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Abstract—Cooperative Intelligent Transport Systems (C-ITS)
is a new upcoming technology that aims at increasing road safety
and reducing traffic accidents. C-ITS is based on peer-to-peer
messages sent on the Vehicular Ad hoc NETwork (VANET).
VANET messages are currently authenticated using digital keys
from valid certificates. However, the authenticity of a message is
not a guarantee of its correctness. Consequently, a misbehavior
detection system is needed to ensure the correct use of the
system by the certified vehicles. Although a large number of
studies are aimed at solving this problem, the results of these
studies are still difficult to compare, reproduce and validate.
This is due to the lack of a common reference dataset. For
this reason, the original VeReMi dataset was created. It is the
first public misbehavior detection dataset allowing anyone to
reproduce and compare different results. VeReMi is used in a
number of studies and is currently the only dataset in its field.
In this Paper, we extend the dataset by adding realistic a sensor
error model, a new set of attacks and larger number of data
points. Finally, we also provide benchmark detection metrics
using a set of local detectors and a simple misbehavior detection
mechanism.

Index Terms—Misbehavior Detection, Intelligent Transport
Systems, Vehicular Networks, Dataset

I. INTRODUCTION

Improving road safety is a major challenge currently
addressed by European and North American governments.
Their standardization bodies, the European Telecommuni-
cations Standards Institute (ETSI) and Institute of Electri-
cal and Electronics Engineers (IEEE) are working on a
novel solution in the form of the C-ITS. This system is
based on the exchange of safety messages between dif-
ferent Intelligent Transport Systems (ITS) Stations (ITS-Ss)
over the VANET. The security of the C-ITS messages are
critical to the operation of the system. As a result, both
the ETSI and IEEE standardized and mandated the use of a
vehicular Public Key Infrastructure (PKI). The PKI is tasked
with distributing digital certificates to the local vehicles. The
vehicles use the digital certificates to sign messages exchanged
over the VANET. These signatures ensure the authenticity
of the message’s sender and enables receivers to verify the
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sender’s identity. Nevertheless, the authenticity of a message
does not ensure the correctness of the included information.
In other words, internal ITS—Ss with valid certificates could
misuse the safety applications by sending inaccurate or fake
information. To protect the system and mitigate the effect of
these stations we employ a misbehavior detection system.

Misbehavior detection for C-ITS is a well research sub-
ject with a large number of published solutions and results.
However, due to the lack of a reference dataset, many of
these results are not reproducible or verifiable. To this end,
the original VeReMi was published as the first public dataset
for vehicular misbehavior detection [1]. VeReMi has proven to
be very useful for researchers in this domain, being applied in
multiple studies [2]-[5]. Nevertheless, the VeReMi dataset still
has room for improvement, especially considering the small
number of attacks and the lacking physical error model.

In this paper, we aim to upgrade VeReMi by treating
these issues. Accordingly, we devise and implement a realistic
sensor error model on the vehicle’s physical layer. Moreover,
we implement a larger more complex set of attacks. The
new attacks enable the manipulation of the message frequency
and the digital certificates as well as the manipulation of the
message contents. Finally, we describe and implement a set
of local plausibility detectors and a simple fusion detection
mechanism. The dataset is then tested against this misbehavior
fusion mechanism and the results are provided as a benchmark
for future researchers.

The remainder of the paper is organized as follows: Section
IT discusses the related works. Section III presents the cur-
rent C-ITS system architecture with the overall misbehavior
detection process. Section IV details the provided dataset
components. Section V provides testing and experimental
results. Finally, section VI concludes this work and provides
some future perspectives.

II. RELATED WORKS

Multiple studies used the original VeReMi dataset to test
and validate their various misbehavior detection mechanisms.



