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Abstract. We propose a novel approach to characterize complex 2D
shapes based on enlacement and interlacement directional spatial rela-
tions. This new relational concept allows to assess in a polar space how
the concave parts of objects are intertwined following a set of directions.
In addition, such a spatial relationship has an interesting behavior consid-
ering the common properties in pattern recognition such as translation,
rotation, scale and symmetry. A shape descriptor is defined by consid-
ering the enlacement of its own shape and the disk area that surrounds
it. An experimental study carried out on two datasets of binary shapes
highlights the discriminating ability of these new shape descriptors.
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1 Introduction

A 2D shape recognition system is usually roughly decomposed into several suc-
cessive steps [1, 2]. First, the shapes are extracted from their surrounding back-
ground. This step, called segmentation, relies heavily on a priori knowledge
of the images to be processed. Then, a new representation is built from the
extracted patterns. This representation aims to computationally judge the simi-
larity or distance between two patterns, usually to perform classification. It may
either be a set of measurements made on the patterns, forming a vector of fea-
tures, or a symbolic description of how the pattern can be divided into basic
shapes. The choice of one representation instead of another one generally re-
lies on the application under consideration, and following underlying conditions
such as robustness against noise and small distortions, invariance with regards to
common geometrical transformations or tolerance to occlusions. The shape rep-
resentation for object recognition has been the subject of numerous researches;
and extensive surveys of shape analysis can be found in the literature, for ex-
ample in [3–5]. Two main categories of shape descriptors are often encountered:
those working on a shape as a whole (called region-based descriptors) and those
working on the contours of the shape (called contour-based descriptors).

The usual descriptors based on the contours include the well-known Fourier
descriptors [6–8] and the curvature approaches [9, 10], where a shape is described
in a scale space. The shape context [11] is also a robust descriptor to small per-
turbations of parts of the shape. The main drawback lies in the lack of guaran-
tee with scale-invariance. Other approaches are based on the extraction of the



2 M. Clément et al.

skeleton considering [12, 13] (for instance, a graph defined from the medial axis).
Shock graphs associated to both global optimization and graph matching provide
a powerful tool [14] for discriminating shapes but such methods are generally
highly sensitive to scale variations. Since contour descriptors are based on the
boundary of a shape, they are not able to properly capture the internal struc-
ture of a shape. Furthermore, such methods are not suitable for disjoint shapes
or shapes with holes because boundary information is not available. Therefore,
they remain limited to certain types of applications.

Region-based descriptors work on a shape as a whole taking into account all
the pixels within it. Comparative studies [15, 16] have demonstrated the interest
of the Zernike moments, and numerous researches have been focused on improv-
ing their invariance properties [17] and speeding up the fast computation of the
Zernike moments [18]. Fourier-Mellin has been introduced to avoid the mathe-
matical application problems of the standard transform but an approximation is
required to process with numerical data [19]. To overcome the drawbacks of con-
tour based Fourier descriptors, Zhang and Lu [8] have proposed a region-based
generic Fourier descriptor based on the polar discrete transform. Experimental
results show that this approach outperforms common contour-based (classical
Fourier and curvature approaches) and region-based (Zernike moments) shape
descriptors. These methods were often adapted to deal with the specificities of
the application under consideration. On the whole, region-based methods are
more suited to general applications. However, they are generally more compu-
tationally intense and most approaches need to normalize (centroid position,
re-sampling) the image to be processed with geometrical properties. Such a nor-
malization may introduce errors, sensitivity to noise, and consequently inaccu-
racy in the recognition / decision process.

Among region-based descriptors, relative position descriptors aim at assess-
ing a specific measure following a set of directions. Most of the works have been
focused on the notions on force histogram [20], phi-descriptor [21], meta direc-
tional histogram [22] built from fuzzy landscapes [23] and Radon transform [24].
Such methods are less sensitive to the noise and they preserve common geometri-
cal properties. They are generally less relevant when the number of classes grows
drastically due to the compact aspect of the descriptor but they offer important
(complementary) information when they are combined with other descriptors.

