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Résumé.

Ce livre traite des fonctions permettant d’exprimer la différence entre deux
champs de données ou ”Divergence”, pour des applications à des problèmes
linéaires inverses. La plupart des divergences trouvées dans la littérature
sont utilisées en théorie de l’information pour quantifier la différence en-
tre deux densités de probabilité, c’est-à-dire des quantités positives dont les
sommes sont égales à 1. Dans ce contexte, elles prennent des formes sim-
plifiées qui les rendent inadaptées aux problèmes considérés ici, dans lesquels
les champs de données ont des valeurs positives quelconques.
De manière systématique, les divergences classiques sont réexaminés et on
en donne des formes qui peuvent être utilisées pour les problèmes inverses
que nous considérons. Cela nous amène à préciser les méthodes de con-
struction des écarts et à proposer un certain nombre de généralisations. La
résolution des problèmes inverses implique systématiquement la minimisa-
tion d’une divergence entre les mesures physiques et un modèle dépendant
de paramètres inconnus. Dans le cadre de la reconstruction d’images, le
modèle est généralement linéaire et c’est un problème de minimisation sous
la contrainte de la non-négativité et (éventuellement) de la somme constante
des paramètres inconnus.
Afin de prendre en compte la contrainte de somme de façon simple, nous
introduisons la classe des divergences invariantes par changement d’échelle
sur les paramètres du modèle (divergences affines invariantes) et nous mon-
trons des propriétés intéressantes de ces divergences.
Une extension de ces divergences permet d’obtenir l’invariance par change-
ment d’échelle par rapport aux deux arguments intervenant dans les diver-
gences ; ceci autorise l’utilisation de ces divergences dans la régularisation
des problèmes inverses par contrainte de lissage. Des méthodes algorith-
miques de minimisation des divergences sont développées, sous contraintes
de non-négativité et de somme des composantes de la solution. Les méthodes
présentées sont basées sur les conditions de Karush-Kuhn-Tucker qui doivent
être satisfaites à l’optimum. La régularisation au sens de Tikhonov est prise
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4 RÉSUMÉ.

en compte dans ces méthodes. Le chapitre 11 associé à l’annexe 9 traite
des applications de la MMF, tandis que le chapitre 12 est consacré à la
déconvolution à l’aveugle. Dans ces deux chapitres, l’accent est mis sur
l’intérêt des divergences invariantes.



Abstract.

This book deals with functions allowing to express the dissimilarity (dis-
crepancy) between two data fields or ”divergence functions” with the aim of
applications to linear inverse problems.
Most of the divergences found in the litterature are used in the field of in-
formation theory to quantify the difference between two probability density
functions, that is between positive data whose sum is equal to one. In such
context, they take a simplified form that is not adapted to the problems
considered here, in which the data fields are non-negative but with a sum
not necessarily equal to one.
In a systematic way, we reconsider the classical divergences and we give their
forms adapted to inverse problems.
To this end, we will recall the methods allowing to build such divergences,
and propose some generalizations.
The resolution of inverse problems implies systematically the minimisation
of a divergence between physical measurements and a model depending of
the unknown parameters.
In the context image reconstruction, the model is generally linear and the
constraints that must be taken into account are the non-negativity as well
as (if necessary) the sum constraint of the unknown parameters.
To take into account in a simple way the sum constraint, we introduce the
class of scale invariant or affine invariant divergences. Such divergences re-
mains unchanged when the model parameters are multiplied by a constant
positive factor. We show the general properties of the invariance factors,
and we give some interesting characteristics of such divergences.
An extension of such divergences allows to obtain the property of invariance
with respect to both the arguments of the divergences; this characteristic
can be used to introduce the smoothness regularization of inverse problems,
that is a regularisation in the sense of Tikhonov.
We then develop in a last step, minimisation methods of the divergences
subject to non-negativity and sum constraints on the solution components.
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6 ABSTRACT.

These methods are founded on the Karush-Kuhn-Tucker conditions that
must be fulfilled at the optimum. The Tikhonov regularization is consid-
ered in these methods.
Chapter 11 associated with Appendix 9 deal with the application to the
NMF, while Chapter 12 is dedicated to the Blind Deconvolution problem.
In these two chapters, the interest of the scale invariant divergences is high-
lighted.



Preface - Outline of the
document.

Solving inverse problems generally involves minimizing, with respect to un-
known parameters, a gap function or discrepancy or divergence between
measurements and a model describing the physical phenomenon under con-
sideration. The divergences found in the literature are for the most part
dedicated to problems related to information theory and are unsuitable for
solving inverse problems. In order to have divergences adapted to these
problems, we therefore re-examine the classical divergences, specify their
construction methods, give some generalisations and present the invariant
forms of these divergences. Some algorithmic methods of minimization un-
der constraints are proposed.
Chapter 1 deals with some general considerations on inverse problems and
on deviation functions or divergences. In particular, the problems concern-
ing the influence of the inevitable noise on the measurements are briefly
discussed. The types of divergences to be considered are specified.
Since these discrepancies are essentially based on the properties of the dif-
ferentiable convex functions, some basic properties of the convex functions
are recalled in Chapter 2 and the “standard convex functions” are defined,
as opposed to the “simple convex functions”.
We then indicate the rules of construction of the Csiszar, Bregman and
Jensen divergences based on such functions, then we analyze the convexity
of the resulting “separable” divergences and we give some relations between
the different types of divergences.
In Chapter 3, we introduce the “scale-invariant divergences”, discuss in de-
tail the methods of obtaining the invariance factors and indicate some re-
markable properties of the resulting invariant divergences.
Chapter 4 is devoted to divergences based on classical entropy functions and
some extensions of those divergences.
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Chapter 5 deals with the “Alpha and Beta divergences” and we analyzes
how they are constructed.
The forms of these divergences invariant by scale change are then given; this
allows us to obtain the well known “Gamma divergence” and some diver-
gences similar to this one.
In Chapter 6, a certain number of classical divergences are grouped together
and extensions of these divergences are proposed in case the data fields con-
sidered are not probability densities.
Chapter 7 deals with divergences based on inequalities between weighted
and unweighted generalized means, and extensions are given to the logarith-
mic forms of these divergences.
Chapter 8 deals with divergences between one of the two data fields and
weighted mixtures of the two fields. Generalizations of these divergences
are also discussed.
In Chapter 9, we study the application of scale invariant divergences to the
problem of regularization of inverse problems by smoothness constraint and
we show the interest of invariant divergences by change of scale on the 2
arguments for certain forms of regularization of this type.
Finally, in Chapter 10, we discuss algorithmic methods. After recalling
the S.G.M. method, we develop extensions of this method in order to take
into account simultaneously constraints of non negativity and sum of the
unknown parameters. We develop in particular the case of scale invariant
divergences and we show the interest of their specific properties to take into
account the sum constraint.
Chapter 11 is devoted to Non-Negative Matrix Factoring (NMF), and more
specifically to the introduction of sum constraints on unknown matrix columns.
Concerning this particular constraint, in the case where the divergence used
does not have an invariance property, we proceed by changing variables.
On the other hand, if the considered divergence is invariant by change of
scale, we show that the specific properties of these divergences lead to new
particularly interesting algorithms.
Annex 9 deals with the problem of regularization in MMF and provides some
clarifications and corrections to the classical techniques.
Chapter 12 deals with Blind Deconvolution.
It is shown in this chapter that the use of scale invariant divergences is of
great interest insofar as the commutativity of the convolution product makes
it possible to fully exploit the properties of such divergences when taking
into account the sum constraints on the solution images.
As a comparison, the use of non-invariant divergences is also considered.
In these two chapters, the interest of the scale invariant divergences is clearly
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highlighted insofar as they make it possible to take into account the sum
constraints, in particular with regard to the Blind Deconvolution.
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chapter 1- Introduction

1.1 Some Preliminary Considerations.

The goal of this book is to analyze the functions allowing to express the
gap between 2 data fields and some methods to minimize these functions in
order to apply them to inverse (linear) problems[16].
Two aspects will thus be examined successively: on the one hand the inverse
problems aspect on which we will only make a few brief reminders, and on
the other hand the “gap functions” aspect, i.e. the “divergences functions”
on which we will extend much more extensively and which constitutes a
large part of this work.

1.1.1 Brief reminders on inverse problems and the use of
divergence functions.

In the general case, we have experimental measurements of a physical quan-
tity dependent on a temporal, spatial or other variable, i.e. y (t) (”t” not
necessarily being time) and a model m (t, x) to describe this quantity; this
model depends on a certain number of parameters x = (x1, x2, ...xn) whose
values are unknown.
We’ll move to the special case where the model is linear with respect to the
parameters.

It is further assumed that the measurements and the model are sampled
with a step ∆t so that ti = i ∆t; thus a set of measurements yi = y (ti)
is available and the corresponding values of the model are noted mi (x) =
m (ti, x).

To fix the ideas, we consider the problem of image restoration (recon-
struction), and it is more precisely the problem of image deconvolution that
will be considered throughout this book.

11
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In this case, the sampling is implicitly linked to the pixels of the observed
(convolved) image, the measurements are the intensities in the pixels of this
image, the (linear) model corresponds to the convolution of the unknown
original image with an impulse response that we will assume to be known;
the unknown parameters are the intensities of the pixels of the original im-
age.
In the context of inverse problems, the objective is to determine the optimal
values of the unknown parameters of the model, i.e. those which will make
it possible to bring the physical model as close as possible to the experimen-
tal measurements; one is thus led to compare the measurements with the
model.
In order to do this, we need a function to quantify the difference between
the two quantities (the measurements and the model).

In terms of inverse problems, the “discrepancy (gap) function”
as we just defined expresses “the data attachment” or “the data
consistency”.

Obviously, in this exercise, the measurements are fixed quantities and
the values of the model parameters are varied until the gap between the
measurements and the model is minimal.
It is an inverse problem with all the difficulties that can be inherent in this
type of problem [16] [48].
Assuming the model based on physical considerations is known, two steps
occur in sequence:

• the choice of a gap function

• the choice of a method allowing to minimize such function with respect
to parameters of the physical model (the unknowns).

1.1.2 The gap function F (p, q) and its arguments “p” and “q”.

An important point should be stressed immediately: except in some special
cases, the variables “p” and “q” considered in this book are implicitly non-
negative quantities.

* The data “p”.

The first of the arguments in the deviation function concerns measurements.
In order to adopt classical notations in this area, they are referred to as “pi”,
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(these are the “yi” from the previous section).
With rare exceptions, these measurements will be corrupted by errors that
are attributed to noise whose nature is assumed to be known, which is not
always true.
A first question immediately comes to mind: due to the presence of noise, do
the measurements have the properties of the physical quantity being studied
?
Specifically, if the physical quantity under consideration is non-negative,
“are the measurements non-negative ?”.
If not, then the gap function must be able to take into account the negative
values of the measurements. If the discrepancy function can only take into
account non-negative quantities, then the measurements must be modified
either by setting the negative values to zero or by shifting all the measure-
ments to become non-negative, but in doing so, the statistical properties of
the noise are changed.
For example, in astronomical imaging, corrections related to “dead” sensor
pixels, or corrections related to differences in the gain of the elements of a
CCD detector array change the nature of the noise present in the raw mea-
surements.
In general, the range of definition of the deviation function should include
the range of values of the measurements.
Clearly, the problem of non-negative measurement is a crucial point.

* The physical model “q”.

The second argument which is used in the discrepancy function is the model,
let us designate it by “qi” (they are the mi(x)); these values depend on the
unknown parameters, which we note “xl”.
The question is, what does the physics say about the possible values of the
“qi” and of the “xl”?
We can assume that the model is such that if the values of the “xl” are
chosen within a physically acceptable range, then the values of the “qi” will
be acceptable, that is, in particular, they will be non-negative.
In any event, that means not proposing any values for the unknowns “xl”,
it will be essential to introduce some constraints on these values.
It is quite obvious, moreover, that a choice of the parameters “xl” that sat-
isfies the constraints, must lead to a value “qi” of the model belonging to
the domain of definition of the discrepancy function.
For example, in image reconstruction, the unknowns “xl” must be non-
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negative, and the transformation operation (convolution) must lead to non-
negative images.

1.1.3 Discrepancy (gap) functions - Divergences.

Most of the “discrepancy functions” or “divergences” that appear in the lit-
erature are either Csiszär’s divergences [27] [26], Ali-Silvey[1], either Breg-
man divergences [20], or Jensen divergences [53] and, more generally , when
they do not strictly belong to one of these categories (this is the case when
considering the generalizations of these divergences), they are based on the
use of strictly convex differentiable basic functions, and rely on the proper-
ties of such functions.
This classification into different categories is purely formal, and it can be
observed that a divergence may belong simultaneously to more than one of
these categories.
Furthermore, non-differentiable divergences such as variational distance will
not be considered in this book.
The major difficulty with the divergences found in the literature lies in the
fact that many works have been developed within the framework of the in-
formation theory [8, 10, 78, 91, 87]. In this case, the data fields “p” and
“q” are probability densities, which implies that the quantities considered
are both non-negative and of sum equal to 1.
Thus, many of the divergences used in this context are constructed specifi-
cally for such applications, or have simplifications related to this particular
case.
On the other hand, for the applications considered in this book, two impor-
tant points must be taken into account: on the one hand, the data fields
involved are almost never probability densities, so that simplifications con-
cerning the sum of the arguments are not necessary, on the other hand, it
is not simply a question of quantifying a difference between the two data
fields, but of minimizing a difference between “p” and “q” with respect to
the unknown parameters in one of the two fields considered: the model “q”.
In addition, situations should be considered where the measurements “p”
may be punctually negative due to noise, mainly in the case of Gaussian
additive noise; if this is the case, it is important that the divergences used
and the basic convex functions on which they are based, be defined for the
negative values of the variable.
If this is not the case, the alternative is to pre-process the data to make it
non-negative.
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These remarks imply to analyze precisely the divergences found in the litera-
ture and to make sure that they are well adapted to the considered problem.

* Csiszär’s divergences.

The above remarks apply in particular to Csiszär divergences, the use of
which requires some precautions. Indeed, their mode of construction im-
plies the use of a strictly convex basis function f (x), but moreover, for
applications related to information theory (and more precisely if we are
dealing with probability densities), we impose on the basis function to have
the property f (1) = 0 (this will correspond to particular convex functions
that we will designate by “simple convex functions”).
On the contrary, in our problems, the fields “p” and “q” have almost never
spontaneously equal sums, (this will be one of the constraints of the prob-
lem), no more than sums equal to 1.
Then, in order to construct Csiszär divergences usable for our applications,
the basic functions, in addition to the preceding properties, will have to be
such that f ′ (1) = 0 (this will correspond to convex functions which we will
designate by “standard convex functions”); we will come back to this point
in the following sections.

* Bregman’s and Jensen’s divergences.

Unlike Csiszär’s divergences, Bregman and Jensen’s divergences, which are
what one might call “convexity measures”, imply only the use of a strictly
convex base function f (x) . Except in the particular case where simpli-
fications have been introduced after construction of the divergence, their
use does not pose a problem for our applications, as long as the particu-
lar divergence considered is convex with respect to the true unknowns of
the problem. Indeed, as we will see in the following sections, the fact that
a Bregman or Jensen divergence is constructed on a strictly convex base
function does not necessarily imply its convexity.

General properties of divergences.

Subject to differentiability, the divergences considered shall have the follow-
ing properties:

• They’ll have to be positive.
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• They’ll have to be zero when pi = qi ∀i.

Those two conditions are enough if you’re comparing two different prob-
ability densities.
However, for applications to inverse problems that involve minimizing devi-
ations from the model parameters “q”, additional properties are required:

• Their gradient with respect to “q” must be zero for pi = qi ∀i.

• They’ll have to be convex to the true unknowns ”x”. (usually going
through the convexity in relation to “q”).

Generally speaking:

• They are not necessarily symmetrical; if the need for this property
arises for a particular problem, one can always build a “ad hoc” diver-
gence.

• They do not necessarily meet the triangular inequality, so they are not
necessarily distances (but this is not prohibited).

The consequence of these remarks is that a few checks are required before
using a divergence, and this explains in part the analyses that are carried
out in each case.

1.1.4 Choice of a divergence - Algorithmic aspects.

From a physical point of view, when considering the data attachment term,
the choice of the gap function may be dictated by the statistical properties
of the measurement noise, as is the case for maximum likelihood methods
[48].
When the measurements are simulated, this point does not present any dif-
ficulty because the noise statistics are perfectly known. On the other hand,
in the case of real measurements and in particular when a pre-treatment has
been carried out, it is necessary to estimate the probability density of the
residual noise before use.
In the Bayesian framework [48], given the lack of information on the real
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nature of the noise, it is generally proposed to model the probability density
of the noise using a Gaussian law.
This is justified by the fact that it is the “least compromising” choice given
the lack of information on the exact nature of the measurement noise; one is
thus led to minimize a divergence which is the root mean square deviation.
However, in some cases such as low photon count imaging, the use of a
binomial distribution or Poisson’s law seems more appropriate, leading to
the minimization of a Kullback-Leibler divergence. Similarly, in [35], it is
proposed to use the “Beta” divergence; a special case of this divergence is
the Itakura-Saito divergence which seems to be better suited to the problem
of musical signal processing.
Generally speaking, depending on the problem at hand, one could consider
using any one of the various divergences discussed in this book to express
the data attachment term.
As far as the minimization problem is concerned, the choice of method de-
pends on the properties of the divergence used, and again the question is,
which divergence to select?
From a strict optimization point of view, the simplest answer is to choose a
strictly convex and differentiable discrepancy function, so that gradient-type
descent methods can be used; however, for the chosen function, there must
be a minimum corresponding to pi = qi ∀i, obtained by nulling the gradient
of the discrepancy function (in the simplest case, i.e. without constraints).
This is not always the case, as we will see in the following.
In addition, during the minimization process, constraints on the solution
properties must be taken into account.
In this framework, properties reflecting strict constraints, such as the non-
negativity of the components of the solution, or a constraint on the sum
of these components, will be easily taken into account by conventional La-
grangian techniques of constrained minimization.
However, in the case of ill-posed problems [16] [48], solutions obtained by
estimating the maximum likelihood under constraints, using iterative meth-
ods (usually), reveal instabilities as the number of iterations increases; an
acceptable solution can only be obtained by empirically limiting the number
of iterations. This implicitly regularizes the problem.
The classical alternative to solve this instability problem is to perform an
explicit regularization.
The characteristic of these regularization methods consists in searching for
a solution to make a tradeoff between the fidelity to the measured data and
a fidelity to an information “a priori” [94].
To this end, one seeks to minimize a composite criterion made by introduc-
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ing, next to the data attachment term , a penalty term allowing to reinforce
certain suitable properties of the solution and which summarize our knowl-
edge “a priori”; the relative importance of the two terms of the composite
criterion thus made up being adjusted by a “regularization factor”.
This “energetic” point of view is the one we’ll adopt; the data attachment
term and the penalty term will be expressed by two divergences of the type
studied in this book; the penalty term expressing a “gap” between the cur-
rent solution and a “default” solution reflecting the desirable property(ies)
of the solution.
Such a regularisation can be interpreted in a Bayesian framework cited by
[48] in which one must model a “a priori” law of probability of the solution,
which should make it possible to take into account the desirable and known
properties of the solution.
Applying Bayes’ theorem yields the “a posteriori” distribution.
The estimation of the maximum of the “a posteriori” law is equivalent to
finding the minimum of the composite criterion.

1.1.5 A few general considerations about the divergences.

Basically, a divergence is used to express the difference between 2 data fields:
Field 1 (C1) and Field 2 (C2), and the divergence is written D (C1‖C2).
With the notations indicated previously, the basic fields (if one can say so)
are “p” and “q”, but many authors have introduced a 3rd field which is
the weighted sum of the basic fields, i.e. αp + (1− α) q 0 ≤ α ≤ 1; thus,
3 different fields are involved, and one can easily imagine the variants of
the divergences related to the assignment of these 3 fields on the 2 fields
appearing in the divergence.
Add to that the fact that the divergences are generally not symmetrical,
which adds to the number of possible divergences
In any case, all of these divergences will always express a gap between the
two basic fields “p” and “q.”
Finally, to further add to the variety of possible divergences, we will rely on
the fact that if a D (p‖q) divergence is expressed as a difference of 2 positive
terms D (p‖q) = A (p, q)−B (p, q), a generalization can be introduced by ap-
plying to each of the terms A (p, q) and B (p, q) an increasing function (e.g.
the generalized logarithm or the logarithm) without changing the (positive)
sign of the divergence.
From these few remarks, one can see the wide variety of divergences that
can appear.
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This being said, the important problem when minimizing a divergence re-
mains that of the convexity of the divergence considered in relation to the
true unknowns of the problem.

1.2 Application to the regularization.

The resolution of the inverse problem as we have presented it, implies the
minimization (under constraints) with respect to “x”, of a divergence be-
tween the measurements and the corresponding physical modelD1 (y‖m (x)).
This divergence reflects the “attachment to the data.”
However, because of the ill-posed character of the inverse problems, one is
led to carry out a regularization of the problem [16, 48, 94] by introduc-
ing, next to the data attachment term, a “penalty” or “regularization” term
which makes it possible to give particular properties to the solution. In
the most classical case, where (for example) a certain “smoothness” is im-
posed on the solution, this term is expressed as a discrepancy (divergence)
D2 (x‖xd) between the current solution and a “default solution xd” having
the required properties (in this case a smoothed version of the solution); on
the other hand, it is reasonable to think that this default solution must also
fulfill the constraints imposed on the solution.
We are thus led to minimize with respect to “x”, under constraints, an
expression of the form:

J (x) = D1 (y‖m (x)) + γD2 (x‖xd) (1.1)

In this expression, “γ” is the positive regularization factor.
The constraints considered in this book are the non-negativity constraint
and the sum constraint of the components of the solution:

xi ≥ 0 ∀i ;
∑
i

xi = C (1.2)

The terms D1 and D2 are divergences that will be analyzed in this work.
After having analyzed a certain number of classical divergences, and in order
to simply take into account the sum constraint, we will introduce the scale
invariant divergences and we will show the advantages of the latter to satisfy
this constraint. In particular, we will show that scale invariant divergences
with respect to both arguments are particularly adapted to the problem of
regularization by smoothness constraint in the sense of Tikhonov [93], and,
more specifically, when the default solution “xd” depends explicitly on the
variable “x”.
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chapter 2 -
Convex functions and
divergences.

In this chapter, we recall some properties of the convex functions [17, 19,
46, 84] that will be useful in constructing the divergences.
We then look at the constructive modes of different types of classical diver-
gences. We study their convexity and give some relationships that link them.

2.1 Convex functions - Some properties.

2.1.1 Generalities.

From a strictly convex function f (x), we define the “mirror function” (Bas-
seville [8, 10]) or “dual function” or “*conjugated function” (Osterreicher
[75]) by:

f̆ (x) = xf

(
1

x

)
(2.1)

This function will help build the Csiszär dual divergences.
The properties of the dual function will be:
* if f (x) is convex, then f̆ (x) is convex .
* if f (1) = 0, then we have f̆ (1) = 0.
A convex function with this property will be referred to as a “simple convex
function.”

* if f (1) =0, we have: f̆ ′ (1) = −f ′ (1), which leaves the possibility of having

f̆ ′ (1) = −f ′ (1) = 0 in the case of “self-mirror” functions.

21
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From functions f (x) and f̆ (x), we define the function:

f̂ (x) =
f (x) + f̆ (x)

2
(2.2)

This function will allow us to construct symmetrical Csiszär divergences.
For this function, we have the following properties:
* si f (1) = 0, on a f̂ (1) = 0
* si f (1) = 0, on a f̂

′
(1) = 0

This last property will be fundamental to our purpose.
This leads us, starting from a function f (x) with no other property than
the strict convexity, to define the function fc (x) which we can designate by
“standard convex function”:

fc (x) = f (x)− f (1)− (x− 1) f ′ (1) (2.3)

This function will be strictly convex, with fc (1) = 0 and f ′c (1) = 0, so
it will be positive or zero.
If we divide the right-hand side of (2.3) by f ′′ (1), then we get f ′′c (1) =1;
the latter property is not necessary for our purposes.

Contrary to the “simple convex functions”, the “standard convex func-
tions” will allow us to construct Csiszär divergences that can be used with
data fields that are not probability densities, the so-called by Zhang [98]
“measure invariant divergences” or “measures extended to allow denormal-
ized densities”.

Remarks

• a function of the type f̂ (x) is a “standard convex function”.

• the reciprocal is not true.

• for the “auto-mirror” functions, we have f (x) = f̆ (x) = f̂ (x) =
fc (x).

2.1.2 Some properties of convex functions.

For a convex f (x) function, provided that we remain in its definition domain,
that its derivative is defined and continuous on the same domain, we have
the following properties:

(q − p) f ′ (p) ≤ f (q)− f (p) (2.4)
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f (q)− f (p) ≤ (q − p) f ′ (q) (2.5)

We also have Jensen’s inequality [53]: for αi > 0 ∀i and
∑

i αi = 1.

∑
i

αif (xi) ≥ f

(∑
i

αixi

)
(2.6)

This is writen with 2 points (see figure (2.1):

αf (p) + (1− α) f (q) ≥ f [αp+ (1− α) q] (2.7)

Figure 2.1: Jensen divergence

In the basic case, α =1/2, it comes:

f (p) + f (q)

2
≥ f

(
p+ q

2

)
(2.8)

On the other hand, from (2.5), we can write:

f (p)− f (q)− (p− q) f ′ (q) ≥ 0 (2.9)
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Figure 2.2: Bregman divergence

This inequality will be at the origin of Bregman’s divergences, [20], see
figure(2.2).
Similarly, from (2.4), we have:

f (q)− f (p)− (q − p) f ′ (p) ≥ 0 (2.10)

Which will allow us to build the dual Bregman divergence of the previous
one. Finally, by summing up (2.10) and (2.9), we have:

(q − p)
[
f ′ (q)− f ′ (p)

]
≥ 0 (2.11)

This inequality will intervene in the Burbea-Rao divergences [21].
Note that Burbea and Rao define a more general expression that is written:

(q − p)
[
φ (q)

q
− φ (p)

p

]
≥ 0 (2.12)

where φ(x)
x is an increasing function, which coincides with (2.11) if f (x)

is convex.
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More generally, it can be considered that any inequality can
give rise to a divergence.

The question of the definition domain is essential, because, as we shall
see, this is what often restricts the field of use of the divergences to non-
negative variables (for example).
In the general case that will be ours, the variables “p” and “q” are discretized
(with the same step size); they are considered as vectors with components
“pi” and “qi”.
A divergence between “p” and “q” will be written in the general case as the
separable form:

D (p‖q) =
∑
i

d (pi‖qi) (2.13)

And, from time to time, in the non-separable form, which is more delicate
to analyse:

D (p‖q) = h

[∑
i

d (pi‖qi)

]
(2.14)

If we limit ourselves (for that time) to the separable form (2.13), the con-
vexity of this divergence passes through the convexity of one of the terms of
the sum: d (pi‖qi).
We rely on the following definition:

Definition: The term d (pi‖qi) is jointly convex with respect to “pi” and
“qi” if its Hessian matrix H is positive defined ; it is convex with respect to
“pi” if h11 is positive and convex with respect to “qi” if h22 is positive.