Steven et al. [2] analyzed the dataset with the K-Nearest
Neighbors (K-NN) and Support Vector Machine (SVM) Ma-
chine Learning (ML) classification algorithm with positive re-
sults. In their experiment, they only made minor adjustments to
the labeling of the data in order to help with the classification,
but the attacker types and messages were left unmodified. In
their discussion, they pointed to a small weakness of VeReMi.
The vehicles performing an EventualStop are constantly la-
beled as attackers, though they may behave normally for a
certain time before the start of their malicious behavior. They
suggest that the vehicle should be labeled as an attacker only
when the attack is ongoing. This suggestion is retained and this
issue is now resolved in this new VeReMi version. Attacker
nodes are only labeled as such when actively performing a
certain attack, otherwise their behavior is labeled as normal.

Singh et al. [3] used VeReMi to perform feature engineering
for a ML misbehavior detection solution. They tested various
feature selections and scored different results in accuracy. They
performed their experiments with Logistic Regression and an
SVM. Their best feature set was achieved with an SVM and
contained the position, the speed and the difference between
the position and speed of the sender and receiver. In the current
version of VeReMi, the acceleration and heading are added as
new features to the dataset. This could enable more feature
combinations and a better feature selection in future studies.

Gyawali et al. [4] also used the dataset for an ML appli-
cation using a Feed Forward Neural Network (FFNN) and
an SVM. They calculated their solution’s detection metrics
including the accuracy, precision, recall and F;Score. They
then compared these metrics to the ones included in the
original version of VeReMi. This type of comparison is still
possible in the latest version of VeReMi as these detection
metrics were calculated for each newly added scenario.

III. SYSTEM MODEL
A. C-ITS Model

C-ITS is a new technology that aims to increase road safety.
It is currently in the standardization phase in ETSI and the
IEEE. The technology is based on the exchange of safety
messages between the different ITS-Ss (e.g. vehicle’s On-
Board Unit (OBU), Road-Side Unit (RSU)). These messages
include the Cooperative Awareness Messages (CAMs) [6] and
Basic Safety Messages (BSMs) [7] proposed by the ETSI
and IEEE respectively. Currently, both standards include a
vehicular PKI system in place to issue digital keys in the
form of certificates to the ITS—Ss. These keys are used to sign
the exchanged messages thus validating the sender identity
and ensuring the message authenticity. These signatures are
a form of identification for a certain vehicle. Therefore, a
vehicle signing all its messages with the same key would be
easily trackable. As a result, the vehicular PKI issues multiple
pseudonym certificates to the same vehicle to ensure user’s
privacy. A vehicle is therefore able to regularly change its
signature to avoid tracking. This pseudonymization of the
vehicles enables a new vector of attack where one vehicles
pretends to be simultaneously multiple entities on the road.

This type of malicious behavior is called a Sybil attack and is
also included in this new version of VeReMi.

Although the vehicular PKI successfully protects the net-
work against external attackers, the network is still vulner-
able against internal malicious stations. A station with a
valid set of keys could send erroneous information all while
successfully signing the messages. Hence the need for a
MisBehavior Detection (MBD) system capable of ensuring a
level of semantic correctness of the exchanged messages.

B. MBD System Model

=
2
I
<]
wn
E E L‘A _______ E xIA
=
=
=
=] ﬁj
= L_F
1
£
g (( )) ((o))
z. eNodeB ‘ RSU
b4
o
1>
~
i : \

] |

I
—:‘5 Pseudonym Pool Misbehavior
£ |[[rci]pc2] . [pc2oo | Report
<
Z Attacker Reporter
=
=
=
3
- o

Ghost Vehicles

Fig. 1. System model

The current C-ITS MBD system model consists of the
following consecutive steps (Figure 1):

1) Local Detection where every vehicle performs plausibil-
ity and consistency checks on every received message.
These checks are then analyzed by a fusion application
that determines if a vehicle is indeed misbehaving.

2) Reporting process is initiated if the fusion applica-
tion determines that a vehicle is misbehaving. The
receiver proceeds to collect evidence of the occur-
ring misbehavior. The evidence is used to create a
Misbehavior Report (MBR). The MBR is then sent to a
global authority.

