc (IR; [0, ρ max ]) for (1)-(
(1) If f (R(ρ L , ρ R )(V )) > F α (V ) + V R(ρ L , ρ R )(V ), then R V (ρ L , ρ R )(x/t) = R(ρ L , ρα (V ))(x/t) if x < V t, R(ρ α (V ), ρ R )(x/t) if x V t, and 
y(t) = V t. (2) If V R(ρ L , ρ R )(V ) f (R(ρ L , ρ R )(V )) F α (V ) + V R(ρ L , ρ R )(V ), then R V (ρ L , ρ R ) = R(ρ L , ρ R ) and y(t) = V t.
(

) If f (R(ρ L , ρ R )(V )) < V R(ρ L , ρ R )(V ), then R V (ρ L , ρ R ) = R(ρ L , ρ R ) and y(t) = v(ρ R )t. 3 
An illustration of each case in Definition 1 is given in Figure 2a, Figure 2b and Figure 2c. In particular, in Figure 2a, a shock (ρ α , ρα ) which doesn't satisfy the Lax entropy condition [START_REF] Lax | Hyperbolic systems of conservation laws ii[END_REF] is shown. Such a shock is called a non-classical shock.

Wave-front tracking algorithm

In this section, we describe how to construct solutions to the coupled PDE-ODE system. Let the initial density ρ 0 and the initial trajectories of the autonomous vehicle (y 0 i ) i∈{1,••• ,N } be known. Following [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF], we can construct a density mesh M n on the interval [0, ρ max ] and a velocity mesh

V n on the interval [0, V max ] such that (ρ α (V i ), ρα (V i )) ∈ (M n ) 2 for every i ∈ {1, • • • , N } and for every V i ∈ V n . Simultaneously, for every i ∈ {1, • • • , N },
we consider a sequence of piecewise constant functions (V n i ) n∈IN and a sequence (ρ n 0 ) n∈IN having both a finite number of discontinuities such that

lim n→+∞ ρ n 0 -ρ 0 L 1 (IR) = 0 and T V (ρ n 0 ) T V (ρ 0 ), (9) lim n→+∞ V n i -V i L 1 (I R + ) = 0 and T V (V n i ) T V (V i ). ( 10 
)
We adapt the method in [START_REF] Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF] to construct approximate wave-front tracking solutions. Remark 1. Hereafter, the term "approximately" means that a rarefaction wave is split into a fan of rarefaction shocks such that the left and the right densities of each rarefaction shock belongs to the state mesh M n .

Step 1 For every i ∈ {1, • • • , N }, we solve approximately the constrained Riemann problem at x = y 0 i as described in Section 2.2. This is done for t ∈ [0, t n 1 ] with V = V i (0+) where t n 1 is the first time when one of the AVs changes its speed.

Step 2 At each point of discontinuity of

ρ n 0 different from (y 0 i ) i=1,••• ,N , we solve approximately the standard Riemann problem over [0, t n 1 ].
Step 3 By piecing solutions together, we construct a solution ρ n and for every

i ∈ {1, • • • , N }, y n i is solution of ẏn i (t) = min(V n i (t), v(ρ n (t, y n i (t)+))), y n i (0) = y 0 i , until two waves meet at t I .
Step 4 Now we check the value of t I :

(a) If t I < t n 1 , then the approximate solution ρ n (t I , •) is still a piecewise constant function verifying ρ n (t I , x) ∈ M n for almost every x ∈ IR. Thus, Step 1, Step 2 and Step 3 are repeated until two waves meet at a new t I until t

I t n 1 . (b) If t I = t n 1 , the constrained Riemann problem is solved over [t n 1 , t n 2 ] as previously replacing V i (0+) by V i (t n 1 +) for every i ∈ {1, • • • , N } where t n 2
is the second time when one of the AVs changes its speed.

Using this approach, we construct an approximate solution (ρ n , y n 1 , • • • , y n N ) of ( 1)-( 2)-(3).