2.2 Csiszär’s divergences - f (or I) divergences.

These divergences were introduced by Csiszär [27] and simultaneously by
Ali and Silvey [1].
Lets consider a strictly convex function f (x), a Csiszär divergence between
two data fields ”p” and ”q” constructed on the function f (x) is written:

Cf (p‖q) =
∑
i

cf (pi‖qi) =
∑
i

qif

(
pi
qi

)
(2.15)

For applications in information theory, the fields “p” and “q” are prob-
ability densities, they are positive quantities with equal sums (to 1 more-
over); in this context, we simply impose on the basic function, the property:
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f (1) = 0 [78] [75].
As previously stated, a convex function possessing only this property will
be referred to as: “simple convex function”.
Divergences built on such a function are not usable outside of this context
without some precautions.
It should also be noted that if in a Csiszâr divergence, one explicitly intro-
duces the fact that the variables are specifically summed to 1, the resulting
simplified divergence is no longer a Csiszâr divergence in the strict sense,
since there is no convex function to construct it according to the relation
(2.15).
A symmetrical Csiszär divergence can always be obtained in Jeffreys’ sense
[52] applying the constructive process (2.15) using the base function f̂ (x)
(2.2).
In our problems, as noted above, the “standard convex function” will allow
us to construct Csiszär’s divergences that can be used with data fields that
are not probability densities, what Zhang [98] calls “measure invariant di-
vergences” or “measures extended to allow denormalized densities”.
To show the necessity of using standard convex functions, let’s consider
Csiszär’s divergences built on a simple convex function f (x) on the one
hand, and on the standard convex function fc (x) associated with it on the
other hand. In the first case, the gradient with respect to “qj” is written:

∂Cf (p‖q)
∂qj

= f

(
pj
qj

)
− pj
qj
f
′
(
pj
qj

)
(2.16)

If we want this gradient to be zero for pj = qj ∀j, it requires that f (1) =
f
′
(1).

Given the property f (1) = 0, that implies that one must have: f
′
(1) = 0.

This observation obviously leads to the standard convex function deduced
from f (x):

fc (x) = f (x)− f (1)− (x− 1) f
′
(1) (2.17)

The gradient with respect to “qj” of the Csiszär’s divergence built on fc (x)
will be written:

∂Cfc (p‖q)
∂qj

= f

(
pj
qj

)
− pj
qj
f
′
(
pj
qj

)
− f (1) + f

′
(1) (2.18)

It will be spontaneously zero for pj = qj ∀j.
In the next section, we give two examples to illustrate this point.
Let’s note that in the context of inverse problems, in general, if we want
to use simplified divergences, we must take into account the simplifications
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that have been introduced, for example by changing variables, that is, by
introducing normalized variables.

2.2.1 A few examples to illustrate these difficulties.

Exemple 1.

We consider the standard convex function:

fc (x) = (x− 1)2 (2.19)

The corresponding Csiszär divergence is known as Neyman’s Chi2:

χ2
N (p‖q) =

∑
i

(pi − qi)2

qi
(2.20)

Its gradient with respect to “q” will be written:

∂χ2
N (p‖q)
∂qj

= 1−
p2
j

q2
j

(2.21)

The components of the gradient can cancel for pj = qj .
Let’s now move to the simplified form in which, we introduced:

∑
i pi =∑

i qi; the divergence becomes:

χ2
N (p‖q) =

∑
i

p2
i

qi
− pi (2.22)

This divergence is constructed in the sense of Csiszär on the simple convex
function f (x), associated with fc (x) which is written:

f (x) = x2 − x (2.23)

The corresponding gradient will be::

∂χ2
N (p‖q)
∂qj

= −
p2
j

q2
j

(2.24)

Now, the gradient doesn’t cancel out for pj = qj , it doesn’t even cancel out
at all unless qj →∞, hence the problem appear.
We can associate with the same standard convex function another simple
convex function that’s written:

f (x) = x2 − 1 (2.25)
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The corresponding Csiszär divergence is given by:

χ2
N (p‖q) =

∑
i

p2
i

qi
− qi (2.26)

The corresponding gradient will be:

∂χ2
N (p‖q)
∂qj

= −
p2
j

q2
j

− 1 (2.27)

As in the previous example, it never cancels.
Let’s go even further and set the sum of the variables to 1:

∑
i pi =

∑
i qi =

1; then, the divergence becomes:

χ2
N (p‖q) =

[∑
i

p2
i

qi

]
− 1 (2.28)

This function taken as such is no longer a Csiszär divergence, there is no basic
convex function to obtain it according to the relation (2.15), its gradient with
respect to “q” is given by (2.24).

Example 2.

Lets consider the standard convex function:

fc (x) = x log x+ x− 1 (2.29)

The Csiszär divergence built on this function is the Kullback-Leibler diver-
gence [57].

KL (p‖q) =
∑
i

pi log
pi
qi

+ qi − pi (2.30)

Its gradient with respect to “q” will be:

∂KL (p‖q)
∂qj

= 1− pj
qj

(2.31)

It will be zero for pj = qj .
On the other hand, if we introduce in the expression (2.30), the simplification∑

i pi =
∑

i qi, we obtain “Kullback information” [10]:

IKL (p‖q) =
∑
i

pi log
pi
qi

(2.32)
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This expression is a Csiszär divergence built on the simple convex function:

f (x) = x log x (2.33)

Its gradient with respect to “q” will be:

∂IKL (p‖q)
∂qj

= −pj
qj

(2.34)

He’ll never be equal to zero.
Note that here, the extreme simplification

∑
i pi =

∑
i qi = 1 will not add

anything.

2.2.2 Consequences of these examples.

In our problem, it is a matter of making one of the two fields (the one that
represents the model) evolve through the variations of the model parameters
(the true unknowns), until the model is as close as possible to the measure-
ments, in the sense of the divergence considered.

The divergences used being convex with respect to the unknown param-
eters, the classical optimization methods always imply to look for the set
of unknown parameters that corresponds to ”zero gradient”, (even in con-
strained problems, it provides part of the solution).

It is quite obvious from the previous remarks and examples that if the
divergence to be minimized, although convex, does not have a finite mini-
mum, or if the minimum obtained by this method does not have a suitable
physical meaning, it is inappropriate for our problem.

Therefore, in our problems, if the divergence used is a Csiszär diver-
gence, it is imperative that we consider only those that are constructed on
the basis of a standard convex function.
Furthermore, the divergences, regardless of how they are constructed, must
not have undergone any simplification related to a particular application.

2.2.3 Convexity of Csiszär’s divergences.

Taking into account (2.13) and (2.15), we must calculate the Hessian of a
term of the form:

cf (p‖q) = qf

(
p

q

)
(2.35)
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We classically consider that ”p” and ”q” are positive, and we have:

∂2cf (p‖q)
∂p2

=
1

q
f”

(
p

q

)
> 0 (2.36)

∂2cf (p‖q)
∂q2

=
p2

q3
f”

(
p

q

)
> 0 (2.37)

∂2cf (p‖q)
∂q∂p

=
∂2cf (p‖q)
∂p∂q

=
p

q2
f”

(
p

q

)
> 0 (2.38)

Separate convexity is clear from (2.36) and (2.37).
The joint convexity is analyzed by considering the Hessian determinant that
is written:

p2

q4

[
f”

(
p

q

)]2

−
[
p

q2
f”

(
p

q

)]2

= 0 (2.39)

One of the eigenvalues is zero, the other is equal to the “Trace” of the
Hessian matrix, therefore positive; the expression (2.35) is therefore jointly
convex.
The Csiszär divergence is therefore jointly convex as a sum of jointly convex
terms.

2.3 Bregman’s divergences .

These divergences are typically convexity measurements.
They are based on a property of convex functions; they therefore imply the
use of a basis convex function.
From this function, nothing is required other than strict convexity.
The property used to construct these divergences is expressed as:

• a convex curve is always located above any tangent to that curve; the
Bregman divergence [20],[22] is the difference between the curve and
the tangent (taken in that order).

• we can also say that for a strictly convex f (x) function, the Bregman
divergence is the difference between the function and its first order
Taylor’s development.

Bf (p‖q) =
∑
i

bf (pi‖qi) =
∑
i

[
f (pi)− f (qi)− (pi − qi) f

′
(qi)
]

(2.40)

Of course, since it is a basic property of convexity, a simple convex
function and the corresponding standard convex function, which even have
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a second derivative, lead to the same Bregman’s divergence, in other words,
two functions that differ from each other by a linear function lead to the
same Bregman’s divergence.
Therefore, as one would expect, whether the divergence is constructed on
the simple convex function or on the associated standard convex function,
the gradients with respect to “q” lead to the same expression being written:

∂Bf (p‖q)
∂qj

=
∂Bfc (p‖q)

∂qj
= (qj − pj) f

′′
(qj) = (qj − pj) f

′′
c (qj) (2.41)

That expression is obviously zero for pj = qj ∀j.
The convexity of Bregman’s divergences is studied using the Hessian for one
of the terms of the sum.

Proposal: If f (x) is convex, Bf (p‖q) is always convex with respect to
the first “p” argument, but may be non convex with respect to the second
argument “q”.

Demonstration: From one of the sum terms appearing in (2.40), we
calculate the elements of the Hessian.

∂2bf (p‖q)
∂p2

= f
′′

(p) ≥ 0 (2.42)

∂2bf (p‖q)
∂q2

= f
′′

(q) + (q − p) f ′′′ (q) (2.43)

∂2bf (p‖q)
∂p∂q

=
∂2bf (p‖q)
∂q∂p

= −f ′′ (q) (2.44)

Thus, (2.42) implies convexity with respect to “p”.
The sign of (2.43) depends of course on f (x), so the convexity with respect
to “q” depends on f (x).
For joint convexity, we express the determinant of the Hessian matrix:

DetH (p, q) = −
[
f
′′

(q)
]2

+ f
′′

(p) f
′′

(q)− (p− q) f ′′ (p) f ′′′ (q) (2.45)

Dividing by f
′′

(p)
[
f
′′

(q)
]2
> 0, we have:

DetH (p, q)

f ′′ (p) [f ′′ (q)]
2 = − 1

f ′′ (p)
+

1

f ′′ (q)
− (p− q)

[
− 1

f ′′ (q)

]′
(2.46)
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This quantity is a Bregman’s divergence built on the function
[
− 1
f ′′ (x)

]
, it

will be positive if
[
− 1
f ′′ (x)

]
is convex, i.e. if

[
1

f ′′ (x)

]
is concave.

If so, the Hessian determinant will be positive, the Hessian will be positive
defined and the corresponding Bregman divergence will be “jointly convex”.

Property: For a strictly convex f (x) function, Bregman’s divergence

is jointly convex with respect to “p” and “q” if and only if
[
1/f

′′
(x)
]

is
concave.
We’ll get a similar property for Jensen’s divergences.
From the expression (2.4), we obtain the adjoint (dual) form of the Bregman
divergence:

Bf (q‖p) =
∑
i

bf (qi‖pi) =
∑
i

[
f (qi)− f (pi)− (qi − pi) f

′
(pi)

]
(2.47)

Following the same reasoning as forBf (p‖q) we can easily show thatBf (q‖p)
is jointly convex to “p” and “q” if and only if

[
1/f

′′
(x)
]

is concave.

Similarly, from the expression (2.11), we can deduce a form of divergence
proposed by Burbea and Rao [21] which is expressed as follows:

Af (p, q) =
∑
i

af (pi, qi) =
∑
i

[
(pi − qi)

(
f
′
(pi)− f

′
(qi)
)]

(2.48)

This symmetrical divergence is related to Bregman’s Bf (p‖q) and Bf (q‖p)
divergences by the relationship:

Af (p, q) = Bf (p‖q) +Bf (q‖p) (2.49)

By relying on the convexity of Bregman’s divergences, Af (p, q) is jointly

convex with respect to “p” and “q” if and only if
[
1/f

′′
(x)
]

is concave.

It should be noted, however, that Af (p, q) is not a Bregman divergence in
that there is no convex function to construct it directly.

2.3.1 Example.

We consider the functions f1 (x) = x2 − 1 , f2 (x) = x2 − x and fc (x) =
(x− 1)2; these convex functions defined for any x, differ from each other by
a linear function; only fc (x) is a standard convex function, but all lead to
the same Bregman’s divergence which is the mean square deviation (which
is otherwise symmetric and respects the triangular inequality; it is therefore
a distance).
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2.3.2 Some possible variations.

Considering the Bregman divergence, based on a strictly convex function
f (x), between a convex combination of the variables “αp + (1− α) q” and
“p” or “q”, and taking into account the fact that the order of the arguments
can be reversed, we can consider the divergence:

Bα
f (p‖q) = Bf [αp+ (1− α) q‖q] (2.50)

which is written in more detail:

Bα
f (p‖q) =

∑
i

f [αpi + (1− α) qi]− f (qi)− α (pi − qi)∇f (qi) (2.51)

But we can also look at the divergences:
* Bf [αp+ (1− α) q‖p]
* Bf [p‖αp+ (1− α) q]
* Bf [q‖αp+ (1− α) q]

That being said, one may ask if it’s of much interest...

2.4 Jensen’s divergences.

These divergences are applications of Jensen’s inequality [53] (2.6), (2.7) or
(2.8), with simple or standard convex functions.
Since it is, as for Bregman’s divergences, a convexity measure, two convex
functions having equal second derivatives (i.e. differing from each other by
a linear function) will lead to the same Jensen’s divergence.
For a strictly convex f (x) base function and for 0 ≤ α ≤ 1, we define:

jαf (pi‖qi) = αf (pi) + (1− α) f (qi)− f [αpi + (1− α) qi] (2.52)

The corresponding Jensen’s divergence is then:

Jαf (p‖q) =
∑
i

jαf (pi‖qi) (2.53)

Therefore, as expected, whether the divergence is built on the simple convex
function or on the associated standard convex function, the gradients with
respect to “q” lead to the same expression which is written:

∂Jαf (p‖q)
∂qj

=
∂Jαfc (p‖q)

∂qj
= (1− α)

[
f
′
(qj)− f

′
(αpj + (1− α) qj)

]
(2.54)
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That expression is obviously zero for pj = qj ∀j.
So the Jensen’s 1/2 divergence will be expressed as follows:

J
1
2
f (p‖q) =

∑
i

{
1

2
f (pi) +

1

2
f (qi)− f

[
pi + qi

2

]}
(2.55)

This last divergence is symmetrical.
Its convexity is subject to the following rule:

Rule: For a strictly convex f (x) function, Jensen’s “α” divergence is
jointly convex with respect to “p” and “q” if and only if [1/f ′′ (x)] is concave.
(see. Burbea-Rao [21]).

Démonstration: From the expression (2.53), we calculate the elements
of the Hessian matrix of one of the terms of the sum:

∂2jαf (p, q)

∂p2
= αf

′′
(p)− α2f

′′
[αp+ (1− α) q] (2.56)

∂2jαf (p, q)

∂q2
= (1− α) f

′′
(q)− (1− α)2 f

′′
[αp+ (1− α) q] (2.57)

∂2jαf (p, q)

∂p∂q
=
∂2jαf (p, q)

∂q∂p
= −α (1− α) f

′′
[αp+ (1− α) q] (2.58)

The Hessian will be positive defined if its determinant is positive, i.e. if:{
f
′′

(p)− αf ′′ [αp+ (1− α) q]
}{

f
′′

(q)− (1− α) f
′′

[αp+ (1− α) q]
}

−α (1− α)
{
f
′′

[αp+ (1− α) q]
}2

> 0

(2.59)

Which gives immediately:

f
′′

(p) f
′′

(q)−
[
(1− α) f

′′
(p) + αf

′′
(q)
]
f
′′

[αp+ (1− α) q] > 0 (2.60)

And finally:
α

f ′′ (p)
+

1− α
f ′′ (q)

− 1

f ′′ [αp+ (1− α) q]
< 0 (2.61)

Which expresses the concavity of [1/f ′′ (x)].
This result is identical to what we found with the Bregman’s divergences.
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2.5 Relationship between these divergences.

2.5.1 Between Csiszär’s and Bregman’s divergences.

In Censor and Zenios [22], we find the relationship:

Cf (p‖q) =
∑
i

qi f

(
pi
qi

)
=
∑
i

qi bf

(
pi
qi
‖1
)

(2.62)

Or, similarly:

f

(
pi
qi

)
= bf

(
pi
qi
‖1
)

(2.63)

We can show this easily, by expressing bf

(
pi
qi
‖1
)

and considering that f (1) =

f
′
(1) = 0, which is the case for the “standard convex functions”, on the

other hand, the relations (2.62) and (2.63) are not valid for “simple convex
functions”.

2.5.2 Between Jensen’s and Bregman’s divergences.

* - In the direction: Bregman→ Jensen.
A first relation is given by Basseville [8], [10]:

Jαf (p‖q) = αBf [p‖αp+ (1− α) q] + (1− α)Bf [q‖αp+ (1− α) q] (2.64)

But we can also establish another relationship that can be expressed as:

Jαf (p‖q) = αBf (p‖q)−Bf [αp+ (1− α) q‖q] (2.65)

* - In the direction: Jensen→ Bregman.
Basseville [8] gives the following relationship:

Bf (p‖q) = lim
α→0

Jαf (p‖q) (2.66)

But we can also establish the relationship:

Bf (p‖q) =

∞∑
n=1

1

αn
Jαf
[
αn−1p+

(
1− αn−1

)
q‖q
]

(2.67)

To obtain this relationship, we start from expression (2.65) we write:

Bf (p‖q) =
1

α
Jαf (p‖q) +

1

α
Bf [αp+ (1− α) q‖q] (2.68)
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Then replace Bf [αp+ (1− α) q‖q] ≡ Bf [z‖q] with its expression deduced
from (2.68), that is:

Bf (z‖q) =
1

α
Jαf (z‖q) +

1

α
Bf [αz + (1− α) q‖q] (2.69)

hence, by replacing “z” with its expression:

Bf (αp+ (1− α)q‖q) =
1

α
Jαf (αp+ (1− α)q‖q) +

1

α
Bf
[
α2p+

(
1− α2

)
q‖q
]

(2.70)
This expression is reported in (2.68) which gives:

Bf (p‖q) =
1

α
Jαf (p‖q)+ 1

α2
Jαf (αp+ (1− α)q‖q)+ 1

α2
Bf
[
α2p+

(
1− α2

)
q‖q
]

(2.71)
and so on and so forth, recursively.

2.5.3 Between Jensen’s and Csiszär’s divergences.

Based on the previous results, we can establish the relationship that yields
Csiszär’s divergences when we know Jensen’s divergences.
From (2.67), we have:

bf

(
pi
qi
‖1
)

=

∞∑
n=1

1

αn
Jαf

[
αn−1 pi

qi
+
(
1− αn−1

)
.1‖1

]
(2.72)

Or also:

bf

(
pi
qi
‖1
)

=
∞∑
n=1

1

αn
Jαf

[
αn−1pi +

(
1− αn−1

)
qi

qi
‖1

]
(2.73)

Then, with (2.62):

Cf (p‖q) =
∑
i

qi

∞∑
n=1

1

αn
Jαf

[
αn−1pi +

(
1− αn−1

)
qi

qi
‖1

]
(2.74)



chapter 3 -
Scale change invariance

In this chapter, we are interested in the divergences invariant by change
of scale and we indicate their construction mode; we also specify for this
type of divergence, some useful properties to build minimization algorithms
under sum and non-negativity constraints. We will consider in this chapter
that the variables “p” and “q” involved in the expression of divergences are
non-negative.

3.1 Introduction.

In the context of linear inverse problems, one is generally led to minimize
with respect to the true unknown “x”, a divergence between measures y ≡ p
and a linear model Hx ≡ q; this minimization is frequently associated with
a non-negativity constraint xi ≥ 0 ∀i and a sum constraint of the type∑

i xi = Cte.
In order to simply take into account this last constraint, we develop a class
of divergences which are invariant by changing the scale with respect to “q”,
i.e. such that:

DI (p‖q) = DI (p‖aq) (3.1)

where “DI” denotes an invariant divergence and “a” is a positive scalar.
The underlying idea being that during the iterative process of minimization,
after each iteration, we will be able to renormalize “x” and respect the sum
constraint, without changing the value of the divergence to be minimized;
indeed, according to (3.1) we will obviously have:

DI (y‖Hx) = DI (y‖a (Hx)) = D (y‖H (ax)) (3.2)

This being the case, we will show that the divergences invariant by change of
scale possess a property that will be particularly interesting when the non-

37
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negativity constraint is associated with the sum constraint in a minimization
problem such as the one mentioned above.
Some examples of applications of invariant divergences have been proposed
in [63], [65], [64] .

3.2 Invariance factor K - General properties.

The general idea is that starting with a divergence of any kind, we’re going
to transform it into a divergence of DI (p‖q) (related to D (p‖q)), which is
invariant with respect to the variable “q”.
More precisely, in order to make a divergence scale invariant with respect
to “q”, we look for the expression of a positive scalar factor K (p, q) such
that the divergence D (p‖Kq) = DI (p‖q) remains unchanged when the com-
ponents of “q” are multiplied by a positive scalar.

The solution of this problem is not unique, indeed all expres-
sions of K (p, q) having the following properties are possible solu-
tions of this problem:

1 - K (p, q) must be scalar and positive.,

2 - In order to obtain a divergence which is invariant by scale
change with respect to “q”, the vector [K (p, q) . q] must be invari-
ant when multiplying “q” by a constant.

Finally, in general terms:

* If p→ q, we must have K (p, q)→ 1.
consequently:

* If p → q, D (p‖Kq) → D (p‖q) → 0.

We will note that the constraints imposed on the K (p, q) factor do not
necessarily relate it to any given divergence.

These observations lead to the following very important re-
mark: an invariance factor having the properties listed above will
make any divergence invariant with respect to “q”.
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3.2.1 Calculation of the nominal invariance factor.

In order to obtain an expression of K (p, q), the method defined in [34] con-
sists of calculating the invariance factor:

K0 (p, q) = arg min
K>0

D (p‖Kq) (3.3)

In this mode of calculation, the invariance factor K0 (p, q), which we will
designate by “Nominal invariance factor” is specifically associated with the
divergence D (p‖q) and therefore implicitly associated with a basic convex
function and a constructive mode of divergence.
So we have to solve with respect to K (positive), the equation:

∂D (p‖Kq)
∂K

= 0 (3.4)

If we put the resultingK expression, K0 (p, q), into the divergenceD (p‖q),
we get the invariant divergence DI (p‖q) = D (p‖K0q).
In this calculation, K is considered a scalar quantity.

However, it should be noted that (3.4) does not necessarily
have an explicit solution.

* Property.

Taking into account the definition (3.3), the resulting invariant diver-
gence D (p‖K0q) is less than or equal to any other invariant divergence
derived from D (p‖q) using an invariance factor K1 (p, q) different from
K0 (p, q).

D (p‖K0q) ≤ D (p‖K1q) (3.5)

With equality if pi = qi ∀i.
Furthermore, when q → p, we have:
K0 (p, q) → K1 (p, q)→ 1
therefore
D (p‖K0q) → D (p‖K1q) → D (p‖q)→ 0.

Examples allowing to show this more precisely are given in
Annex 7.
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3.3 A few comments regarding the invariance fac-
tor K.

For divergences that remain invariant by change of scale, whatever their
form, we note:

D (p‖Kq) =
∑
i

d (pi‖Kqi) (3.6)

3.3.1 Fundamental property.

For divergences invariant by scale change on “q”, we will first establish a
fundamental property which is writtens:∑

j

qj
∂D (p‖Kq)

∂qj
= 0 (3.7)

In a first step, we show that this relation is verified when the invariance
factor is a nominal factor, i.e. when it is calculated explicitly by resolution
of (3.4); this invariance factor K0 (p, q) is thus directly associated to the
divergence D (p‖q) considered.

Démonstration.

Knowing that K is a function of “p” and “q”, the gradient of D (p‖Kq)
with respect to “q” is written:

∂D (p‖Kq)
∂qj

=
∑
i

∂d (pi‖Kqi)
∂ (Kqi)

∂ (Kqi)

∂qj
(3.8)

But, we have:

∂ (Kqi)

∂qj
=
∂ (Kqi)

∂K

∂K

∂qj
+
∂ (Kqi)

∂qi

∂qi
∂qj

= qi
∂K

∂qj
+Kδij (3.9)

which leads to:

∂D (p‖Kq)
∂qj

=
∑
i

∂d (pi‖Kqi)
∂ (Kqi)

∂K

∂qj
qi +K

∂d (pj‖Kqj)
∂ (Kqj)

(3.10)

From which it can be deduced:

∑
j

qj
∂D (p‖Kq)

∂qj
=

[∑
i

∂d (pi‖Kqi)
∂ (Kqi)

qi

]∑
j

qj
∂K

∂qj
+K

 (3.11)
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With:

qi =
∂ (Kqi)

∂K
(3.12)

one can also write (3.11) in the form:

∑
j

qj
∂D (p‖Kq)

∂qj
=

[∑
i

∂d (pi‖Kqi)
∂K

]∑
j

qj
∂K

∂qj
+K

 (3.13)

The fundamental relationship (3.7) is thus made explicit in the form:[∑
i

∂d (pi‖Kqi)
∂K

]∑
j

qj
∂K

∂qj
+K

 = 0 (3.14)

Or also: [∑
i

∂d (pi‖Kqi)
∂ (Kqi)

qi

]K +
∑
j

qj
∂K

∂qj

 = 0 (3.15)

So it’s verified if one of the terms in the product (3.14) is zero.
We examine each of these two terms in turn.

First term of the product.

The nominal invariance factor K0 is calculated by solving with respect to
K the equation:

∂D (p‖Kq)
∂K

=
∑
i

∂d (pi‖Kqi)
∂K

= 0 (3.16)

that is: ∑
i

qi
∂d (pi‖Kqi)
∂ (Kqi)

= 0 (3.17)

For such an invariance factor K0 (p, q), specifically associated with the di-
vergence D (p‖q) considered, the first term of the product (3.14) is null; we
can therefore conclude that:

The relationship (3.7) is verified if K (p, q, ) = K0 (p, q, ).

This property is of fundamental importance as we will see in
the chapter dealing with the algorithmic developments of mini-
mization under non-negativity and sum constraints.
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We first examine the expressions of the term (3.17) corresponding to the
different forms of classical divergences.

Relationship with the different construction modes of divergences
(Csiszär, Bregman, Jensen).

The factor K (p, q), when calculated by resolving (3.4) (3.17), is specifically
related to a given D (p‖q) divergence, so it is associated with both a ba-
sic convex function and the constructive mode of the divergence (Csiszär,
Bregman or Jensen); generalizations outside this framework will not be con-
sidered here.
We will therefore establish the relations that link the K factor and the con-
vex functions that allows us to construct the divergences. To do so, we will
give the particular expressions of (3.17) for each of the three constructive
modes of divergences.

1 - Csiszär’s divergences.

The function f (x) considered here is a standard convex function; the Csiszär
divergence Cf (p‖q) is constructed according to the relationship:

Cf (p‖q) =
∑
i

qif

(
pi
qi

)
(3.18)

The factor K (p, q) making this divergence invariant with respect to “q”
is associated with the function “f” and Csiszär’s constructive mode. The
invariant divergence corresponding to (3.18) will be written:

Cf (p‖Kq) =
∑
i

cf (pi‖Kqi) =
∑
i

Kqi f

(
pi
Kqi

)
(3.19)

After a few simple calculations, we have:

∂cf (pi‖Kqi)
∂ (Kqi)

= f

(
pi
Kqi

)
− pi
Kqi

f ′
(
pi
Kqi

)
(3.20)

And the equation (3.17) is written:

∑
i

qi

[
f

(
pi
Kqi

)
− pi
Kqi

f ′
(
pi
Kqi

)]
= 0 (3.21)
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2 - Bregman’s divergences.

