N

N

Presenting COLIBRI VR, an Open-Source Toolkit to
Render Real-World Scenes in Virtual Reality
Grégoire Dupont de Dinechin, Alexis Paljic

» To cite this version:

Grégoire Dupont de Dinechin, Alexis Paljic. Presenting COLIBRI VR, an Open-Source Toolkit to
Render Real-World Scenes in Virtual Reality. 2020 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), Mar 2020, Atlanta, Georgia, United States. hal-02492722

HAL Id: hal-02492722
https://hal.science/hal-02492722
Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02492722
https://hal.archives-ouvertes.fr

Presenting COLIBRI VR, an Open-Source Toolkit to Render Real-World
Scenes in Virtual Reality

Grégoire Dupont de Dinechin*

Alexis Paljic’

Centre for Robotics, MINES ParisTech, PSL University - Paris, France

ABSTRACT

From image-based virtual tours of apartments to digital museum
exhibits, transforming photographs of real-world scenes into visually
faithful virtual environments has many applications. In this paper,
we present our development of a toolkit that places recent advances
in the field of image-based rendering (IBR) into the hands of virtual
reality (VR) researchers and content creators. We map out how these
advances can improve the way we usually render virtual scenes
from photographs. We then provide insight into the toolkit’s design
as a package for the Unity game engine and share details on core
elements of our implementation.

Index Terms: Computing Methodologies—Computer Graphics—
Graphics Systems and Interfaces—Virtual Reality; Comput-
ing Methodologies—Computer Graphics—Image Manipulation—
Image-Based Rendering;

1 MOTIVATIONS AND APPROACH
1.1 Use cases and current methods

Image-based VR experiences, in which the virtual environment es-
sentially consists of assets created from real-world photographs,
often serve two complementary purposes: education and entertain-
ment. For instance, in the tourism sector, image-based virtual reality
is typically used for the promotion and preservation of heritage sites,
via the creation of visually accurate digital replicas of cultural ob-
jects [3]. Tools such as photogrammetry and 360° image capture
also have industrial applications, e.g. to create virtual reproductions
of industrial facilities for the training of operators, and are used in
medical fields, e.g. to immerse viewers in digital replicas of specific
locations in the context of therapy. Many everyday, general public
applications, such as capturing personal memories to re-experience
them and share them with family and friends, are also made possible
by the development of new methods that enable 3D virtual envi-
ronments to be created from photographs acquired casually using
low-cost, consumer-grade cameras [4].

To create these experiences, VR developers commonly use two
methods. The first is to render the scene using 360° photographs [9]:
the image data is typically acquired using consumer omnidirectional
cameras, and displayed on the inside of an inward-facing sphere
surrounding the immersed viewer. The second is to render 3D-
reconstructed meshes [8]: the image data can be acquired using any
standard camera, and is then usually processed using structure-from-
motion and multi-view stereo algorithms before being rendered
as a texture-mapped 3D mesh. Both of these methods are quite
practical, but also have weaknesses. 360° images alone notably fail
to provide viewers with motion parallax, i.e. the depth cue that
helps understand the distance of objects based on how they move in
one’s field-of-view during head motion. This may cause discomfort

*e-mail: gregoire.dupont_de_dinechin @mines-paristech.fr
Te-mail: alexis.paljic@mines-paristech.fr

©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Figure 1: Rendering an amethyst in VR with motion parallax and
specular highlights on the mineral’s facets. This virtual object was
processed and rendered from multiple photographs of the original
mineral using our toolkit’s graphical user interface, illustrated here.

for viewers if they attempt to move around [2]. As for 3D meshes
rendered only from a diffuse texture map, they fail to reproduce the
specular highlights that are captured when taking photographs of
reflective surfaces, and are therefore unable to faithfully render the
visual appearance of many objects of our daily lives.

1.2 Enhancing these experiences with IBR: designing
an open-source toolset

Research in the field of image-based rendering has demonstrated
potential for enhancing both the comfort and visual accuracy of
these standard approaches to image-based VR. Specifically, many
recent works have focused on creating 6-DoF VR experiences from
360° photographs [2,4,9], demonstrating rendering solutions able
to provide motion parallax from color images enhanced with depth
information. There have also been advances in the field of view-
dependent rendering, enabling the efficient rendering of captured
specular highlights [1, 6]. Unfortunately, it seems that no solution
has yet been developed to make these methods easily accessible to
the broader audience of VR researchers and content creators.

