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A 6-field reduced-MHD model is derived for plasma dynamics. The new model describes coherently both Ion Tem-

perature Gradient mode and Tearing mode, and includes neoclassical effects. The model allows the construction of an

energy-like quantity with a linear pressure contribution that is conserved except for dissipative, finite Larmor radius

and neoclassical terms. This model may be used to study the nonlinear interaction between ITG microturbulence and

neoclassical tearing mode, which is responsible for large-scale magnetic islands in tokamaks, and opens the way to a

coherent description of turbulent impurity transport in magnetic islands.

I. INTRODUCTION

The interaction between turbulence and MHD phenom-

ena in fusion device plasmas has received growing attention

in the last decade, both in experimental1–10 and theoretical

context11–23. Basically, core MHD activity is dominated by

sawteeth and neoclassical tearing modes (NTMs). The latter

can be driven unstable by the current or seeded nonlinearly by

turbulence22,24,25, edge localized modes (ELMs)26 or internal

kink mode crashes. If the radial width of the seed exceeds a

critical value, neoclassical effects, notably the bootstrap cur-

rent, amplify the island width further. A large island, called

NTM, can then emerge. It can exceed a few percent of the

tokamak minor radius. It induces a large heat transport that

flattens the temperature profile inside the separatrix and there-

fore degrades the energy confinement of the tokamak.

Even if it has been shown that turbulence can potentially

seed magnetic island using minimal MHD models, it remains

unclear whether or not core turbulence, which is driven in

most cases by ion temperature gradient (ITG) instabilities, can

induce or ease the emergence of NTMs and/or amplify them.

It remains also to quantify the impact of neoclassical physics

in that context. To clarify these open questions, one must con-

sider a model which includes the ITG mode coherently with

island dynamics. Thus the model must include density evolu-

tion, ion and electron temperature evolutions, as well as mag-

netic flux and perpendicular flow. Moreover, as in modern

tokamaks, the parallel velocity is frequently much higher than

the perpendicular one and its magnitude can inhibit or favor

the triggering of islands, one should also take it into consider-

ation.

Studies of the interplay between ITG and islands have

been mostly performed using a static magnetic island and are

mostly focused on transport. Various authors11,21,27–29 have,

indeed, studied the lowering or the suppression of turbulence

inside a magnetic island, the limitation of temperature flatten-

ing inside the island due to turbulence spreading at its edge

or the formation of E×B shear flows that suppress turbulence

in the neighbourhood of an island. The use of a static island

is motivated by the fact that a magnetic island is a large-scale

mode that evolves very slowly compared to the small-scale

ITG turbulence. The simulation of its evolution in the pres-

ence of turbulence would therefore require very long simula-

tions with high spatial resolution. Also, considering a static

island allows to use an electrostatic model.

Another concern related to magnetic islands is their poten-

tial to favour the inward transport of heavy impurities like

tungsten towards the core plasma. This effect has been ob-

served experimentally30,31 and it is again attributed to the

interplay of magnetic island, turbulence and neoclassical

physics. Hender30 argues that the temperature flattening in-

side the island on the one hand increases the neoclassical in-

ward convection of tungsten and on the other hand decreases

the diffusivity due to ITG turbulence.

For a better understanding of these numerous entangle-

ments between turbulence and magnetic islands we would like

to model the evolution of a magnetic island in the presence

of turbulence in one simulation. To limit the simulation ex-

pense due to the disparate spatial and temporal scales we use

the simplest model possible that is able to capture the rele-

vant physics, which is a reduced MHD model. To our knowl-

edge, there exists no RMHD model that describes both mag-

netic island evolution including neoclassical effect and the

ITG mode.

In this paper, we derive a new 6-field RMHD model that is

designed to describe both neoclassical tearing modes and ITG

modes. Two fields, the evolution of the magnetic potential ψ
and the electrostatic potential φ , are required to describe the

tearing mode. Three more fields describing the density and the

electron and ion temperature evolution are then necessary for

the ITG mode, as will be explained in the section dedicated to

the linear stability analysis of our model. We furthermore add

the parallel velocity u‖ as the sixth field to our model because

of its crucial role in neoclassical physics and equilibria, as

well as impurity transport.

This paper is organised as follows. In chapter 2, we explain

the derivation of our 6-field RMHD model. In a first step, we

present the evolution equations in their most general form. We

then describe the transition to single-helicity geometry that

is appropriate to describe instabilities located around a single

resonant surface, and the reduction to two-dimensional slab

geometry. We dedicate a separate paragraph to the choice of a

closure relation for the stress tensor and the resulting neoclas-

sical terms that are appropriate for our simplified geometry.

In chapter 3, we present some basic properties of our model.

We discuss its energy conservation properties and demonstrate

the existence of relevant instabilities, notably the ITG mode.

We present linear simulations to characterise the ITG mode

with and without magnetic shear and discuss the impact of our
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2

neoclassical terms on the ITG mode. A conclusion follows.

II. MODEL EQUATIONS

A. RMHD equations in general form

In this section we derive a set of reduced MHD equations.

We consider a tokamak plasma with small inverse aspect ra-

tio εg = r/R , with R the major Radius of the tokamak and r

the minor radius of the considered resonant surface. The typ-

ical frequency ω of the phenomena of interest is supposed to

be much smaller than the ion cyclotron frequency Ωi, so that

εω = ω/Ωi ≪ 1. εg and εω are used as ordering parameters.

We start from Braginskii’s equations32.

∂tn+∇ · (nus) = 0 (1)

nms (∂t +us ·∇)us = esn(us ×B+E)

−∇ps −∇ ·Πs +Rs (2)

3

2
∂t ps +

3

2
(us ·∇) ps =−5

2
ps∇ ·us −∇ ·qs

−Πs : ∇us +Qs (3)

The subscript s denotes the particle species. It is omitted for

the density n since we assume quasineutrality. Rs and Qs des-

ignate the generation of momentum and heat by collisions. In

order to obtain neoclassical terms like the bootstrap current,

an appropriate closure for the stress tensor Πs is needed. This

will be discussed in section II C.

The reduced MHD equations are obtained by expressing the

ion velocity ui in terms of the parallel velocity component u‖
along the magnetic field direction b = B/|B| and the perpen-

dicular drift velocities: The E×B drift uE , the diamagnetic

drifts due to pressure and stress tensor u∗
p and u∗

Π
and the po-

larisation drift velocity upol
33. upol is relevant only for the ion

density evolution and otherwise neglected since upol/uE ∽ εω .

ui = u‖b+uE +u∗
p +u∗

Π +upol (4)

We define the total plasma velocity u as the mass-weighted

sum of the electron and ion velocities ue and ui. The plasma

current J is given by (ui −ue)en. Because of the small mass

ratio me/mi, we use the approximations ui = u and ue = u−
J/(en).

Ohm’s law is obtained from the parallel momentum equa-

tion (2) for the electron species. Due to the small electron

mass the left hand side term can be neglected. We then take

the projection on the parallel direction. The parallel compo-

nent of Re is given by Braginskii32 as R‖e = e−1meνeiJ‖ −
0.71n∇‖Te ≈ ηenJ‖ We have neglected the parallel thermal

force and introduced the Spitzer resistivity η = meνei/(ne2).
These operations result in:

∂tψ = ∇‖φ −
∇‖pe

en0
− b · (∇ ·Πe)

en0
+η J̃‖ (5)

The evolution of the total plasma flow u is described by

the evolution of the parallel velocity component u‖ and the

vorticity ω defined below. Their evolution equations are de-

rived by taking the sum of the momentum equations (2) for

electrons and ions. The momentum exchange terms cancel

because Ri = −Re. The electron’s contribution to the stress

tensor Πe is order of
√

me/mi smaller than the ion’s contri-

bution and therefore neglected. In the momentum term on the

left hand side the diamagnetic drift due to the stress tensor and

the polarisation drift are neglected. By applying the gyrovis-

cous cancellation eq. (34) as computed by Smolyakov33, we

eliminate the flow advection term by the diamagnetic drift u∗
p.