4 Control problem

The Cauchy problem

We denote with BV the set of functions of bounded variation endowed with the norm where T V (u) stands for the total variation of u, see [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]. Let us consider a sequence of initial positions

u BV = u L 1 + T V (u) x t 0 ρ ρ ρα (V ) ρα (V ) ẏ = V (a) Case (1) of Defini- tion 1: ρL = ρR = ρ ∈ (ρα(V ), ρα(V )) . x t 0 ρ R ρ L ẏ = V (b) Case (2) of Definition 1: 0 < ρL < ρα(V ) and ρα(V ) < ρR ρmax. x t 0 ρ L ρ R ẏ = v(ρ R ) (c) Case (3) of Definition 1: ρ * (V ) < ρL < ρR.
(y 0 i ) i=1,••• ,N ∈ IR N , a sequence of maximum speeds (V i ) i=1,••• ,N ∈ BV IR + ; [0, V max ]
N and a initial den- 2)-( 3) if the following conditions hold.

sity ρ 0 ∈ L 1 ∩ BV (IR; [0, ρ max ]). Definition 2. The (n+1)-tuple (ρ, y 1 , • • • , y N ) provides a solution to (1)-(
(

) ρ ∈ C 0 IR + ; L 1 ∩ BV (IR; [0, ρ max ]) ; (2) For every i ∈ {1, • • • , N }, y i ∈ W 1,1 loc (IR + ; IR); . (3) ρ is a weak solution of ∂ t ρ + ∂ x f (ρ) = 0, (x, t) ∈ IR + × IR; (4) For every κ ∈ IR, for all ϕ ∈ C 1 c (IR 2 ; IR + ) and for every i ∈ {1, • • • , N }, it holds I R + I R (|ρ -κ|∂ t ϕ + sgn(ρ -κ)g(k)∂ x ϕ) dx dt (11) + 2 I R + (h i (k) -min{h i (k), F α ( ẏi (t))}) ϕ(t, y i (t)) dt (12) + I R |ρ 0 -κ|ϕ(0, x) dx 0 ; with g(k) = f (ρ) -f (κ) and h i (k) = f (κ) -ẏi (t)κ. (5) For a.e. t > 0, for every i ∈ {1, • • • , N }, ẏi (t) = min (V i (t), v (ρ (t, y i (t)+))); (6) For a.e. t > 0, for every i ∈ {1, • • • , N } f (ρ (t, y i (t)±)) -ẏi (t)ρ (t, y i (t)±) ≤ F α ( ẏi (t)); 1 
The Cauchy problem of ( 1)-( 2)-( 3) has been already studied in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF][START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF][START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF] when only one autonomous vehicle (N = 1 in (2) and ( 3)) influences the traffic flow.

When the maximum speed of the AV is constant in time, the existence and the stability of solutions for (1)-( 2)-(3) in the sense of Definition 2 has been proven in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF][START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF]. When the maximum speed of the AV depends on time, the authors in [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF] proved the existence of solutions for (1)-( 2)-( 3). Here we introduce several AVs.

Let > 0. We introduce the class of admissible maximum speed

V N ⊂ BV IR + ; [0, V max ] N as follows. The sequence (V i ) i∈{1,••• ,N } ∈ V N if, for every t 0, for ev- ery i ∈ {1, • • • , N -1}, y i (t) -< y i+1 (t),
where y i is solution of (2). Note that the set V N depends on the initial density ρ 0 and the initial position of the N autonomous vehicles (y

0 i ) i∈{0,••• ,N } . When (V i ) i∈{1,••• ,N } ∈ V N ,
an autonomous vehicle can never catch up the autonomous vehicle in front. Mathematically speaking, two non-classical shocks cannot interact. 3) admits a solution in the sense of Definition 2.

Theorem 1. Let > 0, N ∈ IN\{0}, ρ 0 ∈ BV (IR, [0, ρ max ]) and (y 0 i ) i=1,••• ,N ∈ IR N . We assume that (V i ) i∈{1,••• ,N } ∈ V N . The Cauchy problem (1)-(2)-(
Proof. We contruct piecewise constant approximate solutions (ρ n , y n ) of ( 1)-( 2)-(3) via the wave-front tracking method described in Section 3. Then, we introduce the following TV type functional Γ(t) defined by

Γ(t) = T V (ρ n (t, •)) + 2ρ max + N i=1 γ i (t) + 3ρmax Vmax N i=1 T V (V n i (•); [t, +∞[) , (13) 
where if ρ n (t,

y n i (t)-) = ρα (V n i (t)) and ρ n (t, y n i (t)+) = ρα (V n i (t)) then γ i (t) = -2 (ρ α (V n i (t)) -ρα (V n i (t))
), otherwise γ i (t) = 0. Roughly, γ i is a function created to compensate the possible interactions between the wave-fronts and the i th autonomous vehicle. It is clear that Γ is well-defined for a.e t 0 and it changes only at discontinuity points of V n i with i ∈ {1, • • • , N } or when two wave-fronts interacts.