To tackle this issue, we therefore seek to provide a simple, openly
available graphical user interface (GUI) by which developers can
learn about and apply image-based rendering for VR. We name our
open-source toolkit the Core Open Lab on Image-Based Render-
ing Innovation for Virtual Reality, COLIBRI VR!. We implement
this toolset as a package for the Unity game engine, in order to
reach a wide audience of VR developers and provide cross-platform
support for a wide selection of popular VR head-mounted displays.
The main functionality of our interface is its rendering tool, that
enables processing the input data and rendering it using a selection
of blending methods. We also provide a virtual acquisition tool,
used to generate test datasets on which to try out different rendering

lhttps ://caor-mines-paristech.github.io/colibri-vr


https://caor-mines-paristech.github.io/colibri-vr

solutions. Finally, because most image-based rendering methods
make use of underlying geometric proxies, our interface also in-
cludes extensions that provide easy access to 3D reconstruction and
retopology tools from within Unity. Our GUI can thus notably be
used to leverage the reconstruction capabilities of Schonberger et
al.’s [8] open-source COLMAP toolkit, which is practical both for
estimating the input cameras’ relative positions and orientations and
for recovering dense geometric information for the scene.

2 IMPLEMENTATION DETAILS

‘We now provide details on our implementation of several rendering
solutions. We specifically consider the cases of two different types
of input data: global geometry and per-view depth.

2.1 View-dependent rendering from a global proxy

A common way of storing the scene’s geometry is as a single, global
3D mesh, obtained for instance by 3D reconstruction. To accurately
render the scene’s visual appearance from the captured photographs,
we implement a modified version of a standard view-dependent
rendering method, the Unstructured Lumigraph Rendering (ULR)
algorithm presented by Buehler et al. [1]. This method updates
the mesh’s color values in real-time based on the user’s current
viewpoint, as a weighted combination of values from the n most
relevant input images. To display view-dependent effects in each
rendered 3D point, more weight is given to images that saw the point
from an angle similar to that of the current viewpoint and with a
high resolution, while images that saw the point from too different a
perspective or in which this point is occluded are discarded.

We implement this method using the vertex and fragment shader
operations described by the original authors, with several modifi-
cations. A notable challenge was implementing ULR efficiently
enough to enable the high framerates commonly recommended for
comfortable VR viewing [4]. To solve this issue, we provide options
in the GUI to spread the computation of the camera blending weights
in each vertex over several frames: we apply a rolling-window ap-
proach to iterate over all of the mesh’s vertices, updating the weights
for only a subset of vertices per frame, and rendering the others
with the stored weights from the last iteration. This helps reduce
the computational load of the method, with little cost in terms of
visual quality as long as the process is spread over a small number
of frames. A second challenge arose when we decided to move the
computations from the fragment to the vertex stage [1], for similar
reasons of improving framerates. Specifically, we found that the
restricted number of built-in interpolators prevented us from eas-
ily interpolating the entire blending field between the two stages
when considering large image datasets. To solve this, we added an
intermediate geometry stage in which each of the mesh’s triangles
is matched with only a few images (those most relevant for this
triangle): only the weights for these images are then carried to the
fragment stage to create the output color.

2.2 View-dependent rendering from per-view depth

Another common approach is to render the input images from a set
of corresponding depth maps, to provide motion parallax e.g. from
360° images [9] or large sets of perspective photographs [6]. To
display this representation, we first generate 3D meshes from the
input depth data, then render them using a view-dependent rendering
solution able to display captured specular highlights.

To create per-view meshes from the input set of depth maps, we
implement the quadtree-based parallel GPU algorithm introduced
by Lee et al. [5] as a custom compute shader. This enables us to
rapidly create a compact mesh that accurately fits the geometric data
contained in the depth map, with larger triangles being added in
zones for which this creates little error, and smaller triangles being
added in zones where more details are required. We also include the
orthogonality and triangle size tests described by Pajarola et al. [7],

which enable automatically excluding triangles that would otherwise
create a stretching effect at disocclusion boundaries [9].