We obtain the intermediate result:

nmi(∂t +(u‖b+uE×B) ·∇)(u‖b+uE×B +u∗
pi
)

= J×B−∇(pe + pi)−∇ ·Πi (6)

We project this equation on the parallel direction by multiply-

ing with b. We simplify the expression by neglecting terms of

higher order in ε , notably curvature terms, and cubic terms.

Consequently, we replace the density by the mean density n0.

Using the Poisson bracket notation b ·(∇ f ×∇g) = { f ,g}, we

obtain the evolution equation for the parallel velocity:

∂tu‖ =− 1

B

{
φ ,u‖

}
−

∇‖(pi + pe)

min0
− b · (∇ ·Πi)

min0
(7)

We recast the perpendicular projection of equation (6) into a

vorticity evolution equation by taking the parallel (and domi-

nant) component of the curl. We obtain a term containing the

perpendicular current J⊥which we re-express by evaluating

equation (6) neglecting the higher order inertial contribution.

The details of the calculation are given in appendix 1. With the

definition of the generalised vorticity ω = ∆⊥(φ + pi/(en0))
we obtain the following evolution equation:

∂tω =− 1

B
{φ ,ω}+B2

∇‖J‖
n0mi

− 2

n0mi

{
pi + pe,Beq

}

+
µ

n0mi

∆⊥ω̃ −2
∇B

Bmin0
·
(

B×∇ ·Πi

)

− B

min0
·
(

∇×∇ ·Πi

)
(8)

The magnitude of the equilibrium magnetic field is given to

leading order in εg by Beq = B0(1 − r/Rcos(θ)). We now

evaluate the continuity equation (1) for ions, retaining all the

drift velocities in (4). Still keeping the dominant terms in the

orderings, we obtain the evolution equation for the generalised

ion density:

∂t

(
n− n0mi

eB2
0

ω

)
=−n0∇‖u‖+

2n0

B2
0

{
φ ,Beq

}

+
1

B0

{n,φ}+ 2

eB2
0

{
pi,Beq

}

+
n0mi

eB3
0

{φ ,ω}−∇ · B×∇Πi

eB2
(9)

Combining (8) and (9) gives the evolution equation for the

density we would obtain directly from the electron continuity

equation. This comes from the fact that quasineutrality was

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
1
9
3
3



3

already assumed in the momentum equation. Note that the

neoclassical terms containing the stress tensor cancel out to

leading order in εg. Adding a diffusive term to account for the

small scale ETG turbulence, we end up with:

∂tn =−n0∇‖u‖+
2n0

B2
0

{
φ ,Beq

}
+

1

B0

{n,φ}

− 2

eB2
0

{
pe,Beq

}
+

1

e
∇‖J‖+D∆⊥ñ (10)

In the remainder of the paper, we will use the electron density

equation (10) for simplicity.

Finally, we obtain the evolution equations for the electron

and ion pressure from the energy balance equation (3). We

will assume that the heat source term is balanced by equilib-

rium quantities.

The heat fluxes are split into their parallel and perpendicu-

lar contributions following Braginskii32, with q‖s =−χ‖s∇‖Ts

and q⊥s = −χ⊥s∇⊥Ts. The following gyroviscous cancella-

tion is derived in appendix 2:

3

2
u∗

ps
·∇ps +

5

2
ps∇ ·u∗

ps
+∇ ·q∧s =

5

2
∇ ·
(

B

esB2
×∇(psTs)

)

Considering εω ≪ εg and that advective terms are of order εω

and divergence terms linked to curvature are of order εg, we

retain the diamagnetic drift due to the stress tensor only in the

divergence term:

3

2
(∂t +(u‖s +uE×B +us∇p) ·∇)ps

=−5

2
ps∇ · (us‖+uE×B +us∇p +us∇Π)

−∇‖qs‖−∇ ·q⊥s −∇ ·q∧s (11)

After elimination of higher-order terms the ion pressure evo-

lution equation becomes:

∂t pi =− 1

B
{φ , pi}+

10

3

pi

B2

{
φ ,Beq

}
+

10

3

Ti

eB2

{
pi,Beq

}

+
10

3

pi

eB2

{
Ti,Beq

}
− 5

3
pi∇‖u‖+

2

3
χ⊥i∆⊥Ti +

2

3
χ‖i∆‖Ti

+
5

3

pi

en

∇B

B
·
(

2B

B2
× (∇ ·Πi)

)
+

5

3
pi

B

B2
·
(

∇× ∇ ·Πi

en

)
(12)

The electron pressure equation takes a similar form. Main

differences are the parallel current appearing due to u‖e = u‖−
J‖/(en) and the neglect of the stress tensor terms because of

the small electron mass.

B. Reduction to 2D single-helicity geometry

It is convenient to focus on the dynamics in the vicinity of

a low order resonant surface where potentially NTMs grow.

The magnetic field expression reads:

B = Bres +∇ψ ×∇ϕ (13)

Here Bres is the equilibrium magnetic field at the resonance,

which is in toroidal coordinates r, θ , ϕ given by Bres =

B0(eϕ + r/(qresR)eθ ), with qres the safety factor at resonance.

The magnetic flux variable ψ is used to describe both the ra-

dial shear of the equilibrium magnetic field and fluctuations

of the magnetic field. The change of variables

r′ = r

θ ′ = θ − ϕ

qres

(14)

ϕ ′ = ϕ

allows us to express the parallel derivative simply as ∇‖ f = b ·
∇ f = 1

R
∂ϕ ′ + 1

RB0
{ψ, f}r′θ ′ . Single helicity hypothesis means

fields are functions of r′ and θ ′ only.

As a further simplification we can use the slab approxima-

tion, which means that we consider a plasma volume at low

field side θ = 0 that is small enough to replace the curvilinear

coordinates r′, θ ′ with Cartesian coordinates x, y. In this step,

the poloidal variations of the equilibrium magnetic field are

lost.

Note that this last simplification cannot be used for the

study of effects that depend on the poloidal variation of the

equilibrium magnetic field, for example neoclassical transport

of impurities.

C. Closure for the stress tensor

We need to introduce a closure relation for the stress ten-

sor Πs, which accounts for neoclassical physics in our equa-

tion set. Closure relations that are commonly used in numeri-

cal codes are designed to reproduce the flux surface averaged

quantities predicted by neoclassical theory. Various heuristic

closures are proposed for example by Gianakon34. Here we

use equation (12) therein which gives an easy expression for

the viscous force. A similar expression was derived earlier

in35.

∇ ·Πs = msn0µnc
s

〈
B2
〉 vs · êθ

B2
θ

êθ (15)

In order to recover the correct form of the surface aver-

aged viscous force
〈

B ·∇ ·Πs

〉
as given by Hirshmann36, eq.

(4.18), we identify vs = us +
2
5
ks

qs
ps

as the sum of the velocity

us = u‖sb+ uE×B + u∗
pi

and the heat flux qθs = q‖sb+ q∧s.