• Assuming that an interaction occurs at time t = t away from (y i ( t)) i∈{1,••• ,N } . In this case, either two shocks collide or a shock and a rarefaction shock interact. In both cases, we have T

V (ρ n ( t+, •)) T V (ρ n ( t-, •)) and, for every i ∈ {1, • • • , N }, γ i ( t+) = γ i ( t-) and T V (V n i (•); [ t+, +∞[) = T V (V n i (•); [ t-, +∞[) leading to Γ( t+) Γ( t-). • Since (V i ) i∈{1,••• ,N } ∈ V N , all possible interac-
tions between classical waves (shocks and rarefaction shocks) and the i th autonomous vehicle are described in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF]. In that case, for every

i ∈ {1, • • • , N }, V n i ( t-) = V n i ( t+). From [26, Lemma 2], T V (ρ n ( t+, •)) + 2ρ max + N i=1 γ i ( t+) T V (ρ n ( t-, •)) + 2ρ max + N i=1 γ i ( t-). Therefore, Γ( t+) Γ( t-). • Using (V i ) i∈{1,••• ,N } ∈ V N , all possible situations
when a jump occur in V n i are described in [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF]. From [15, Lemma 3.1,Lemma 3.2,Lemma 3.3], Γ( t+) Γ( t-).

We conclude that Γ( t+) Γ( t-). ( 14)

From ( 9), ( 10) and ( 14),

T V (ρ n (t, •)) T V (ρ 0 ) + 2N ρ max + 3ρ max V max N i=1 T V (V i ). ( 15 
) Since (V i ) i∈{1,••• ,N } ∈ V N and there exists C > 0 such that T V (ρ n (t, •))
C, we can apply [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF]Lemma 3.4]. Thus, up to a subsequence, we have

ρ n → ρ, in L 1 loc (IR + × IR; [0, ρ max ]), ( 16a 
)
y n y, in L ∞ loc (IR + ; IR), ( 16b 
) ẏn → ẏ, in L 1 loc (IR + ; IR), (16c) 
with T V (ρ(t, •))

lim inf n T V (ρ n (t, •)) C.
In [15, Proof of Theorem 3.1], the author show that the limit (ρ, y) is a solution of ( 1)-( 2)-(3) in the sense of Definition 2. This can be applied since (

V i ) i∈{1,••• ,N } ∈ V N .
More precisely, all possible interactions between waves (shock, rarefaction wave, AVs) are the same as the ones in [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF].

The optimal control problem

The objective of the optimization is to drive the AV in such a way that it minimizes the fuel consumption of the entire traffic flow, i.e. the total fuel consumption of all vehicles. Therefore, the control functions are the maximum speed of AVs, denoted by

V 1 , • • • , V N .
It is important to be able to quantify the fuel consumption as a function of the vehicle density, which can be integrated over the entire roadway to calculate the total fuel consumed. Fuel consumption is related to the speed of vehicles as shown by [START_REF] Ahn | Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels[END_REF] and [START_REF] Berry | The effects of driving style and vehicle performance on the real-world fuel consumption of US light-duty vehicles[END_REF]. Generally, fuel consumption increases with the speed of the vehicle, with a nonlinear relationship between speed and fuel consumption. Using the fuel consumption rates of four different commercially available vehicles, [START_REF] Ramadan | Traffic flow control and fuel consumption reduction via moving bottlenecks[END_REF] obtained the following best-fit model for fuel rate K(v) in liters per hour ( /h) as a function of speed v: K(v) = 5.7 × 10 -12 v 6 -3.6 × 10 -9 v 5 + 7.6 × 10 -7 v 4 -6.1 × 10 -5 v 3 + 1.9 × 10 -3 v 2 + 1.6 × 10 -2 v + 0.99 for speed v in km/h and fuel consumption rate K in units of /h. This relationship is depicted in Figure 3a. Using the relationship between speed and fuel rate in Figure 3a as well as the relationship between density and speed in (2.1) obtained by assuming the LWR model, it is possible to compute the fuel rate F (ρ) as a function of traffic density with units /h by computing:

F (ρ) = ρK(v(ρ)), (17) 
which is depicted in Figure 3b.