The invariant divergence associated with this constructive mode is by defi-
nition written:

Bf (p‖Kq) =
∑
i

bf (pi‖Kqi) (3.22)

that is:

Bf (p‖Kq) =
∑
i

[
f (pi)− f (Kqi)− (pi −Kqi) f ′ (Kqi)

]
(3.23)

we then obtain:

∂bf (pi‖Kqi)
∂ (Kqi)

= (Kqi − pi) f ′′ (Kqi) (3.24)

And the relationship (3.17) is written:∑
i

qi (Kqi − pi) f ′′ (Kqi) = 0 (3.25)

3 - Jensen’s divergences.

By definition, we have:

Jf (p‖Kq) =
∑
i

jf (pi‖Kqi) (3.26)

that is:

Jf (p‖Kq) =
∑
i

{αf (pi) + (1− α) f (Kqi)− f [αpi + (1− α)Kqi]} (3.27)

Therefore:

∂jf (pi‖Kqi)
∂ (Kqi)

= (1− α)
[
f ′ (Kqi)− f ′ (αpi + (1− α)Kqi)

]
(3.28)

And the relationship (3.17) is written:∑
i

qi
[
f ′ (Kqi)− f ′ (αpi + (1− α)Kqi)

]
= 0 (3.29)
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4 - Overview

If we make an analysis of the relationships corresponding to the 3 types
of divergences considered, we can observe that the relation (3.17) will be
satisfied for Csiszär divergences, if:∑

i

qi

[
f

(
pi
Kqi

)
− pi
Kqi

f ′
(
pi
Kqi

)]
= 0 (3.30)

Similarly, this equation will be satisfied for Bregman’s divergences if:∑
i

qi (Kqi − pi) f ′′ (Kqi) = 0 (3.31)

Finally, this relationship will be satisfied for Jensen’s divergences, if:∑
i

qi
[
f ′ (Kqi)− f ′ (αpi + (1− α)Kqi)

]
= 0 (3.32)

It is quite obvious that the equations (3.30), (3.31) and (3.32) are nothing
else but the translation of the equation (3.17) corresponding to the 3 types
of divergences.

The resolution of (3.30), (3.31) or (3.32) depending on the type of diver-
gence and more generally of (3.17), when possible, allows us to obtain an
expression of the nominal invariance factor K0 (p, q) and thus to satisfy (3.7).

The question is then: is the relation (3.7) still true if we use
an invariance factor different from K0?

3.3.2 Extension of the fundamental property to ”non-nominal”
invariance factors.

The fundamental property (3.7) has been expressed in the form:[∑
i

∂d (pi‖Kqi)
∂ (Kqi)

qi

]K +
∑
j

qj
∂K

∂qj

 = 0 (3.33)

Or also: [∑
i

∂d (pi‖Kqi)
∂K

]K +
∑
j

qj
∂K

∂qj

 = 0 (3.34)
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The effect of the first product term was discussed in the previous section.

The effect of the second term of the product is examined here.

The relations (3.33) (3.34) are always satisfied if the factor K (p, q) is a
solution to the differential equation:

K +
∑
j

qj
∂K

∂qj
= 0 (3.35)

This differential equation doesn’t depend on the divergence under con-
sideration.

Its resolution allows to extend the fundamental property (3.7)
to invariance factors different from K0, i.e. non-nominal.

3.3.3 Some precisions on the differential equation (3.35).

Clearly, only the ”q” dependency is exhibited in this equation. That means
that the set of solutions of this equation contains the K (p, q) expressions
which satisfy (3.7)(3.14)(3.15).
In order for a solution K (p, q) of the differential equation (3.35) to be an
acceptable invariance factor, it must also possess other properties that have
already been mentioned:

* K (p, q) must be a positive scalar,

on the other hand, and, this is a crucial point already indicated:

* In order to obtain an invariant divergence by scale-change on
“q”, the vector “[K (p, q) . q]” must be invariant when multiplying
“q” by a constant.

Finally, in a general way:

* If p→ q, then we must have K (p, q)→ 1.

However, the general solution of (3.35) mentioned in [80] (p.94), is writ-
ten ∀j:

K (p, q) =
1

qj
Φ

(
p,
q1

qj
,
q2

qj
, ...,

qj−1

qj
, 1,

qj+1

qj
, ...,

qn
qj

)
(3.36)
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Where Φ is any function.
This means that any functionK (p, q) of the form (3.36) will satisfy (3.14)(3.15),
i.e. (3.7).
We will observe that with expressions of K (p, q) of this form, the vector
[K (p, q) . q] is invariant when multiplying “q” by a constant. However,
among the solutions of the form (3.36), only the positive scalar expressions
of K (p, q) can play the role of invariance factors.

Finally, one will be able to check that all the expressions of K0 (p, q)
calculated (when possible), by explicit resolution of (3.17) that is to say, ac-
cording to the case, of (3.30), (3.31) where (3.32) will be of the form (3.36).

These observations induce the following remarkable property:

An expression of K (p, q), positive scalar, as long as it is a so-
lution of the differential equation (3.35), (i.e. as long as it is of
the form (3.36)), will make invariant any divergence (because the
vector [K (p, q) . q] is invariant with respect to “q”), and the rela-
tion (3.7) will be satisfied.

We can therefore say, in order to globalize these observations
concerning the property (3.7), that two cases can arise:

- either the invariance factor is computed by explicit resolution
of (3.17), the invariance factor is then referred to as K0 (p, q), this
will be the “nominal” invariance factor for the considered diver-
gence.

- or the factor K (p, q) is solution of (3.35) and has the spe-
cific properties of the invariance factors, without being solution
of (3.17), i.e. without any relation with the starting divergence,
then, one always obtains an invariant divergence as shown on the
examples of the following paragraph.

- the nominal invariance factors belong to the set of solutions
of the differential equation (3.35).

Exemple 1: Kullback-Leibler divergence.

We can consider that this divergence is constructed in the sense of Csiszär
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on the standard convex function:

fc (x) = x log x+ 1− x (3.37)

It is written:

KL (p‖q) =
∑
i

[
pi log

pi
qi

+ qi − pi
]

(3.38)

The calculation of the nominal invariance factor leads to the explicit solu-
tion:

K0 (p, q) =

∑
j pj∑
j qj

(3.39)

This factor will be the solution of the equation (3.30), but this divergence
can also be obtained in the Bregman sense by relying on the same convex
function (it is the common point between the 2 types of divergences), it will
thus be made invariant by the same factor K0 which is the solution of the
equation (3.31). The expression of K0 (p, q) (3.39) can be put in the form
(3.36); it is thus the solution of the differential equation (3.35) and thus
makes it possible to make any divergence invariant.
This can be verified, for example, on the Euclidean distance:

EQM (p‖q) =
∑
i

(pi − qi)2 (3.40)

With the invariance factor (3.39) “which is not the nominal invariance
factor for this divergence”, we obtain:

EQM (p‖K0q) =
∑
i

(
pi −

∑
j pj∑
j qj

qi

)2

(3.41)

This divergence is invariant under scale change on “q ”; it can also be written
as follows:

EQM (p‖K0q) =

∑
j

pj

2∑
i

(
pi∑
j pj
− qi∑

j qj

)2

(3.42)

or also:

EQM (p‖K0q) =

∑
j

pj

2∑
i

(p̄i − q̄i)2 (3.43)



48 CHAPTER 3 - SCALE CHANGE INVARIANCE

When using this very particular form of the invariance factor K given by
(3.39), the resulting invariant divergence is analogous (except for one factor
that depends only on “pj”) to the initial divergence, where “pi” has been
replaced with p̄i = pi∑

j pj
and “qi” has been replaced with q̄i = qi∑

j qj
.

We can check that property on any discrepancies that come up later.

Exemple 2: Mean square deviation (E.Q.M.).

We consider here, the Mean square deviation (Euclidean distance):

EQM (p‖q) =
∑
i

(pi − qi)2 (3.44)

This can be considered as being a Bregman divergence based on the standard
convex function:

fc (x) = (x− 1)2 (3.45)

It is made invariant to a scale change on “q” by calculating the nominal
factor that is written:

K0 (p, q) =

∑
i piqi∑
i q

2
i

(3.46)

But the E.Q.M. is also a Jensen (1/2) divergence based on the same convex
function.
With this expression of K (p, q), the equation (3.31) will be satisfied because
the Euclidean distance is a Bregman divergence, but simultaneously the
equation (3.32) will be satisfied because it is also a Jensen divergence, and
of course, this expression of K (p, q) is a solution of the differential equation
(3.35).
If we now use the expression of K0 (p, q) given in (3.46) as the invariance
factor in the Kullback-Leibler divergence, we can see that, although this
expression is not the nominal invariance factor for this divergence, we obtain
an invariant form by scale change on “q”.

3.3.4 General form of the invariance factor K (p, q).

Given these observations, and all the constraints on the invariance factor
K (p, q), a general expression acceptable for K can be written in the form:

K (p, q) =

(∑
i p
α
i q

β
i∑

i p
δ
i q
γ
i

)µ
; α+ β = δ + γ ; µ (γ − β) = 1 (3.47)
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Indeed, this expression which can be put in the form (3.36) represents a
family of solutions to the differential equation (3.35).
Note that the constraints expressed in (3.47) reflect the following properties:

α+ β = δ + γ ⇔ K (p, q) is a scalar (3.48)

µ (γ − β) = 1 ⇔ [K (p, q) . q] is invariant with respect to q (3.49)

Taking into account the constraints mentioned in (3.47), this general expres-
sion of K can also be written with a smaller number of parameters, in the
form:

K (p, q) =

 ∑
i p
α
i q

β
i∑

i p
α− 1

µ

i q
β+ 1

µ

i

µ

(3.50)

But, another expression of K (p, q) is more explicit; indeed, taking into
account the relations between the parameters, it can be written, after some
calculations, in the form:

K (p, q) =

[∑
i

(
pi
qi

)α−δ pδi q
γ
i∑

j p
δ
jq
γ
j

] 1
α−δ

(3.51)

These expressions are of the form:

K (p, q) =

[∑
i

(
pi
qi

)t pδi q
γ
i∑

j p
δ
jq
γ
j

] 1
t

(3.52)

These are, for quantities of the form (pi/qi), a weighted generalized mean of
the order “t” with the exponent t = α− δ (see.Appendix 2), and weighting
coefficients wi such that

∑
iwi = 1 which are given by:

wi =
pδi q

γ
i∑

j p
δ
jq
γ
j

(3.53)

In the special case of the dual Kullback -Leibler divergence, the nominal
invariance factor will be expressed as follows:

K0 = exp

[∑
i

wi log

(
pi
qi

)]
(3.54)
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It is a weighted generalized mean of pi/qi, based on the function ψ (x) =
log x, with weighting factors ωi = pi∑

j pj
.

K0 = ψ−1

[∑
i

wiψ

(
pi
qi

)]
(3.55)

It can be verified after some calculations that expressions of the invari-
ance factor given by (3.52) and (3.54), associated with weighting coefficients
of the form (3.53), satisfy the differential equation (3.35).

3.3.5 Remarks.

Based on this general form, we can go even further in the discussion; by

returning to the expression K (p, q) =
∑
j pjqj∑
j q

2
j

calculated explicitly for K.L.’s

divergence, we can imagine an expression for the invariance factor written

K (p, q) =

[∑
j p

2
j∑

j q
2
j

] 1
2

which is of the form (3.47), but which does not corre-

spond ”a priori” to any divergence.
This expression of K (p, q) is a solution of the differential equation, so it
makes invariant any divergence.
Similarly, from the expression of the invariance factor corresponding to the

mean square deviation: K (p, q) =
∑
j pjqj∑
j q

2
j

, we can imagine an expression

of the invariance factor K (p, q) =
∑
j pjq

2
j∑

j q
3
j

which is of the form (3.47), but

which does not correspond “a priori” to any divergence; this expression of
K (p, q) is the solution of the differential equation (3.35); this factor makes
invariant any divergence.

3.4 Some properties of the Gradient of an invari-
ant divergence.

We recall the relation (3.10) giving the expression of the gradient with re-
spect to the variable “q” of an invariant divergence D (p‖Kq) for an invari-
ance factor K (p, q):

∂D (p‖Kq)
∂qj

=
∑
i

∂d (pi‖Kqi)
∂ (Kqi)

∂K

∂qj
qi +K

∂d (pj‖Kqj)
∂ (Kqj)

(3.56)
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This expression can also be written:

∂D (p‖Kq)
∂qj

=
∂K

∂qj

∑
i

qi
∂d (pi‖Kqi)
∂ (Kqi)

+K
∂d (pj‖Kqj)
∂ (Kqj)

(3.57)

Or also:

∂D (p‖Kq)
∂qj

=
∂K

∂qj

∑
i

∂d (pi‖Kqi)
∂K

+K
∂d (pj‖Kqj)
∂ (Kqj)

(3.58)

For a given divergence, suppose that the expression of the invariance factor
can be calculated explicitly, namely K0 (p, q) this expression; it is of course
of the general form (3.50).
Let us now consider another expression of the invariance factor K1 (p, q)
respecting the general form (3.50), but which is not in correspondence with
the divergence considered.

The question is: what happens to the gradient expressions (3.56), (3.57)
or (3.58) depending on whether we use K0 (p, q) or K1 (p, q)?
In the first case, K0 (p, q) is the solution to the differential equation (3.35),
then the first term of the second member of the equation (3.58) is zero and
it simply remains:

∂D (p‖Kq)
∂qj

= K0

[
∂d (pj‖Kqj)
∂ (Kqj)

]
K=K0

(3.59)

If K = K1, the first term of the second member of the equation (3.58) is no
longer zero, and we have:

∂D (p‖Kq)
∂qj

=
∂K1

∂qj

[∑
i

∂d (pi‖Kqi)
∂K

]
K=K1

+K1

[
∂d (pj‖Kqj)
∂ (Kqj)

]
K=K1

(3.60)
However, in both cases, one still has the fundamental property:

∑
j

qj
∂D (p‖Kq)

∂qj
=
∑
j

qj
∂DI (p‖q)

∂qj
= 0 (3.61)

Some examples to show this in more detail are given in Ap-
pendix 4.
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3.5 A very special case of the invariance factor.

We saw that a particular expression of the invariance factor could be:

K (p, q) =

∑
j pj∑
j qj

(3.62)

This expression is the explicit result of calculating the invariance factor for
a Kullback-Leibler divergence.
Using this factor, any divergence can be made invariant.

Forms of the divergences related to this invariance factor.

By introducing this invariance factor with respect to “q”, in any diver-
gence, one makes it appear in the resulting invariant divergence, normalized
variables noted p̄i = pi∑

j pj
and q̄i = qi∑

j qj
, so that we systematically obtain

invariant divergences corresponding to p̄ and q̄ variables of sum equal to 1.

Except for a multiplicative factor (which depends only on
∑

j pj), the
resulting invariant divergences have the same expression as the initial diver-
gences, with the normalized variables simply replacing the initial variables.
This operation being carried out, some simplifications can appear.
One thus obtains invariant divergences similar to the simplified divergences
applicable to densities of probabilities, provided that one introduces explic-
itly in the simplified divergences, normalized variables.

Moreover, if we disregard the multiplicative factor, these di-
vergences are invariant not only with respect to the “q” variable,
but also with respect to the “p” variable, as can be seen from the
examples given in Appendix 6.



chapter 4 -
Divergences and Entropies

This chapter presents the divergences that can be related to the various
forms of entropy found in the literature. In most cases they will be con-
structed in the sense of Csiszär on the basis of a convex function; in this
constructive mode, we will be led to distinguish the case of “standard convex
functions”. The relation with the entropies will of course be rather related
to the “simple convex functions”.
Finally, the extensions of the divergences by using the function “Generalized
Logarithm” (see Appendix 1), will lead us to deviate from the constructive
mode of Csiszär, but will make it possible to make the connection with the
entropies of Sharma-Mittal [89] and Renyi [82] [81].
In a final section, we’ll discuss Jensen’s differences based on Entropies.
General references for this chapter will be given in: [6],[8],[10],[78] et [91].

4.1 Shannon Entropy related divergences.

In this section, the divergences linked to Shannon’s entropy [88] are analyzed.

4.1.1 Direct form.

The standard convex function used in this case, see.figure (4.1), is written:

fc (x) = x log x+ 1− x (4.1)

The corresponding Csiszär’s divergence is the Kullback-Leibler diver-
gence [57]:

KL (p‖q) =
∑
i

pi log
pi
qi

+ qi − pi (4.2)

53
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Figure 4.1: Function fc (x) = x log x+ 1− x

The gradient with respect to “q” is written:

∂KL (p‖q)
∂qj

= −pj
qj

+ 1 (4.3)

It will be zero for pj = qj ∀j.
If, at this point, we consider that we have

∑
i pi =

∑
i qi, the divergence

(4.2) simplifies and is written:

IKL (p‖q) =
∑
i

pi log
pi
qi

(4.4)

That’s Kullback’s information [8].
The gradient with respect to “q” is written:

∂IKL (p‖q)
∂qj

= −pj
qj

(4.5)

We can see that this gradient will never be equal to zero, therefore IKL (p‖q)
is not usable in our problem without special precautions; indeed, to use
such a divergence, it will be necessary to explicitly introduce the fact that∑

i pi =
∑

i qi.
This difficulty will appear every time one wants to use simplified divergences,
that is to say, those built on “simple” convex functions.
An additional simplification such as

∑
i pi =

∑
i qi = 1 will not bring any

additional simplification, but if we don’t make this assumption, the diver-
gence (4.4) will probably not be positive.
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The form (4.4) is mainly used in works dealing with probability densities;
this form is deduced in the Csiszär sense from the simple convex function
(see figure 4.2):

f (x) = x log x (4.6)

1 2 3 4 5

2

4

6

8

Figure 4.2: Function f (x) = x log x

Invariance by change of scale.

The invariance factor K0 (p, q) corresponding to the Kullback-Leibler diver-
gence (4.2) can be calculated according to the method indicated in Chapter
3; it is expressed in explicit form:

K0 =

∑
j pj∑
j qj

(4.7)

It is a special case already mentioned in Chapter 3 that leads to the invariant
divergence:

KLI (p‖q) =
∑
j

pj
∑
i

p̄i log
p̄i
q̄i

(4.8)

with p̄j =
pj∑
l pl

et q̄j =
qj∑
l ql

.

We can observe that we get a divergence equivalent to (4.4), but here we
explicitly have

∑
i p̄i =

∑
i q̄i (= 1).

On the other hand, disregarding the multiplicative factor
∑

j pj , we can
observe that the divergence obtained is invariant not only with respect to
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“q” but also with respect “p”.
Its gradient with respect to “q” is written:

∂KLI (p‖q)
∂ql

=
1∑
j qj

(
1− p̄l

q̄l

)
(4.9)

4.1.2 Dual form.

To obtain the dual form, we are using the mirror function of (4.1) (see figure
4.3), which is written:

f̆c (x) = log
1

x
+ x− 1 (4.10)

1 2 3 4 5

1

2

3

4

Figure 4.3: Function f̆c (x) = log 1
x + x− 1

So, we obtain:

KL (q‖p) =
∑
i

qi log
qi
pi

+ pi − qi (4.11)

The gradient with respect to “q” is written:

∂KL (q‖p)
∂qj

= log
qj
pj

(4.12)

It will be zero for pj = qj ∀j.
Again, assuming that

∑
i pi =

∑
i qi, we have the simplified form:

IKL (q‖p) =
∑
i

qi log
qi
pi

(4.13)
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The gradient with respect to “q” is written:

∂IKL (q‖p)
∂qj

= log
qj
pj

+ 1 (4.14)

This gradient will not be zero for pj = qj , therefore IKL (q‖p) is not usable
in our problem without special precautions.
An additional specification such as

∑
i pi =

∑
i qi = 1 will not provide

any additional simplification, but if we don’t make that assumption, the
divergence (4.13) is unlikely to be positive.
The divergence (4.13) is constructed in the Csiszär sense on the simple
convex function (see figure (4.4):

f̆ (x) = log
1

x
(4.15)

1 2 3 4 5
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Figure 4.4: Function f̆ (x) = log 1
x

Invariant form of dual divergence (4.11).

The derivation of the nominal invariance factor for this divergence leads to
the expression:

K0 = exp
∑
i

qi∑
j qj

log
pi
qi

(4.16)

It is a weighted generalized average of terms of the form (pi/qi) that is
written:

K0 = ψ−1

[∑
i

wiψ

(
pi
qi

)]
(4.17)
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With ψ (x) = ln (x) and weighting factors wi = qi∑
j qj

.

By introducing this invariance factor in the divergence (4.11), we obtain
after some simple calculations, the invariant form that can be written:

KLI (q‖p) =
∑
i

pi − qi exp
∑
j

qj∑
l ql

log
pj
qj

 =
∑
i

[pi −K0qi] (4.18)

It is easily verified that this divergence is not modified if “q” is multiplied
by a positive constant.

4.1.3 Symmetrical form.

It is obtained in the sense of Jeffreys [52] by using Csiszär’s constructive
mode, based on the standard convex function (see figure 4.5):

f̂c (x) =
1

2

[
fc (x) + f̆c (x)

]
=

1

2

[
f (x) + f̆ (x)

]
(4.19)
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Figure 4.5: Function f̂c (x) = x log x− log x

So, we have:

KL (p, q) =
∑
i

(pi − qi) log
pi
qi

(4.20)

Whose gradient with respect to “q” is written:

∂KL (p, q)

∂qj
=
qj − pj
qj

− log
pj
qj

(4.21)

This expression is of course equal to zero for pj = qj ∀j.
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4.2 Havrda-Charvat Entropy related divergences.

This section deals with Csiszär’s divergences related to the entropy of Havrda-
Charvat [42] and more specifically based on the standard convex function:

fc (x) =
1

α (α− 1)
[xα − αx+ (1− α)] (4.22)

To these divergences we will associate those built on the corresponding sim-
ple convex functions:

f1 (x) =
1

α (α− 1)
[xα − x] (4.23)

and

f2 (x) =
1

α (α− 1)
[xα − 1] (4.24)

We will see in the chapter 5 that the Csiszär divergences built on these
convex functions, in particular on the function (4.22), belong to the class of
“Alpha divergences” of Amari [2].
The divergence associated with fc (x) will be written:

HCα (p‖q) =
1

α (α− 1)

{∑
i

pαi q
1−α
i −

∑
i

[αpi + (1− α) qi]

}
(4.25)

It’s clearly a difference between a generalized geometric mean and a gener-
alized arithmetic mean.
The gradient with respect to “q” is given by:

∂HCα (p‖q)
∂qj

=
1

α

(
1− pαj q−αj

)
(4.26)

It will be zero for pj = qj ∀j.
The divergences related to f1 (x) and f2 (x) will be written respectively:

A1 (p‖q) =
1

α (α− 1)

[∑
i

pαi q
1−α
i − pi

]
(4.27)

and

A2 (p‖q) =
1

α (α− 1)

[∑
i

pαi q
1−α
i − qi

]
(4.28)
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We can notice that if in the expression (4.25), one makes
∑

i pi =
∑

i qi, one
finds (4.27) or (4.28).
The corresponding gradients with respect to “q” will be written respectively:

∂A1 (p‖q)
∂qj

=
1

α

(
pαj q
−α
j

)
(4.29)

that will never be zero, and:

∂A2 (p‖q)
∂qj

=
1

α (α− 1)

[
(1− α) pαj q

−α
j − 1

]
(4.30)

which may be zero, but for pj 6= qj .
Furthermore, if we make the additional assumption that

∑
i pi =

∑
i qi = 1,

we get 3 identical divergences that are written:

HCSα (p‖q) =
1

α (α− 1)

[∑
i

pαi q
1−α
i − 1

]
(4.31)

whose the gradient relative to “q” given by (4.29). This last divergence
(4.31) is the Havrda-Charvat divergence [42] quoted by Arndt [6] and Bas-
seville [10].
The dual divergences are constructed by using as convex functions, the mir-
ror functions of the previous ones; they will be indicated in chapter 5.

4.3 Sharma-Mittal Entropy related divergences.

The various divergences highlighted in this section are no longer Csiszär’s
divergences, in fact, they cannot be obtained with this constructive method,
but they can be considered as a form of generalisation of the divergences
obtained in the previous section. They are related to the entropy of Sharma-
Mittal [89].
This generalization can be summarized by the following simple rule.

Rule: When a divergence is expressed as the difference between two
positive terms, it can be generalized by applying to each of the terms an
increasing function (which will not change the sign of the divergence ob-
tained); the increasing function used is often the “Generalized Logarithm”
function (see Appendix 1), which makes it possible to change, by action on
a single parameter, from the linear function (which leaves the initial diver-
gence unchanged) to the logarithmic function itself.
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Of course, at the end of this operation, we obtain a new divergence whose
convexity properties are not guaranteed, even if the initial divergence was
convex.
If we apply this rule on the divergence HCα (p‖q) (4.25), using the general-
ized logarithm with the exponent 1− d = s−1

α−1 , we obtain:

SMα,s (p‖q) =
1

α (s− 1)


[∑

i

pαi q
1−α
i

] s−1
α−1

−

[∑
i

αpi + (1− α) qi

] s−1
α−1


(4.32)

Similarly, if we apply this rule on the very simplified divergence (4.31), we
get:

SMSα,s (p‖q) =
1

α (s− 1)


[∑

i

pαi q
1−α
i

] s−1
α−1

− 1

 (4.33)

It’s this last divergence that is commonly referred to as the Sharma-Mittal
divergence [89] [6].
Calculating the gradient of SMα,s (p‖q) (4.32) with respect to “q” gives:

∂SMα,s (p‖q)
∂qj

=
1

α


[∑

i

αpi + (1− α) qi

] s−α
α−1

−

[∑
i

pαi q
1−α
i

] s−α
α−1

pαj q
−α
j


(4.34)

He’ll cancel for pi = qi ∀i.
On the other hand, the calculation of the gradient of SMSα (p‖q) (4.33)
with respect to “q” yields:

∂SMSα,s (p‖q)
∂qj

= − 1

α

[∑
i

pαi q
1−α
i

] s−α
α−1

pαj q
−α
j (4.35)

It will never cancel.

Scale invariance with respect to “q”.

The divergence given by the relation (4.32) is made invariant using the

invariance factorK∗(p, q) =
∑
j pj∑
j qj

which is not the nominal invariance factor;

it is written after simplifications:

SMα,sI (p‖q) =
1

α (s− 1)


[∑

i

p̄αi q̄
1−α
i

] s−1
α−1

−

[∑
i

αp̄i + (1− α) q̄i

] s−1
α−1


(4.36)
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Its gradient with respect to “q” is written:

∂SMα,sI (p‖q)
∂ql

=
1

α
∑

j qj

[∑
i

p̄αi q̄
1−α
i

] s−α
α−1

(∑
i

p̄αi q̄
1−α
i − p̄αl q̄αl

)
(4.37)

4.4 Renyi Entropy related divergences.

These divergences related to Renyi’s entropy [81] [82] [6] [14], correspond
to the limit d → 1 in the “generalized Logarithm”, that is s → 1 in the
divergences of the previous section.
If we perform this operation on the expressions (4.32) and (4.33), we get
respectively:

Rα (p‖q) =
1

α (α− 1)

{
log
∑
i

pαi q
1−α
i − log

∑
i

αpi + (1− α) qi

}
(4.38)

The form (4.38) can be seen as an extension of Renyi’s divergence to data
fields whose sum is not equal to 1.
In the case of probability densities, i.e. with

∑
i pi =

∑
i qi = 1, it comes:

RSα (p‖q) =
1

α (α− 1)

{
log
∑
i

pαi q
1−α
i

}
(4.39)

The expression (4.39) is Renyi’s divergence in its classical form related to
Renyi’s entropy and probability densities [6].
The gradients with respect to “q” can be deduced from the gradient expres-
sions (4.34) and (4.35) by making s = 1; they are written respectively:

∂Rα (p‖q)
∂qj

=
1

α


[∑

i

αpi + (1− α) qi

]−1

−

[∑
i

pαi q
1−α
i

]−1

pαj q
−α
j


(4.40)

and

∂RSα (p‖q)
∂qj

= − 1

α

[∑
i

pαi q
1−α
i

]−1

pαj q
−α
j (4.41)

We can observe that ∂Rα(p‖q)
∂qj

will be equal to zero if pi = qi ∀i, whereas
∂RSα(p‖q)

∂qj
could never be zero.
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Scale invariance with respect to “q”.