The parameter ks = µs2/µs1 designates the ratio of the vis-

cosity coefficients µs1,2. The viscous damping frequency µnc
s

is given by34 as a function of the collision frequency, εg

and the trapped particle fraction, but for simplicity we use

µnc
s =

√
εgνs.

We use the closure (15) to compute the neoclassical terms

in equations (5),(7), (8) and (12). We average the resulting

expressions over the poloidal direction to eliminate the cos(θ)
dependence of the equilibrium magnetic field, assuming that

poloidal variations of all other quantities are negligible. We

also assume that the averaged parallel heat flux
〈
Bq‖s

〉
is zero,

so that this contribution to vs vanishes. Some models37–39 that

use this closure to obtain averaged neoclassical terms neglect

the heat flux contribution altogether, setting vs = us.
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4

If we want to avoid the slab approximation in our model

and wish to retain the θ dependence of the magnetic field even

in the neoclassical terms, a more sophisticated closure would

be more appropriate. This alternative closure is based on the

CGL40 formulation for the stress tensor:

Π =
3

2
π‖

(
bb− 1

3
I

)
with π‖ =

2

3
(p‖− p⊥) (16)

Here p‖ and p⊥ designate the pressure parallel and perpedic-

ular to the magnetic field, respectively. Together with the clo-

sure relation for the pressure anisotropy

3

2
π‖s =− nmsµsB

2

〈(b ·∇B)2〉vs ·
∇B

B
(17)

we obtain neoclassical terms that are, after poloidal averaging,

equivalent to the results obtained from equation (15). The de-

tails of the calculation of the neoclassical terms for our model

as well as a comparison between the two closures are given in

appendix 3.

D. Normalisation and summary

We normalize temporal and spatial scales to the Alfvén time

τA = L⊥/vA and a typical perpendicular scale length L⊥ of

our system. Density and magnetic field are normalised to

their values at the resonance n0 and B0. The parallel ve-

locity u‖ is normalised to the Alfvén velocity vA. The nor-

malisation of the pressure and electrostatic potential is cho-

sen such that the E×B and diamagnetic drift velocities are

given in units of the Alfvén velocity, that is φ = L⊥B0vAφN

and ps = psN p0/p0N with p0N = β0/(2ΩiτA) where p0 and

β0 are the pressure and plasma beta value at resonance and

Ωi the ion cyclotron frequency. We introduce several di-

mensionless parameters for notation. The equilibrium pres-

sure gradient v∗ = p0NL⊥/Lp is given by the pressure scale

length Lp. The two curvature parameters κ1 = 2ΩiτAL⊥/R0

and κ2 =−10/3 ·Lp/R0 are related through κ2 =−κ1ρ2
∗/v∗;

however we want to be able to change them independently as

a tool to tweak the linear spectrum, in order to compensate for

our 2D geometry. Finally we define the normalised Larmor

radius as ρ2
∗ = 5/3 · p0N/(τAΩi). Our six equations derived

above, after the transition to single-helicity 2D slab geometry,

then become :

∂tψ = {ψ,φ}−{ψ, pe}+ηnc(J̃‖− J̃bs) (18)

∂tω =−{φ ,ω}+
{

ψ,J‖
}
−κ1∂y(pi + pe)+µ∆⊥ω̃

−µnc
i

(
q

εg

)2

∂x (uθ + ki∂xTi) (19)

∂tn =−
{

ψ,u‖
}
+

1

ΩiτA

{
ψ,J‖

}
+{n,φ}

+
3

5

κ2v∗

p0N

∂y(pe −φ)+D∆⊥ñ (20)

∂t pi =−{φ , pi}−
5

3
pi

{
ψ,u‖

}
− κ2v∗

p0N

pi∂yφ

−κ2v∗

p0N

∂y(Ti pi)+χ⊥i∆⊥T̃i +χ‖i

{
ψ,
{

ψ, T̃i

}}

+µnc
i ρ2

∗
τi

1+ τi

(
q

εg

)2

∂x (uθ + ki∂xTi) (21)

∂t pe =−{φ , pe}+
5

3

1

ΩiτA

pe

{
ψ,J‖

}
− 5

3
pe

{
ψ,u‖

}

−κ2v∗

p0N

pe∂yφ +
κ2v∗

p0N

∂y(Te pe)

+χ⊥e∆⊥T̃e +χ‖e

{
ψ,
{

ψ, T̃e

}}
(22)

∂tu‖ =−
{

φ ,u‖
}
−ΩiτA {ψ, pi + pe}

−µnc
i

q

εg

(uθ + ki∂xTi) (23)

We have used the following definitions:

ω = ∆⊥ (φ + pi)

J‖ = ∆⊥ψ

ηnc = η

(
1+

µe

νe

)

Jbs =
µe

νei +µe

ΩiτA

(
u‖+

q

εg

∂x (φ − pe − keTe)

)

uθ =
εg

q
u‖+∂x (φ + pi)

τi = Te,eq/Ti,eq

All fields include equilibrium and fluctuating part, e.g.

ψ(x,y) = ψeq(x)+ ψ̃(x,y), except if a field is marked explic-

itly by a ·̃ as a fluctuation. As long as our equilibrium fields

depend only on the radial direction x, we may choose them

freely, as long as we respect the condition uθ ,eq = −ki∂xTi,eq

imposed by the neoclassical terms.

III. MODEL PROPERTIES

A. Engergy balance

When deriving a set of reduced MHD equations, the perfect

energy conservation inherent to Braginskii’s equations is lost.

Often energy-like quantities that are conserved except for in-

herently dissipative terms can be constructed. The pressure
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contribution of these energies is often quadratic, as in the case

of Hazeltine’s four-field model41 or in 3-field models42. In

our model, we chose to keep certain cubic terms in the pres-

sure equation that allow for a linear pressure energy. For the

sake of clarity we consider the energy contributions from the

electrons Eelec, the ions Eions and from the electromagnetic

field E f ield separately:

Etotal = Eelec +Eions +E f ield (24)

Eelec =
∫

d3x

(
3

5
ΩiτA pe

)

Eions =
∫

d3x

(
3

5
ΩiτA pi +

|u‖|2
2

)

E f ield =
∫

d3x

( |∇⊥ψ|2
2

+
|∇⊥(φ + pi)|2

2

)

The variations of these energy contributions are readily ob-

tained from the evolution equations (18) to (23) by partial

integration. For all our fields f̃ we use periodic boundary

conditions in y-direction and Dirichlet boundary conditions

f̃ = 0 in the x-direction. Additionally we choose ψeq(x) = 0

and ωeq(x) = 0 at the boundaries. Under these conditions the

boundary flux terms vanish and we find for example for the

electron species:

∂tEelec = δEi→e +δE f→e +δtEdiss,e

δEi→e =
∫

d3x
(
−ΩiτA pe

{
ψ,u‖

})
(25)

δE f→e =
∫

d3x

(
pe

{
ψ,J‖

}
+

κ2v∗

ρ2∗
φ∂y pe

)
(26)

δtEdiss,e =
∫

d3x

(
3

5
Ωiτiχ⊥e∆⊥T̃e

)

Here δEi→e designates the energy transfer from the ions to the

electrons and δE f→e is the energy transfer from the field to the

electrons.δEdiss,e is the dissipative term related to the electron

temperature fluctuations. For the variation of E f ield we obtain

additionally a number of unbalanced terms δELarmor that are

related to finite Larmor radius effects:

∂tE f ield = δEe→ f +δEi→ f +δEdiss +δELarmor

δEe→ f =
∫

d3x
(
J‖ {ψ, pe}+κ1φ∂y pe

)
(27)

δEi→ f =
∫

d3xκ1φ∂y pi (28)

δEdiss =
∫

d3x
(
−ηJ‖J̃‖−µωω̃ + ...