Let > 0, T f > 0, C > 0 and x 1 , x 2 ∈ IR such that x 1 < x 2 . Fix ρ 0 ∈ L 1 ∩ BV (IR; [0, ρ max ]
) and for every i ∈ {1, • • • , N }, y 0 i ∈ IR. We consider thus the following optimal problem inf 1 and(ρ, y) is the solution of ( 1)-( 2)-(3) associated to (ρ 0 , y 0 ). The functional TFC represents the Total Fuel Consumption computed on a highway section of length x 2 -x 1 km during T f hours.

(Vi) i=1,••• ,N ∈V N V i BV C TFC(V ) := T f 0 x2 x1 F (ρ(t, x))dtdx, (18) where 
V = (V 1 , • • • , V N ), the set V N is defined in Section 4.
Theorem 2. The optimal problem (18) has at least one optimal solution.

Proof. There exists a minimizing sequence (V m ) m∈IN verifying that inf 

V TFC(V ) TFC(V m ) inf V TFC(V ) + 1 m . with V m = (V m i ) i=1,••• ,N ∈ V N and for every i ∈ {1, • • • , N }, V m i BV C.
V m,n i of V m i such that lim n→+∞ ρ n 0 -ρ 0 L 1 (I R) = 0 and T V (ρ n 0 ) T V (ρ 0 ), (19) 
lim n→+∞ V m,n i -V m i L 1 (I R + ) = 0 and T V (V m,n i ) T V (V m i ). (20) 
for every i ∈ {1, • • • , N }. As in the proof of Theorem 1, we construct an approximate solution (ρ m,n , y m,n

1 , • • • , y m,n N ) of (1)-(2)-(3) such that T V (ρ m,n (t, •)) T V (ρ 0 )+2N ρ max + 3ρ max V N i=1 T V (V m i ).
(21) Then, up to a subsequence, (ρ m,n , y m,n

1 , • • • , y m,n N ) con- verges to a solution (ρ m , y m 1 , • • • , y m N ) of (1)-(2)-(3) with V = V m as n → ∞ and T V (ρ m (t, •)) lim inf n T V (ρ m,n (t, •)). (22) 
In particular, we have

lim n→∞ ρ m,n (t, •) -ρ m (t, •) L 1 ([x1,x2];[0,ρmax]) = 0.
Moreover, using ( 21), [START_REF] Knorr | Reducing traffic jams via vanets[END_REF] and V m i BV C, there exists a positive constant, still denoted by C > 0, independent of n and m such that

max(T V (ρ m ), T V (ρ m,n )) C. By dominated convergence theorem, lim n→∞ T f 0 x2 x1 F (ρ m,n )dtdx = T f 0 x2 x1 F (ρ m )dtdx. (23)
Using that V m is a minimizing sequence and ( 20), we deduce that, for every

i ∈ {1, • • • , N }, V m,n i BV C + 1 n , (24) 
and

y m,n i (t) -+ 1 n y m,n i+1 (t). ( 25 
)
From ( 23), there exists a function ϕ : m → IN strictly increasing such that

|TFC(V m,ϕ(m) ) -TFC(V m )| 1 m . (26) 
Using ( 24), we have

V m,ϕ(m) i BV C + 1 ϕ(m) , (27) 
Note that (V m,ϕ(m) ) m∈IN is not a minimizing sequence. Helly's Theorem, see [START_REF] Rudin | Principles of mathematical analysis[END_REF]Theorem 7.25], implies that there exists a function V ∈ BV ([0,

T f ]; [0, V max ]) N and a subsequence of V m,ϕ(m) , still denoted by V m,ϕ(m) , such that V m,ϕ(m) i converges to Vi in L 1 ([0, T f ]; [0, V max ]) and T V ( Vi ) lim inf m T V (V m,ϕ(m) i ) C. From (27), we have Vi BV Vi -V m,ϕ(m) i L 1 + V m,ϕ(m) i L 1 + T V ( Vi ), Vi -V m,ϕ(m) i L 1 + V m,ϕ(m) i L 1 + lim inf m T V (V m,ϕ(m) i ), = lim inf m V m,ϕ(m) i L 1 + lim inf m T V (V m,ϕ(m) i ), lim inf m V m,ϕ(m) i BV C. ( 28 
) Note that (ρ m,ϕ(m) , y m,ϕ(m) 1 , • • • , y m,ϕ(m) N
) is an approximate solution of ( 1)-( 2)-( 3) with V = V . As in the proof of Theorem 1, we have