For this divergence given by the relation (4.38), the invariance factor can-
not be calculated explicitly, so we use as invariance factor the expression

K∗(p, q) =
∑
j pj∑
j qj

.

In these conditions, the invariant divergence is written after simplifications:

RIα (p‖q) =
log
∑

j pj

α (α− 1)

[
log
∑
i

p̄αi q̄
1−α
i

]
(4.42)

In this expression, the multiplicative factor log
∑

j pj can be omitted, and
the gradient with respect to “q” is given by:

∂RIα (p‖q)
∂ql

=
1

α
∑

j qj

[
1−

p̄ αl q̄
−α
l∑

j p̄
α
j q̄

1−α
j

]
(4.43)

Of course, it will be equal to zero if pi = qi ∀i.

4.5 Arimoto entropy related divergences.

4.5.1 Direct form.

These divergences developed by Osterreicher [74] [76] rely on the use of
generalized averages as in the Arimoto Entropy [4]. In their initial form,
they are constructed in the Csiszär sense on the basis of the standard convex
function shown in figure (4.6) for δ = 2:

fcδ (x) =
1

δ − 1

[(
1 + xδ

2

) 1
δ

−
(

1 + x

2

)]
δ 6= 1 (4.44)

This leads to the divergence:

AR (p‖q) =
1

δ − 1

[∑
i

(
pδi + qδi

2

) 1
δ

−
∑
i

(
pi + qi

2

)]
(4.45)

This divergence is symmetrical, so it can be denoted as AR (p, q).
The second term is clearly the unweighted arithmetic mean of the two data
fields, whereas the first term corresponds, according to the value of “δ”, to
the different unweighted means between the two fields; indeed:
* if δ = 2, the first term is the square root mean.
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Figure 4.6: Function fcδ (x) = 1
δ−1

[(
1+xδ

2

) 1
δ −

(
1+x

2

)]
, δ = 2

* if δ =1, the first term is the harmonic mean.
* if δ → 0, the first term is the geometric mean.
This approach allows us to find the divergences between averages, which will
be developed in chapter 7.
The gradient with respect to “q” will be written:

∂AR (p‖q)
∂qj

=
1

2 (δ − 1)

(pδj + qδj
2

) 1−δ
δ

qδ−1
j − 1

 (4.46)

This gradient is equal to zero if pi = qi ∀i.
Since the basic convex function is a standard convex function, we can try
to show the associated simple convex functions; after a few thinking about
them, we can show 2 of these functions (as always), which are represented
on figures (4.7) and (4.8) for δ = 2::

f1,δ (x) =
1

δ − 1

[(
1 + xδ

2

) 1
δ

− x

]
(4.47)

and

f2,δ (x) =
1

δ − 1

[(
1 + xδ

2

) 1
δ

− 1

]
(4.48)

They will respectively lead to the divergences:

ARS1 (p‖q) =
1

δ − 1

[∑
i

(
pδi + qδi

2

) 1
δ

−
∑
i

pi

]
(4.49)
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Figure 4.7: Function f1,δ (x) = 1
δ−1

[(
1+xδ

2

) 1
δ − x

]
, δ = 2
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Figure 4.8: Function f2,δ (x) = 1
δ−1

[(
1+xδ

2

) 1
δ − 1

]
, δ = 2

and

ARS2 (p‖q) =
1

δ − 1

[∑
i

(
pδi + qδi

2

) 1
δ

−
∑
i

qi

]
(4.50)

If in these divergences as well as in AR (p‖q) one introduces the simplification∑
i pi =

∑
i qi = 1, one obtains the divergence of Arimoto [6]:

ARS (p‖q) =
1

δ − 1

[∑
i

(
pδi + qδi

2

) 1
δ

− 1

]
(4.51)
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Of course, such a divergence can only be used to compare data fields whose
sum is explicitly equal to 1.
The gradients with respect to “q” of the ARS1 (p‖q) and ARS (p‖q) diver-
gences will never cancel, while the gradient of ARS2 (p‖q) may become zero,
but not for pi = qi ∀i.

4.5.2 Related dual divergences.

They are built on the dual convex functions of those used in the previous
section.
We can note that f̆1,δ (x) = f2,δ (x) and that f̆2,δ (x) = f1,δ (x).

4.5.3 Symmetrical divergence.

Taking into account the remark in the previous section, it is constructed, in

the sense of Jeffreys, on the basis of f̂δ (x) =
f̆1,δ(x)+f1,δ(x)

2 =
f̆2,δ(x)+f2,δ(x)

2 =
fc,δ (x), and of course leads to the divergence AR (p, q).

4.5.4 Weighted versions of these divergences.

In a first simple variant of these divergences, weighted versions of these di-
vergences can be introduced by replacing the first term of the divergence
AR (p, q) (4.45) by a weighted generalized mean and second term by a
weighted arithmetic mean.
This is equivalent to constructing a Csiszâr’s divergence by using the basic
standard convex function:

fc,δ,α (x) =
1

(1− α) (δ − 1)

{[
αxδ + (1− α)

] 1
δ − [αx+ (1− α)]

}
(4.52)

With 0 ≤ α ≤ 1, this leads to the divergence:

ARδ,α (p‖q) =
1

(1− α) (δ − 1)

{∑
i

[
αpδi + (1− α) qδi

] 1
δ −

∑
i

[αpi + (1− α) qi]

}
(4.53)

Of course, by varying the “δ” values as indicated above, we can review in
the first term, the various weighted means.
Note that the symmetry property of the unweighted version has disappeared;
it only exists for α = 1/2.
The gradient with respect to “q” will be written:

∂ARδ,α (p‖q)
∂qj

=
1

δ − 1

{[
αpδj + (1− α) qδj

] 1−δ
δ
qδ−1
j − 1

}
(4.54)
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It will be zero if pj = qj ∀j.
One can observe that a simplified version of this divergence corresponding
to
∑

i pi =
∑

i qi = 1 exists, but the gradient of this simplified form will not
be equal to zero if pj = qj ∀j.

4.5.5 First type of extension.

In order to retrieve any divergences based on differences between the weighted
means developed in chapter 7 (the unweighted case will be obtained im-
mediately with α = 1

2), we can consider, as proposed in [66], the standard
convex function:

fc,δ,γ,α (x) =
1

(1− α) (δ − 1)

{[
αxδ + (1− α)

] 1
δ − [αxγ + (1− α)]

1
γ

}
(4.55)

With such a function, the resulting Csiszär divergence is written:

ARδ,γ,α (p‖q) =
1

(1− α) (δ − 1)

{∑
i

[
αpδi + (1− α) qδi

] 1
δ

−
∑
i

[αpγi + (1− α) qγi ]
1
γ

}
(4.56)

The divergences obtained for different values of the parameters “γ” and “δ”
are summarized in the following table.

HH
HHHHδ

γ −1 0 1 2

−1 0 GM-HM AM-HM SM-HM

0 HM-GM 0 AM-GM SM-GM

1 Jensen-Shannon

2 SM-HM SM-GM SM-AM 0

Table 4.1: Divergences resulting from various values of “γ” and “δ”.

The divergences not listed in this table are either negative or non-convex;
moreover the Jensen-Shannon divergence implies the computation of limits
δ → 1, γ → 1.
There is no simplified version of the divergence (4.56); its gradient with
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respect to “q” is written:

∂ARδ,γ,α (p‖q)
∂qj

=
1

δ − 1

{[
αpδj + (1− α) qδj

] 1−δ
δ
qδ−1
j

−
[
αpγj + (1− α) qγj

] 1−γ
γ
qγ−1
j

}
(4.57)

Such a gradient will be zero pour pi = qi ∀i

4.5.6 Extension in the sense of the Generalized Logarithm.

Since the divergence (4.56) shows a difference of 2 positive terms, an in-
creasing function can be applied to each of the two terms, for example, the
generalized logarithm, with the exponent “1 − d” noted 1 − d = s−1

δ−1 ; this
gives the divergence:

ARSMδ,γ,α,s (p‖q) =
1

(1− α) (s− 1)


[∑

i

[
αpδi + (1− α) qδi

] 1
δ

] s−1
δ−1

−

[∑
i

[αpγi + (1− α) qγi ]
1
γ

] s−1
δ−1

 (4.58)

From this expression, the operation s → δ (d → 0) leads to the divergence
of the previous section, while the transition s → 1 (d → 1) leads to the
following logarithmic form:

LARSMδ,γ,α (p‖q) =
1

(1− α) (δ − 1)

{
log
∑
i

[
αpδi + (1− α) qδi

] 1
δ

− log
∑
i

[αpγi + (1− α) qγi ]
1
γ

}
(4.59)

The specific cases corresponding to the various values of “δ” and “γ” will
be found in chapter 7.
The gradients with respect to “q” of these two divergences are written re-
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spectively:

∂ARSMδ,γ,α,s (p‖q)
∂qj

=
1

δ − 1


[∑

i

[
αpδi + (1− α) qδi

] 1
δ

] s−δ
δ−1 [

αpδj + (1− α) qδj

] 1−δ
δ
qδ−1
j

−

[∑
i

[αpγi + (1− α) qγi ]
1
γ

] s−δ
δ−1 [

αpγj + (1− α) qγj

] 1−γ
γ
qγ−1
j


(4.60)

and

∂LARSMδ,γ,α,s (p‖q)
∂qj

=
1

δ − 1


[∑

i

[
αpδi + (1− α) qδi

] 1
δ

]−1 [
αpδj + (1− α) qδj

] 1−δ
δ
qδ−1
j

−

[∑
i

[αpγi + (1− α) qγi ]
1
γ

]−1 [
αpγj + (1− α) qγj

] 1−γ
γ
qγ−1
j


(4.61)

This last expression can be obtained from (4.60) by simply doing s = 1.
The components of these gradients will be zero for pj = qj ∀j.

4.6 Jensen divergences based on Entropies.

We use as basic convex functions, the opposite of the Shannon, Havrda-
Charvat and Renyi Entropies.

4.6.1 Shannon’s entropy.

On the basis of the simple convex function which is the opposite of Shannon’s
entropy, that is:

f (x) = x log x (4.62)

we treat the case of Jensen’s divergence weighted by 0 < β <1, the classic
case β = 1/2 is immediately inferred.
We have:

JS (p‖q) =β
∑
i

pi log pi + (1− β)
∑
i

qi log qi

−
∑
i

[βpi + (1− β) qi] log [βpi + (1− β) qi] (4.63)
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The gradient with respect to “q” is expressed as:

∂JS (p‖q)
∂qj

= (1− β) {log qj − log [βpj + (1− β) qj ]} (4.64)

Of course these components will be zero for pj = qj ∀j.

Scale invariance with respect to “q”

For this divergence given by the relation (4.63), the invariance factor can
not be calculated explicitly, so we use as invariance factor the expression

K∗(p, q) =
∑
j pj∑
j qj

.

In these conditions, the invariant divergence is written after simplifications:

JSI (p‖q) =β
∑
i

p̄i log p̄i + (1− β)
∑
i

q̄i log q̄i

−
∑
i

[βp̄i + (1− β) q̄i] log [βp̄i + (1− β) q̄i] (4.65)

The gradient with respect to “q” is expressed as:

∂JSI (p‖q)
∂ql

=
1− β∑
j qj

[
log

q̄l
βp̄l + (1− β) q̄l

−
∑
i

q̄i log
q̄i

βp̄i + (1− β) q̄i

]
(4.66)

4.6.2 Havrda-Charvat entropy.

Here, the convex base function is the opposite of the Havrda-Charvat en-
tropy; we treat the case of the Jensen divergence weighted by 0 < β < 1,
the classic case β = 1/2 is deduced immediately.
We have:

JHC (p‖q) =
1

α (α− 1)

{
β
∑
i

pαi + (1− β)
∑
i

qαi −
∑
i

[βpi + (1− β) qi]
α

}
(4.67)

The gradient with respect to “q” is written:

∂JHC (p‖q)
∂qj

=
1− β
α− 1

{
qα−1
j − [βpj + (1− β) qj ]

α−1
}

(4.68)
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Scale invariance with respect to “q”.

For this divergence given by the relation (4.67), the invariance factor can
not be calculated explicitly, so we use as invariance factor the expression

K∗(p, q) =
∑
j pj∑
j qj

.

Under these conditions, the invariant divergence is written after simplifica-
tions:

JHCI (p‖q) =
1

α (α− 1)

{
β
∑
i

p̄αi + (1− β)
∑
i

q̄αi −
∑
i

[βp̄i + (1− β) q̄i]
α

}
(4.69)

The gradient with respect to “q” is expressed as:

∂JHCI (p‖q)
∂ql

=
1− β

(α− 1)
∑

j qj

{
q̄α−1
l −

∑
i

q̄αi − [βp̄l + (1− β) q̄l]
α−1

+
∑
i

q̄i [βp̄i + (1− β) q̄i]
α−1

}
(4.70)

If, in the expression of the divergence (4.67), we replace the arithmetic mean
by a generalized geometric mean, which will not change the sign of the
expression, we do what O. Michel [70] has proposed for Renyi’s divergence
and on which we will come back later; the divergence thus constructed will
be written:

J2HC (p‖q) =
1

α (α− 1)

{
β
∑
i

pαi + (1− β)
∑
i

qαi −
∑
i

[
pβi q

1−β
i

]α}
(4.71)

The gradient with respect to “q” will be:

∂J2HC (p‖q)
∂qj

=
1− β
α− 1

{
qα−1
j −

[
pβj q

1−β
j

]α−1
(
pj
qj

)β}
(4.72)

Scale invariance with respect to “q”.

For this extension proposed by O.Michel [70] given by (4.71), using the
invariance factor K∗ (p, q) previously defined, we obtain after simplifications
the following invariant divergence:

J2HCI (p‖q) =
1

α (α− 1)

{
β
∑
i

p̄αi + (1− β)
∑
i

q̄αi −
∑
i

[
p̄βi q̄

1−β
i

]α}
(4.73)
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The gradient with respect to “q” will be:

∂J2HCI (p‖q)
∂ql

=
1− β

(α− 1)
∑

j qj

{
q̄α−1
l −

∑
i

q̄αi −
[
p̄βl q̄

1−β
l

]α
p̄βl q̄
−β
l +

∑
i

[
p̄βi q̄

1−β
i

]α+1
}

(4.74)
This being the case, we can also continue to follow the reasoning of O.
Michel [70] in his work on Renyi’s divergence, and introduce a Jensen-Havrda
Charvat divergence between a generalized arithmetic mean of the 2 fields
and one or the other of the fields, then, one can always invert the order
of the arguments insofar as the divergences thus formed are not necessarily
symmetrical.

4.6.3 Renyi’s entropy.

Here, the convex base function is the opposite of Renyi’s entropy, these leads
to Arndt’s 1R1

α [6]. We treat the case of Jensen’s divergence weighted by
0 < β < 1, the classic case β = 1/2 is inferred immediately.
The corresponding divergence is written as:

JβR (p‖q) =
1

α (α− 1)

{
β log

∑
i

pαi + (1− β) log
∑
i

qαi

− log
∑
i

[βpi + (1− β) qi]
α

}
(4.75)

The gradient with respect to “q” will be:

∂JβR (p‖q)
∂qj

=
1− β
α− 1

{
qα−1
j∑
i q
α
i

− [βpj + (1− β) qj ]
α−1∑

i [βpi + (1− β) qi]
α

}
(4.76)

Scale invariance with respect to “q”.

For such a divergence given by the relation (4.75), we use the K∗(p, q) in-
variance factor already mentioned, which leads to the invariant divergence:

JβRI (p‖q) =
1

α (α− 1)

{
β log

∑
i

p̄αi + (1− β) log
∑
i

q̄αi

− log
∑
i

[βp̄i + (1− β) q̄i]
α

}
(4.77)
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The gradient with respect to “q” is written as:

∂JβRI (p‖q)
∂ql

=
1− β

(α− 1)
∑

j qj

{
q̄α−1
l∑
j q

α
j

− 1− [βp̄l + (1− β) q̄l]
α−1∑

i [βp̄i + (1− β) q̄i]
α

+

∑
i q̄i [βp̄i + (1− β) q̄i]

α−1∑
i [βp̄i + (1− β) q̄i]

α

}
(4.78)

If in the expression (4.75) the generalized arithmetic mean is replaced
by a generalized geometric mean, as proposed by O. Michel in [70], the
divergence is written:

J2βR (p‖q) =
1

α (α− 1)

{
β log

∑
i

pαi + (1− β) log
∑
i

qαi

− log
∑
i

(
pβi q

1−β
i

)α}
(4.79)

Whose gradient is:

∂J2βR (p‖q)
∂qj

=
1− β
α− 1

 qα−1
j∑
i q
α
i

−

[
pβj q

1−β
j

]α−1

∑
i

[
pβi q

1−β
i

]α pβj
qβj

 (4.80)

Scale invariance with respect to “q”.

From this modification proposed by O.Michel [70] given by (4.79); the corre-
sponding scale invariant divergence is deduced by introducing the invariance
factor K∗(p, q):

J2βRI (p‖q) =
1

α (α− 1)

{
β log

∑
i

p̄αi + (1− β) log
∑
i

q̄αi

− log
∑
i

(
p̄βi q̄

1−β
i

)α}
(4.81)

The gradient with respect to “q” is expressed as:

∂J2βRI (p‖q)
∂ql

=
1− β

(α− 1)
∑

j qj

 q̄α−1
l∑
j q̄

α
j

−

(
p̄βl q̄

1−β
l

)α−1
p̄βl q̄
−β
l∑

j

(
p̄βj q̄

1−β
j

)α
 (4.82)
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In the same article [70], another variation of this type of divergence has been
suggested. To fully understand how to obtain it, we’ll proceed in successive
steps.
First we write the dual divergence of J2βR (p‖q) which gives:

J2βR (q‖p) =
1

α (α− 1)

{
β log

∑
i

qαi + (1− β) log
∑
i

pαi

− log
∑
i

(
qβi p

1−β
i

)α}
(4.83)

Then we construct a divergence from the previous general form, but by
replacing q by a linear combination of “p” and “q” with a weighting factor
“γ”, i.e. γp+ (1− γ) q, which gives:

J3β,γR (p‖q) =
1

α (α− 1)

{
β log

∑
i

[γpi + (1− γ) qi]
α + (1− β) log

∑
i

pαi

− log
∑
i

(
[γpi + (1− γ) qi]

β p1−β
i

)α}
(4.84)

Of course, this little exercise can go on for a very long time and may not be
of much interest...
We can still calculate the gradient relative to “q”:

∂J3β,γR (p‖q)
∂qj

= β
1− γ
α− 1

{
[γpj + (1− γ) qj ]

α−1

[
∑

i γpi + (1− γ) qi]
α

−

(
[γpj + (1− γ) qj ]

β p1−β
j

)α(∑
i [γpi + (1− γ) qi]

β p1−β
i

)α 1

γpj + (1− γ) qj

 (4.85)



chapter 5 - Alpha, Beta and
Gamma divergences

5.1 Introduction.

In this chapter, we present the information corresponding to the divergences
constructed on the basis of functions of the type:

f (x) =
xλ

λ− 1
(5.1)

The variable “x” is assumed to be positive and we use the parameter “λ”
which hasn’t been used yet and can become α, β or γ as needed.
This function is convex, for λ > 0; to make it convex regardless of “λ”, we
have to write:

f (x) =
xλ

λ (λ− 1)
(5.2)

To get moreover f (1) = 0, we have to turn it into:

f1 (x) =
1

λ (λ− 1)

(
xλ − 1

)
(5.3)

This function is shown on the figure (5.1),
or else:

f2 (x) =
1

λ (λ− 1)

(
xλ − x

)
(5.4)

which is represented on the figure: (5.2).
The functions f1 (x) and f2 (x) are “simple convex functions”.

If we want to have, in addition, a null derivative in x = 1, that is to say
if we want to obtain a “standard convex function”, we obtain in both cases
the same function fc (x) which is represented on the figure (5.3) and which
is written:

75
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Figure 5.1: Function f1 (x) = 1
λ(λ−1)

(
xλ − 1

)
, λ = 0.5
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Figure 5.2: Function f2 (x) = 1
λ(λ−1)

(
xλ − x

)
, λ = 0.5

fc (x) =
1

λ (λ− 1)

[
xλ − λx− (1− λ)

]
(5.5)

In all these figures, λ = 0.5.

An important point to keep in mind is that these functions are convex
whatever “λ” is due to the “1/λ” factor that’s been introduced, which may
not always be found in the divergences proposed in the literature, but it will
allow the λ→ 0 limit to be computed when necessary.
The question now is, what divergences can be built using such functions?



5.2. CSISZÄR’S DIVERGENCES - ALPHA DIVERGENCES. 77
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Figure 5.3: Function fc (x) = 1
λ(λ−1)

[
xλ − λx− (1− λ)

]
, λ = 0.5

We will consider two constructive modes that have already been dealt with
in the literature: Csiszär’s divergences and Bregman’s divergences.
In addition, we will also consider Jensen’s divergences.

5.2 Csiszär’s divergences - Alpha divergences.

They have been largely developed in the works of Amari [2] and Cichocki
[23]; they are based on the functions f1 (x), f2 (x) and fc (x).

5.2.1 On f1 (x).

In this case we obtain the divergence:

A1 (p‖q) =
1

λ (λ− 1)

∑
i

(
pλi q

1−λ
i − qi

)
(5.6)

If we calculate the gradient with the intention to minimize with respect to
“q”, we get:

∂A1 (p‖q)
∂qj

=
1

λ (λ− 1)

[
(1− λ)

(
pj
qj

)λ
− 1

]
(5.7)

This seems suitable for building a descent algorithm, but the problem will
be as always, that the gradient doesn’t cancel out for pi = qi ∀i.
Moreover, we can notice that if we operate on probability densities (

∑
i pi =
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∑
i qi = 1), the divergence simplifies, but in this case the corresponding

gradient will never be zero.
The dual divergence is built on the mirror function represented in figure
(5.4)

f̆1 (x) =
1

λ (λ− 1)

(
x1−λ − x

)
(5.8)

It is expressed as follows:
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Figure 5.4: Function f̆1 (x) = 1
λ(λ−1)

(
x1−λ − x

)
, λ = 0.5

A1 (q‖p) =
1

λ (λ− 1)

∑
i

(
qλi p

1−λ
i − pi

)
(5.9)

On this divergence, we can see that the gradient with respect to “q” never
cancels out, hence a problem if we try to minimize.

5.2.2 On f2 (x).

In this case we obtain the divergence:

A2 (p‖q) =
1

λ (λ− 1)

∑
i

(
pλi q

1−λ
i − pi

)
(5.10)

The gradient will be:

∂A2 (p‖q)
∂qj

= − 1

λ

(
pj
qj

)λ
(5.11)
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We can see that the gradient with respect to “q” never cancels out.
If we operate on probability densities, the divergence becomes simpler, but
the problem is again, the gradient will not cancel out.
The dual divergence will be built on the mirror function represented in figure
(5.5):

f̆2 (x) =
1

λ (λ− 1)

(
x1−λ − 1

)
(5.12)

It is expressed as follows:

1 2 3 4 5

-4

-2

2

4

Figure 5.5: Function f̆2 (x) = 1
λ(λ−1)

(
x1−λ − 1

)
, λ = 0.5

A2 (q‖p) =
1

λ (λ− 1)

∑
i

(
qλi p

1−λ
i − qi

)
(5.13)

This divergence is made simpler if we operate on probability densities.
The gradient with respect to “q” is:

∂A2 (q‖p)
∂qj

=
1

λ (λ− 1)

[
λ

(
pj
qj

)1−λ
− 1

]
(5.14)

Of course, the problem is still that the gradient with respect to “q” will not
be zero for pi = qi.

5.2.3 On fc (x).

In this case we obtain the divergence:

A (p‖q) =
1

λ (λ− 1)

∑
i

(
pλi q

1−λ
i − λpi − (1− λ) qi

)
(5.15)



80 CHAPTER 5 - ALPHA, BETA AND GAMMA DIVERGENCES

This divergence [42] can also be thought of as a arithmetic-geometric diver-
gence [91], it is also the “Alpha divergence” of Amari [25](λ↔ α).
Its gradient with respect to “q” is written as follows:

∂A (p‖q)
∂qj

=
1

λ

[
1−

(
pj
qj

)λ]
(5.16)

It will be zero if pi = qi ∀i.
The dual divergence will be constructed on the mirror function shown in
figure (5.6):

f̆c (x) =
1

λ (λ− 1)

[
x1−λ − λ− (1− λ)x

]
(5.17)

It will be written:

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5.6: Function f̆c (x) = 1
λ(λ−1)

[
x1−λ − λ− (1− λ)x

]
, λ = 0.5

A (q‖p) =
1

λ (λ− 1)

∑
i

(
qλi p

1−λ
i − λqi − (1− λ) pi

)
(5.18)

Its gradient with respect to “q” will be:

∂A (q‖p)
∂qj

=
1

λ− 1

[(
pj
qj

)1−λ
− 1

]
(5.19)

It will be zero if pi = qi ∀i.



5.3. BREGMAN’S DIVERGENCES - BETA DIVERGENCES. 81

5.2.4 Some classical particular cases.

If λ→ 1 we have A (p‖q) = KL (p‖q).
If λ→ 0 we have A (p‖q) = KL (q‖p).
If λ = 1/2 we have A (p‖q) = H (p‖q), that is

∑
i

(√
pi −

√
qi
)2

(Hellinger’s
divergence [43]).

If λ = 2 we have A (p‖q) = χ2
N (p‖q), that is 1

2

∑
i

(pi−qi)2
qi

(Neyman’s Chi2).

If λ = −1 we have A (p‖q) = χ2
P (p‖q), that is 1

2

∑
i

(pi−qi)2
pi

(Pearson’s Chi2).

5.3 Bregman’s divergences - Beta divergences.

Since the Bregman divergences are convexity measures, it is obvious that
the functions f1 (x), f2 (x) or fc (x) which differ from each other only by
a linear function (i.e. which have the same second derivative) lead to the
same divergence which can be written as follows:

B (p‖q) =
1

λ (λ− 1)

∑
i

[
pλi − λpiqλ−1

i − (1− λ) qλi

]
(5.20)

With (λ↔ β) we obtain the “Beta” divergence of Mihoko and Eguchi [71] or
Uchida and Shioya [96]; we also find the divergence of BHHJ [11] by deleting
in (5.20) the multiplicative factor “1/λ”.
The gradient with respect to “q” will be:

∂B (p‖q)
∂qj

= qλ−2
j (qj − pj) (5.21)

This gradient will be zero if pi = qi ∀i.
From the relationship (2.10), the dual divergence is written:

B (q‖p) =
1

λ (λ− 1)

∑
i

[
qλi − λqipλ−1

i − (1− λ) pλi

]
(5.22)

Its gradient relative to “q” will be:

∂B (q‖p)
∂qj

=
1

λ− 1

(
qλ−1
j − pλ−1

j

)
(5.23)

Obviously, it will be zero if pi = qi ∀i.
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5.3.1 Some classical particular cases.

If λ→ 1 we have B (p‖q) = KL (p‖q).
This is the common point with ”alpha divergences”.
If λ→ 0 we have B (p‖q) = IS (p‖q), it is the Itakura-Saito divergence [49].
If λ = 2 we have B (p‖q) =

∑
i (pi − qi)2, it is the Mean square deviation

(Euclidean distance).