3) Global investigation is performed in the cloud by the
misbehavior authority. The role of this authority is to
first collect the MBRs issued by the local vehicles.
These reports are then analyzed in order to determine
the suitable reaction to protect the system.

4) Reaction is the process of executing the decision issued
by the misbehavior authority in order to mitigate the
effects of an attack. This execution is normally done by a
third party. For example, if the reaction against a certain
attack is a certificate revocation, the reaction is entrusted



to the PKI. Currently, the misbehavior reaction is still not
well defined in the literature or the published standards.

IV. DATASET
A. Simulation Platform
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Fig. 2. Simulation Scenario

In order to generate our dataset, we make use of the
Framework For Misbehavior Detection (F2MD). F2MD is a
VEINS extension that enables the recreation and detection of
various MBD use cases. VEINS [8], an open source simulator
for Inter-Vehicular Communication is based on OMNeT++ [9]
and SUMO [10]. OMNeT++ is a C++ simulation library for
building network simulators and SUMO is a well-known open
source road traffic simulation suite.

Additionally, we use the vehicle traces provided by the
Luxembourg SUMO Traffic (LuST) scenario [11] which is an
open source synthetic traffic scenario validated with real data
provided by the VehicularLab of the University of Luxem-
bourg. For our dataset, we use a subsection of the LuST
network with a size 1.61km? and a peak density of 67.4
Veh/km? (See Fig. 2).

B. Sensor Error Models

In this version of VeReMi, we aim to render the provided
data more realistic and in line with real world field tests.
Accordingly, we add sensor error models to the four main
data fields: Position, Velocity, Acceleration and Heading.

1) Position Error: Several positioning systems exist with
different levels of precision. These levels also differ by region,
i.e. the Global Positioning System (GPS) precision is limited
to about 3 to 5 m in open sky environments and up to 20 m in

urban areas [12]. However, we consider an internal correction
system on-board every vehicle [13]. Consequently the position
error model is as follows:

Real Position at time t
Broadcasted Position at time t
Position Error at time t
Uniform Distribution

Normal Distribution
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2) Velocity Error: The majority of vehicles estimate veloc-
ity from the wheel spin with an average error around 0.05m/s
[14]. The error is also proportional to the velocity. As a result
the speed error model is as follows:

Vi £ Real Velocity at time t
VE &  Broadcasted Velocity at time t
&Y 2 Velocity Error at time t
w=0 o =0.00016
|4 2
80 =N (,LL, g )
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3) Acceleration Error: In our model, the acceleration error
is inferred from the velocity error. Therefore the acceleration
error model is as follows:

Ay £ Real Acceleration at time t
A‘f £ Broadcasted Acceleration at time t
gy -gv
—1
Af = A+ =
t 5t

4) Heading Error: The vehicle heading could be calcu-
lated using a magnetic compass or inferred from successive
positions. The accuracy of a magnetic compass is dependent
on the device quality. A study by Holzl et al. found that
the probability of having an error below 20° is around 85%
for most mobile devices [15]. Whereas Deelertpaiboon et al.
successfully equipped a vehicle with a magnetic compass with
a 0.1° accuracy [16]. Additionally, accuracy of the heading
derived from successive positions is dependent on the vehicle
velocity. At a high velocity the position heading is more
probable to have higher accuracy than the compass heading,
whereas the opposite is true at lower speeds or when a vehicle
is stationary. For our solution, we propose the following
heading error model:

Hy
Hy

Real Heading at time t
Broadcasted Heading at time t
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C. Misbehavior Models

In this study, we also aim to expand the VeReMi at-
tacks library with a set of new attacks aggregated from the
models used in the literature [17]. We make the distinction
between malfunctions and attacks. The former constitutes non-
malicious behaviors that results from a malfunctioning OBU
or vehicle sensors while the latter is malicious behavior of
vehicles intentionally sending wrong information.