In this paper, our contribution is the proposition of a novel region-based ap-
proach in the context of this generic shape recognition problem. The underlying
strategy of our method is to capture how the parts of one object are messed or
twisted from a circular background area, enabling capture more complex pat-
terns, whose shapes are, for instance, affected by complex concavities and (deep)
levels of imbrication. The remainder of this article is organized as follows. Sec-
tion 2 recalls the concept of directional spatial enlacement, initially proposed
in [25]. From this model, we derive novel shape descriptors, presented in Sec-
tion 3 and Section 4, which are defined by considering the enlacement / inter-
lacement of the object shape and the disk area surrounding it. An experimental
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study carried out on two databases of binary shapes is described in Section 5.
Finally, conclusions and perspectives will be found in Section 6.

2 Directional Spatial Enlacement

The notion of directional spatial enlacement, modeled as an “enlacement” his-
togram, was initially proposed to assess a new spatial relation between two binary
objects [25]. Such a histogram was also embedded in pattern recognition appli-
cations considering local features calculated from pairs of broad objects [26]. We
show here that it can be easily used to provide a discriminate descriptor (or
signature) characterizing only one shape. We recall first basic notions aiming at
describing such a kind of signature that efficiently integrates both whole shape
and spatial description following a set of directions. A full description of the
underlying theoretical developments can be found in [27, 25].

Let (A,B) be a couple of two-dimensional objects. The goal is to measure
how an object A is enlaced with an object B (and reciprocally).

Handling with points The relative positions of individual points ai ∈ A and
bi ∈ B are considered as arguments to put in favor of the proposition “A is
enlaced by B”. Let us consider an oriented straight line ∆(θ,ρ). The functions
f

(θ,ρ)
A and f (θ,ρ)

B designate longitudinal cuts along the oriented line ∆(θ,ρ). The
quantity of A located after a point x on a line ∆(θ,ρ) is given by:∫ +∞

x

f
(θ,ρ)
A (y) dy. (1)

Handling with segments Let us consider a binary object A. The integral
determines the cumulated length of the segments on the interval [x,+∞[ of this
longitudinal cut. Consequently, to capture the quantity of A located after points
of B on this line, we have:∫ +∞

−∞
f

(θ,ρ)
B (x)

∫ +∞

x

f
(θ,ρ)
A (y) dy dx. (2)

Symmetrically, the quantity of A located before parts of B is obtained with:∫ +∞

−∞
f

(θ,ρ)
A (x)

∫ +∞

x

f
(θ,ρ)
B (y) dy dx. (3)

The goal is then to combine these two quantities, in order to take into account
both parts of B before and after parts of A, leading us to the following general
definition of the one-dimensional enlacement. Let f and g be two bounded mea-
surable functions with compact support from R to R. The enlacement of f with
regards to g is defined as:

E(f, g) =

∫ +∞

−∞
g(x)

∫ +∞

x

f(y)

∫ +∞

y

g(z) dz dy dx. (4)
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This generic definition between two real-valued functions can be applied to
longitudinal cuts f (θ,ρ)

A and f (θ,ρ)
B . The value E(f

(θ,ρ)
A , f

(θ,ρ)
B ) represents the over-

all enlacement of A by B along the oriented line ∆(θ,ρ).