5.4 Jensen’s divergences.

Since Jensen’s divergences are measures of convexity, it is obvious that the
functions f1 (x), f2 (x) or fc (x) which differ from each other only by a
linear function (i.e. which have the same second derivative) lead to the
same divergence that is written:

J (p‖q) =
1

λ (λ− 1)

{∑
i

[
αpλi + (1− α) qλi

]
−
∑
i

[αpi + (1− α) qi]
λ

}
(5.24)

The corresponding gradient with respect to “q” is written:

∂J (p‖q)
∂qj

=
1− α
λ− 1

{
qλ−1
j − [αpj + (1− α) qj ]

λ−1
}

(5.25)

This gradient will be zero if pi = qi ∀i.

5.5 Invariance by change of scale.

We are applying the method defined in [34], in order to make invariant by
change of scale on “q” the divergences of type “A”, “B” and “J” of the
preceding sections.

5.5.1 “A” divergences.

The starting divergence is given by (5.15):

A (p‖q) =
1

λ (λ− 1)

∑
i

(
pλi q

1−λ
i − λpi − (1− λ) qi

)
(5.26)



5.5. INVARIANCE BY CHANGE OF SCALE. 83

The expression of the invariance factor K is obtained explicitly, so it is the
nominal value that is written:

K0 =

(∑
i p
λ
i q

1−λ
i∑

i qi

) 1
λ

(5.27)

Then the invariant divergence by change of scale on “q” is written:

AI (p‖q) =
1

λ− 1

(∑i p
λ
i q

1−λ
i∑

i qi

) 1
λ ∑

i

qi −
∑
i

pi

 (5.28)

Which can also be written:

AI (p‖q) =
1

λ− 1

[∑
i

K0qi −
∑
i

pi

]
(5.29)

Example

If we consider the case λ→ 1, that is KL (p‖q), we obtain:

K0 =

∑
i pi∑
i qi

(5.30)

KLI (p‖q) =
∑
j

pj

[∑
i

p̄i log
p̄i
q̄i

+ q̄i − p̄i

]
=
∑
j

pj

[∑
i

p̄i log
p̄i
q̄i

]
(5.31)

With: p̄i = pi∑
j pj

and q̄i = qi∑
j qj

.

That’s what we would get if we do directly λ→ 1 in the expression (5.28).
Note that the passage to the limit λ → 1 implies a specific calculation but
effectively leads to the Kullback-Leibler divergence invariant with respect to
“q”.

The gradient of divergence (5.28) with respect to “q” is written:

∂AI (p‖q)
∂qj

=
1

λ

(∑
i

pλi q
1−λ
i

) 1
λ
(∑

i

qi

)1− 1
λ

︸ ︷︷ ︸
T

[
1∑
i qi
−

pλj q
−λ
j∑

i p
λ
i q

1−λ
i

]

(5.32)
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It is also possible to write this expression:

∂AI (p‖q)
∂qj

=
1

λ

[
K0 −K1−λ

0 pλj q
−λ
j

]
(5.33)

Remark: it can be observed that∑
j

qj
∂AI (p‖q)

∂qj
= 0 (5.34)

This relationship will be verified for all invariant divergences presented in
this book.

By disregarding the constant multiplicative factor 1
λ−1 , the expression

(5.28) is the difference of 2 terms; one can thus apply to each term of this
difference the same increasing function, the “Generalized Logarithm” for
example (see appendix 1), then the extreme form, the “Logarithm” which
will lead to:

LAI (p‖q) =
1

λ
log
∑
i

qi−
1

λ− 1
log
∑
i

pi+
1

λ (λ− 1)
log
∑
i

pλi q
1−λ
i (5.35)

It can be seen, which is true in all cases, that the latter divergence is not
only invariant by changing scale on “q” , but also by changing scale on “p”.
This is obviously related to the use of the Logarithm, (the Generalized Log-
arithm is not enough).
For Type B divergences, the analog of (5.35) will be the “Gamma diver-
gence”.
The gradient with respect to “q” is written:

∂LAI (p‖q)
∂qj

=
1

λ

[
1∑
i qi
−

pλj q
−λ
j∑

i p
λ
i q

1−λ
i

]
(5.36)

It is the expression(5.32) without the multiplicative factor “T”, and we have
as previously stated: ∑

j

qj
∂LAI (p‖q)

∂qj
= 0 (5.37)

We can make the same work on the dual divergence (5.18):

A (q‖p) =
1

λ (λ− 1)

∑
i

(
qλi p

1−λ
i − λqi − (1− λ) pi

)
(5.38)
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By using the classical procedure for calculating the nominal invariance fac-
tor, the following results are obtained:

K0 =

(∑
i p

1−λ
i qλi∑
i qi

) 1
1−λ

(5.39)

The divergence made invariant will be written:

AI (q‖p) =
1

λ

∑
i

pi −

(∑
i p

1−λ
i qλi∑
i qi

) 1
1−λ ∑

i

qi

 (5.40)

Or also, more simply:

AI (q‖p) =
1

λ

[∑
i

pi −
∑
i

K0qi

]
(5.41)

One can then apply an increasing function on each of the terms the di-
vergence (5.40), for example the Generalized Logarithm function, and go
further to the Logarithm to obtain:

LAI (q‖p) =
1

λ

[
log
∑
i

pi −
1

1− λ
log
∑
i

p1−λ
i qλi

+
λ

1− λ
log
∑
i

qi

]
(5.42)

Note that this divergence is, of course, invariant with respect to “q”, but it
is also invariant with respect to “p”.
A symmetrical divergence invariant with respect to “p” and “q” can be
obtained by summing the (half) logarithmic invariant divergences LAI (p‖q)
and LAI (q‖p).
Such a divergence is written:

LAI (p, q) =
1

λ(1− λ)

[
log

∑
i pi
∑

i qi∑
i p
λ
i q

1−λ
i

∑
i q
λ
i p

1−λ
i

]
(5.43)

For type B divergences, the analogue of (5.43) will be the “symmetrical
Gamma divergence ”.
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5.5.2 “B” divergences.

“Beta” divergence.

The initial divergence was (5.20):

B (p‖q) =
1

λ (λ− 1)

∑
i

[
pλi − λpiqλ−1

i − (1− λ) qλi

]
(5.44)

The expression of the nominal invariance factor K0 is calculated explicitly;
it is written as:

K0 =

∑
i piq

λ−1
i∑

i q
λ
i

(5.45)

This leads to the divergence:

BI (p‖q) =
1

λ (λ− 1)

∑
i

pλi −

(∑
i piq

λ−1
i∑

i q
λ
i

)λ∑
i

qλi

 (5.46)

Or also:

BI (p‖q) =
1

λ (λ− 1)

[∑
i

pλi −
∑
i

Kλ
0 q

λ
i

]
(5.47)

To recover the divergence of Basu et al. [11] it is then necessary, in (5.46),
to remove the multiplicative factor 1/λ and make the parameter change
λ = 1 + β.
The gradient of divergence (5.46) with respect to “q” is written:

∂BI (p‖q)
∂qj

=

(∑
i

piq
λ−1
i

)λ(∑
i

qλi

)1−λ

︸ ︷︷ ︸
S

[
qλ−1
j∑
i q
λ
i

−
pjq

λ−2
j∑

i piq
λ−1
i

]
(5.48)

Or, in a simplified form:

∂BI (p‖q)
∂qj

= Kλ
0

[
qλ−1
j − (K0)−1 pjq

λ−2
j

]
(5.49)

It can be noted that: ∑
j

qj
∂BI (p‖q)

∂qj
= 0 (5.50)
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“Gamma” divergence.

At this point, following the usual procedure, we can apply the “Generalized
Logarithm” on each of the terms in the brackets in (5.46), and then eventu-
ally we can move to the Logarithm which leads to the “Gamma divergence”
of Fujisawa and Eguchi [36]. (λ↔ γ).:

LBI (p‖q) =
1

λ (λ− 1)

[
log
∑
i

pλi − λ log
∑
i

piq
λ−1
i

+ (λ− 1) log
∑
i

qλi

]
(5.51)

This divergence is invariant by scale change not only on “q”, but also on
“p”. The gradient with respect to “q” is written:

∂LBI (p‖q)
∂qj

=
qλ−1
j∑
i q
λ
i

−
pjq

λ−2
j∑

i piq
λ−1
i

(5.52)

This expression is analogous to (5.48) except for the multiplicative factor
“S” in (5.48).
We can see that as previously stated:∑

j

qj
∂LBI (p‖q)

∂qj
= 0 (5.53)

Dual “Beta” divergence.

We can then come back to the dual divergence (5.22):

B (q‖p) =
1

λ (λ− 1)

∑
i

[
qλi − λqipλ−1

i − (1− λ) pλi

]
(5.54)

The expression of K0 allowing to get the invariance is computed explicitly;
we have:

K0 =

(∑
i p
λ−1
i qi∑
i q
λ
i

) 1
λ−1

(5.55)

The corresponding invariant divergence will be written:

BI (q‖p) =
1

λ

∑
i

pλi −

(∑
i qip

λ−1
i∑

i q
λ
i

) λ
λ−1 ∑

i

qλi

 (5.56)
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Or, more simply:

BI (q‖p) =
1

λ

[∑
i

pλi −
∑
i

Kλ
0 q

λ
i

]
(5.57)

Dual “Gamma” divergence.

From the previous expression, we obtain the Logarithmic form, i.e. the dual
Gamma divergence:

LBI (q‖p) =
1

λ

[
log
∑
i

pλi −
1

1− λ
log
∑
i

qλi +
λ

1− λ
log
∑
i

qip
λ−1
i

]
(5.58)

Its gradient with respect to “q” is written:

∂LBI (q‖p)
∂qj

=
1

λ− 1

[
qλ−1
j∑
i q
λ
i

−
pλ−1
j∑

i qip
λ−1
i

]
(5.59)

Symmetrical “Gamma” divergence.

It is immediately obtained as the (half) sum of the Gamma divergence and
the dual Gamma divergence; it is written as follows:

LBI (p, q) =
1

λ− 1
log

∑
i p
λ
i

∑
i q
λ
i∑

i piq
λ−1
i

∑
i qip

λ−1
i

(5.60)

Its gradient with respect to “q” is written:

∂LBI (p, q)

∂qj
=

λ

λ− 1

qλ−1
j∑
i q
λ
i

−
pjq

λ−2
j∑

i piq
λ−1
i

− 1

λ− 1

pλ−1
j∑

i qip
λ−1
i

(5.61)

5.5.3 “J” divergences.

We write:

J (p‖Kq) =
1

λ (λ− 1)

{∑
i

[
αpλi + (1− α)Kλqλi

]
−
∑
i

[αpi + (1− α)Kqi]
λ

}
(5.62)
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We deduce that:

∂J (p‖Kq)
∂K

=
1− α
λ− 1

∑
i

qi

{
Kλ−1qλ−1

i − [αpi + (1− α)Kqi]
λ−1
}

(5.63)

The method proposed in Chapter 3, which consists in obtaining the invari-
ance factor K by solving the equation:

∂J (p‖Kq)
∂K

= 0 (5.64)

as proposed in (3.17), does not lead to an explicit solution.
On the other hand, if we choose to use the invariance factor:

K =

∑
i pi∑
i qi

(5.65)

We obtain an invariant divergence which is written as follows:

JI (p‖q) =

(∑
j pj

)λ
λ (λ− 1)

{∑
i

[
αpλi + (1− α) qλi

]
−
∑
i

[αpi + (1− α) qi]
λ

}
(5.66)

with: p̄i = pi∑
j pj

and q̄i = qi∑
j qj

.

Its gradient with respect to “q” is written as follows:

∂JI (p‖q)
∂qj

=
(1− α)

(λ− 1)

(∑
l p
λ
l

)∑
l ql

{[∑
i

q̄i [αp̄i + (1− α) q̄i]
λ−1 − q̄λi

]
−
[
[αp̄j + (1− α) q̄j ]

λ−1 − q̄λ−1
j

]}
(5.67)

Of course, we still have the fundamental relationship:∑
j

qj
∂JI (p‖q)

∂qj
= 0 (5.68)

5.5.4 Important note on invariance.

In the AI (p‖q), BI (p‖q) and JI (p‖q) divergences, the invariance was es-
tablished with respect to the variable “q”; moreover, it was noted that these



90 CHAPTER 5 - ALPHA, BETA AND GAMMA DIVERGENCES

divergences are in the form of a difference of 2 positive terms.
Based on this observation, an increasing function can be applied to each
of the terms of the difference without changing the sign of the divergence
(positive in this case); moreover, since both terms are positive, the use of
the Logarithm function is possible, the use of the Generalized Logarithm
being only an intermediate step.
We can now make an additional remark if we are considering the invari-
ance with respect to “p”: we can observe that if “p” is multiplied by K in
AI (p‖q), the 2 terms of the divergence are multiplied by K, and only the
application of a logarithmic function on each of the terms of the difference
will allow the factor K to vanish.
Similarly, if in BI (p‖q), we multiply “p” by K, each of the terms of the
difference will be multiplied by Kλ and, again, only the application of the
logarithmic function on each of the 2 terms of the difference will result in
the invariance with respect to “p”, removing the K factor.

5.5.5 A particular case of the invariance factor.

As reported in Chapter 3, for certain divergences, the method for calcu-
lating the invariance factor K (p, q) by resolution of (3.35) does not lead to
an explicit solution, however, an expression of the form:

K (p, q) =

∑
j pj∑
j qj

(5.69)

allows to obtain a scale change invariant form of any divergence.
As previously proposed for Jensen’s divergences, we will introduce this factor
into the “Alpha” and “Beta” divergences (5.15) (5.20) and compare the
resulting expressions with the forms proposed in (5.28) and (5.46).
If we put (5.69) in (5.15), with the notations p̄i = pi∑

j pj
and q̄i = qi∑

j qj
,, we

obtain:

AIbis (p‖q) =

∑
j pj

λ (λ− 1)

∑
i

(
p̄λi q̄

1−λ
i − λp̄i − (1− λ) q̄i

)
(5.70)

Which can be simplified in the following way:

AIbis (p‖q) =

∑
j pj

λ (λ− 1)

[(∑
i

p̄λi q̄
1−λ
i

)
− 1

]
(5.71)
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Similarly, if we put (5.69) in (5.20), we obtain:

BIbis (p‖q) =

(∑
j pj

)λ
λ (λ− 1)

∑
i

[
p̄λi − λp̄iq̄λ−1

i − (1− λ) q̄λi

]
(5.72)

These 2 divergences are invariant by change of scale on “q”, moreover, if we
disregard the multiplicative factor which depends only on “

∑
j pj”, they are

also invariant with respect to “p”.
Their respective gradients with respect to “q” are written as:

∂AIbis (p‖q)
∂qj

=

∑
l pl

λ
∑

l ql

[(∑
i

p̄λi q̄
1−λ
i

)
− p̄λj q̄λj

]
(5.73)

and:

∂BIbis (p‖q)
∂qj

=
(
∑

l pl)
λ∑

l ql

[(∑
i

p̄iq̄
λ−1
i − q̄λi

)
−
(
p̄j q̄

λ−2
j − q̄λ−1

j

)]
(5.74)

It can be observed that we have always the fundamental relationship typical
of scale invariant divergences:

∑
j

qj
∂AIbis (p‖q)

∂qj
= 0 (5.75)

and ∑
j

qj
∂BIbis (p‖q)

∂qj
= 0 (5.76)

5.6 Generalization in the sense of Cichocki and
Ghosh.

5.6.1 Generalized divergence.

In [24], Cichocki proposes a general writing which allows to have a unique
expression for the “Alpha divergences ” and for the “Beta divergences ”; of
course, even if the writing is unique, the two remain distinct as we will see.
We first introduce the two parameters a ≡ λα and b ≡ λβ specific to the two
types of divergence and the expression of the generalized divergence will be:
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AB (p‖q) =− 1

a (b− 1)

[∑
i

pai q
b−1
i − a

a+ b− 1

∑
i

pa+b−1
i

− b− 1

a+ b− 1

∑
i

qa+b−1
i

]
(5.77)

So the Alpha and Beta divergences can be recovered in the following way:
- If a+ b− 1 = 1, that is b− 1 = 1− a, we have the “Alpha divergence”.
- If a = 1, that only leaves b, we get the “Beta divergence”.
To recover Cichocki’s writing exactly, we have to do a ≡ α and b ≡ β + 1.
Ghosh [38] suggests something similar. To retrieve our result, we just have
to introduce in Ghosh’s text, a multiplicative factor 1

A+B , then to make the
replacement: A ≡ a and B ≡ b− 1 (see appendix 3).

5.6.2 Invariance by change of scale on “q”.

To make this generalized divergence invariant by change of scale, we apply
on the expression (5.77) the method allowing to determine the factor K0

and we obtain:

K0 =

[∑
i p
a
i q
b−1
i∑

i q
a+b−1
i

] 1
a

(5.78)

The particular cases corresponding to “Alpha” and “Beta” divergences are
immediately revealed:
If a+ b− 1 = 1, that is if b− 1 = 1− a, we have:

K0,a =

[∑
i p
a
i q

1−a
i∑

i qi

] 1
a

(5.79)

If a = 1 we obtain:

K0,b =

∑
i piq

b−1
i∑

i q
b
i

(5.80)

This being so, the generalized divergence made invariant to the change of
scale is then written down, all calculations done:

ABI (p‖q) =
1

(b− 1) (a+ b− 1)

{∑
i

pa+b−1
i

−

(∑
i

pai q
b−1
i

)a+b−1
a
(∑

i

qa+b−1
i

) 1−b
a

 (5.81)
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The calculation of the gradient with respect to “q” leads to:

− ∂ABI (p‖q)
∂qj

=
1

a

(∑
i p
a
i q
b−1
i

)a+b−1
a

(∑
i q
a+b−1
i

) b−1
a

[
paj q

b−2
j∑

i p
a
i q
b−1
i

−
qa+b−2
j∑
i q
a+b−1
i

]
(5.82)

We still have the same relationship:∑
j

qj
∂ABI (p‖q)

∂qj
= 0 (5.83)

Once again, the two special cases are recovered.

5.6.3 Logarithmic form.

Disregarding the multiplicative factor, we have always a difference of two
positive terms, therefore the applying the generalized logarithm or the log-
arithm on each of these terms leads to:

LABI (p‖q) =
1

(b− 1) (a+ b− 1)

{
log
∑
i

pa+b−1
i −

a+ b− 1

a
log
∑
i

pai q
b−1
i −

1− b
a

log
∑
i

qa+b−1
i

}
(5.84)

If we compute the gradient with respect to “q”, we obtain:

− ∂LABI (p‖q)
∂qj

=
1

a

[
paj q

b−2
j∑

i p
a
i q
b−1
i

−
qa+b−2
j∑
i q
a+b−1
i

]
(5.85)

As it is always the case with invariant divergences, we have:∑
j

qj
∂LABI (p‖q)

∂qj
= 0 (5.86)

The two special cases are retrieved:
- If a+ b− 1 = 1, we have:

− ∂LABI (p‖q)
∂qj

=
1

a

[
paj q
−a
j∑

i p
a
i q

1−a
i

− 1∑
i qi

]
≡ −∂LAI (p‖q)

∂qj
(5.87)
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- If a = 1, we have:

− ∂LABI (p‖q)
∂qj

=
pjq

b−2
j∑

i piq
b−1
i

−
qb−1
j∑
i q
b
i

≡ −∂LBI (p‖q)
∂qj

(5.88)

Another way to implement invariance.

From the generalized divergence (5.77), we introduce the invariance factor

K (p, q) =
∑
j pj∑
j qj

and we reach another form of the generalized divergence

invariant by a scale change which is written:

ABIbis (p‖q) =−
(
∑

l pl)
a+b−1

a (b− 1)

[∑
i

p̄
(a)
i q̄

(b−1)
i − a

a+ b− 1

∑
i

p̄
(a+b−1)
i

− b− 1

a+ b− 1

∑
i

q̄
(a+b−1)
i

]
(5.89)

Its gradient with respect to “q” is written:

∂ABIbis (p‖q)
∂qj

=
(
∑

l pl)
a+b−1

a
∑

l ql

(∑
i

(p̄i)
a (q̄i)

b−1 −
∑
i

(q̄i)
a+b−1

+ (q̄j)
a+b−2 − (p̄j)

a (q̄j)
b−2
)

(5.90)

We can verify that: ∑
j

qj
∂ABIbis (p‖q)

∂qj
= 0 (5.91)

5.6.4 Transition to Renyi’s divergence.

The divergence (5.84) can be written in an alternative way:

LABI (p‖q) =
1

a+ b− 1

{
1

b− 1
log
∑
i

pa+b−1
i −

a+ b− 1

a (b− 1)
log
∑
i

pai q
b−1
i +

1

a
log
∑
i

qa+b−1
i

}
(5.92)
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To recover Renyi’s divergence, one must first make a + b − 1 = 1, i.e. b −
1 = 1 − a, with a ≡ α to recover Renyi’s usual notation, and one obtains
something which is the invariant version of the “α divergence” in logarithmic
form:

LAIα (p‖q) =
1

1− α
log
∑
i

pi

− 1

α (1− α)
log
∑
i

pαi q
1−α
i +

1

α
log
∑
i

qi (5.93)

This expression is of course also valid when the proportionality factor K is
equal to 1; we can remark that the relation (5.93) can also be written:

LABI (p‖q) =
1

α (α− 1)
log
∑
i

(p̄i)
α (q̄i)

1−α (5.94)

With p̄i = pi∑
j pj

and q̄i = qi∑
j qj

.

This is a Renyi divergence with normalized variables.
Now, if we assume we’re dealing with probability densities,

∑
i pi =

∑
i qi =

1 we get exactly the Renyi form:

R (p‖q) = LABIS (p‖q) =
1

α (α− 1)
log
∑
i

pαi q
1−α
i (5.95)

Once we have considered that
∑

i pi =
∑

i qi it is of course senseless to
consider a possibility of invariance, even if these sums are different from 1.

5.6.5 Dual Generalized Divergence.

From the expression (5.77), the generalized dual divergence is written:

AB (q‖p) =− 1

a (b− 1)

[∑
i

qai p
b−1
i

− a

a+ b− 1

∑
i

qa+b−1
i − b− 1

a+ b− 1

∑
i

pa+b−1
i

]
(5.96)

From there, and according to the usual method, one can derive the invariance
factor K0 (p, q) to be inserted in AB (K0q‖p) to obtain an invariant form of
this divergence; one thus obtains:

K0 (p, q) =

[∑
i q
a
i p
b−1
i∑

i q
a+b−1
i

] 1
b−1

(5.97)
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After inserting this expression in AB (K0q‖p), one obtains the invariant dual
generalized divergence that one can write down all simplifications made:

ABI (q‖p) =
1

a (a+ b− 1)

∑
i

pa+b−1
i −

[∑
i q
a
i p
b−1
i∑

i q
a+b−1
i

] a
b−1 ∑

i

qai p
b−1
i


(5.98)

Which can also be written in synthetic form:

ABI (q‖p) =
1

a (a+ b− 1)

{∑
i

pa+b−1
i −Ka

0

∑
i

qai p
b−1
i

}
(5.99)

We can verify that this divergence is invariant with respect to “q”.
The calculation of the gradient leads to:

∂ABI (q‖p)
∂qj

= − 1

b− 1


[∑

i q
a
i p
b−1
i∑

i q
a+b−1
i

] a
b−1

qa−1
j pb−1

j

−

[∑
i q
a
i p
b−1
i∑

i q
a+b−1
i

]a+b−1
b−1

qa+b−2
j

 (5.100)

This expression can also be written:

∂ABI (q‖p)
∂qj

= − 1

b− 1

(∑
i q
a
i p
b−1
i

)a+b−1
b−1(∑

i q
a+b−1
i

) a
b−1

[
1∑

i q
a
i p
b−1
i

qa−1
j pb−1

j

− 1∑
i q
a+b−1
i

qa+b−2
j

]
(5.101)

We can note that we still have:∑
j

qj
∂ABI (q‖p)

∂qj
= 0 (5.102)

Logarithmic form.

By applying the logarithm on the two terms of the difference that appears
in (5.100), we obtain the corresponding logarithmic form which is written
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for example:

LABI (q‖p) =
1

a (a+ b− 1)

{
log
∑
i

pa+b−1
i +

a

b− 1
log
∑
i

qa+b−1
i

−a+ b− 1

b− 1
log
∑
i

qai p
b−1
i

}
(5.103)

This divergence is invariant not only with respect to “q” but also with respect
to “p.”
The calculation of the gradient leads to:

∂LABI (q‖p)
∂qj

= − 1

b− 1

{
1∑

i q
a
i p
b−1
i

qa−1
j pb−1

j − 1∑
i q
a+b−1
i

qa+b−2
j

}
(5.104)

It can be seen that this expression is immediately deduced from (5.101) by
deleting in the latter, the constant multiplicative factor:(∑

i q
a
i p
b−1
i

)a+b−1
b−1(∑

i q
a+b−1
i

) a
b−1

(5.105)

That observation is always true.
It is worth noting that we still have:∑

j

qj
∂LABI (q‖p)

∂qj
= 0 (5.106)

5.6.6 Remark.

The results of the previous section can be found from the work of Ghosh et
al.[38].
Indeed, we can consider that the divergence analyzed in [38] is a generaliza-
tion of that of BHHJ [11]; it is therefore in fact the Beta divergence (type
B divergence)(5.20).
The details for making these connections are given in Appendix 3.
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chapter 6 -
Other classical divergences.