1) Malfunctions:

« Position malfunctions are usually a result a positioning
system failure (e.g. GPS). These failures affect the longi-
tude and latitude fields of the safety messages and could
manifest as one these four use cases:

Longitude at time t

2
Laty £ Latitude at time t

1) The position is constant throughout the simulation:
Lon; = Lon,
Lat; = Lat,
The constant values are determined at each introduction
of a new malfunctioning vehicle.
2) The position is random at every time-step:
Lon; = U([LoNmin, Lonmaz])
Lat; = U([Latmin, Latmaz])
The minimum and maximum values are determined by

mode with the attacker changing its identity on every send
message to avoid detection.

Data Replay consists of sending information previously
received from a specific target neighbor. The replayed in-
formation is signed with the attacker’s certificate. It could
be executed in Sybil mode with the attacker changing its
identity on every new chosen target to avoid detection.
Disruptive attacks are an information replay of previ-
ously received data from random neighbors. It could also
be a strategy to flood the network and prevent genuine
messages from being broadcasted. This attack could also
be executed in Sybil and DoS modes.

Eventual Stop are attacks where a vehicle simulates a
sudden stop by freezing the position values and setting
the speed values to null.

Traffic congestion Sybil is an attack aimed at creating a
fake traffic congestion. The attacker generates a grid of
fake vehicles in a chosen position by maintaining a new
identity and a correct message frequency for each fake
vehicle.

D. Generated Datasets

TABLE I
DATASETS INFORMATION PER DESCRIBED SCENARIO

the size of the simulation playground.

3) A constant offset is added to the real position:
Lon; = Lon; + ALon,
Lat; = Lat; + ALat,

4) A random offset is added to the real position:
Lon; = Lon: + U([—Lon,, Lon.))
Laty = Lat; + U([—Lat,., Lat,])

Speed Malfunctions could be the result of an OBU
error or a physical sensor failure. The speed malfunc-
tion is generated similarly to the previously described
position malfunction. This results in a Constant, Random,
Constant Offset and Random Offset modification of the
following fields:

Ve
Vyi

Speed X component at time t
Speed Y component at time t

1> 1>

Delayed Messages could be a result of a large network
overhead or a low-cost or slow on-board processing unit.
These messages contain all the correct data and required
information but are sent with delay At from reality.

Dataset Id

Attack_0709 Attack_1415 MixAll_0024

Scenario Time 07h-09h 14h-16h 00h-24h
Density 37.03 V/km? | 1636 V/km?2 | 23.29 V/km?

Attacker Vehicles 1,220 505 7,399
Messages 924,251 249,612 7,505,418

Genuine Vehicles 2,846 1,179 17,264
Messages 2,221,825 569,723 11,951,021

Average | Plain 1.92 GBs 0.59 GBs 0.91 GBs
Size Gzipped 0.40 GBs 0.12 GBs 0.19 GBs
Total Plain 40.51 GBs 11.92 GBs 10.90 GBs
Size Gzipped 8.41 GBs 2.42 GBs 2.25 GBs

Table. I shows a brief description of the newly generated
datasets parameters. The data is encoded in JSON following
the same format as the previous VeReMi dataset:

{"type":Z, 20,
"rcvTime" :Rig o]/
"sendTime" :Ro, o0/
"sender" :Zy oo
"senderPseudo" : Zy, o0 s
"messageID" : Zjg 4o/

2) Attacks:

« DoS attacks consists of a vehicle sending messages with
a frequency higher than the limit set by the corresponding
IEEE or ETSI standards.

« DoS Random are DoS attacks with all the messages
fields set to random values. It could be a strategy to flood
the network and prevent genuine messages from being
broadcasted. This attack could also be executed in sybil

"pos": [R[fooﬁ»oo] ’ R[foo,Jroo] ’ R[foo,Jroo] Iy
"pos_noise": [Ryy too)r Ro,400]r Rjo,400] ] #
"spd": [R[foo;koo] ’ R[7c>o,+oo] ’ R[foo,Jroo] i
"spd_noise": [R[O,—&-oo] ’ R[07+OO] , R[O,-{-oo] 1,
"acl": [R[—oo,+oo] ’ R[—oo,+oo] r B[—o00,+00] I
"acl_noise": [Ryo yoo)r Ro,400] s Rjo,400] ] #
"hed": [R[fooﬁ»oo] P R[foo,+oo] , R[,OO’JFOO] 1,
"hed_noise": [R[O,+oo] , R[0,+oo] , R[O’J’,m] ] }