Handling with objects Let θ ∈ R be an orientation angle and let us consider
the pencil of all parallel lines {∆(θ,ρ), ρ ∈ R} in this direction; they will slice
any object into a pencil of longitudinal cuts. The enlacement of an object with
regards to another in this direction θ, is obtained by aggregating all the one-
dimensional enlacement values, as it follows. Let θ ∈ R be an orientation angle,
and let A and B be two objects. The enlacement of A by B in the direction θ is
given by:

EAB(θ) =

∫ +∞

−∞
E(f

(θ,ρ)
A , f

(θ,ρ)
B ) dρ. (5)

Properties Considering the definition of the enlacement from parallel longitu-
dinal cuts, the following properties can be easily checked [25]:

– For any two objects A and B, the directional enlacement EAB is periodic
with period π, that is ∀θ ∈ R, EAB(θ) = EAB(θ + kπ), k ∈ Z;

– For any two objects A and B, the directional enlacement EAB is invariant
with regards to translations. Let Tv by a translation by a vector v ∈ C '
R2, we have: ETv(A)Tv(B)(θ) = EAB(θ);

– For any two objects A and B, the directional enlacement EAB is quasi-
invariant with regards to rotations. Let α ∈ R be a rotation angle and let
Rα be a rotation transformation, we have: ERα(A)Rα(B)(θ) = EAB(θ − α);

– For any two objects A and B, the directional enlacement EAB is quasi-
invariant with regards to scaling transformations. Let λ ∈ R be a scaling
factor and let Sλ be a scaling transformation, we have: ESλ(A)Sλ(B)(θ) =
λ4EAB(θ).

3 Enlacement Descriptor

In its initial definition, the enlacement is calculated between two generic binary
objects A and B. Considering one single shape, a longitudinal cut can split it into
several segments assuming the existence of holes or concavities. The goal is to
assess such internal information by calculating the enlacement between a shape
and a surrounding area (including the convex hull). Let us consider a shape A
and its centroid cA(xa, ya). Let rA be the maximal radius of A, calculated from
cA. The surrounding area, noted Ā is defined from the disk D of center cA and
radius rA such that: Ā = D\A (that is D = A ∪ Ā).

The scalar enlacement value in a given direction should be relative to the
overall area in order to compare the enlacement of different couples of shapes
having the same area (but different shapes). Let us define the area ‖A‖1 of a
shape A by:
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‖A‖1 =

∫∫
R2

|fA(x, y)|dxdy. (6)

The directional enlacement descriptor of A with regards to Ā is defined by
the following function (with EAĀ is equal to 0 if A = D):

EAĀ : R −→ R

θ 7−→ EAĀ(θ)

‖A‖1 (πr2
A − ‖A‖1)

.
(7)

The enlacement descriptor EAĀ takes the form of a function, which associates
to each angle θ the enlacement value of A by its surrounding area Ā normalized
by the combination of the two respective areas. Note that both descriptors EAĀ
and EĀA provide complementary information (i.e. enlacement of the enclosing
circle by the shape, and enlacement of the shape by the enclosing circle respec-
tively). In this sense, they can also be concatenated into a single feature vector
EAĀ EĀA.

An overall number of elementary occurrences of enlacement is obtained by
considering each longitudinal cut of the shape in direction θ. The descriptor can
be interpreted as a circular histogram, which we call the E-histogram. Using a
disk area as an overlapping support instead of a rectangle area keeps consistency
(in an isotropic manner), considering the pencil of longitudinal cuts following any
direction, as the same amount of pairwise information is processed. Thanks to
this normalization the enlacement histogram EAĀ is invariant with regards to
scaling transformations, that is: let λ ∈ R be a scaling factor and let Sλ be the
associated scaling transformation; we have: ESλ(A)Sλ(Ā)(θ) = EAĀ(θ).

It is easy to show that the properties of periodicity (considering opposite
directions), translation (as shapes are processed independently of their location
in the frame) and rotation (a rotation of angle θ implies a circular shift of θ
in the descriptor) are preserved from EAĀ for the enlacement histogram EAĀ.
Then E-histogram of a shape is invariant with regards to translations and scaling
transformations, and quasi-invariant to rotations.