T V (ρ m,ϕ(m) (t, •)) T V (ρ 0 )+2N ρ max + 3ρ max V max N i=1 T V ( Vi ).
(29) Then, up to a subsequence, (ρ m,ϕ(m) , y 1)-( 2)-( 3) with V = V as m → ∞ and

m,ϕ(m) 1 , • • • , y m,ϕ(m) N ) converges to a solution (ρ, y 1 , • • • , y N ) of (
T V (ρ(t, •)) lim inf m T V (ρ m,ϕ(m) (t, •)). ( 30 
)
In particular, we have

lim m→∞ ρ m,ϕ(m) (t, •) -ρ(t, •) L 1 ([x1,x2];[0,ρmax]) = 0. and for every i ∈ {1, • • • , N } lim m→∞ y m,ϕ(m) i -y i L ∞ ([0,T ];I R) = 0. ( 31 
)
Moreover, using ( 29), [START_REF] Ramadan | Traffic flow control and fuel consumption reduction via moving bottlenecks[END_REF] and T V ( Vi ) C, there exists a positive constant, still denoted by C > 0, independent of m such that

T V (ρ) T V (ρ m,ϕ(m) ) C.
By dominated convergence theorem, 1)-( 2)-( 3) with V = V . Using that V m is a minimizing sequence, ( 26) and ( 32), we deduce that

lim m→∞ T f 0 x2 x1 F (ρ m,ϕ(m) )dtdx = T f 0 x2 x1 F (ρ)dtdx, ( 32 
) where (ρ, y 1 , • • • , y N ) is a solution of (
T f 0 x2 x1 F (ρ)dtdx = inf V TFC(V ). ( 33 
)
From ( 31) and [START_REF] Lebacque | Introducing Buses into First-Order Macroscopic Traffic Flow Models[END_REF] with n = ϕ(m), for every i ∈ {1, • • • , N }, we have

y i (t) - y i+1 (t). ( 34 
)
Combining ( 28), ( 33) and ( 34), we conclude that V is an optimal solution of ( 18).

Lemma 1. The cost function TFC is not differentiable with respect to V Proof. To prove Lemma 1, it is enough to exhibit an example. Let V max = 1, ρ max = 1, V ∈ [0, V max ] and one autonomous vehicle drives on the road (N = 1), we assume that, for every x ∈ IR, ρ 0 (x) = ρα (V ) where ρα (V ) is defined in ( 5) and y 0 = 0. Then the solution ρ of ( 1)-( 2)-( 3) associated to V , ρ 0 and y 0 is, for every

(t, x) ∈ [0, T ] × [x 1 , x 2 ], ρ(t, x) = ρα (V ) and y(t) = V t. (35) 
Let > 0 and we denote by ρ the solution of ( 1)-( 2)-( 3) associated to V + , ρ 0 and y 0 . In this case, we have ρα (V + ) < ρα (V ) < ρα (V + ) < ρα (V ). Thus the flux constraint is active and so a non-classical shock (ρ α (V + ), ρα (V + )) is created. We deduce that, for every t ∈ [0, T ], for every 35) and (36), we conclude that the expression

x ∈ [x 1 , x 2 ], ρ (t, x) = ρα (V ), if x < (V + C + α )t ρα (V ) -C + α , if (V + C + α )t < x < (V + )t ρα (V ) -C - α , if (V + )t < x < (f (ρ α (V )) + C - α )t ρα (V ), if (f (ρ α (V )) + C - α )t < x, (36) with C 
- α = 1- √ 1-α 2Vmax and C + α = 1+ √ 1-α 2Vmax . Using (
lim →0 ρ (t, •) -ρ(t, •) (37) 
does not define any L p -function. Note that (37) can be interpreted as a weak limit in a space of measures:

ρ (t,•)-ρ(t,•) (1 -C + α )t(ρ α (V ) -ρα (V ))δ y(t) (•) -C - α 1 (y(t),f ( ρα(V ))t) (•)
with δ y(t) (•) the Dirac measure.

Remark 2. Note that the optimal problem (18) may admit multiple solutions. For instance, if the initial datum

ρ 0 = ρ max and N = 1, then V → TFC(V ) is a constant function. Therefore, any V ∈ BV ([0, T f ], [0, V max ]) such that V BV
C is an optimal solution of (18). Remark 3. A gradient descent algorithm to solve the optimal problem (18) cannot be applied in a general way.