In the updated VeReMi dataset, two subsets are created for
each type of misbehavior described in section IV-C. One subset
in rush hour time (7h-9h) and another in low traffic time (14h-
16h) (see Fig. 2b). Every subset includes a file for the ground
truth and a list of files containing the received message data.
Additionally, one test-bench subset is created with a mix of all
the previously described misbehavior attacks spanned on the
whole simulation day (Oh-24h). All the subsets are a result
of the simulation of the Luxembourg network described in
section IV-A. The misbehavior attacker penetration rate is set
at 30% for all the simulations. All the 39 resulting datasets
are published and could be found on our Cloud Drive [18].
Additionally, replicating this dataset or creating new scenarios
is possible using F*MD which is open source our GitHub [19].

V. RESULTS

In this section we run a simple detection algorithm on the
previously described dataset. The detection is based on a set
of plausibility and consistency checks on the received message
data. These checks are done on the Position, Speed, Heading
and Acceleration fields. The tests include: (1) Absolute plau-
sibility, (2) Temporal consistency, (3) Relative consistency of
a field with respect to another, (4) Consistency with respect
to a Kalman Filter, (5) Overlap of two vehicles, (6) Beacon
frequency compliance, (7) Sudden appearance plausibility,
(8) Transmission range plausibility. For a more detailed de-
scription of the used checks please refer to our previous
publications [20] [21]. Additionally, the implementation is
open source and available on GitHub [19].

The plausibility checks are calculated then passed through
a threshold mechanism. If the threshold is reached for a
certain check, the vehicle message is considered misbehaving.
The output of the detection mechanism is partitioned into
four groups: True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (PN) (see Table II).

TABLE I
DETECTION OUTPUT PARTITION

| Genuine | Misbehaving

Detected | FP | TP
Not Detected | TN | FN
TP+ TN
Accuracy =
TP+ FP+TN+ FN
TP
Recall = _
TP+ FN
o TP
Precision = _—
TP+ FP
FuScore _ Recall x Precision

Recall + Precision

Using this partition, we are able to calculate the follow-
ing detection metrics: Accuracy, Precision, Recall and