4 Interlacement Descriptor

The enlacement histogram EAĀ defines a shape descriptor that quantitatively
characterizes how a shape A is enlaced by its surrounding background Ā. As
a relative position descriptor, the descriptor EAĀ does not completely describe
the spatial configuration of A and Ā. So the opposite descriptor EĀA is comple-
mentary to EAĀ and can also be considered to improve the description of the
shape under consideration. The combination of these two descriptors provides a
description of the mutual interlacement of the shape and its surrounding area.
The directional interlacement descriptor is defined by the harmonic mean as:

IAĀ(θ) =
2 EAĀ(θ)× EĀA(θ)

EAĀ(θ) + EĀA(θ)
(8)
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qi = xi coshi + yi sinhi, into a Radon matrix. That is, for
each point (xi,yi) of the image, i is fixed and the value qi

is calculated using stepwise increments of hi from 0 to p.
The increment is defined following the Shannon theory
(see [36] for more details) to avoid aliasing. Here, we set
Dh = Dq = 1, Dx = Dy = 1/2 and the sampled values of qi

are defined by a linear interpolation. This algorithm
requires time O (N2 M) for an image of size N · N and M
different angles (here M = 180).

Two major optimizations are made to reduce the com-
plexity. The cosine and the sine of all the possible values
of hi are computed just once. The values of qi are also
defined recursively. That is, since the step increment Dx is
set to 1/2, we have: qiþ1

2
¼ qi þ cos hi

2 . Therefore, when we
move in the x-direction, q is incremented by cosh/2. Simi-
larly, in the y-direction q is increased by sinh/2.

Hence, the discrete Radon transform is represented by a
digital image and the discrete R-transform is defined by:

^RðhÞ ¼
Pqmax

q̂¼qmin
T̂

2

Rf ðq̂; ĥÞ. We are aware that the properties
of the continuous Radon transform carry over to the dis-
crete Radon transform only approximately, due to errors
of discretization. However, we will see in Section 6 that
experiments provide evidence that errors are small.

5. Measure of distance

We have seen from Section 3 that a rotation of the shape
implies a translation of the R-transform modulo p. There-
fore, if we apply a one-dimensional Fourier transform on
this function, the rotation invariance is achieved by ignor-
ing the phase in the coefficients and only keeping the mag-
nitudes of the coefficients. Let Rl

q and Rl
m, respectively, be

the discrete R-transform of a query and a model shape for l
different levels of the Chamfer distance transform. After
the discrete one-dimensional Fourier transform F, the
query and the model feature vectors are defined as follows:

X q¼
FR0

qð1Þ
FR0

qð0Þ
; . . . ;

FR0
qðpÞ

FR0
qð0Þ

; . . . ;
FRl

qð1Þ
FRl

qð0Þ
; . . . ;

FRl
qðpÞ

FRl
qð0Þ

 !

X m ¼ FR0
mð1Þ

FR0
mð0Þ

; . . . ;
FR0

mðpÞ
FR0

mð0Þ
; . . . ;

FRl
mð1Þ

FRl
mð0Þ

; . . . ;
FRl

mðpÞ
FRl

mð0Þ

! "
.

For two shapes represented by their R-transform, the
Euclidean distance is directly calculated between the two
Fourier feature vectors Xq and X m.

6. Experimental results

Experimental results gathered during a shape recogni-
tion process are presented to show the efficiency of the pro-
posed algorithm. The method was tested on several
databases. First, two databases of Sharvit et al. [30] kindly
made available to us on his website: http://www.lems.
brown.edu/vision/researchAreas/SIID/ have been used.