6.1 CHI2 (χ2) divergences.

6.1.1 Neyman’s CHI2 divergence.

This divergence is also called W Kagan’s divergence [8], [10], [9]; it is a
Csiszär divergence based on the standard convex function v.fig.(6.1):

fc (x) = (x− 1)2 (6.1)

One obtains immediately the “χ2
N” divergence of Neymann [73]:

1 2 3 4 5

5

10

15

Figure 6.1: Function fc (x) = (x− 1)2

χ2
N (p‖q) =

∑
i

(pi − qi)2

qi
(6.2)

99
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The gradient with respect to “q” is written:

∂χ2
N (p‖q)
∂qj

= 1−
p2
j

q2
j

(6.3)

If now we introduce in (6.2) a first simplification:
∑

i pi =
∑

i qi, we can
obtain the divergence:

χ2
N (p‖q) =

∑
i

p2
i

qi
− pi (6.4)

It is derived from the simple convex function see fig.(6.2):

f1 (x) = x2 − x (6.5)

But we can also obtain the divergence:

1 2 3 4 5

5

10

15

20

Figure 6.2: Function f1 (x) = x2 − x

χ2
N (p‖q) =

∑
i

p2
i

qi
− qi (6.6)

which is based on the simple convex function:

f2 (x) = x2 − 1 (6.7)

In both cases, an additional simplification
∑

i pi =
∑

i qi = 1 allows to
obtain:

χ2
N (p‖q) =

(∑
i

p2
i

qi

)
− 1 (6.8)
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An invariant form of the divergence (6.2) can be obtained; indeed, the deriva-
tion of the nominal invariance factor leads to the explicit solution:

K0 (p, q) =

√∑
i p

2
i q
−1
i∑

i qi
(6.9)

By introducing this expression into (6.2), we obtain the invariant divergence
with respect to “q”:

χ2
NI (p‖q) = 2

(∑
i

p2
i

qi

∑
i

qi

) 1
2

−
∑
i

pi

 = 2

[
K0

∑
i

qi −
∑
i

pi

]
(6.10)

The gradient with respect to “q” is written as:

∂χ2
NI (p‖q)
∂qj

=

∑i
p2i
qi∑

i qi

 1
2
1−

∑
i qi∑
i
p2i
qi

p2
j

q2
j

 (6.11)

Starting from the expression (6.10), we obtain the logarithmic form:

Lχ2
NI (p‖q) = log

∑
i

p2
i

qi
− log

(
∑

i pi)
2

(
∑

i qi)
(6.12)

Note that this divergence is not only invariant with respect to “q”, but
also with respect to “p”. The corresponding gradient with respect to “q” is
written:

∂Lχ2
NI (p‖q)
∂qj

=

(
1∑
i qi

)1−
∑

i qi∑
i
p2i
qi

p2
j

q2
j

 (6.13)

6.1.2 Pearson’s Chi2 divergence.

The dual divergence χ2
N (q‖p) is based on the standard convex function “f̆c”

see fig.(6.3), the mirror function of “fc” (6.1):

f̆c (x) =
(x− 1)2

x
(6.14)

This function diverges at its origin.
The divergence we obtained is the Pearson’s χ2

P written:

χ2
P (p‖q) = χ2

N (q‖p) =
∑
i

(qi − pi)2

pi
(6.15)
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1 2 3 4 5

1

2

3

4

5

6

Figure 6.3: Function f̆c (x) = (x−1)2

x

The gradient with respect to “q” is written as:

∂χ2
P (p‖q)
∂qj

= 2

(
qj
pj
− 1

)
(6.16)

If now we introduce a first simplification:
∑

i pi =
∑

i qi, we can obtain the
divergence:

χ2
P (p‖q) =

∑
i

q2
i

pi
− qi (6.17)

This divergence is built in the sense of Csiszär on the simple convex function:

f (x) =
1

x
− 1 (6.18)

The extreme simplification
∑

i pi =
∑

i qi =1, yields:

χ2
P (p‖q) =

(∑
i

q2
i

pi

)
− 1 (6.19)

An invariant form of the divergence (6.15) can be obtained; indeed, the
calculation of the nominal invariance factor leads to the explicit solution:

K0 (p, q) =

∑
i qi∑

i q
2
i p
−1
i

(6.20)
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By introducing this expression into (6.15), we obtain the invariant divergence
with respect to “q”:

χ2
P I (p‖q) =

∑
i

pi −
(
∑

i qi)
2∑

i
q2i
pi

=
∑
i

pi −K0

∑
i

qi (6.21)

The gradient with respect to “q” is written:

∂χ2
P I (p‖q)
∂qj

=

∑
i qi∑
i
q2i
pi

∑i qi∑
i
q2i
pi

qj
pj
− 1

 (6.22)

We derive the logarithmic form of the divergence (6.21):

Lχ2
P I (p‖q) = log

∑
i

q2
i

pi
− log

(
∑

i qi)
2∑

i pi
(6.23)

Note that this divergence is not only invariant with respect to “q”, but also
with respect to “p”.
Its gradient with respect to “q” is written:

∂Lχ2
P I (p‖q)
∂qj

=
1∑
i qi

∑i qi∑
i
q2i
pi

qj
pj
− 1

 (6.24)

6.1.3 Extensions of Chi2 divergences.

An extension of the χ2 divergences is mentioned in [25] and [77]. It makes
it possible, by action on the single parameter “α” to move gradually from
Neyman’s χ2

N divergence (α = 1) to Pearson’s χ2
P divergence (α = 0).

This divergence that the authors attribute to Rukhin [86] is written:

RUα (p‖q) =
∑
i

(pi − qi)2

αqi + (1− α) pi
(6.25)

It is built in the Csiszär sense on the standard convex function:

fc (x) =
(x− 1)2

α+ (1− α)x
(6.26)

The gradient of RUα (p‖q), (6.25), with respect to “q” is written as follows:

∂RUα (p‖q)
∂qj

=
(pj − qj) (αpj − αqj − 2pj)

[αqj + (1− α) pj ]
2 (6.27)

The particular cases corresponding to the χ2 divergences of Neyman and
Pearson can be found immediately.
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6.1.4 Chi2 relative divergences.

Some ambiguity exists in the literature as to the denomination of the χ2

relative divergences; in any case, it is a matter of replacing “p” or “q” by
the weighted sum αp + (1− α) q , 0 ≤ α ≤ 1 in the χ2 divergences of the
preceding sections.
For example, if in the Neyman χ2

N Divergence (6.2), we replace “q” by
αp + (1− α) q, we obtain an expression that is referred to in the literature
as the relative Pearson Divergence; this is only a detail.

6.2 Hellinger’s divergence.

It is a divergence built in the sense of Csiszär on the standard convex func-
tion:

fc (x) =
(√
x− 1

)2
(6.28)

The divergence obtained is symmetrical; it is written as follows:

H (p‖q) =
∑
i

(
√
pi −

√
qi)

2 (6.29)

Its gradient with respect to “q” is given by:

∂H (p‖q)
∂qj

= 1−
√
pj
qj

(6.30)

An invariant form (with respect to “q”) of this divergence can be obtained
by using the nominal invariance factor which is expressed as follows:

K0 (p, q) =

[∑
i

√
piqi∑
i qi

]2

(6.31)

The invariant divergence that results is written as follows:

HI (p‖q) =
∑
i

pi −
(∑

i

√
piqi
)2∑

i qi
(6.32)

Its gradient with respect to “q” is given by:

∂HI (p‖q)
∂qj

=

[∑
i

√
piqi∑
i qi

]2

−
∑

i

√
piqi∑
i qi

pj√
pjqj

(6.33)
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6.3 Triangular discrimination.

This divergence mentioned by Tanéja [91] is built in the sense of Csiszär on
the standard convex function:

fc (x) =
(x− 1)2

x+ 1
(6.34)

This gives the symmetrical divergence:

DT (p‖q) =
∑
i

(pi − qi)2

pi + qi
(6.35)

Its gradient with respect to “q” is given by:

∂DT (p‖q)
∂qj

= 1−
4p2
j

(pj + qj)
2 (6.36)

It is equal to zéro if pj = qj ∀j.
This divergence is to be linked to the one discussed in the following section.

6.4 Harmonic mean divergence of Toussaint.

She’s quoted in Basseville, [8],[10],[9]; it is close to what we would call
”MAH” [91] in Chapter 7.
It’s a Csiszär divergence based on the simple convex function see.fig.(6.4):

f (x) = x− 2x

1 + x
(6.37)

We obtain the divergence:

T (p‖q) =
∑
i

(
pi −

2piqi
pi + qi

)
(6.38)

Its gradient with respect to “q” is given by:

∂T (p‖q)
∂qj

= −2

(
pj

pj + qj

)2

(6.39)

This gradient is never equal to zero.
The dual divergence is written as follows:

T (q‖p) =
∑
i

(
qi −

2piqi
pi + qi

)
(6.40)
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1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 6.4: Function f (x) = x− 2x
1+x

It is based on the mirror function of the previous one, i.e. on the simple
convex function see.fig.(6.5):

f̆ (x) = 1− 2x

1 + x
(6.41)

Its gradient with respect to “q” is given by:

1 2 3 4 5

-0.5

0.5

1.0

Figure 6.5: Function f̆ (x) = 1− 2x
1+x

∂T (q‖p)
∂qj

= 1− 2

(
pj

pj + qj

)2

(6.42)

He is not zero for pj = qj ∀j, hence the problem previously mentioned.
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If we build the standard convex function from the function f (x) or the
mirror function f̆ (x), we obtain one and the same function see.fig.(6.6):

fc (x) =
1

2

(x− 1)2

x+ 1
(6.43)

This result is indicative of the fact that the Csiszär divergence built on this

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

Figure 6.6: Function fc (x) = 1
2

(x−1)2

x+1

function will be symmetrical.
It is up to a multiplicative factor, the function that allows us to construct
the Triangular Discrimination in the previous section and that will enable
us to build the arithmetic-harmonic mean MAH divergence. [91].

6.5 Henze-Penrose divergence.

This divergence proposed in [44] is used in [72] with β <1, in the form:

HP (p‖q) =
∑
i

β2p2
i + (1− β)2 q2

i

βpi + (1− β) qi
(6.44)

This form is oversimplified because it is not zero if pi = qi ∀i, even if one
uses variables summed to 1.
The first modification consists in making it correct from this point of view,
that is to say equal to zero when pi = qi ∀i; we obtain 2 possible forms:

HP1 (p‖q) =
∑
i

β2p2
i + (1− β)2 q2

i

βpi + (1− β) qi
−
∑
i

(
β2 + (1− β)2

)
qi (6.45)
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and

HP2 (p‖q) =
∑
i

β2p2
i + (1− β)2 q2

i

βpi + (1− β) qi
−
∑
i

(
β2 + (1− β)2

)
pi (6.46)

The first expression is a Csiszär divergence built on the simple convex func-
tion:

f1 (x) =
β2x2 + (1− β)2

βx+ (1− β)
−
[
β2 + (1− β)2

]
(6.47)

illustrated in the figure (6.7), for β = 0.5.
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Figure 6.7: Function f1 (x) = β2x2+(1−β)2

βx+(1−β) −
[
β2 + (1− β)2

]
, β = 0.5

The second is a Csiszär divergence built on the simple convex function:

f2 (x) =
β2x2 + (1− β)2

βx+ (1− β)
−
[
β2 + (1− β)2

]
x (6.48)

shown in the figure (6.8), for β = 0.5.
If we construct the standard convex function from f1 or f2, we obtain

the same function which is written:

fc (x) =
β2x2 + (1− β)2

βx+ (1− β)
−
[
β2 + (1− β)2

]
+ (x− 1)

[
2β3 − 4β2 + β

]
(6.49)

illustrated in the figure (6.9), for β = 0.5.
By using the notation:

A = β2 + (1− β)2 ; B = 2β3 − 4β2 + β (6.50)
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Figure 6.8: Function f2 (x) = β2x2+(1−β)2

βx+(1−β) −
[
β2 + (1− β)2

]
x, β = 0.5
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Figure 6.9: Function fc (x) = β2x2+(1−β)2

βx+(1−β) −
[
β2 + (1− β)2

]
+

(x− 1)
[
2β3 − 4β2 + β

]
, β = 0.5

the Csiszär divergence built on the standard convex function (6.49) is writ-
ten:

HPC (p‖q) =
∑
i

β2p2
i + (1− β)2 q2

i

βpi + (1− β) qi
+
∑
i

Bpi −
∑
i

(A+B) qi (6.51)
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Its gradient with respect to “q” is written as:

∂HPC (p‖q)
∂qj

= (1− β)

{
1−

2β2p2
j

[βpj + (1− β) qj ]
2

}
−
(
2β3 − 2β2 − β + 1

)
(6.52)

Which can also be written more simply:

∂HPC (p‖q)
∂qj

= 2β2 (1− β)

{
1−

p2
j

[βpj + (1− β) qj ]
2

}
(6.53)

The dual divergence, built on the function f̆c mirroring fc, is written:

HPC (q‖p) =
∑
i

β2q2
i + (1− β)2 p2

i

βqi + (1− β) pi
+
∑
i

Bqi −
∑
i

(A+B) pi (6.54)

Its gradient with respect to “q” is written as:

∂HPC (q‖p)
∂qj

= 2β (1− β)2

{
1−

p2
j

[βqj + (1− β) pj ]
2

}
(6.55)

These gradients are of course zero for pj = qj ∀j.

6.6 Polya information divergence.

Here we consider the “Polya information divergence” [41] quoted in [40].

6.6.1 Some general observations.

On the basis of the simplified Kullback divergence or Kullback Information
expressed as:

IKL(a‖b) =
∑
i

ai log (ai/bi) (6.56)

With γ ≥ 0, Grendar and Niven [40] are proposing the divergence:

Iγ(p‖q) = IKL(p‖q + γp) +
1

γ
IKL(q‖q + γp) +

1 + γ

γ
log(1 + γ) (6.57)

which leads to:

Iγ(p‖q) =
∑
i

pi log
pi

qi + γpi
+

1

γ

∑
i

qi log
qi

qi + γpi
+

1 + γ

γ
log(1+γ) (6.58)
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This divergence can be used essentially with data of sum equal to 1, i.e.
typically probability densities. Indeed, if in the preceding expression we do
pi = qi ∀i, we will obtain zero only if

∑
i pi =

∑
i qi = 1.

This means that the basic convex function that allows us to construct this
divergence in the Csiszär sense can have 2 forms:

f1 (x) = x log
x

1 + γx
+

1

γ
log

1

1 + γx
+

{
1 + γ

γ
log (1 + γ)

}
x (6.59)

shown in the figure (6.10), for γ = 0.8,
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Figure 6.10: Function f1 (x) = x log x
1+γx + 1

γ log 1
1+γx + (1+γ)x

γ log (1 + γ),
γ = 0.8

or:

f2 (x) = x log
x

1 + γx
+

1

γ
log

1

1 + γx
+

1 + γ

γ
log (1 + γ) (6.60)

shown in the figure (6.11), for γ = 0.8,
This being stated, these 2 functions are not standard forms because:

f ′1 (x) = log
x

1 + γx
+

1 + γ

γ
log (1 + γ) ⇒ f ′1 (1) =

1

γ
log (1 + γ) (6.61)

f ′2 (x) = log
x

1 + γx
⇒ f ′2 (1) = log

1

1 + γ
(6.62)

If we construct the corresponding standard convex function, we obtain from
f1 (x) or from f2 (x), the same expression:

fc (x) = x log
x

1 + γx
+

1

γ
log

1

1 + γx
+

1 + γx

γ
log (1 + γ) (6.63)
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Figure 6.11: Function f2 (x) = x log x
1+γx + 1

γ log 1
1+γx + 1+γ

γ log (1 + γ),
γ = 0.8

illustrated in the figure (6.12), for γ = 0.8
This function has all of the desired properties: fc (1) = 0, f ′c (1) = 0,
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Figure 6.12: Function fc (x) = x log x
1+γx + 1

γ log 1
1+γx + 1+γx

γ log (1 + γ),
γ = 0.8

which makes it possible to construct a Csiszär divergence that is usable in
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all generality:

ICγ (p‖q) =
∑
i

pi log
pi

qi + γpi
+

1

γ

∑
i

qi log
qi

qi + γpi

+
log(1 + γ)

γ

∑
i

qi + γpi (6.64)

The gradient with respect to “q” is expressed as:

∂ICγ (p‖q)
∂qj

=
1

γ
log

qj + γqj
qj + γpj

(6.65)

If we are now interested in the dual divergence, it is built, in the sense of
Csiszär, on the mirror function of (6.63),

f̆c (x) = log
1

x+ γ
+
x

γ
log

x

x+ γ
+
x+ γ

γ
log (1 + γ) (6.66)

shown in the figure (6.13), for γ = 0.8:
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Figure 6.13: Function f̆c (x) = log 1
x+γ + x

γ log x
x+γ + x+γ

γ log (1 + γ), γ = 0.8

This divergence is written:

ICγ (q‖p) =
∑
i

qi log
qi

pi + γqi
+

1

γ

∑
i

pi log
pi

pi + γqi

+
log(1 + γ)

γ

∑
i

pi + γqi (6.67)
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The gradient with respect to “q” is expressed as:

∂ICγ (q‖p)
∂qj

= log
qj + γqj
pj + γqj

(6.68)

The symmetrical divergence can be obtained in the Jeffreys sense by making
the (half) sum of the 2 preceding conjugated divergences; the divergence
obtained is of course always a Csiszär divergence built on a convex function
which is the (half) sum of the conjugated functions fc (x) and f̆c (x).

6.6.2 Invariance by change of scale.

We can try to construct a scale-invariant version of the divergence (6.64)
using the standard process.
First, we write:

ICγ (p‖Kq) =
∑
i

pi log
pi

Kqi + γpi
+

1

γ

∑
i

Kqi log
Kqi

Kqi + γpi

+
log(1 + γ)

γ

∑
i

Kqi + γpi (6.69)

We then calculate the derivative of this expression with respect to K, and
in order to determine the expression of K, we write that this derivative is
zero.
Which leads us to have to solve:

∑
i

qi log

(
1 +

γpi
Kqi

)
=
∑
i

qi log (1 + γ) (6.70)

that is: ∑
i

qi log

(
1 + γpi

Kqi

)
(1 + γ)

= 0 (6.71)

There is no explicit K solution. Strictly speaking, this scalar product will
be zero if the 2 vectors are orthogonal, or if one of the vectors is zero;
however, to illustrate the remark mentioned in Ch.3, section 3.5, we can use
as invariance factor:

K∗ =

∑
i pi∑
i qi

(6.72)
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By inserting this expression of K∗ in (6.69), it comes, with all simplifications
made:

ICINVγ (p‖q) =
∑
j

pj

{∑
i

pi log
pi

qi + γpi
+

1

γ

∑
i

qi log
qi

qi + γpi

+
log(1 + γ)

γ

∑
i

qi + γpi

}
(6.73)

So, if we calculate the gradient of (6.73) with respect to “q”, we obtain all
the calculations done:

∂ICINVγ (p‖q)
∂qj

=

∑
l pl

γ
∑

l ql

[
log

qj
qj + γpj

−
∑
i

qi log
qi

qi + γpi

]
(6.74)

And we can observe that, as with all the scale invariant divergences , we
have: ∑

j

qj
∂ICINVγ (p‖q)

∂qj
= 0 (6.75)

6.6.3 Remark.

We can exhibit a Bregman divergence based on the function fc (x), which is
written:

BICγ (p‖q) =
∑
i

pi log
pi
qi
− 1

γ
(1 + γpi) log

1 + γpi
1 + γqi

(6.76)

But, of course, there is no evidence of the convexity of this divergence.

6.7 Bose-Einstein and Fermi-Dirac divergences.

6.7.1 Bose-Einstein divergence.

Such divergence mentioned in Basseville [8, 10, 9], and in the references cited
[56], is a Csiszär divergence based on the standard convex function shown
in the figure (6.14), for α = 0.8:

fc,α (x) = x log x+ (α+ x) log
α+ 1

α+ x
α > 0 (6.77)

It is written:
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Figure 6.14: Function fc,α (x) = x log x+ (α+ x) log α+1
α+x , α = 0.8

BE1α (p‖q) =
∑
i

pi log
pi
qi

+ (αqi + pi) log
(αqi + qi)

(αqi + pi)
(6.78)

However, another divergence appears under the same name in [37]; it is
written:

BE2 (p‖q) =
∑
i

pi log
pi
qi

+ (1 + pi) log
(1 + qi)

(1 + pi)
(6.79)

It is not a Csiszar divergence.
It is deduced from a work by Furuichi [37] quoted in referring to Kapur [54].
It is, in fact, a Bregman divergence built on the function (6.77) which is
written:

BE2α (p‖q) =
∑
i

pi log
pi
qi

+ (α+ pi) log
(α+ qi)

(α+ pi)
(6.80)

Note that except for a change in parameter, this divergence is similar to
(6.76).
If, in the expression (6.80) we introduce the simplification α = 1, we recover
the form proposed in [37] [54] [55].
From these expressions, we can introduce the Generalized Logarithm as sug-
gested in [37] by referring to Tsallis’ entropy [95].
The introduction of Tsallis entropy consists in replacing the Logarithm func-
tion by the Generalized Logarithm function denoted “Logd” (see Appendix
1), which yields:

BE1α,d (p‖q) =
∑
i

pi logd
pi
qi

+ (αqi + pi) logd
(αqi + qi)

(αqi + pi)
(6.81)
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That is:

BE1α,d (p‖q) =
∑
i

pi

(
pi
qi

)1−d
− 1

1− d
+ (αqi + pi)

(
αqi+qi
αqi+pi

)1−d
− 1

1− d
(6.82)

The calculation of the gradient with respect to “q” leads to:

∂BE1α,d (p‖q)
∂qj

=−
(
pj
qj

)2−d
+

αd

1− d

(
αqj + qj
αqj + pj

)1−d

+ (α+ 1)

(
αqj + qj
αqj + pj

)−d
− α

1− d
(6.83)

The limit d→ 1 leads to:

∂BE1α,1 (p‖q)
∂qj

= α log
αqj + qj
αqj + pj

(6.84)

Which is the gradient of the initial Bose-Einstein divergence BE1α (p‖q).
If we now consider the form BE2α (p‖q), we obtain:

BE2α,d (p‖q) =
∑
i

pi logd
pi
qi

+ (α+ pi) logd
(α+ qi)

(α+ pi)
(6.85)

That is:

BE2α,d (p‖q) =
∑
i

pi

(
pi
qi

)1−d
− 1

1− d
+ (α+ pi)

(
α+qi
α+pi

)1−d
− 1

1− d
(6.86)

For α = 1, this divergence is referred to as the Bose-Einstein-Tsallis diver-
gence in [37].
The gradient with respect to “q” is written:

∂BE2α,d (p‖q)
∂qj

= −
(
pj
qj

)2−d
+

(
α+ pj
α+ qj

)d
(6.87)

The limit d→ 1 leads to:

∂BE2α,1 (p‖q)
∂qj

= −pj
qj

+
α+ pj
α+ qj

(6.88)

Which is the gradient of BE2α (p‖q).
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Scale change invariance.

From (6.78) one can write:

BE1α (p‖Kq) =
∑
i

pi log
pi
Kqi

+ (αKqi + pi) log
(αKqi +Kqi)

(αKqi + pi)
(6.89)

and we have:

∂BE1α (p‖Kq)
∂K

= α

[∑
i

qi log
αKqi +Kqi
αKqi + pi

]
(6.90)

To cancel this derivative, it is necessary to solve:∑
i

qi log
αKqi +Kqi
αKqi + pi

= 0 (6.91)

The zero scalar product implies that the corresponding vectors are orthogo-
nal or that one of the vectors is zero. There is no explicit solution, however,
we can use:

K∗ =

∑
i pi∑
i qi

(6.92)

If we introduce this expression of K∗ in the relation (6.89), we obtain:

BE1αI (p‖q) =
∑
i

p̄i log
p̄i
q̄i

+ (αq̄i + p̄i) log
(α+ 1) q̄i
(αq̄i + p̄i)

(6.93)

The gradient with respect to “q” expresses as:

∂BE1αI (p‖q)
∂ql

=
α∑
j qj

[
log

(α+ 1) q̄l
(αq̄l + p̄l)

−
∑
i

q̄i log
(α+ 1) q̄i
(αq̄i + p̄i)

]
(6.94)

6.7.2 Fermi-Dirac divergence.

This divergence reported in Basseville [8, 10, 9], and in the mentioned refer-
ences is a Csiszär divergence based on the standard convex function shown
in the figure (6.15), for β = 3:

fc,β (x) = x log x+ (β − x) log
β − x
β − 1

β > 1 (6.95)

It is written as:
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Figure 6.15: Function fc,β (x) = x log x+ (β − x) log β−x
β−1 , β = 3

FD1β (p‖q) =
∑
i

pi log
pi
qi

+
∑
i

(βqi − pi) log
βqi − pi
βqi − qi

(6.96)

However, another divergence appears under the same name in [37] [55]; it is
written:

FD2 (p‖q) =
∑
i

pi log
pi
qi

+ (1− pi) log
(1− pi)
(1− qi)

(6.97)

This is not a Csiszâr divergence, it is in fact a Bregman divergence built on
the simple convex function:

fβ (x) = x log x+ (β − x) log (β − x) ; x < β (6.98)

This divergence is written:

FD2β (p‖q) =
∑
i

pi log
pi
qi

+
∑
i

(β − pi) log
β − pi
β − qi

(6.99)

If in this expression, one makes β = 1, one finds the expression proposed in
[37]; we will note that the fact of taking β = 1 is equivalent to considering
that we are dealing with probability densities, i.e. pi < 1 ∀i, qi < 1 ∀i.
From these expressions, we can introduce the Generalized logarithm as sug-
gested in [37] as inspired by the entropy of Tsallis [95].
Using FD1β (p‖q), we obtain:

FD1β,d (p‖q) =
∑
i

pi logd
pi
qi

+
∑
i

(βqi − pi) logd
βqi − pi
βqi − qi

(6.100)
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That is:

FD1β,d (p‖q) =
∑
i

pi

(
pi
qi

)1−d
− 1

1− d
+ (βqi − pi)

(
βqi−pi
βqi−qi

)1−d
− 1

1− d
(6.101)

The computation of the gradient with respect to “q” leads to:

∂FD1β,d (p‖q)
∂qj

=− pj
qj

[(
pj
qj

)1−d
−
(
βqj − pj
βqj − qj

)1−d
]

+ β

(
βqj−pj
βqj−qj

)1−d
− 1

1− d
(6.102)

The last term of the second member is the expression of β logd

(
βqi−pi
βqi−qi

)
, so

that when d→ 1, we obtain:

∂FD1β,1 (p‖q)
∂qj

= β log
βqj − pj
βqj − qj

(6.103)

Which is equal to
∂FD1β(p‖q)

∂qj
.

If now, we consider the divergence FD2β (p‖q) with β = 1 and using the
generalized logarithm, we have:

FD21,d (p‖q) =
∑
i

pi logd
pi
qi

+ (1− pi) logd
(1− pi)
(1− qi)

(6.104)

That is:

FD21,d (p‖q) =
∑
i

pi

(
pi
qi

)1−d
− 1

1− d
+ (1− pi)

(
1−pi
1−qi

)1−d
− 1

1− d
(6.105)

This divergence is referred to as the Fermi-Dirac-Tsallis divergence in [37].
The calculation of the gradient with respect to “q” leads to:

∂FD21,d (p‖q)
∂qj

= −
(
pj
qj

)2−d
+

(
1− pj
1− qj

)2−d
(6.106)

Obviously, if d→ 1, we obtain:

∂FD21,1 (p‖q)
∂qj

= −
(
pj
qj

)
+

(
1− pj
1− qj

)
(6.107)

Which is equal to
∂FD2β(p‖q)

∂qj
, with β = 1.
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Invariance by change of scale.

From (6.96), we have:

FD1β (p‖Kq) =
∑
i

pi log
pi
Kqi

+
∑
i

(βKqi − pi) log
βKqi − pi
βKqi −Kqi

(6.108)

Consequently:

∂FD1β (p‖Kq)
∂K

= β
∑
i

qi log
βKqi − pi
βKqi −Kqi

(6.109)

To cancel this derivative, there is no explicit solution, an alternative is to
use K∗, which leads to the simplified invariant divergence:

FD1Iβ (p‖q) =
∑
i

p̄i log
p̄i
q̄i

+
∑
i

(βq̄i − p̄i) log
βq̄i − p̄i

(β − 1) q̄i
(6.110)

The gradient with respect to “q” is expressed as:

∂FD1βI (p‖q)
∂ql

=
1∑
j qj

[
2
p̄l
q̄l
− 2

+β log
βq̄l − p̄l

(β − 1) q̄l
− β

∑
i

q̄i log
βq̄i − p̄i

(β − 1) q̄i

]
(6.111)

6.8 Divergence of P.K.Bathia and S.Singh.

This divergence proposed in [18] is basically a Csiszär divergence, but in this
work, there are some mistakes: the basic convex function, represented on
the figure (6.16), for α = 0.5, is not a standard function, indeed, the authors
write it:

f (x) =
x sinh (α log x)

sinhα
(6.112)

We can note that the multiplicative factor 1
sinhα is not really helpful.