TABLE III
TESTING RESULTS

d Results

Accuracy  Precision  Recall — FiScore
DoSRandom_1416 | 0.9994 0.9993 0.9996  0.9995
DoSRandom_0709 | 0.9994 0.9994 0.9995  0.9994
RandomPos_1416 | 0.9991 0.9981 0.9989  0.9985
RandomPos_0709 | 0.999 0.9979 0.9987  0.9983
ConstPos_0709 | 0.9958 0.9979 0.9878  0.9928
ConstPos_1416 | 0.9954 0.998 0.9869  0.9924
DoS_1416 | 0.9876 0.9993 0.9788  0.9889
DoSRandomSybil_0709 | 0.9898 0.999 0.9784  0.9886
DoSRandomSybil_1416 |  0.989 0.9991 0.9773  0.9881
DoSDisruptive_1416 | 0.9862 0.9857 0.9896  0.9876
DoSDisruptive_0709 | 0.9861 0.9864 0.9887  0.9876
DoS_0709 | 0.9859 0.9993 09752  0.9871
RandomPosOffset_1416 \ 0.9877 0.9979 0.9614 0.9794
RandomPosOffset_0709 | 0.9865 0.9973 0.9566  0.9765
Disruptive_1416 | 0.9827 0.9805 0.9622 09713
Disruptive_0709 | 0.9829 0.9777 0.9638  0.9707
RandomSpeed_1416 | 0981 0.998 0.9394  0.9678
RandomSpeed_0709 | 09787 0.998 0.9294  0.9625
ConstPosOffset_0709 | 0.9665 0.9979 0.8879  0.9397
ConstPosOffset_1416 | 0.9606 0.9979 0.8726  0.9311
DelayedMessages_0709 | 0.9512 0.9971 0.8362  0.9096
ConstSpeed_1416 | 0.9441 0.9974 0.8187  0.8992
MixAll_0024 | 0.9293 0.9912 0.8228  0.8992
DataReplay_0709 | 0.9393 0.9372 0.8503  0.8916
DelayedMessages_1416 |  0.9402 0.998 0.8052  0.8913
ConstSpeed_0709 | 0939 0.9976 0.7942  0.8843
DataReplay_1416 | 0.9307 0.9318 0.8333  0.8798
RandomSpeedOffset_1416 | 0.8928 0.9972 0.65 0.787
RandomSpeedOffset_0709 |  0.895 0.997 0.6444  0.7828
TrafficSybil_0709 | 0.8204 0.9973 0.5902  0.7415
TrafficSybil_1416 | 0.8001 0.9972 0.5842  0.7367
EventualStop_1416 | 0.8827 0.9952 0.5301  0.6918
DoSDisruptiveSybil_1416 | 0.7787 0.988 0.5318  0.6914
EventualStop_0709 | 0.8856 0.9942 0.5163  0.6796
DoSDisruptiveSybil_0709 | 0.7699 0.9822 0.5014  0.6639
ConstSpeedOffset_0709 | 0.8263 0.9953 0.4107  0.5814
ConstSpeedOffset_1416 | 0.8157 0.9957 0.3969  0.5676
DataReplaySybil _1416 | 0.7948 0.892 0.3705  0.5235
DataReplaySybil_0709 | 0.8011 0.92 0.3527  0.5099

Fyscore. The Accuracy is the ratio of all correctly detected
over all the considered detections. In our case, it does not
constitute a good detection metric since the data is unbalanced,
i.e. more genuine nodes exist than attackers. The Precision
indicates the classifiers ability to distinguish between misbe-



having and genuine nodes, for example a low precision means
the system is yielding a lot of false positives. The Recall mark
the classifiers ability to detect a misbehaving node, i.e. a low
recall means an attack is difficult to detect. The F}score is
the harmonic mean between the Recall and Precision. In
our case, it could be considered as a measure of the overall
detection quality.

Table III shows the results of our basic detection algorithm
for each subset of our dataset. The first thing we notice is
that the detection quality is largely dependent on the type of
misbehavior. The F}score almost doubles when comparing
between the least and the most detected attack. We also
notice that this is mainly due to a lower Recall than a
lower Precision. This means that our detection solution has
a tendency to reduce the False Positives at the expense of
some missed detections. We also notice that the time of day
and consequently the general vehicle density does not greatly
affect the detection quality. For each attack, both the peak
time scenario (07h - 09h) and the low density scenario (14h -
16h) are within the same detection range. This effect could
be specific to our benchmarking detection solution. Future
research with more advanced solutions, especially cooperative
detection schemes, could be more revealing in this regard. Last
thing we notice is that the Precisiton is generally lower for the
attacks that contains replaying other vehicle’s data. This means
these attacks are successfully tricking the detection system into
flagging the target genuine vehicles as misbehaving. Future
detection solutions should consider the effects of this new
attack vector and find mechanisms that are resistant to this
category of disruptive nodes.

VI. CONCLUSION

In this paper we provide an extension to the VeReMi
dataset for misbehavior detection in VANETSs. This extension
includes a new set of more elaborate attacks, a realistic
physical error model and a larger collection of data. This study
also includes the detection results of a simple misbehavior
detection mechanisms as an initial benchmark. Our dataset
will enable other researchers to further improve their detection
mechanisms, create new mechanisms for the newly provided
attack vectors and compare their results to our benchmark.

Future works, include the development of a misbehavior
reports dataset for global misbehavior evaluation. Additionally,
we plan on testing misbehavior solutions on the current
ongoing field tests in France and Germany.
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