...+
3

5
Ωiτi∆⊥(χ⊥iT̃i +χ⊥eT̃e)

)

δELarmor =
∫

d3x
(

pi {φ ,ω}− pi

{
ψ,J‖

}
+κ1 pi∂y pe

)

As long as the natural relation between the curvatures κ2 =
−κ1ρ2

∗/v∗ is respected, the energy transfer terms between

fields are perfectly balanced, e.g. δEe→ f = −δE f→e. The

variation of the total energy is therefore given by the dissipa-

tive and finite Larmor radius terms:

∂tEtotal = δEdiss +δELarmor (29)

In fact the finite Larmor radius contribution to the generalised

vorticity ω = ∆⊥(φ − pi) is always a challenge for the en-

ergy balance. This problem can be solved by increasing the

complexity of the model and introducing an equation on the

perpendicular current43, or avoided by neglecting the ion pres-

sure or at least taking the limit of vanishing Larmor radius41

(ΩiτA)
−1 → 0 which allows to neglect pi in the expression of

ω (recall the renormalisation of the pressure). In this limit we

obtain δELarmor = 0.

In this energy balance we have not considered the neoclas-

sical terms, since they are small and result in lengthy expres-

sions. However in38 all neoclassical contributions to the en-

ergy balance combine into purely dissipative terms. This is

achieved by omitting the heat flux contribution to the stress

tensor and by retaining several terms of order
√

me/mi that

we have neglected.

B. Linear analysis: Evidence of ITG mode

We designed our model in order to describe the tearing

mode, the interchange mode and the ion temperature gradient

mode. The former two instabilities were already described

in the former 3-field code version44. The equations therein

correspond to our equations (18), (19) and (22) with the re-

maining three fields n, pi and u‖ assumed constant and with-

out neoclassical terms. The ITG mode is new to our model,

therefore we need to verify its presence. We can reduce our 6-

field model to obtain a simple 2-field model that describes the

electrostatic toroidal ITG mode by using only the ion pressure

equation (21) and the ion density equation (9), and setting the

fields ψ , pe and u‖ to zero. Because of the missing vortic-

ity equation we cannot use the electron density equation (20),

since we would then miss the ion inertia which is essential for

the ITG mode. For an analytical treatment we consider again

the limit of small Larmor radius, (ΩiτA)
−1 → 0, and neglect

dissipations:

∂tn = {n,φ}− 3

5

κ2v∗

p0N

∂y(pi +φ) (30)

∂t pi =−{φ , pi}−
κ2v∗

p0N

pi∂yφ − κ2v∗

p0N

∂y(Ti pi) (31)

The system is closed by assuming adiabatic electron response

φ̃ p0N/(1+ τi) = ñ. Here τi = Ti/Te is the ion to electron tem-

perature ratio, thus p0N/(1 + τi) represents the equilibrium

electron pressure. This model is similar to that of Ref.45,

without trapped electrons. After linearisation of this system

we obtain a dispersion relation for the toroidal ITG mode:

ω = ky

τi

1+ τi

(
1

2τi

(
p0N∂xN0 −

5

3
κ2v∗

)
−κ2v∗

)

±ky

τi

1+ τi

√
p0N∂xN0

3

5
κ2v∗

1

τi

√
ηcr −ηi (32)

ηcr =
2

3
− 1

2τi

+
1

4τi

3

5

p0N∂xN0

κ2v∗

+
5

3

κ2v∗

3p0N∂xN0

(
1

4τi

+
10

9
τi

)
(33)
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pictures/WEST5_Fourier_ky0p4.pdf

FIG. 1: Growth rates of the most unstable mode at kyρi = 0.4
in dependence of the equilibrium density and temperature

gradients. The results are obtained from Fourier analysis of

our linearised 6-field model in the limit of high parallel

electron heat flux and zero parallel ion heat flux, neglecting

magnetic shear. The parameters are based on WEST

discharge #53259.

The parameter ηi is defined as ηi = ∂ ln(Ti,eq)/∂ ln(neq) =
∂x pi,eq/(pi,eq∂xneq)− 1, where ∂x pi,eq and ∂xneq are the ra-

dial gradients of the equilibrium ion pressure and density pro-

files, respectively. The ITG mode is unstable if ηi exceeds

the critical value ηcr. The same result was found in46, equa-

tion (5). To see that the results are identical, identify ωD =
−ky(3/5)κ2v∗τi/(1 + τi) and ω∗i = −ky p0N∂xN0τi/(1 + τi).
Also note the different definition of the temperature ratio τ . A

comparison with other models taking into account many other

effects (for instance Ref.47) is out of the scope of this paper,

since in this section we focus on recovering the fundamental

traits of ITG instability.

In our 6-field model not only the toroidal ITG but also the

slab ITG mode is present, due to the parallel velocity dynam-

ics equation (23). In both cases, the adiabaticity condition is

essential for the underlying instability mechanism. In our 6-

field model, adiabaticity is only ensured if the parallel electron

heat flux is sufficiently large so that ∇‖Te ≈ 0. Together with

the condition ∇‖φ ≈ ∇‖pe from Ohm’s law equation (18), this

results in ∇‖φ ≈ ∇‖n. However, we should not assume per-

fect equilibration of the ion temperature. This necessity to

decouple electron and ion temperature is the reason why we

chose to maintain separate ion and electron pressure evolution

equations rather than assuming pi ∝ pe.

We illustrate the existence of the ITG mode in our 6-field

model by performing a Fourier analysis of our equation set in

the local limit, i.e. assuming that all equilibrium terms, like

pictures/Fourier_compare.pdf

FIG. 2: Growth rates corresponding to the equilibrium

gradients indicated by the red point in figure 1, that is

R/LT = 25 and R/Ln = 10 . The solid lines correspond to the

six branches obtained from Fourier analysis. The symbols

indicate the growth rates obtained using our initial value code

Monja.

v∗(x), are constant in space. In slab geometry, the resulting

dispersion relation does not depend on the magnetic shear.

We compute the growth rate of the most unstable branch at

kyρi = 0.4 for various values of the density and pressure gradi-

ents. We obtain a typical ITG instability diagram as shown in

Figure 1. The parameters for this simulation correspond to the

local plasma parameters at the q = 2 resonant surface of the

recent plasma discharge #53259 of the WEST tokamak, that

is a toroidal field of 3.6T, electron density of 1.8× 1019 m−3

and electron temperature of Te = 1keV. The ion temperature

ratio is τi = Ti/Te = 0.32. The local gradients are given by

R/LT = 25 and R/Ln = 10.

We choose the remaining free parameter, the perpendic-

ular scale length L⊥, to equal one tenth of the radial po-

sition of the q = 2 resonant surface r = 0.3m. The re-

sulting dimensionless simulation parameters are ΩτA = 0.43,

ρ2
∗ = 0.0036, κ1 = 0.011 and κ2 = 0.09. The equilibrium

profiles are characterised by v∗ = −0.0043 for the total pres-

sure and ∂xNeq =−0.13 for the density. The equilibrium pro-

files for the parallel velocity u‖ and the electrostatic potential

φ are set to zero. For the dissipative parameters we choose

D = η = µ = χ⊥e = χ⊥i = 10−6.