For this function, we do have convexity and f (1) = 0, but we don’t have
f ′ (1) = 0, contrary to what is stated in [18].
If we still use this function to construct a Csiszär divergence, we obtain:

SBα (p‖q) =
∑
i

pi
sinh

(
α log pi

qi

)
sinhα

(6.113)
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Figure 6.16: Function f (x) = x sinh(α log x)
sinhα , α = 0.5

The problem with this expression is classical: the gradient with respect to
“q” does not cancel for pi = qi ∀i.
To eliminate this kind of problem, it is necessary to introduce the corre-
sponding standard convex function, represented in the figure (6.17), for
α = 0.5, which is written as follows:

fc (x) =
x sinh (α log x)− αx+ α

sinhα
(6.114)
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Figure 6.17: Function fc (x) = x sinh(α log x)−αx+α
sinhα , α = 0.5



6.8. DIVERGENCE OF P.K.BATHIA AND S.SINGH. 123

We are thus led to the divergence:

SBc,α (p‖q) =
1

sinhα

[∑
i

pi sinh

(
α log

pi
qi

)
+ α (qi − pi]

]
(6.115)

Whose gradient with respect to “q” is:

∂SBc,α (p‖q)
∂qj

≈ −pj
qj

cosh

(
α log

pj
qj

)
+ 1 (6.116)

The dual divergence built on the mirror function of (6.114) will be written
as follows:

SBc,α (q‖p) =
1

sinhα

[∑
i

qi sinh

(
α log

qi
pi

)
+ α (pi − qi]

]
(6.117)

and its gradient with respect to “q” is:

∂SBc,α (q‖p)
∂qj

=
1

sinhα

[
sinh

(
α log

qj
pj

)
+ α cosh

(
α log

qj
pj

)
− α

]
(6.118)

6.8.1 Invariance by scale change on “q”.

For this divergence given by the expression (6.115), the nominal invariance
factor cannot be calculated, so we use the expression K∗, which leads to the
simplified invariant divergence:

SBc,α (p‖q) I =
1

sinhα

[∑
i

p̄i sinh

(
α log

p̄i
q̄i

)]
(6.119)

Its gradient with respect to “q” is:

∂SBc,α (p‖q) I
∂ql

=
α cothα∑

j qj

[∑
i

p̄i log
p̄i
q̄i
− p̄l
q̄l

log
p̄l
q̄l

]
(6.120)



124 CHAPTER 6 - OTHER CLASSICAL DIVERGENCES.



chapter 7 -
Divergences between means

The major part of this chapter can be found in the book by I.J.Taneja (on-
line) [91] and in the article by Ben-Tal et al. [12]. The construction mode of
these divergences is twofold: either one relies on the well-known inequalities
between the classical means, or one constructs them in the sense of Csiszär
by relying on the properties of the convex functions.
We will make this double aspect more explicit.
In addition, in this chapter, we will present the logarithmic forms of these
divergences.
The invariant forms of these divergences will be developed by introducing

the invariance factor K∗(p, q) =
∑
j pj∑
j qj

which is not necessarily the nominal

invariance factor.
The particular case of MAG for which the nominal invariance factor is ex-
plicitly calculated has been presented in the chapter dealing with ”Alpha
Divergences”.
Some basic recalls on means are summarized in Appendix 2.

7.1 Square root (Quadratic) - Arithmetic mean di-
vergence.

This divergence is founded on the inequality: MS ≥MA.

7.1.1 Unweighted version.

The most classical form of this divergence is constructed in the sense of
Csiszär on the basis of the standard convex function:

fc (x) =

√
x2 + 1

2
− x+ 1

2
(7.1)
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We immediately obtain:

MSA (p‖q) =
∑
i

√
p2
i + q2

i

2
−
∑
i

pi + qi
2

(7.2)

This divergence is symmetrical.
Of course, if one is in a situation where one knows that

∑
i pi =

∑
i qi, (but

not necessarily = 1), this divergence becomes simpler, it becomes:

M1SA (p‖q) =
∑
i

√
p2
i + q2

i

2
−
∑
i

qi (7.3)

That is to say, it is constructed in the sense of Csiszär on the simple convex
function:

f1 (x) =

√
x2 + 1

2
− 1 (7.4)

But it can also become:

M2SA (p‖q) =
∑
i

√
p2
i + q2

i

2
−
∑
i

pi (7.5)

It is then built on the simple convex function:

f2 (x) =

√
x2 + 1

2
− x (7.6)

We can exhibit a family of simple convex functions f (x) that will give
simplified divergences. Knowing fc (x), these functions are deduced from
each other by modifying the value of f ′ (1) in the expression:

f (x) = fc (x) + (x− 1) f ′ (1) (7.7)

If we now consider the situation where
∑

i pi =
∑

i qi = 1 we obtain in all
cases an oversimplified form which of course, we are not always allowed to
use; this form is written as follows:

MSSA (p‖q) =
∑
i

√
p2
i + q2

i

2
− 1 (7.8)

It should be observed that this divergence cannot be constructed directly as
a Csiszär divergence because the simplification

∑
i pi =

∑
i qi = 1 cannot be

taken into account until the divergence is exhibited.
Finally, it is worth noting that:

fc (x) =
f1 (x) + f2 (x)

2
(7.9)

This explains the symmetry of the divergence MSA.
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7.1.2 Weighted version.

The standard convex function allowing to construct this divergence is shown
in the figure (7.1) for α = 0.5.

1 2 3 4 5

0.1

0.2

0.3

0.4

Figure 7.1: Function fcα (x) =
√
αx2 + 1− α− (αx+ 1− α); α = 0.5

It is written with 0 < α < 1:

fcα (x) =
√
αx2 + 1− α− (αx+ 1− α) (7.10)

This results in:

MSAα (p‖q) =
∑
i

√
αp2

i + (1− α) q2
i −

∑
i

[αpi + (1− α) qi] (7.11)

This divergence is not symmetrical because of the weighting (unless α =
1/2).
Its gradient with respect to “q” is written:

∂MSAα

∂qj
= (1− α)

 qj√
αp2

j + (1− α) q2
j

− 1

 (7.12)

Scale invariant version with respect to “q”.

For this divergence, the nominal invariance factor is not obtained explicitly,
so we use as the invariance factor the expression K∗(p, q); thus we obtain
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the expression for the corresponding simplified invariant divergence, which
is written as:

MSAαI (p‖q) =
∑
j

pj

{∑
i

√
αp̄2

i + (1− α) q̄2
i −

∑
i

[αp̄i + (1− α) q̄i]

}
(7.13)

After simplification and deleting the multiplying factor, we will have:

MSAαI (p‖q) =
∑
i

√
αp̄2

i + (1− α) q̄2
i − 1 (7.14)

The gradient with respect to “q” is given by:

∂MSAαI (p‖q)
∂ql

=
1− α∑
j qj

{[
αp̄2

l + (1− α) q̄2
l

]− 1
2 q̄l −

∑
i

[
αp̄2

i + (1− α) q̄2
i

]− 1
2 q̄2

i

}
(7.15)

7.1.3 Logarithmic form.

Since the divergence (7.11) appears as the difference of 2 positive quantities,
one can apply on each term an increasing function without changing the
sign of the expression, for example the function “Generalized Logarithm”
and at the limit the “Logarithm”, which allows to write:

LMSAα = log

[∑
i

√
αp2

i + (1− α) q2
i

]
− log

[∑
i

αpi + (1− α) qi

]
(7.16)

With such a divergence, nothing is clear about the convexity, so nothing is
guaranteed; however, we can calculate the gradient with respect to “q”:

∂LMSAα

∂qj
=

(1− α)∑
i

√
αp2

i + (1− α) q2
i

qj√
αp2

j + (1− α) q2
j

− (1− α)∑
i αpi + (1− α) qi

(7.17)

This expression is zero if pi = qi ∀i.

Logarithmic form invariant with respect to “q”.

To obtain such a Logarithmic form we apply the function “Log” separately
on each term of (7.14) and we obtain:

LMSAαI (p‖q) = log
∑
i

√
αp̄2

i + (1− α) q̄2i (7.18)
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which gradient with respect to “q” is:

∂LMSAαI (p‖q)
∂ql

=
1∑

i

√
αp̄2

i + (1− α) q̄2
i

∂MSAαI (p‖q)
∂ql

(7.19)

7.2 Square root (Quadratic)- Géométric mean di-
vergence.

This divergence is based on the inequality: MS ≥MG.

7.2.1 Unweighted version.

It is a Csiszär divergence built on the standard convex function:

fc(x) =

√
x2 + 1

2
−
√
x (7.20)

This results in the divergence:

MSG (p‖q) =
∑
i

√
p2
i + q2

i

2
−
∑
i

√
piqi (7.21)

7.2.2 Weighted version.

With 0 ≤ α ≤ 1, this divergence is based on the standard convex function:

fc (x) =
√
αx2 + (1− α)− xα (7.22)

shown in the figure (7.2) for α = 0.5.
The corresponding divergence will be written:

MSGα (p‖q) =
∑
i

√
αp2

i + (1− α) q2
i −

∑
i

pαi q
1−α
i (7.23)

we deduce the gradient with respect to “q”:

∂MSGα

∂qj
= (1− α)

 qj√
αp2

j + (1− α) q2
j

− pαj q−αj

 (7.24)
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Figure 7.2: Function fc (x) =
√
αx2 + (1− α)− xα; α = 0.5

Scale invariant form with respect to “q”.

For this divergence, the nominal invariance factor cannot be obtained ex-
plicitly, so we use the expression K∗(p, q) as the invariance factor; thus,
after simplification, we obtain the expression of the corresponding invariant
divergence:

MSGαI (p‖q) =
∑
i

√
αp̄2

i + (1− α) q̄2
i −

∑
i

p̄αi q̄
1−α
i (7.25)

which has a gradient with respect to “q” given by:

∂MSGαI (p‖q)
∂ql

=
1− α∑
j qj

 q̄l√
αp̄2

l + (1− α) q̄2
l

−
∑
i

q̄2
i√

αp̄2
i + (1− α) q̄2

i

−p̄αl q̄−αl +
∑
i

p̄αi q̄
1−α
i

}
(7.26)

7.2.3 Logarithmic form.

After applying an increasing function (Log), on each of the terms of the
difference appearing in (7.23), the corresponding divergence will be written:

LMSGα (p‖q) = log
∑
i

√
αp2

i + (1− α) q2
i − log

∑
i

pαi q
1−α
i (7.27)
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The gradient with respect to “q” is given by:

∂LMSGα

∂qj
= (1− α)

 1∑
i

√
αp2

i + (1− α) q2
i

qj√
αp2

j + (1− α) q2
j

−
pαj q
−α
j∑

i p
α
i q

1−α
i

]
(7.28)

This expression is zero if pi = qi ∀i.

Logarithmic form - Invariance with respect to “q”.

The logarithmic version invariant with respect to ”q” is obtained by applying
the function “Log” separately to each term of (7.25) and one obtains:

LMSGαI (p‖q) = log
∑
i

√
αp̄2

i + (1− α) q̄2
i − log

∑
i

p̄αi q̄
1−α
i (7.29)

whose gradient is written as:

∂LMSGαI (p‖q)
∂ql

=
1− α∑
j qj{

1∑
i

√
αp̄2

i + (1− α) q̄2
i

 q̄l√
αp̄2

l + (1− α) q̄2
l

−
∑
i

q̄2
i√

αp̄2
i + (1− α) q̄2

i


+ 1−

p̄αl q̄
−α
l∑

i p̄
α
i q̄

1−α
i

}
(7.30)

7.3 Square root (Quadratic) - Harmonic mean di-
vergence.

This divergence is based on the inequality: MS ≥MH .

7.3.1 Unweighted version.

It is a Csiszär divergence based on the standard convex function:

fc (x) =

√
x2 + 1

2
− 2x

1 + x
(7.31)
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Which leads to the divergence:

MSH (p‖q) =
∑
i

√
p2
i + q2

i

2
−
∑
i

2piqi
pi + qi

(7.32)

7.3.2 Weighted version.

With 0 ≤ α ≤ 1, it is built in the Csiszär sense using the standard convex
function :

fcα (x) =
√
αx2 + (1− α)− x

(1− α)x+ α
(7.33)

It is shown in the figure (7.3) for α = 0.5.

1 2 3 4 5

0.5

1.0

1.5

Figure 7.3: Function fcα (x) =
√
αx2 + (1− α)− x

(1−α)x+α ; α = 0.5

This results in the divergence:

MSHα (p‖q) =
∑
i

√
αp2

i + (1− α) q2
i −

∑
i

piqi
(1− α) pi + αqi

(7.34)

The gradient with respect to “q” is given by:

∂MSHα

∂qj
= (1− α)

 qj√
αp2

j + (1− α) q2
j

−
p2
j

[(1− α) pj + αqj ]
2

 (7.35)

This expression is zero if pi = qi ∀i.
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Scale invariant version with respect to “q”.

For this divergence, the nominal invariance factor is not obtained explic-
itly, so we use as the invariance factor the expression K∗(p, q); thus, after
simplification, we obtain the form of the invariant corresponding divergence:

MSHαI (p‖q) =
∑
i

√
αp̄2

i + (1− α)q̄2
i −

∑
i

p̄iq̄i
(1− α) p̄i + αq̄i

(7.36)

The gradient with respect to “q” is given by:

∂MSHαI (p‖q)
∂ql

=
(1− α)∑

j qj{
q̄l√

αp̄2
l + (1− α)q̄2

l

−
∑
i

q̄2
i√

αp̄2
i + (1− α)q̄2

i

−
p̄2
l

[(1− α) p̄l + αq̄l]
2 +

∑
i

p̄2
i q̄i

[(1− α) p̄i + αq̄i]
2

}
(7.37)

7.3.3 Logarithmic version.

We can write directly from (7.34):

LMSH (p‖q) = log
∑
i

√
αp2

i + (1− α) q2
i − log

∑
i

piqi
(1− α) pi + αqi

(7.38)

Its gradient with respect to “q” is written as follows:

∂LMSHα

∂qj
= (1− α)

 1∑
i

√
αp2

i + (1− α) q2
i

qj√
αp2

j + (1− α) q2
j

− 1∑
i

piqi
(1−α)pi+αqi

p2
j

[(1− α) pj + αqj ]
2

}
(7.39)

This expression is zero if pi = qi ∀i.

Logarithmic form - Invariance with respect to “q”.

The logarithmic invariant version is obtained by applying the function “Log”
separately to each term of (7.36) and one obtains:

LMSHαI (p‖q) = log
∑
i

√
αp̄2

i + (1− α)q̄2
i − log

∑
i

p̄iq̄i
(1− α) p̄i + αq̄i

(7.40)
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Its gradient with respect to “q” is given by:

∂LMSHαI (p‖q)
∂ql

=
(1− α)∑

j qj

 1∑
i

√
αp̄2

i + (1− α)q̄2
i q̄l√

αp̄2
l + (1− α)q̄2

l

−
∑
i

q̄2
i√

αp̄2
i + (1− α)q̄2

i


− 1∑

i
p̄iq̄i

(1−α)p̄i+αq̄i

{
p̄2
l

[(1− α) p̄l + αq̄l]
2 +

∑
i

p̄2
i q̄i

[(1− α) p̄i + αq̄i]
2

}}
(7.41)

7.4 Arithmetic - Geometric mean divergence

. This divergence is at the basis of the “Alpha divergences” of Amari [2]; here
we develop it from an elementary version. An extended version has been
considered in the chapter dealing specifically with “Alpha divergences”.
This divergence is based on the inequality: MA ≥MG.

7.4.1 Basis unweighted version.

In the simplest version, it is a Csiszär divergence built on the standard
convex function:

fc (x) =
1

2

(√
x− 1

)2
(7.42)

We easily obtain:

MAG (p‖q) =
1

2

∑
i

(
√
pi −

√
qi)

2 (7.43)

This symmetrical divergence is also known as Hellinger’s divergence [13],
but it can also be written:

MAG (p‖q) =
∑
i

pi + qi
2
−
∑
i

√
piqi (7.44)

So we better understand the name Arithmetic-Geometric mean divergence.
The simplification

∑
i pi =

∑
i qi allows us to obtain 2 simplified divergences:

MS1AG (p‖q) =
∑
i

qi −
∑
i

√
piqi (7.45)
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Which is deduced in the sense of Csiszär from the simple convex function:
f1 (x) = 1−

√
x, and:

MS2AG (p‖q) =
∑
i

pi −
∑
i

√
piqi (7.46)

deduced in the sense of Csiszär from the simple convex function: f2 (x) =
x−
√
x.

The supplementary simplification
∑

i pi =
∑

i qi = 1, leads to:

MSAG (p‖q) = 1−
∑
i

√
piqi (7.47)

This expression is not a divergence of Csiszär; to obtain it, one must first
construct a Csiszär divergence by using one of the simple convex functions
f1 (x) = 1−

√
x or f2 (x) = x−

√
x (functions mirroring each other) deduced

from fc (x), then introduce “a posteriori” the simplification
∑

i pi = 1 or∑
i qi = 1.

7.4.2 Weighted version.

If one does not introduce a multiplicative factor whose sign depends on the
weighting factor 0 ≤ α ≤ 1, the basic standard convex basic function will
be written:

fcα (x) = αx+ (1− α)− xα (7.48)

It is represented in the figure (7.4) for α = 0.5.
The corresponding divergence is written:

MAGα (p‖q) =
∑
i

αpi + (1− α) qi −
∑
i

pαi q
1−α
i (7.49)

To broaden the range of validity of this divergence to all positive values of
“α”, we will use:

MAGα (p‖q) =
1

1− α

[∑
i

αpi + (1− α) qi −
∑
i

pαi q
1−α
i

]
(7.50)

This is the Havrda-Charvat divergence [42], and this is exactly what is writ-
ten for the “α” divergence.
There’s no point in commenting on these things that are developed else-
where.
The gradient with respect to “q” is written:

∂MAGα

∂qj
= 1−

(
pj
qj

)α
(7.51)
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Figure 7.4: Function fcα (x) = αx+ (1− α)− xα, α = 0.5

Invariant form with respect to “q”.

For such a divergence, the nominal invariance factor is obtained explicitly,
the corresponding invariant form has been developed in the chapter dealing
with “Alpha Divergence”.
For the sake of homogeneity, we present here the case of an invariance fac-
tor of the form K∗(p, q); we thus obtain the following expression for the
corresponding simplified invariant divergence:

MAGαI (p‖q) =
1

1− α

[∑
i

[αp̄i + (1− α) q̄i]−
∑
i

p̄αi q̄
1−α
i

]
(7.52)

Which simplifies into:

MAGαI (p‖q) =
1

1− α

[
1−

∑
i

p̄αi q̄
1−α
i

]
(7.53)

The gradient with respect to “q” is written:

∂MAGαI (p‖q)
∂ql

=
1∑
j qj

(
p̄αl q̄

−α
l −

∑
i

p̄αi q̄
1−α
i

)
(7.54)

7.4.3 Logarithmic form.

The logarithmic form of the divergence (7.50) can be written as follows:

LMAGα (p‖q) =
1

α− 1

[
log
∑
i

pαi q
1−α
i − log

∑
i

αpi + (1− α) qi

]
(7.55)
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The gradient with respect to “q” is written:

∂LMAGα

∂qj
=

1∑
i αpi + (1− α) qi

−
pαj q
−α
j∑

i p
α
i q

1−α
i

(7.56)

If we consider that the data fields involved are probability densities, that is
to say, if

∑
i pi =

∑
i qi = 1, we obtain from (7.55) a simplified expression

which is the classical Renyi divergence [82]:

Rα (p‖q) =
1

α− 1

[
log
∑
i

pαi q
1−α
i

]
(7.57)

Logarithmic form - Invariance with respect to “q”.

The invariant logarithmic version is obtained by applying the function “Log”
separately to each term of (7.53) and we have:

LMAGαI (p‖q) =
1

α− 1
log
∑
i

p̄αi q̄
1−α
i (7.58)

His gradient with respect to q is expressed as:

∂LMAGαI (p‖q)
∂ql

=
1∑
j qj

(
1−

p̄αl q̄
−α
l∑

i p̄
α
i q̄

1−α
i

)
(7.59)

7.5 Arithmetic - Harmonic mean divergence

This divergence is founded on the inequality: MA ≥MH .

7.5.1 Unweighted version.

This divergence is constructed in the sense of Csiszär on the standard convex
function:

fc (x) =
1

2

(x− 1)2

x+ 1
(7.60)

The resulting divergence is written:

MAH (p‖q) =
1

2

∑
i

(pi − qi)2

pi + qi
(7.61)
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or, more clearly:

MAH (p‖q) =

[∑
i

pi + qi
2
−
∑
i

2piqi
pi + qi

]
(7.62)

If we consider data fields with a sum explicitly equal to 1, we have the
simplified form:

MSAH (p‖q) =

[
1−

∑
i

2piqi
pi + qi

]
(7.63)

7.5.2 Weighted version.

With 0 ≤ α ≤ 1, the standard convex function shown in the figure (7.5) for
α = 0.5, is written as follows:

fcα (x) = αx+ (1− α)− x

(1− α)x+ α
(7.64)
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1.2

Figure 7.5: Function fcα (x) = αx+ (1− α)− x
(1−α)x+α , α = 0.5

It leads to the divergence:

MAHα (p‖q) =
∑
i

αpi + (1− α) qi −
∑
i

piqi
αqi + (1− α) pi

(7.65)

The gradient with respect to “q” is expressed as:

∂MAHα

∂qj
= (1− α)

{
1−

p2
j

[αqj + (1− α) pj ]
2

}
(7.66)
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Scale invariant version with respect to “q”.

For this divergence, the nominal invariance factor is not obtained explicitly,

so as invariance factor we use the expression K∗(p, q) =
∑
j pj∑
j qj

; we then

obtain the corresponding simplified invariant divergence:

MAHαI (p‖q) =
∑
i

[αp̄i + (1− α) q̄i]−
∑
i

p̄iq̄i
(1− α) p̄i + αq̄i

(7.67)

Or in a simplified form:

MAHαI (p‖q) = 1−
∑
i

p̄iq̄i
(1− α) p̄i + αq̄i

(7.68)

The gradient with respect to “q” is given by:

∂MAHαI (p‖q)
∂ql

=
(α− 1)∑

j qj

{
p̄2
l

[(1− α) p̄l + αq̄l]
2 −

∑
i

p̄2
i q̄i

[(1− α) p̄i + αq̄i]
2

}
(7.69)

7.5.3 Logarithmic form.

It is written immediately from the weighted version (7.65):

LMAHα (p‖q) = log
∑
i

αpi + (1− α) qi − log
∑
i

piqi
αqi + (1− α) pi

(7.70)

The gradient with respect to “q” is written as:

∂LMAHα

∂qj
= (1− α)

{
1∑

i αpi + (1− α) qi

− 1∑
i

piqi
αqi+(1−α)pi

p2
j

[αqj + (1− α) pj ]
2

}
(7.71)

Logarithmc form - Invariance with respect to “q”.

The logarithmic invariant version is obtained by applying the “Log” function
separately to each term of (7.68) and we obtain:

LMAHαI (p‖q) = − log
∑
i

p̄iq̄i
(1− α) p̄i + αq̄i

(7.72)
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Whose gradient with respect to “q” is given by:

∂MAHαI (p‖q)
∂ql

=
(α− 1)∑

i
p̄iq̄i

(1−α)p̄i+αq̄i

∑
j qj

[
p̄2
l

[(1− α) p̄l + αq̄l]
2 −

∑
i

p̄2
i q̄i

[(1− α) p̄i + αq̄i]
2

]
(7.73)



chapter 8 -
Divergences between mixed
fields.

In this chapter, the main idea is to analyze the difference between 2 data
fields “p” and “q” by expressing the difference in a broad sense between
“p” or “q” and the weighted sum of “p” and “q”; 0 ≤ α ≤ 1 will be the
corresponding weighting factor. Thus, whatever the basic divergence, one
can go from a zero divergence to a divergence between the elementary fields
by varying the parameter “α”.
The gap between “p” or “q” and their weighted sum is expressed by a
Kullback-Leibler divergence [57] or, to generalize, by a Havrda-Charvat di-
vergence [42], but nothing prohibits the use of other basic divergences.
Moreover, to broaden the picture, we will envisage taking into account in the
expression of the divergences, the order of the arguments, which is under-
standable inasmuch as the divergences used are not generally symmetrical.
This argumentation describes a particular constructive process for these di-
vergences, however, in each case examined, we will always come back to
Csiszär’s constructive process and the associated convex function.
Of course, in the literature, these studies have been proposed mainly to
quantify the gap between two probability densities; here we try to leave this
restrictive context and extend the applications to more general data fields.
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8.1 F divergence (Jensen-Shannon relative diver-
gence).

8.1.1 Direct form.

This divergence is reported by Taneja [91].
The constructive process can be described by:

F (p‖q) = KL (p‖αp+ (1− α) q) (8.1)

If we use as expression of K.L.’s divergence, the general form usable for any
(non-normalized) variables, we obtain:

F (p‖q) =
∑
i

[
pi log

pi
αpi + (1− α) qi

+ (1− α) (qi − pi)
]

(8.2)

With 0 ≤ α ≤ 1, this divergence is constructed in the sense of Csiszär on the
standard convex function shown in the figure (8.1) for α = 0.5, it is written
as:

fc (x) = x log
x

αx+ (1− α)
+ (1− α) (1− x) (8.3)

1 2 3 4 5
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0.3

0.4

0.5

Figure 8.1: Function fc (x) = x log x
αx+(1−α) + (1− α) (1− x), α = 0.5

The gradient with respect to “q” is expressed as:

∂F (p‖q)
∂qj

= (1− α)

(
1− pj

αpj + (1− α) qj

)
(8.4)
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In the case where we can consider that
∑

i pi =
∑

i qi, not necessarily equal
to 1, we have a simplified form, which is written as follows:

FS (p‖q) =
∑
i

pi log
pi

αpi + (1− α) qi
(8.5)

With α = 1/2, this is the K divergence of Lin [68].
With 0 ≤ α ≤ 1, it is a Csiszär divergence built on the simple convex
function, shown in the figure (8.2) for α = 0.5, which is expressed as follows:

f (x) = x log
x

αx+ (1− α)
(8.6)
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Figure 8.2: Function f (x) = x log x
αx+(1−α) , α = 0.5

8.1.2 Dual form.

The constructive process can be described by:

F (q‖p) = KL (q‖αq + (1− α) p) (8.7)

If we use as expression of the K.L. divergence, the general form usable for
non-normalized variables, we obtain:

F (q‖p) =
∑
i

[
qi log

qi
αqi + (1− α) pi

+ (1− α) (pi − qi)
]

(8.8)

With 0 ≤ α ≤ 1, it is a Csiszär divergence built on the standard convex
function, represented in the figure (8.3) for α = 0.5, which is expressed as
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follows:

f̆c (x) = log
1

α+ (1− α)x
+ (1− α) (x− 1) (8.9)
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0.8

Figure 8.3: Function f̆c (x) = log 1
α+(1−α)x + (1− α) (x− 1), α = 0.5

Its gradient with respect to “q” is written as follows:

∂F (q‖p)
∂qj

= log
qj

αqj + (1− α) pj
− αqj
αqj + (1− α) pj

+ α (8.10)

In the case where we can consider that
∑

i pi =
∑

i qi, not necessarily equal
to 1, we have a simplified form which is written as:

FS (q‖p) =
∑
i

qi log
qi

αqi + (1− α) pi
(8.11)

It is a Csiszär divergence built on the simple convex function represented on
the figure (8.4) for α = 0.5, written as follows:

f̆ (x) = log
1

α+ (1− α)x
(8.12)

8.1.3 Symmetrical form.

It is written in the sense of Jeffreys [52] as the (half) sum of the two previous
ones:

F (p, q) = F (p‖q) + F (q‖p) (8.13)
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Figure 8.4: Function f̆ (x) = log 1
α+(1−α)x , α = 0.5

That is:

F (p, q) =
∑
i

pi log
pi

αpi + (1− α) qi
+
∑
i

qi log
qi

αqi + (1− α) pi
(8.14)

Whose gradient with respect to “q” is expressed as:

∂F (q, p)

∂qj
=1− (1− α)

pj
αpj + (1− α) qj

+ log
qj

αqj + (1− α) pj

− αqj
αqj + (1− α) pj

(8.15)

8.1.4 Invariance by change of scale on “q”.

The classical method of computing the K (p, q) invariance factor correspond-
ing to the divergence F (p‖q) (equation (8.2)) involves solving in K the
equation:

∂F (p‖Kq)
∂K

= 0 (8.16)

That is, to solve with respect to K, the equation:

∑
i

qi

[
1− pi

αpi + (1− α)Kqi

]
= 0 (8.17)

There’s no explicit solution to this problem.