To render the generated set of per-view meshes, we implement the
disk-based blending solution described by Overbeck et al. [6] using
vertex/fragment shaders. The output view is generated by combining
the color values displayed by each per-view proxy: blending weights
are computed based on considerations similar to those described
for the ULR algorithm, and are similarly updated in real-time to
adapt to the user’s current viewpoint. To correctly implement this
method in Unity, we had to rely on command buffers. This is because
the method requires knowing the rendering order (when scaling the
proxies’ depth values), and because a final normalization operation is
performed to divide the color in each pixel of the output view by the
total weight stored in the alpha channel [6]. The main obstacle here
was correctly handling depth testing: a z-test is required to prevent
non-convex proxies from displaying inaccurate self-occlusions, yet
it must not be implemented in a way that discards the information
from meshes appearing only slightly behind what has already been
drawn, because per-view meshes are expected to closely overlap
in 3D space. We solved this by implementing a soft z-test, which
enables us to blend the color values only from points at a small
depth range around the final stored depth. We use a ping-pong buffer
system to read and write depth during the process.

3 CONCLUSION

In conclusion, we briefly presented our development of a toolkit to
help VR researchers and content creators more easily apply image-
based rendering techniques. Paths for future work notably include
extending our approach to video data, as well as implementing
improved methods for preventing the emergence of noticeable visual
artifacts.

REFERENCES

[1] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Un-
structured lumigraph rendering. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, pp. 425-432. ACM, New York, NY, USA, Aug. 2001. doi:
10.1145/383259.383309

[2] G. D. de Dinechin and A. Paljic. Cinematic virtual reality with motion
parallax from a single monoscopic omnidirectional image. In 2018
3rd Digital Heritage International Congress (Digital HERITAGE) held
Jjointly with 2018 24th International Conference on Virtual Systems &
Multimedia (VSMM 2018), pp. 1-8, Oct. 2018. doi: 10.1109/digitalheritage
.2018.8810116

[3] D. A. Guttentag. Virtual reality: Applications and implications for

tourism. Tourism Management, 31(5):637-651, Oct. 2010. doi: 10.1016/j.

tourman.2009.07.003

J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-DOF VR videos with a

single 360-camera. In 2017 IEEE Virtual Reality (VR), pp. 37-44, Mar.

2017. doi: 10.1109/vr.2017.7892229

E.-S. Lee, J.-H. Lee, and B.-S. Shin. Bimodal vertex splitting: Accelera-

tion of quadtree triangulation for terrain rendering. /EICE Transactions

on Information and Systems, E97.D(6):1624-1633, June 2014. doi: 10.

1587/transinf.e97.d.1624

[6] R. S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and P. De-

bevec. A system for acquiring, processing, and rendering panoramic

light field stills for virtual reality. ACM Transactions on Graphics (TOG),
37(6):197:1-197:15, Dec. 2018. doi: 10.1145/3272127.3275031

R. Pajarola, M. Sainz, and Y. Meng. DMesh: Fast depth-image meshing

and warping. International Journal of Image and Graphics, 04(04):653—

681, Oct. 2004. doi: 10.1142/50219467804001580

J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 4104-4113, June 2016. doi: 10.1109/cvpr.2016.445

[9] A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann,
and B. Masia. Motion parallax for 360° RGBD video. [EEE Transactions
on Visualization and Computer Graphics, 25(5):1817-1827, May 2019.
doi: 10.1109/tvcg.2019.2898757

[4

—

[5

—_

[7

—

[8

—


https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1109/digitalheritage.2018.8810116
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1016/j.tourman.2009.07.003
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1109/vr.2017.7892229
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1587/transinf.e97.d.1624
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1145/3272127.3275031
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1142/S0219467804001580
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/cvpr.2016.445
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757
https://doi.org/10.1109/tvcg.2019.2898757

	Motivations and approach
	Use cases and current methods
	Enhancing these experiences with IBR: designing an open-source toolset

	Implementation details
	View-dependent rendering from a global proxy
	View-dependent rendering from per-view depth

	Conclusion