To underline the ITG features we took the limit of a very

high parallel electron heat flux (χ‖e = 103) while setting the

parallel ion heat flux to zero. In the absence of magnetic shear

the parameter ψ ′
eq is a constant that reflects the strength of

the parallel derivative, ∇‖=̂ψ ′
eq∂y. We choose ψ ′

eq = 0.003

to obtain reasonable growth rates. Figure 1 shows the result-

ing growth rates expressed in terms of the ion thermal speed

vth,i =
√

Ti/mi in dependence of the density and temperature

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
1
9
3
3



7

pictures/Profiles_eta_1em6_etai_2p5.pdf

FIG. 3: The equilibrium profiles ψ ′
eq(x) = tanh(x/a) and

peq(x) = p0N(1− 1
4

tanh(x/aP)) for the case R/Ln = 10,

R/LT = 25 including a magnetic shear of s = 1.49.

gradients. We obtain a roughly parabola-shaped unstable re-

gion that is typical for a fluid model of the ITG mode.

The gradients corresponding to the WEST discharge are

marked by a red point. For this case, the growth rates are

explicitly shown as a function of the poloidal wave number

in figure 2. We see that the most unstable mode is found

at kyρi ≃ 0.4, coherent with results found for various fluid

and gyrokinetic simulations of the ITG mode48. On the same

graph we also show the growth rates obtained using our ini-

tial value code Monja for the same parameters. Both compu-

tational methods yield identical growth rates for all unstable

modes, except for the largest-scale modes where the local ap-

proximation is no longer valid, and stable modes for which

the initial-value approach is irrelevant.

C. ITG mode with magnetic shear

We now want to identify the ITG instability in the pres-

ence of magnetic shear using our code Monja. For all nu-

merical simulations we use a resolution of Nx = 513 times

Ny = 256 grid points for a simulation box of Lx = π and

Ly = 5π . In contrast to the Fourier analysis we cannot use

arbitrarily large parallel heat fluxes in numerical simulations

since the required temporal resolution increases drastically.

We choose χ‖e = 100 and χ‖i = χ‖e

√
me/mi. We use the

Harris49 current sheet model ψ ′
eq(x) = tanh(x/a) to describe

the magnetic field in the vicinity of a resonant surface. For

the q = 2 resonant surface of the considered discharge the

magnetic shear is s = 1.49. This corresponds to a magnetic

shear length of a = 148, which is very large compared to the

simulation box size. In this configuration the tearing mode

pictures/GrowthRate_eta_1em6_etai_2p5_k2.pdf

FIG. 4: When magnetic shear is included, we find much

lower growth rates than in figure 2. The most unstable mode

corresponds now to m = kyLy = 16.

pictures/Eigenmodes_eta_1em6_etai_2p5_k2.pdf

FIG. 5: Eigenmodes of the most unstable mode m = 16 for

the simulation shown in figure 4.

is linearly stable, since the tearing stability index parame-

ter ∆
′ = −1.4 is negative. The equilibrium pressure profile

is modelled by a hyperbolic tangent with limited amplitude:

peq(x) = p0N(1− 1
4

tanh(x/aP)). We set aP =−p0N/(4v∗) so

that the pressure gradient at the resonance is equal to v∗. The

density equilibrium profile is also a hyperbolic tangent with

the same width, so that the resulting equilibrium temperature

profile is a smooth, monotonic function of x. The equilibrium

magnetic and pressure profiles are shown in figure 3.

The magnetic shear strongly stabilizes the ITG mode. As

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
1
9
3
3



8

pictures/Growthrates_eta8_k2.pdf

FIG. 6: Maximal growth rate of the most unstable mode as a

function of the ITG stability parameter ηi = Ln/LT (η is the

resistivity). This result was obtained using the initial value

code and inclusing magnetic shear.

can be seen from figure 4, the growth rates are about one order

of magnitude lower than in the case without magnetic shear.

Also the most unstable mode is now located at kyρi ≈ 0.15,

which corresponds to the poloidal mode number m = 16 :

parallel damping is stronger on small-scale modes. Its mode

structure is shown in figure 5. The magnetic potential ψ shows

odd parity while the parity of the electrostatic potential φ is

approximately even, apart from a slight shift to the right of

the resonant surface that is due to the asymmetric equilibrium

profiles. We recover thus the parity signature that is typical

for an interchange-type instability.

To verify that this instability is indeed an ITG mode, we

vary the ratio ηi = Ln/LT while keeping R/Lp = R/LT +
R/Ln = 35 constant. This corresponds to a scan along the red

line in figure 1. The case R/Ln = 10, R/LT = 25 corresponds

to ηi = 2.5. For each simulation we determine the growth rate

of the most unstable mode. Figure 6 shows that the instabil-

ity appears as ηi exceeds a critical value of about one. This

is consistent with the instability criterion (33) which predicts

the ITG mode to turn unstable if ηi > 1.5 for the chosen pa-

rameters. However, at ηi < 1 we observe another instability

at smaller poloidal mode numbers. In the following we will

characterise the different nature of those two instabilities at

large and low ηi.

First, we decrease the resistivity down to η = 10−8. The

results are also shown in figure 4. The growth rates for ηi > 1

depend very little on η , as it is expected for an ITG mode. In

contrast, the mode at small ηi is strongly stabilised.

Second, we consider the relative amplitudes and phase dif-

ferences of the density and the electron and ion temperature

fluctuations with respect to the electrostatic potential φ , al-

ways for the most unstable mode. The amplitudes, shown in

pictures/Phases_k2.pdf

FIG. 7: Phase differences for the most unstable mode in

dependence of the ITG stability parameter ηi = Ln/LT .

pictures/Amplitudes_k2.pdf

FIG. 8: Amplitude ratios for the most unstable mode in

dependence of the ITG stability parameter ηi = Ln/LT .

figure 8, are divided by p0N for the fields Ti, Te and φ , but not

for n to account for our specific choice of the normalisation.

The phase differences in figure 7 were evaluated within the

interval defined by the radial positions of the maximal ampli-

tude of the four fields φ , Ti, Te and n. Variations of the phase

differences within this interval are reflected by the error bars.

We observe that the instability at small ηi is dominated by

density fluctuations, while for ηi > 1 the fluctuations of the

ion temperature are dominant. The phase shift between the

density fluctuations and the fluctuations of φ is always small,

indicating very little density transport. This is consistent with
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pictures/Energytransfer_k2.pdf

FIG. 9: Energy transfer rates between electrons, ions and the

electromagnetic field. in dependence of the ITG stability

parameter ηi = Ln/LT . To convert from the Alfvén time to

the thermal ion speed use τA = 1.3 ·10−4vthi
/R

an instability involving quasi adiabatic electrons. On the other

hand, for the mode ηi > 1 the phase shift between temperature

and φ fluctuations is close to π/2, maximizing the extraction

of free energy from the temperature gradient. There is there-

fore a strong transport of the ion temperature and, interest-

ingly, of the electron temperature as well.

Third, we study the contribution of the ion and electron

species to the mode energy. In figure 9 we show the energy

transfer rates δEi→ f , δEe→ f and δEi→e as defined in equa-

tions (28), (27) and (25). For the modes at low ηi the electrons

transfer most energy to the field, while the ions contribute very

little. The energy transfer between the two species is very

small, with the ions receiving energy from the electrons. For

the modes at high ηi the situation is opposite. It is the ions

that transfer energy to the field and thus drive the mode unsta-

ble. The electrons give little energy to the field, but take some

energy from the ions.