The first database consists of nine categories with 11
shapes in each cluster (see Fig.7). Each shape is matched

against all the other shapes of the database (at all 9801
shape comparisons are made) and we count in the nth
(n from 1 to 11) nearest neighbors the number of times
the test image was correctly classified. A few of the shapes
are occluded (clusters airplanes and hands) and some
shapes are partially represented (clusters rabbits, men,
and hands). There are also distorted objects (cluster 6)
and very heterogeneous shapes in the same cluster (ani-
mals). Furthermore, to demonstrate scale invariance and
robustness to noise, the experiments were tested again with
the database of Fig. 7 increased in scale by 400%, scaled
down by 50%, and degraded with salt-and-pepper noise
(common in binary images) with different degrees. We
can remark that the results of the matching are quite sim-
ilar to those obtained with the original database (compare
Figs. 9–11 with Fig. 8). More significantly, we have run the
experiments on a certain shape which has been scaled and
rotated (see Fig. 12). When two shapes are similar the dis-
tance is close to zero and we can see from Fig. 12 that with
only one exception, the distance measures are small. The
exception is due to pixelation errors resulting from the scal-
ing of the smallest image which has been scaled down by a
factor of 32 from the largest. Also a shape from a different
class is included in the Fig. 12 to have a reference of how
small the metric is for the scaled/rotated dogs. On average
the distance is 9 times greater between the dogs and the
rabbit images than between the dogs theirself.

We also compare our method with two recent approaches
which give rise interesting results for several test databases
(see [6] and [37] for comparative studies):

• The approach of Bernier and Landry [6] based on a
polar representation of the contour points with respect
to the centroid of the shape.

• The approach of Zhang and Lu [37] defined on the
generic Fourier descriptor transform from a polar-raster
sampled shape image.

Fig. 7. A database of 99 shapes made available by Sharvit on his website
[30].

46 S. Tabbone et al. / Computer Vision and Image Understanding 102 (2006) 42–51

Fig. 1. Binary 2D shapes from the Sharvit B1 dataset (99 shapes, 9 classes). Similarly,
the Sharvit B2 contains 216 shapes (12 classes) with the same kind of distorsions.

The interlacement descriptor can also be interpreted as a circular histogram,
called the I-histogram. The invariance properties are preserved for the interlace-
ment histogram.

5 Experimental study

For this experimental study, the proposed descriptors have been employed for
a 2D shape classification task on two datasets of binary shapes followed by a
comparative study involving other baseline shape descriptors.

5.1 Datasets

Two shape datasets have been considered to highlight the interest of our proposed
enlacement and interlacement shape descriptors.

Sharvit B1 and B2 The first shape dataset is provided by Sharvit et al. [28].
This dataset is decomposed into two independent datasets, B1 that contains 9
categories with 11 binary shapes in each category (see Figure 1) and B2 that
contains 18 categories with 12 shapes in each category. Considering B1, a few
of the shapes are occluded (airplanes and hands) and some shapes are partially
represented (rabbits, men, and hands). There are also distorted objects (tools)
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Fig. 2. Samples from the CVC dataset composed of 3000 binary 2D shapes (300 classes)
representing various hand-drawn patterns.

and heterogeneous shapes in the same cluster (animals). The dataset B2 also
contains shapes with similar distortions. These two Sharvit sub-datasets are
widely used in the literature to compare feature descriptors designed to classify
2D shapes in presence of noise, artifacts and distorted parts.

CVC The second dataset consists of 3000 binary shapes categorized into 10
classes, with equal number of samples in each category (see Figure 2). It is
kindly provided by CVC Barcelone. This dataset is composed of complex 2D
hand-drawn patterns, with shapes having holes and disconnected parts. The
patterns were drawn by ten persons using the Anoto digital pen and paper.

5.2 Experimental protocol

We used the proposed enlacement and interlacement descriptors to classify the
binary shapes from the Sharvit and CVC datasets into their corresponding cat-
egories. For the first experiment, we studied the influence of the number of
directions for our proposed descriptors (as well as there potential combinations)
on the Sharvit dataset, since this baseline dataset contains more generic and het-
erogeneous shapes. Then, we evaluated the impact of using different classifiers
on the larger CVC dataset. For both datasets, we also perform a comparative
study with other baseline shape descriptors.
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Parameter settings For each 2D shape of the datasets, we computed both en-
lacement shape descriptors EAĀ and EĀA, as well as the interlacement descriptor
IA. All these descriptors are computed onto a set of k discrete directions (the
influence of k being studied hereinafter) equally spaced along the [0, π] interval.