Simulation results

In this section, we present a numerical example to demonstrate how AVs can be used as moving bottlenecks to control the flow of traffic and optimize the fuel consumption of the overall traffic flow. The specific scenario considered in this numerical example is explained, as well as the numerical strategy for optimizing the AV trajectory.

Numerical methods

We briefly describe the implementation of the control law on the AVs to achieve optimal traffic flow using AVs as a moving bottlenecks in the traffic stream. The control of traffic using autonomous vehicles as a moving bottlenecks is implemented as an optimization problem where the maximum speed of each AV is adjusted at an optimal time interval. During each time period, each AV travels at the optimal constant speed, unless it is required to drive slower due to local traffic conditions. For a given initial traffic state (density distribution on the roadway) and starting position of the AVs, the optimal trajectory of each AV is computed that minimizes the total fuel consumption of the entire traffic flow. The optimal trajectory of each AV consists of a series of speeds to drive at for each successive optimal interval, and is based on the predicted traffic state and the corresponding position of each AV as solved using the coupled ODE-PDE system.

More precisely, the N autonomous vehicles adjust their driving speed at the same time and a total of M -1 times during the experiment duration. We solve the following approximate optimization problem inf [START_REF] Ulbrich | Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservations laws[END_REF] where the cost function TFC is defined in [START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF] and, for every t ∈ IR + ,

{(Ci) i∈{1,••• ,N } /Ci∈[0,Vmax] M T ∈(0,T f ) M -1 } TFC(V 1 , • • • , V N )
V i (t) = M k=1 C i (k) 1 (T (k-1),T (k)) (t), (39) 
with T (0) := 0 and T (N ) = +∞. The optimization problem [START_REF] Ulbrich | Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservations laws[END_REF] is solved using the genetic algorithm as implemented in the Matlab Global Optimization Toolbox (ga()). Fixing ρ 0 and ( 39) is solved using a wave-front tracking algorithm described in Section 3. Since, in our algorithm, two autonomous vehicles are allowed to interact, leading to a possible interaction between two non-classical shocks, the constraint y i (t) -< y i+1 (t) does not appear in [START_REF] Ulbrich | Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservations laws[END_REF]. Note that each numerical optimal solution (V opt i ) i∈{1,••• ,N } of (38) computed in Section 5 belongs to the class of admissible maximum speed V N . Thus, the constraint y i (t) -< y i+1 (t) is inactive.

y 0 i ) i∈{1,••• ,N } , the solution (ρ, y 1 , • • • , y N ) of (1)-(2)-(3) with (V i ) i∈{1,••• ,N } defined in (

Numerical examples

Using the implementation of the numerical method described in Section 5.1, a numerical example is conducted to demonstrate the ability of AVs to be controlled to act as a moving bottleneck and reduce the fuel consumption of the overall traffic flow. The numerical experiment is conducted over a stretch of highway (x 1 = 0 km and x 2 = 50 km in [START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF]) over the course of one hour (T f = 1 hour in [START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF]). The maximum speed of each AV on the roadway is V max = 120 km/h. The maximum (jam) density on the roadway is considered to be 400 veh/km. Each AV has influence over one of the two lanes (α = 0.6).

We consider two optimal control approaches for the AV: one in which each AV selects an optimal constant speed for the duration of the experiment, and another in which first one, and the two AVs are allowed to select the optimal speed at up to six distinct points in the simulation. This corresponds to each AV being able to change the driving strategy a total of six times in the one-hour experiment. The results of the numerical experiments are described below.

Optimal constant speeds of multiple AVs over one

hour (M = 1 in (38))

For any constant initial data ρ 0 ∈ M n , we numerically solve the optimal problem (18) considering three different cases:

(1) When each AV drives at maximum speed V max over the duration of the numerical experiment, the AVs don't influence the traffic flow. (2) When only one AV is used, i.e., N = 1 in [START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF], we choose y 0 1 = 25 and we denote the approximate optimal solution of (38) as V 1 opt (ρ 0 ). (3) When two AVs are used, i.e., N = 2 in (18), we choose [y 0 1 , y 0 2 ] = [START_REF] Lebacque | Introducing Buses into First-Order Macroscopic Traffic Flow Models[END_REF][START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF] and we denote the approximate optimal solution of (38) as