From these observations we conclude that the instability

observed for ηi > 1 is indeed an ITG mode, since it is driven

by the ion dynamics, destabilised by ηi and largely indepen-

dent of resistivity. It is completely stabilised if the equilibrium

ion temperature ratio τi is set to zero.

Conversely, the instability at small ηi is not consistent with

an ITG or curvature-destabilized ηi mode50,51: it is driven by

electron dynamics, as shown by Fig.9, and is stabilized by

increasing ηi. However, it is consistent with a propagating

drift wave, slightly destabilized by resistivity52. Indeed, in

adddition to being driven by the density gradient, its real fre-

quency Re(ω) = 9.01 vth,i/R matches the expected frequency

for a drift wave kθ ρiR/Ln = 8.49vth,i/R, with kθ ρi = 0.24 for

the most unstable mode (Figure 6, leftmost blue circle). The

growth rate itself is about 20 times lower than the real fre-

pictures/Neoclassical_k2.pdf

FIG. 10: Impact of neoclassical terms on the maximal growth

rate of the ITG mode at ηi = 10. The most unstable mode

number is m = 26 for the first data point, m = 25 for the

others.

quency, as expected for a mostly propagating wave, and the

phase shift between φ and n fluctuations is small.

After having identified the ITG mode in our model, we

complete its characterisation by determining how it is im-

pacted by neoclassical physics. For this study we use the

case ηi = 10. When adding the neoclassical terms we need

to consider the additional constraint on the equilibrium terms

uθ ,eq =−ki∂xTi,eq that is induced by neoclassical friction. We

first choose to maintain u‖eq = 0 and to adapt the electrostatic

potential so that φeq(x) = φnc,eq(x) = −pi,eq(x)− kiTi,eq(x).
The impact of u‖eq is studied below. For the parameters related

to the neoclassical terms we use εg = 0.13, q = 2, ki = −0.3,

ke =−0.74 and µnc
i = 10−6.

As expected, the neoclassical terms do not drastically

change the linear growth rate of the ITG mode. Their main

impact is the modification of the equilibrium flow. In figure

10 we show the maximal growth rate first for the case without

neoclassical terms nor a neoclassical equilibrium flow. Then

we add just the neoclassical equilibrium flow φeq,nc without

neoclassical terms, which considerably reduces the growth

rate. In fact φeq,nc represents a sheared E × B flow that is

known to have a stabilising effect. Next we add just the boos-

trap current terms Jbs, which is barely destabilising. Finally

we include the remaining neoclassical terms which are fric-

tion terms proportional to µnc
i . Interestingly these terms are

also destabilising. The remaining properties that we have used

to identify our mode as an ITG mode, like phase shifts and

amplitude ratios, are very little influenced by the neoclassical

terms and the modified equilibrium. We observe deviations of

a few per cent. Only the energy transfer rate from the elec-

trons to the field is four times higher when neoclassical terms

are included, but the energy contribution of the electrons to
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pictures/shear_k2_1.pdf

FIG. 11: The ITG mode with neoclassical terms shown in

figure 10 is destabilised by imposing a flow shear on the

equilibrium field u‖eq. If the parallel dynamics is suppressed

(5 fields, ũ‖ = 0) we find stabilisation of the ITG mode by the

flow shear. All results obtained with µnc
i = 10−6 and

uθ ,eq =−ki∂xTi.

the mode remains still an order of magnitude lower than the

ion contribution.

We state that the most important impact of the neoclassi-

cal terms on the ITG properties is the reduction of the lin-

ear growth rate by the sheared flow induced by the constraint

uθ ,eq = −ki∂xTi,eq on the equilibrium. So far we have ful-

filled this condition by choosing ∂xu‖,eq = 0 and adapting

φeq = −pi − kiTi. Of course we are free to choose a non-zero

flow equilibrium u‖,eq. We are interested in the impact of a

radial flow shear ∂xu‖,eq on the linear growth rate of the most

unstable mode. Because of the constraint uθ ,eq = −ki∂xTi,eq,

this results in a sheared E×B flow ∂xxφeq. The linear growth

rate of a toroidal ITG mode is expected to decrease with in-

creasing shear flow52–54, while the slab ITG mode may be

further destabilised by moderate shear flow55. In figure 11

we show the impact of the equilibrium flow shear on our 6-

field ITG model for the case ηi = 10 with neoclassical terms.

Since our ITG model contains both toroidal (curvature) and

slab (u‖) ITG characteristics, we show also the results for a

pure toroidal ITG that we obtain by setting ũ‖ = 0, thus sup-

pressing the parallel dynamics.

We observe that the purely toroidal 5-field ITG mode can

be completely stabilised by the flow shear. In a toroidal ge-

ometry, this can be attributed to the reduction in the radial

width of the mode structure53. However, in our case with uni-

form curvature, we do not observe this radial width reduction.

But we do observe an increasing radial displacement of the

eigenfunctions away from the resonant surface as the shear

flow increases56. This has a stabilising effect since dissipative

terms in our model increase with the distance to the resonant

pictures/KH_Phases.pdf

(a)

pictures/KH_ratios.pdf

(b)

pictures/phi_dxu0_1em4.pdf

(c)

pictures/phi_dxu0_3em3.pdf

(d)

FIG. 12: Destabilization by the parallel velocity gradient in

the 6-field model. Phase shift (a), fluctuation amplitude ratio

(b), and mode structure below (c) and above (d) threshold.

surface.

The full 6-field ITG mode is strongly destabilised by a weak

flow shear. For the slab ITG mode, as explained in55, the par-

allel compression terms ∇‖u‖ that couples the parallel dynam-

ics to the remaining fields represents an instability drive that

is strongest at large distances from the resonant surfaces. In-

deed, as the equilibrium flow shear increases above the thresh-

old ∂xu‖,eq > cs/Ln ( ≃ 0.7 ·10−3τ−1
A in our simulations), we

observe that the instability source progressively shifts from

the temperature gradient to the parallel velocity gradient. This

is shown on figure 12. First, at low flow shear the phase shift

with respect to potential fluctuations is optimal (π/2) for T̃i

fluctuations, while at high flow shear it is optimal for ũ‖ fluc-

tuations (the opposite sign comes from the fact that ∂xTi,eq < 0

while ∂xu‖,eq > 0). Second, the ratio of parallel velocity fluc-

tuations to ion temperature fluctuations is constant below the

threshold, and increases above the threshold. Third, above

the threshold the maxima of the eigenmode amplitudes are

progressively shifted radially, away from the resonance where

∇‖,eq = 0; this increases the destabilising impact of ∇‖u‖.

IV. CONCLUSION

We have derived a six-field reduced MHD model that de-

scribes both ITG turbulence and the tearing mode, including

neoclassical effects. The model allows the construction of an

energy-like quantity with a linear pressure contribution that

is conserved in the limit of no dissipations, vanishing Lar-
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mor radius and neglect of the neoclassical terms. We have

demonstrated the existence of the ITG mode in our model first

by analytically reducing our model to a known 2-field ITG

model, then by eigenvalue and initial value numerical simu-

lations with and without magnetic shear. Neglecting the neo-

classical terms, we showed that, as expected, the ITG mode

is destabilised when the ratio ηi = Ln/LT exceeds a critical

value of about one and that its growth rate is independent of

the plasma resistivity. Finally we verified that adding the neo-

classical terms does not substantially alter the linear stability

properties of the ITG mode. We recover the familiar shear

flow stabilisation of a toroidal ITG mode while respecting the

neoclassical constraints on the equilibrium poloidal velocity.