The resulting feature vectors are used to train different classifiers to recognize
the different shape categories from the two datasets. In these experiments, we
tested:

– k-nearest neighbors classifiers (k-NN) using the `2 norm on features. The
number of neighbors has been empirically set to k = 1 (for both datasets,
using more neighbors did not improve the results, either for majority of
weighted votes);

– SVM classifiers following a one-versus-all strategy for multiclass classifica-
tion. The soft-margin hyperparameter C was optimized by performing grid
search on the training set for each tested features. We report results for
SVMs using linear and gaussian kernels.

To better assess the robustness of the approach, this classification process
is coupled with a cross validation strategy. For both the Sharvit B1 and B2

datasets, we employed a leave-one-out strategy, as these datasets are relatively
small. For the CVC dataset we used a k-fold cross validation strategy with k = 3.
That is, the training set representing 2/3 of its total size, while the remaining
1/3 is used for testing, and this process is repeated 3 times so that the whole
dataset is classified. For each strategy, we evaluate the classification results using
the accuracy score (i.e. the rate of correctly classified shapes).

5.3 Influence of the number of directions

In this first experiment, we studied the influence of the number of discrete direc-
tions k ∈ [0, π] when computing the enlacement descriptors EAĀ and EĀA, the
interlacement IA, as well as their combinations EAĀ EĀA and EAĀ EĀA IA. Note
that when combining descriptors, the size is increased accordingly: EAĀ EĀA has
2k values and EAĀ EĀA IA has 3k values. The different numbers of directions
tested were k ∈ {4, 8, 16, 32, 64}. For all of these values, we apply the k-NN clas-
sifier with the corresponding descriptors on both Sharvit datasets B1 and B2,
following the leave-one-out cross validation strategy.

Figure 3 presents the evolution of the accuracy scores for these different
number of directions, on Sharvit (a) B1 and (b) B2. On B1, we can observe
relatively stable recognition rates for small number of directions, with a slight
decrease in performance when using 64 directions. The instability is probably due
to the small size of this dataset. For B2, we observe a more homogeneous increase
in accuracy for all features when increasing the number directions, reaching a
plateau for 16-32 directions. Overall, experiments with 32 directions seem to be
a good compromise between performance and size. This value will therefore be
retained for the remainder of the experimental study.

From these results, we can also observe the relative performances of the differ-
ent considered features. In particular, we can see that the combination EAĀ EĀA
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Fig. 3. Accuracy scores for the Sharvit B1 and B2 datasets, for varying number of
directions of the enlacement and interlacement shape descriptors. Classification is per-
fomed with k-NN (k = 1) on the `2-norm and using leave-one-out cross validation.

of both enlacement descriptors seems to always improve the results compared
to their individual parts. Further combining into EAĀ EĀA IA again slightly im-
proves performance. This seems to confirm our hypothesis that these descriptors
represent complementary rich information, captured both from the shape itself
and its background counterpart, that can be useful to better characterize com-
plex visual patterns.

5.4 Comparative study and discussion

We now present a comparative study with several commonly used shape de-
scriptors from the literature on both datasets. In these experiments, we used the
following baseline descriptors:

– Angular Signature (AS) [29];
– Yang [30];
– 7 Moments of Zernike (Zernike7) [18];
– Angular Radial Transform (ART) [31];
– Generic Fourier Descriptors (GFD) [8];
– Force Histograms (FAA0 and FAA2 ) [20].

All these methods result in feature vectors for each shape, and are supposed
to be relatively robust to different affine transforms such as translation, rota-
tion, or scaling. The five first methods are global shape descriptors, while Force
Histograms are based on spatial relations concepts, similarly to our proposed
approach. For each of these methods, we use the same experimental protocol de-
fined earlier: leave-one-out for Sharvit (with k-NN), and 3-fold cross validation
for CVC (with k-NN and SVMs).