(V opt 1 (ρ 0 ), V opt 2 (ρ 0 )).
The values of TFC(V max ), TFC(V opt 1 (ρ 0 )), and TFC(V opt 1 (ρ 0 ), V opt 2 (ρ 0 )) are plotted with respect to the initial data ρ 0 in Figure 4. As shown in the figure, three distinct optimal driving strategies arise:

(1) When the initial density ρ 0 is low (ρ 0 ∈ (0, 87) for one AV and ρ 0 ∈ (0, 199) for two AVs), the use of a moving bottleneck is needed to optimize (reduce) the total fuel consumption reduce. (2) When the initial density ρ 0 is moderate (ρ 0 ∈ (87, 326) for one AV and ρ 0 ∈ (199, 326) for two AVs), the optimal speed of the moving bottleneck is 0 km/h, and thus a fixed bottleneck produces the optimal fuel consumption results when optimizing [START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF]. Initial density ρ 0 (veh/km) Total Fuel Consumption (3) When the initial density ρ 0 is high (ρ 0 ∈ (326, 400) for one and two AVs), the density is too great and the AV is unable to control the traffic flow. Mathematically speaking, the constraint (3) is inactive.

Note that when more AVs are deployed on the road to actively control the flow of traffic and optimize the fuel consumption of the entire fleet, the range of initial densities where a moving bottleneck is needed to optimize the fuel consumption increases.

We consider eleven AVs acting as fixed bottlenecks (i.e., driving with zero speed) starting at y 0 i = 5i with i ∈ {0, • • • , 10}. We denote the total associated fuel consumption with TFC(0 11 ). The solutions TFC(V opt 1 (ρ 0 ), V opt 2 (ρ 0 )) and TFC(0 11 ) are plotted with respect to the initial data ρ 0 in Figure 5.

Multiple optimal speeds of multiple AVs over one

hour (M = 6 in (38))

In this scenario, the initial traffic state is

ρ 0 (x) =              0, if x < -35, 121, if 35 < x < 0, 80, if 0 < x < 50, 371, if 50.
Moreover, each AV changes its speed six times in the one-hour numerical experiment.

As seen in Figure 6, if the AV drives at the maximum possible velocity at all times, the AV encounters the leading edge of the shock wave after roughly 0.2 hours. This Initial density ρ 0 (veh/km) Total Fuel Consumption results in a total fuel consumption of 17740 of fuel. However, when the AV is acting as a moving bottleneck to control the traffic and reduce the fuel consumption, it is able to achieve a lower density gap between the wave and the AV as seen in Figure 7. By using the control strategy optimized with the genetic algorithm, the total fuel consumption for the same traffic flow is reduced to 17613 , a reduction of 0.72%. When two AV are acting as a moving bottleneck to control the traffic and reduce the fuel consumption, the total fuel consumption for the same traffic flow is reduced to 17487 , a reduction of 1.43% as seen in Figure 8. 

Conclusions

In this work we study a coupled PDE-ODE framework to model the impact of multiple AVs being used as moving bottlenecks to control the flow of traffic and reduce the overall fuel consumption of the entire traffic stream.

The main traffic flow is described by a scalar conservation law while the controlled vehicles are described via ODEs. The prove the existence of solutions for the coupled PDE-ODE systems and show how to compute analytically solutions to the Riemann problem and to the Cauchy problem via wave-front tracking approxi-mations. We define an optimal control problem which consists in minimizing the total fuel consumption, using the autonomous vehicles speeds as control variables. We prove that the optimal control problem ( 18), admits at least one optimal solution. We solve numerically the optimal control problem (18) by using a genetic algorithm.

For the numerical solution, the traffic flow and AVs as moving bottlenecks are simulated using wavefront tracking. We find that with more AVs acting as moving bottlenecks, we are able to realize a greater reduction in total fuel consumption when solving the optimal control problem [START_REF] Hou | Freeway traffic control using iterative learning control-based ramp metering and speed signaling[END_REF]. Additionally, with more AVs acting as actuators in the traffic flow, there is a greater region of densities for which a moving bottleneck is able to achieve a greater reduction in total fuel consumption than a fixed bottleneck. i.e., with more AVs actively controlling the traffic flow, the use of moving bottlenecks becomes more efficient. Thus, the findings presented in this paper indicate that it is possible to use a small number of AVs as moving bottlenecks to actively control the flow of traffic and reduce the fuel consumption for the entire vehicle fleet.
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