We have thus obtained a model that may be used to study

the nonlinear interaction between ITG turbulence and a neo-

classical tearing mode. In the future we intend to further

expand this model to describe the turbulent and neoclassical

transport of one trace impurity species. This will allow us

studying the impact of a neoclassical tearing mode on impu-

rity transport.
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APPENDIX 1: VORTICITY EQUATION

Here we present the derivation of the vorticity equation (8)

in detail. The remaining evolution equations are obtained in

a similar manner, but their derivation is less complex. We

start by writing the sum of the momentum equations (2) for

electrons and ions:

nmi (∂t +(u ·∇))u = J×B−∇(pi + pe)

−∇ ·
(

Πi +Πe

)
+Ri +Re (34)

Since the momentum exchange of electrons with ions is

equal to minus the momentum exchange of ions with elec-

trons, we have Ri +Re = 0 according to32. We express the

plasma velocity u in terms of the parallel velocity and the drift

velocities using equation (4). For ease of notation we replace

the sum of all perpencicular drift velocities by u⊥. We use

the diamagnetic cancellation according to33 equation (34) to

remove the advection by the diamagnetic drift velocity:

nmi

(
∂t +((u‖b+uE×B) ·∇)

)
(u‖b+u⊥) = J×B

−∇(pi + pe)−∇ ·
(

Πi −Π
gv

i +Πe −Π
gv

e

)
−∇χ ′

The cancellation involves a part of the non-diagonal gyro-

viscous stress tensor Π
gv

as well as a scalar function χ ′. The

remaining non-diagonal part or the stress tensor results ap-

proximatively in the dissipative term µ∆
2
⊥φ that we will rein-

sert at the last step. For the diagonal part of the stress tensor

we will use a neoclassical closure relation. Since the contri-

bution for ions is
√

mi/me times larger than the one for elec-

trons, we neglect Πe. We now project this equation to the per-

pendicular direction by taking the rotational and multiplying

by B:

B ·
(
∇×nmid

0
t u⊥

)
= B · (∇× (J×B))

−B ·
(

∇×∇ ·Πi

)
(35)

Here we have introduced the definition d0
t = ∂t + uE×B ·

∇ + u‖∇‖. The remaining u‖ term has vanished due to the

projection perpendicular to B, and the gradient terms ∇p and

∇χ ′ have disappeared because the rotation of a gradient is al-

ways zero. To evaluate the momentum term on the left hand

side, we first observe that it is O(εw) =O(ε2
g ) smaller than the

dominant terms on the right hand side. Since we will neglect

all terms of order ε3, we need to retain only the leading order

terms. We therefore replace the magnetic field by Beq and the

density by its constant average value:

miB ·
(
∇×nd0

t u⊥
)
= min0d0

t (Beq · (∇×u⊥))+O(ε3)

The rotational can be interchanged with the total derivative d0
t

to leading order in εg. Following the same argumentation we

retain only the two dominant drift terms, uE and u∗
p.

miB ·
(
∇×nd0

t u⊥
)

= min0dt

(
Beq ·

(
∇× (uE +u∗

p)
))

+O(ε3)

= min0dt

(
∆⊥φ +∇⊥

∇pi

en

)
+O(ε3)

= min0dt∆⊥

(
φ +

pi

en0

)
+O(ε3) (36)

The calculation of the first term on the right hand side of equa-

tion (35) yields:

B · (∇× (J× B)) = B2
∇‖J‖+B2J‖b · ∇B

B
−2B2J · ∇B

B

≈ B2
∇‖J‖−2B2 ∇B

B
·J⊥ (37)

We use the identity J⊥ = (B×(J×B))/B2 to express J⊥ with

the help of equation (34) where we neglect the inertia term:

2B2 ∇B

B
·J⊥ = 2

∇B

B
·
(

B×
(

∇(pi + pe)+∇ ·Πi

))

= 2{pi + pe,B}+2
∇B

B
·
(

B×∇ ·Πi

)
(38)
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Inserting the results (36) to (38) into (35) gives:

min0dt∆⊥

(
φ +

pi

en0

)
= B2

∇‖J‖−2{pi + pe,B}

−2
∇B

B

(
B×∇ ·Πi

)
−B ·

(
∇×∇ ·Πi

)

We introduce the generalised vorticity ω = ∆⊥(φ + pi/(en0))
to write the equation in a more compact form. The advection

part of the total time derivative can conveniently be expressed

in terms of the Poisson bracket:

d0
t ω = ∂tω +

B×∇φ

B2
·∇ω +u‖∇‖ω

= ∂tω +
1

B
{φ ,ω}+u‖∇‖ω

We neglect the parallel advection of the vorticity since this is

a higher-order (cubic) term. Finally we reinsert the dissipative

term +µ/(n0mi)∆⊥ω̃ from the non diagonal part of the stress

tensor. We obtain thus the vorticity equation (8).

APPENDIX 2: GYROVISCOUS CANCELLATION

In the pressure equation we use the gyroviscous cancella-

tion as given in57, which is based on the expression of the

heat flux q as given by Braginskii32:

qs = q‖s +q⊥s +q∧s with q∧s =
5

2

nTs

esB
b×∇Ts

From this definition we obtain straightforwardly:

5

2
∇ ·
(

B

esB2
×∇(psTs)

)

=
5

2
∇ ·
(

Ts

esB2
B×∇ps

)
+

5

2
∇ ·
(

ps

esB2
B×∇Ts

)

=
5

2
∇ ·
(

psu
∗
ps

)
+∇ ·q∧s

=
5

2
u∗

ps
·∇ps +

5

2
ps∇ ·u∗

ps
+∇ ·q∧s

We have used the expression of the diamagnetic drift ve-

locity u∗
ps
= B×∇ps

esnB2 . From this expression we also see that the

term u∗
ps
·∇ps is actually zero, therefore we can conveniently

change its pre-factor to obtain the desired identity:

3

2
u∗

ps
·∇ps +

5

2
ps∇ ·u∗

ps
+∇ ·q∧s =

5

2
∇ ·
(

B

esB2
×∇(psTs)

)

APPENDIX 3: NEOCLASSICAL TERMS

Here we give details on the calculation of our neoclassical

terms that result from the stress tensor Πs. The terms we need

to calculate appear in the following four equations:

∂tψ = ...− b · (∇ ·Πe)

en0

∂tω = ...− 2

min0

∇B

B
·
(

B×∇ ·Πi

)

− B

min0
·
(

∇×∇ ·Πi

)

∂t pi = ...+
5

3

pi

en0B2

(
∇B

B
·
(

2B× (∇ ·Πi)
)

+B ·
(

∇× (∇ ·Πi)
))

∂tu‖ = ...− b · (∇ ·Πi)

min0
(39)

A. Closure on viscous force

Here we calculate the neoclassical terms (39) using the clo-

sure (15) for the viscous force. The first step is to calculate

the poloidal component of the plasma flow plus heat flux:

eθ ·vs = eθ ·
(

us +
2

5
ks

qs

ps

)

This is done by using the decomposition (4) of the velocity

and a Braginskii-type32 heat flux:

qs = q‖s +
5

2

ps

es

B×∇Ts

B2

It is convenient to express the parallel heat flux q‖s in terms of

a normalised heat defined by:

u2‖i =
2

5

q‖iB

pi

(40)

For the equilibrium magnetic field we use the form

Beq =
B0R0

R

(
eϕ +

r

qR
eθ

)
(41)

where the θ -dependence is given by R = R0 + r cos(θ). We

neglect terms of order ε2
g to obtain:

eθ ·vs =
r

qR

(
u‖s +u2‖s

ki

B

)
+

R

B0R0
∂rΦs

For ease of notation, we use the definition Φs = φ +
ps/(esn0)+ ksTs/es. This formulation is now used to calcu-

late the neoclassical terms in (39). We average these terms

over the poloidal coordinate θ , since in the current version of

our numerical code we use slab geometry that does not take

into account the poloidal variation of the equilibrium mag-

netic field.