In Table 1, we report the accuracy scores obtained on the Sharvit B1 and
B2 datasets for the five baseline methods, and we compare them to our pro-
posed enlacement and interlacement descriptors, as well as their combinations.
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Table 1. Accuracy scores obtained on the Sharvit datasets B1 and B2 with a 1-NN
classification (leave-one-out). On the left are the results for the baseline descriptors.
On the right are the results for our proposed enlacement and interlacement descriptors,
as well as their combinations. Best and second best scores are respectively depicted in
bold and underlined.

Baseline descriptors B1 B2

AS 75.76 67.59

Yang 82.83 81.94

Zernike7 93.94 92.59

ART 93.94 94.44

GFD 95.96 93.06

FAA
0 77.78 74.54

FAA
2 56.57 51.85

Our descriptors B1 B2

EAĀ 87.88 90.74

EĀA 71.72 91.67

IA 78.79 92.13

EAĀ EĀA 89.90 92.13

IA EAĀ EĀA 92.93 92.13

From this Table, we can observe that our proposed shape descriptors provide
competitive and comparable results with the tested baseline descriptors. On this
dataset, the best accuracy scores were achieved using global descriptors such as
GFD, ART or Zernike moments, which can be considered as relevant baselines.
Our descriptors that combine pairwise enlacements and also interlacement out-
perform common directional based descriptors (i.e. Force Histograms FAA0 and
FAA2 ). Although some shapes present concavities, most of the them are relatively
compact, which can be crippling for our enlacement criterion.

In Table 2 we report the accuracy scores obtained on the larger CVC dataset
for the GFD baseline descriptors, and we compare them to our proposed en-
lacement and interlacement descriptors. Here, we also report results for different
classifiers, i.e. k-NN and SVMs with linear and gaussian kernels. On this dataset,
our combined enlacement and interlacement features significantly improve upon
GFD descriptors (with 36 bins as suggested by [8]. We also found that increas-
ing the number of bins for the GFD descriptors to 96 values (i.e. to match the
dimensionality of our combined features) results in slightly worse performance
(from 0.7% to 4% lower accuracy scores depending on the classifier).

Table 2. Accuracy scores obtained on the CVC dataset with different classifiers (k-NN
and SVMs with linear and gaussian kernels), following a 3-fold cross validation. Best
and second best scores are respectively depicted in bold and underlined.

k-NN (k = 1) SVM (linear) SVM (gaussian)
GFD 89.57 87.83 90.43

EAĀ 83.13 90.17 90.57

EĀA 83.87 87.43 89.87

IA 85.73 88.17 90.23

EAĀ EĀA 93.83 96.30 96.87

IA EAĀ EĀA 94.73 96.53 97.00
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The good performance of our method on this dataset can be explained by the
fact that the shapes are more complex, usually with multiple line strokes result-
ing in many concavities. The enlacement is specifically designed to capture the
internal structure of this types of shapes, characterizing the alternating patterns
between strokes in different directions. Therefore, our proposed features seem to
be more efficient and powerful for this type of application.

6 Conclusion

A new shape descriptor based on the assessment of both enlacement and inter-
lacement behavior following a set of directions has been proposed in this paper.
Experimental study on three databases attests of the promising interest of such
directional descriptors which can easily keep nice properties as homothety, rela-
tion and translation. Further works are dedicated to extending our descriptors
by considering, for instance, the skeleton and the remaining medial axis calcu-
lated between the shape and the surrounding area. The goal will be to provide
a suitable derivative approach to make tests on other complex specific datasets
(such as symbols, texts) where the underlying structure is close to the skele-
ton (following the width). We plan also to integrate the Chanfrein distance (as
in [32]) to better integrate the internal structure of the shape.
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