When taking the poloidal average 〈·〉 we assume that radial

variations ∂r of all our fields, e.g. u‖ or φ , are much larger

than 1/r. We also assume that poloidal variations of all fields

are of higher order in εg and can be neglected. We consider

only the poloidal variations of the equilibrium magnetic field
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(41). We also use the poloidal dependence of the parallel heat

flux which is given by neoclassical theory, see for example

equation (9.12) in58:

u2‖s =
〈
u2‖s

〉 B2

〈B2〉 +
q∂rTi

εgei

(
B2

〈B2〉 −1

)
(42)

To leading order in εg, we obtain the following expressions:

〈
b · (∇ ·Πe)

〉
=−µnc

e

νe

en0η j‖+men0µnc
e

(
u‖+

〈
u2‖e

〉 ke

B0
+

q

εg

1

B0
(∂rΦe)

)
(43)

〈
b · (∇ ·Πi)

〉
= min0µnc

i

(
u‖+

〈
u2‖i

〉 ki

B0
+

q

εg

1

B0
∂rΦi

)
(44)

〈
B · (∇×∇ ·Πi)

〉
= min0µnc

i B0
q

εg

(
∂ru‖+

ki

B0
∂r

〈
u2‖i

〉
+

q

εgB0
∂ 2

r Φi

)
(45)

〈
∇B

B
·
(

B×∇ ·Πi

)〉
=−min0µnc

i

B0

R0
q

[(
1

2q
− 1

2

)
u‖+

1

2q

〈
u2‖i

〉
+

ki

B0

q

εg

∂rTi

ei

+

(
1

2q
− 3

2

)
q

εg

∂rΦi

B0

]
(46)

By comparing expression (46) to (45), we see that the for-

mer is a factor of εg smaller than the latter. Therefore we

neglect the terms proportional to ∇B ·
(

B×∇ ·Πi

)
in the ex-

pression of the neoclassical terms for the ion pressure and vor-

ticity equations. Note that only the average part of the par-

allel heat flux
〈
u2‖s

〉
contributes, the anisotropic contibution

in (42) vanishes after poloidal averaging. Since we assume〈
u2‖s

〉
= 0, only the perpendicular heat flux component is fi-

nally retained. Inserting the results (43) to (45) into the equa-

tion set (39) yields, after normalisation, the neoclassical terms

that we included in our set of final equations (18) to (23).

B. Closure on pressure anisotropy

We now present an alternative closure that is based on the

Chew-Goldberg-Low40 form of the dominant, diagonal part

of the gyroviscous stress tensor Πs:

Πs =
3

2
π‖s

(
bb− 1

3
I

)
(47)

This approach reduces the problem to a scalar function, the

pressure anisotropy π‖s =
2
3
(p‖s − p⊥s). The following useful

identities, given also in59, follow directly from relation (47):

b · (∇ ·Π) = b ·∇π‖+
3

2
π‖∇ ·b (48)

B× (∇ ·Π) =
3

2
π‖B× (b ·∇)b− 1

2
B×∇π‖ (49)

B ·∇× (∇ ·Π) =
3

2
∇π‖ · (((b ·∇)b)×B) (50)

With these results the neoclassical terms (39) take the follow-

ing form:

∂tψ = ...−
b ·∇π‖e

en0
− 3

2

π‖e∇ ·b
en0

∂tω ≈ ...− 1

min0

1

2

{
π‖i,Beq

}

∂t pi ≈ ...+
pi

en0B2

5

6

{
π‖i,Beq

}

∂tu‖ = ...−
b ·∇π‖i

min0
− 3

2

π‖i∇ ·b
min0

(51)

In the vorticity and pressure equations we approximated the

curvature term (b ·∇)b with the alternative curvature ∇B/B,

which is equivalent up to second order in εg. With this approx-

imation, the two contributions B× (∇ ·Πi) and ∇× (∇ ·Πi)
combine into just one neoclassical term. We notice already

one important difference to the previous closure on the vis-

cous force: Here, B × (∇ · Πi) cannot be neglected against

∇× (∇ ·Πi), because both terms contribute equally.

We now need to introduce a closure relation on πs. We use

the standard formulation34, using the same vs as above:

3

2
π‖s =− nmsµsB

2

〈(b ·∇B)2〉vs ·
∇B

B
(52)

After inserting this closure into (51), we obtain neoclassical

terms that contain explicitly the poloidal variation of the equi-

librium magnetic field. We calculate the poloidal average 〈·〉
of all neoclassical terms, using the same approximations and

the assumption
〈
u2‖s

〉
= 0 as in the previous section. The

terms b ·∇π‖s vanish naturally after averaging. After normal-
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isation we obtain straightforwardly:

∂tψ = ...+
µnc

e

νe

ηJ‖−
(

1+
µnc

e

νe

)
Jbs

∂tω = ...+
1

3
µnc

i

(
q

εg

)2

(∂xuθ + ki∂xTi)

∂t pi = ...− 1

3
µnc

i ρ2
∗

τi

1+ τi

(
q

εg

)2

(∂xuθ + ki∂xTi)

∂tu‖ = ...−µnc
i

q

εg

(uθ + ki∂xTi) (53)

For Ohm’s law and the parallel velocity equation the results

obtained with the two approaches are identical, but the neo-

classical terms in the vorticity and pressure equations differ

by a factor of three and we obtain different signs. This in-

verted sign is particularly inconvenient in the vorticity equa-

tion, where it results in an explicitly unstable term ∂tω =
...+ µnc

i q2/ε2
g ω . There are several approaches to obtain the

correct sign. One possibility is to use different closure rela-

tions for Ohm’s law and the vorticity equation that are sup-

posed to be equivalent, but result in different signs60,61.

Another approach is to split all fields f into a resonant part

f that follows the helicity of our resonant surface, and a non-

resonant part f̃ . Applying this to the parallel velocity equation

(23), we find that equilibrium conditions require59:

∂θ (π̂‖i + p̂) = 0

with π‖i appropriately normalised. This information is lost

when we perform the toroidal average, since then these two

terms in the parallel momentum equation are zero. We can

reinsert this information in our equation system by setting

pi + pe = pi + pe − π̂‖i

in the vorticity equation. This introduces another neoclassical

term of the same form, so that we finally obtain:

∂tω = ...−µnc
i

(
q

εg

)2

(∂xuθ + ki∂xTi)

We recover the neoclassical term of (19) that we had obtained

from the first closure relation. Nevertheless, we are still left

with different neoclassical terms for the ion pressure equation.

Because of these difficulties of obtaining a correct sign for

the neoclassical friction term in the vorticity, we decided not

to use the CGL-approach. Instead, we preferred the simpler

closure on the viscous force that directly yields a correct sign.

This closure is sufficient for our current slab geometry, even

though it may not be appropriate once we decide to include

the θ -dependence of the equilibrium magnetic field explicitly

into our model.
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