So we use as an invariance factor the expression K∗(p, q) =
∑
j pj∑
j qj

.
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In these conditions, the invariant divergence is written after simplifications
with the normalized variables p̄ and q̄:

FI (p‖q) =
∑
i

p̄i log
p̄i

αp̄i + (1− α) q̄i
(8.18)

Hence the expression of the gradient:

∂FI (p‖q)
∂ql

=
1− α∑
j qj

[∑
i

p̄iq̄i
αp̄i + (1− α) q̄i

− p̄l
αp̄l + (1− α) q̄l

]
(8.19)

8.2 G divergence (Arithmetic-Geometric relative
divergence).

These divergences are discussed by Taneja [91], they are deduced from the
previous ones by inverting the order of the compared fields; only the weighted
forms are presented here.

8.2.1 Direct form.

The constructive process is of the following form:

G (p‖q) = KL (αp+ (1− α) q‖p) (8.20)

If we use the general form of the Kullback-Leibler divergence that can be
used for non-normalized fields, we obtain:

G (p‖q) =
∑
i

[αpi + (1− α) qi] log
αpi + (1− α) qi

pi

+ (1− α) (pi − qi) (8.21)

It is a Csiszär’s divergence built on the standard convex function, represented
in the figure (8.5) for α = 0.5, which is written as follows:

fc (x) = [αx+ (1− α)] log
αx+ (1− α)

x
+ (1− α) (x− 1) (8.22)

Its gradient with respect to “q” is expressed as:

∂G (p‖q)
∂qj

= (1− α) log
αpj + (1− α) qj

pj
(8.23)
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Figure 8.5: Function fc (x) = [αx+ (1− α)] log αx+(1−α)
x + (1− α) (x− 1),

α = 0.5

When we can consider that
∑

i pi =
∑

i qi, not necessarily equal to 1, a
simplified form exists:

GS (p‖q) =
∑
i

[αpi + (1− α) qi] log
αpi + (1− α) qi

pi
(8.24)

It is a Csiszär divergence built on the simple convex function shown in the
figure (8.6) for α = 0.5, which is written:

f (x) = [αx+ (1− α)] log
αx+ (1− α)

x
(8.25)

8.2.2 Dual form.

The constructive process can be described by the relation:

G (q‖p) = KL (αq + (1− α) p‖q) (8.26)

If we take the general form of the Kullback-Leibler divergence that can be
used for non-normalized fields, we obtain:

G (q‖p) =
∑
i

[αqi + (1− α) pi] log
αqi + (1− α) pi

qi

+ (1− α) (qi − pi) (8.27)
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Figure 8.6: Function f (x) = [αx+ (1− α)] log αx+(1−α)
x , α = 0.5

It is a Csiszär divergence built on the standard convex function shown in
the figure (8.7) for α = 0.5, which is written:

f̆c (x) = [α+ (1− α)x] log [α+ (1− α)x] + (1− α) (1− x) (8.28)
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Figure 8.7: Function f̆c (x) = [α+ (1− α)x] log [α+ (1− α)x] +
(1− α) (1− x), α = 0.5

The gradient with respect to “q” is given by:

∂G (q‖p)
∂qj

= α log
αqj + (1− α) pj

qj
+ (1− α)

(
1− pj

qj

)
(8.29)
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When
∑

i pi =
∑

i qi, not necessarily equal to 1, a simplified form exists, it
is written as follows:

GS (q‖p) =
∑
i

[αqi + (1− α) pi] log
αqi + (1− α) pi

qi
(8.30)

It is a Csiszär divergence built on the simple convex function represented on
the figure (8.8) for α = 0.5, which is written:

f̆ (x) = [α+ (1− α)x] log [α+ (1− α)x] (8.31)
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Figure 8.8: Function f̆ (x) = [α+ (1− α)x] log [α+ (1− α)x], α = 0.5

8.2.3 T symmetrical divergence.

It is classically constructed in the form of:

T (p, q) = G (p‖q) +G (q‖p) (8.32)

That is:

T (p, q) =
∑
i

[αpi + (1− α) qi] log
αpi + (1− α) qi

pi

+
∑
i

[αqi + (1− α) pi] log
αqi + (1− α) pi

qi
(8.33)

The corresponding gradient with respect to “q” is immediately deduced from
the gradients of the functions G (p‖q) and G (q‖p).
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8.2.4 Invariance by change of scale on “q”.

Regarding the G (p‖q) divergence given by the equation (8.21), the classical
method does not explicitly allow to calculate a value for the invariance factor
K.
By introducing the non-nominal invariance factor K∗, in the expression
(8.21), we obtain the corresponding invariant divergence which is written
after simplifications:

GI (p‖q) =
∑
i

[αp̄i + (1− α) q̄i] log
αp̄i + (1− α) q̄i

p̄i
(8.34)

Its gradient with respect to “q” is given by:

∂GI (p‖q)
∂ql

=
1− α∑
j qj

[
log

αp̄l + (1− α) q̄l
p̄l

−
∑
i

q̄i log
αp̄i + (1− α) q̄i

p̄i

]
(8.35)

8.3 Generalization of the F and G divergences.

To proceed with this generalization, the same work is done as in the previous
sections, but replacing the Kullback-Leibler divergence used systematically
in the constructive process, by the Havrda-Charvat divergence, i.e. some-
thing that is an ”alpha (s) divergence”, and relying on the fact that the K
.L. divergence can be seen as a particular case of the H.C. divergence by
variation of the parameter “s” (0 ≤ s ≤ 1) (we no longer use “α” which is
already used to weight the two fields “p” and “q”).
Indeed, the H.C. divergence is written as follows:

HCs (a‖b) =
1

s (s− 1)

∑
i

asi b
1−s
i − sai − (1− s) bi (8.36)

This expression tends towards KL (a‖b) when s→ 1 and towards KL (b‖a)
when s→ 0.
As in the previous sections, only the weighted forms will be developed; in
this context the data fields that will be used are “p”, “q”, and the weighted
combination “αp+ (1− α) q”.

8.3.1 Direct form.

We rely on the following constructive approach:

FGs,α (p‖q) = HC (αp+ (1− α) q‖p) (8.37)
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This results in:

FGs,α (p‖q) =
1

s (s− 1)

∑
i

[αpi + (1− α) qi]
s p1−s

i −

s [αpi + (1− α) qi]− (1− s) pi (8.38)

It can also be said that this divergence is built, in the sense of Csiszär, on
the standard convex function:

fc (x) =
1

s (s− 1)

{
[αx+ (1− α)]s x1−s − s [αx+ (1− α)]− (1− s)x

}
(8.39)

Its gradient with respect to “q” is given by:

∂FGs,α (p‖q)
∂qj

=
1− α
s− 1

{[
αpj + (1− α) qj

pj

]s−1

− 1

}
(8.40)

If we are in the case where
∑

i pi =
∑

i qi, we can use a simplified form of
this divergence which is written as follows:

FGSs,α (p‖q) =
1

s (s− 1)

∑
i

[αpi + (1− α) qi]
s p1−s

i − pi (8.41)

This is what would have been obtained if, in the mode of construction,
a simplified H.C. divergence had been used, but it can also be said that
this divergence is constructed in the sense of Csiszär on the simple convex
function:

f (x) =
1

s (s− 1)

{
[αx+ (1− α)]s x1−s − x

}
(8.42)

8.3.2 Invariant form by change of scale on “q”.

Following the usual procedure, we have to solve in K, the equation:

1− α
s− 1

∑
i

qi

{[
αpi + (1− α)Kqi

pi

]s−1

− 1

}
= 0 (8.43)

There is no explicit solution; however, it is possible to use:

K∗ =

∑
i pi∑
i qi

(8.44)
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This expression of K∗ inserted in the initial divergence (8.38) makes it in-
variant by scale change and we obtain the simplified invariant divergence:

FGI (p‖q) =
1

s (s− 1)

∑
i

p̄1−s
i [αp̄i + (1− α) q̄i]

s (8.45)

In this expression, the normalized variables p̄ and q̄ are used.
The gradient with respect to “q” is written as :

∂FGI (p‖q)
∂ql

=
1− α

(s− 1)
∑

j qj

{[
p̄l

αp̄l + (1− α) q̄l

]s−1

−
∑
i

q̄i

[
p̄i

αp̄i + (1− α) q̄i

]s−1
}

(8.46)

8.3.3 Dual form.

It is founded on the following constructive mode:

FGs,α = HC (αq + (1− α) p‖q) (8.47)

This leads to:

FGs,α (q‖p) =
1

s (s− 1)

∑
i

[αqi + (1− α) pi]
s q1−s

i

− s [αqi + (1− α) pi]− (1− s) qi (8.48)

It can also be said that it is a Csiszär divergence built on the standard
convex function:

f̆cs (x) =
1

s (s− 1)
{[α+ (1− α)x]s − (1− s)

−s [α+ (1− α)x]} (8.49)

Its gradient with respect to “q” can be written as follows:

∂FGs,α (q‖p)
∂qj

=
α

s− 1

{[
αqj + (1− α) pj

qj

]s−1

− 1

}

− 1

s

{[
αqj + (1− α) pj

qj

]s
− 1

}
(8.50)

In the case where we have
∑

i pi =
∑

i qi, we obtain the following simplified
form:

FGSs,α (q‖p) =
1

s (s− 1)

∑
i

[αqi + (1− α) pi]
s q1−s

i − qi (8.51)
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It is constructed in the sense of Csiszär, on the simple convex function:

f̆s (x) =
1

s (s− 1)
[{α+ (1− α)x}s − 1] (8.52)

A further simplification can be introduced if one is dealing with probability
densities, then,

∑
i pi =

∑
i qi = 1.

8.3.4 Symmetrical form.

The standard convex function for constructing the symmetrical divergence
in the Csiszär sense is written (with a factor of 1/2):

f̂cs (x) = fcs (x) + f̆cs (x) =
1

s (s− 1)

{
x

[
αx+ (1− α)

x

]s
+ [α+ (1− α)x]s − (1 + x)} (8.53)

The corresponding divergence is written:

FGs,α (p, q) =
1

s (s− 1)

∑
i

[αpi + (1− α) qi]
s p1−s

i

+ [αqi + (1− α) pi]
s q1−s

i − (pi + qi) (8.54)

The gradient with respect to “q” can be written as follows:

∂FGs,α (p, q)

∂qj
=

1− α
s− 1

[
αpj + (1− α) qj

pj

]s−1

+
α

s− 1

[
αqj + (1− α) pj

qj

]s−1

− 1

s

[
αqj + (1− α) pj

qj

]s
− 1

s (s− 1)
(8.55)

8.4 J relative divergence of Dragomir.

To broaden what has been proposed by Dragomir et al. [33], we will develop
the general weighted case.

8.4.1 Direct form.

Founding on the use of K.L.’s divergences, one can write:

JD (p‖q) = KL [q‖αp+ (1− α) q] +KL [αp+ (1− α) q‖ q] (8.56)
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Using the notations in the previous sections, one can also write:

JD (p‖q) = F (q‖p) +G (q‖p) (8.57)

But it can also be said that it is a Csiszär divergence built on the standard
convex function represented in the figure (8.9) for α = 0.5, written as:

fc (x) = (1− α) (x− 1) log [α+ (1− α)x] (8.58)
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Figure 8.9: Function fc (x) = (1− α) (x− 1) log [α+ (1− α)x], α = 0.5

Then, we obtain the divergence:

JD (p‖q) = (1− α)
∑
i

(pi − qi) log
αqi + (1− α) pi

qi
(8.59)

The gradient with respect to “q” is expressed as:

∂JD (p, q)

∂qj
∝ α (pj − qj)
αqj + (1− α) pj

− pj
qj

+ log
qj

αqj + (1− α) pj
+ 1 (8.60)

8.4.2 Dual form.

It is constructed in the sense of Csiszär on the standard convex function,
mirror of the function (8.58), represented on the figure (8.10) for α = 0.5,
that is written:

f̆c (x) = (1− α) (1− x) log

[
αx+ (1− α)

x

]
(8.61)
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Figure 8.10: Function f̆c (x) = (1− α) (1− x) log
[
αx+(1−α)

x

]
, α = 0.5

This results in:

JD (q‖p) = (1− α)
∑
i

(qi − pi) log

[
αpi + (1− α) qi

pi

]
(8.62)

We can also say that:

JD (q‖p) = F (p‖q) +G (p‖q) (8.63)

That is:

JD (q‖p) = KL [p‖αp+ (1− αq)] +KL [αp+ (1− α) q‖p] (8.64)

The derivation of the gradient with respect to “q” leads to:

∂JD (q, p)

∂qj
∝ log

[
αpj + (1− α) qj

pj

]
+ (1− α)

qj − pj
αpj + (1− α) qj

(8.65)

8.4.3 Invariance by change of scale on “q”.

For the divergence given by the expression (8.59), the nominal invariance
factor cannot be computed explicitly, so we use the expression K∗, which
leads to the simplified invariant divergence:

JDI (p‖q) = (1− α)
∑
i

(p̄i − q̄i) log
αq̄i + (1− α) p̄i

q̄i
(8.66)
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The gradient with respect to “q” is given by:

∂JDI (p‖q)
∂ql

=
1− α∑
j qj

[∑
i

q̄i log
αq̄i + (1− α) p̄i

q̄i
− log

αq̄l + (1− α) p̄l
q̄l

+ (1− α)
p̄l (q̄l − p̄l)

q̄l [αq̄l + (1− α) p̄l]
− (1− α)

∑
i

p̄i (q̄i − p̄i)
αq̄i + (1− α) p̄i

]
(8.67)

8.4.4 Generalization of Dragomir’s J relative divergence.

Starting from the standard convex function (8.58), the proposed general-
ization consists in replacing the logarithmic function by the “Generalized
logarithm” function with the exponent (1− d).
We thus obtain the standard convex function:

fc,d (x) = (1− α) (x− 1)

{
[α+ (1− α)x]1−d − 1

1− d

}
(8.68)

If we use this function to construct a Csiszär divergence, we obtain:

JDd (p‖q) =
1− α
1− d

∑
i

(pi − qi)

{[
αqi + (1− α) pi

qi

]1−d
− 1

}
(8.69)

We can see that when d→2 this divergence becomes equal to:

(1− α)2
∑
i

(pi − qi)2

αqi + (1− α) pi
∝MAH (8.70)

The dual form is obtained from the mirror function of the previous one, i.e.:

f̆c,d (x) =
1− α
1− d

(1− x)

{[
αx+ (1− α)

x

]1−d
− 1

}
(8.71)

The corresponding divergence will be written:

JDd (q‖p) =
1− α
1− d

∑
i

(qi − pi)

{[
αpi + (1− α) qi

pi

]1−d
− 1

}
(8.72)
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8.5 Generalizations proposed by Taneja.

The generalization technique used by Taneja [92], consists in relying on the
divergence based on the entropy of Sharma-Mittal [89] in the simplified form
corresponding to normalized variables (4.33).
It is not much more complicated to use the general form corresponding to
any variables (4.32) that is written:

SMα,s (a‖b) =
1

α (s− 1)


[∑

i

aαi b
1−α
i

] s−1
α−1

−

[∑
i

αai + (1− α) bi

] s−1
α−1


(8.73)

We can remark that it is in fact the application of the Generalized Logarithm
function, on the two terms of MAG (a‖b), with the exponent s−1

α−1 .

We then define the 1st generalization noted by Taneja 1T sα:

1T sα (p‖q) =
1

2

[
SMα,s

(
p+ q

2
‖p
)

+ SMα,s

(
p+ q

2
‖q
)]

(8.74)

We can observe that for the pleasure of complicating things further, we can
imagine replacing the half-sum by a weighted sum, but is it really necessary
to do so ?
That being said, the explicit form of 1T sα is written:

1T sα (p‖q) =
1

2α (s− 1)


[∑

i

(
pi + qi

2

)α
p1−α
i

] s−1
α−1

+

[∑
i

(
pi + qi

2

)α
q1−α
i

] s−1
α−1

−

[∑
i

α

(
pi + qi

2

)
+ (1− α) pi

] s−1
α−1

−

[∑
i

α

(
pi + qi

2

)
+ (1− α) qi

] s−1
α−1

 (8.75)
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If we consider the simplified configuration corresponding to
∑

i pi =
∑

i qi =
1, we have:

1TSsα (p‖q) =
1

2α (s− 1)


[∑

i

(
pi + qi

2

)α
p1−α
i

] s−1
α−1

+

[∑
i

(
pi + qi

2

)α
q1−α
i

] s−1
α−1

− 2

 (8.76)

Now let’s look at the limit expressions of 1T sα (p‖q) (8.75).
If s→ α.
We obtain:

1Tαα (p‖q) =
1

α (α− 1)

{∑
i

(
pi + qi

2

)α(p1−α
i + q1−α

i

2

)

−
∑
i

(
pi + qi

2

)}
(8.77)

It is a Csizär divergence based on the standard convex function:

fc (x) =
1

α (α− 1)

[(
x1−α + 1

2

)(
x+ 1

2

)α
− x+ 1

2

]
(8.78)

It is similar to (8.54).
Note that this expression could have been obtained by using the Havrda-
Charvat divergence directly in the general definition (8.74) instead of the
divergence SMα,s.
Furthermore, the special case corresponding to

∑
i pi =

∑
i qi = 1 is imme-

diately written as follows:

1TSαα (p‖q) =
1

α (α− 1)

{∑
i

(
pi + qi

2

)α(p1−α
i + q1−α

i

2

)
− 1

}
(8.79)

Of course, it cannot be constructed as a divergence of Csiszär.

The second limit case is to make s→ 1 in 1T sα (p‖q) (8.75) (we’re trying
to obtain something that is inspired by Renyi’s divergence).
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We obtain:

1T 1
α (p‖q) =

1

2α (α− 1)

{
log
∑
i

(
pi + qi

2

)α
p1−α
i

+ log
∑
i

(
pi + qi

2

)α
q1−α
i

− log
∑
i

α

(
pi + qi

2

)
+ (1− α) pi

− log
∑
i

α

(
pi + qi

2

)
+ (1− α) qi

}
(8.80)

The divergence corresponding to
∑

i pi =
∑

i qi = 1 will be written:

1TS1
α (p‖q) =

1

2α (α− 1)

{
log
∑
i

(
pi + qi

2

)α
p1−α
i

+ log
∑
i

(
pi + qi

2

)α
q1−α
i

}
(8.81)

The 2nd generalization proposed by Taneja consists in starting from
the expression of 1Tαα (p‖q) (8.77) which is a difference of two positive
terms, and apply to each of them the Generalized Logarithm with the power
(s− 1/α− 1) which is an increasing function; thus we obtain:

2T sα (p‖q) =
1

α (s− 1)


[∑

i

(
pi + qi

2

)α(p1−α
i + q1−α

i

2

)] s−1
α−1

−

[∑
i

(
pi + qi

2

)] s−1
α−1

 (8.82)

It is easy to verify that 2Tαα (p‖q) =1 Tαα (p‖q).
Similarly, by making s→ 1 in (8.82), we obtain:

2T 1
α (p‖q) =

1

α (α− 1)

{
log
∑
i

(
pi + qi

2

)α(p1−α
i + q1−α

i

2

)

− log
∑
i

(
pi + qi

2

)}
(8.83)
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In any case, if we consider the simplified version
∑

i pi =
∑

i qi = 1, we find
the forms given by Taneja.

Remark: To fully understand the difference between these 2 general-
izations, we can notice that they correspond to the following operations:
we consider the Havrda-Charvat divergences with a parameter “s”, noted
HCs (a‖b) with a = p+q

2 et b = p on one hand, and HCs (a‖b) with a = p+q
2

et b = q on the other hand.
* - In the case of the 1st generalization, we apply the Generalized Logarithm
on the 2 terms of each of these divergences, then we make the half-sum of
the divergences obtained, which gives (8.75) and its variants.
* - In the 2nd generalization, we first sum the 2 Havrda-Charvat divergences
mentioned above, we obtain a difference of 2 positive terms, then, we apply
the Generalized Logarithm on each of these 2 terms.
The results obtained by these two operating modes are different because the
two operations carried out successively are not commutative.

To continue this small exercise, we take up an equivalent work already
proposed by Taneja [91] and Arndt [6]; it consists in using the relation (8.74)
and inverting the order of the arguments in the divergences SMα,s, that is:

1Isα (p‖q) =
1

2

[
SMα,s

(
p‖p+ q

2

)
+ SMα,s

(
q‖p+ q

2

)]
(8.84)

This can be considered as the 3rd generalization which is similar to the 1st
generalization, except for the order of the arguments.
This being said, the explicit form of 1Isα is written:

1Isα (p‖q) =
1

2α (s− 1)


[∑

i

(
pi + qi

2

)1−α
pαi

] s−1
α−1

+

[∑
i

(
pi + qi

2

)1−α
qαi

] s−1
α−1

−

[∑
i

(1− α)

(
pi + qi

2

)
+ αpi

] s−1
α−1

−

[∑
i

(1− α)

(
pi + qi

2

)
+ αqi

] s−1
α−1

 (8.85)
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In the simplified case corresponding to
∑

i pi =
∑

i qi = 1, we will have the
simplified forms exhibited in Arndt [6]:

1Isα (p‖q) =
1

2α (s− 1)


[∑

i

(
pi + qi

2

)1−α
pαi

] s−1
α−1

+

[∑
i

(
pi + qi

2

)1−α
qαi

] s−1
α−1

− 2

 (8.86)

Similarly, if in (8.85) we use s = α, we will have:

1Iαα (p‖q) =
1

α (α− 1)

{∑
i

(
pi + qi

2

)1−α(pαi + qαi
2

)

−
∑
i

(
pi + qi

2

)}
(8.87)

It is a Csizär divergence based on the standard convex function:

fc (x) =
1

α (α− 1)

[(
xα + 1

2

)(
x+ 1

2

)1−α
− x+ 1

2

]
(8.88)

If now, from (8.85), we change to s→ 1 , we get:

1I1
α (p‖q) =

1

2α (α− 1)

{
log
∑
i

(
pi + qi

2

)1−α
pαi

+ log
∑
i

(
pi + qi

2

)1−α
qαi

− log
∑
i

(1− α)

(
pi + qi

2

)
+ αpi

− log
∑
i

(1− α)

(
pi + qi

2

)
+ αqi

}
(8.89)

If we take
∑

i pi =
∑

i qi = 1, we recover a simplified result from Arndt [6]:

1IS1
α (p‖q) =

1

2α (α− 1)

{
log
∑
i

(
pi + qi

2

)1−α
pαi

+ log
∑
i

(
pi + qi

2

)1−α
qαi

}
(8.90)
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We can then define the 4th generalization which is the analogous of the 2nd
one (except for the order of the arguments); to do so, we start from the
relation giving 1Iαα (p‖q) (8.87) and an extension is carried out using the
Generalized Logarithm, to obtain:

2Isα (p‖q) =
1

α (s− 1)


[∑

i

(
pi + qi

2

)1−α(pαi + qαi
2

)] s−1
α−1

−

[∑
i

(
pi + qi

2

)] s−1
α−1

 (8.91)

This divergence was exhibited by Taneja in [92].
If we perform the simplification

∑
i pi =

∑
i qi = 1, we retrieve an expression

given by Arndt [6]:
On this relationship, moving to the s→ 1 limit gives us something close to
a Renyi divergence:

2I1
α (p‖q) =

1

α (α− 1)

{
log
∑
i

(
pi + qi

2

)1−α(pαi + qαi
2

)

− log
∑
i

(
pi + qi

2

)}
(8.92)

Finally, making the simplification
∑

i pi =
∑

i qi =1, we retrieve Arndt’s
result [6]:

2IS1
α (p‖q) =

1

α (α− 1)

{
log
∑
i

(
pi + qi

2

)1−α(pαi + qαi
2

)}
(8.93)

On generalizations 3 and 4, we can make the same remarks as on general-
izations 1 and 2 as to the order of the operations which made it possible
to obtain them; the non-commutativity of these operations leads to “Gen-
eralization 3 6= Generalization 4”, as we had obtained “Generalization 1 6=
Generalization 2”.
Another generalization (say the 5th generalization) is proposed by Taneja
in [92] and may be illustrative of the fact that:

“Every inequality can give rise to a divergence”.
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Indeed, let us consider the inequality between weighted arithmetic mean
(MA)i = βpi+(1− β) qi and the weighted geometric mean (MG)i = pβi q

1−β
i ;

(MG)i − (MA)i ≤ 0 ⇒ (MG)1−r
i − (MA)1−r

i ≤ 0 ; r ≤ 1 (8.94)

And then:

(MG)1−r
i (MA)ri − (MA)i ≤ 0 (8.95)

The extension to the entire field leads to:∑
i

(MG)1−r
i (MA)ri −

∑
i

(MA)i ≤ 0 (8.96)

And finally:

1

r − 1

[∑
i

(MG)1−r
i (MA)ri −

∑
i

(MA)i

]
≥ 0 (8.97)

From there, we can apply on each of the terms of the difference, an increasing
function without changing the sign of the inequality, why not a generalized
logarithmic function with the power (s− 1/r − 1), to obtain the divergence
proposed by Taneja:

3T sr (p‖q) =
1

s− 1


[∑

i

(MG)1−r
i (MA)ri

] s−1
r−1

−

[∑
i

(MA)i

] s−1
r−1


(8.98)

In fact, Taneja [92] proposes something less general than that, because he
limits it to the case of variables having a sum equal to 1, in which case the
2nd term of the difference will be equal to 1. The gradient with respect to
“qj” is written as follows:

∂
[
3T sr (p‖q)

]
∂qj

=
1− β
r − 1


[∑

i

(MG)1−r
i (MA)ri

] s−r
r−1
[

(1− r)
(MA)ri
(MG)ri

pβj

qβj
+ r

(MA)r−1
i

(MG)r−1
i

]

−

[∑
i

(MA)i

] s−r
r−1

 (8.99)

The 2 classical limit cases can be considered:
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* s = r leads to:

3T rr (p‖q) =
1

r − 1

{∑
i

(MG)1−r
i (MA)ri −

∑
i

(MA)i

}
(8.100)

* s→ 1 leads to the Logarithmic form:

3T 1
r (p‖q) =

1

r − 1

{
log

[∑
i

(MG)1−r
i (MA)ri

]
− log

[∑
i

(MA)i

]}
(8.101)

The corresponding gradients with respect to “q” are obtained immediately
as a limit case of (8.99).

This last divergence is referred to in Taneja [92] and Neemuchwala [72]
with the name “αGA” which can be noted here as “rGA”, and for which
they only consider the case of standardized variables.
Of course, this fifth generalization is in relation with the divergences based
on inequalities between the generalized means developed in chapter 7.

If we want to extend this procedure to other means, we rely on the
inequalities between weighted and unweighted means MH ≤MG ≤MA ≤
MQ.
With:

(MH)i =
piqi

βpi − (1− β) qi
; (MQ)i =

√
βp2

i + (1− β) q2
i (8.102)

We can write:

3THGsr (p‖q) =
1

s− 1


[∑

i

(MH)1−r
i (MG)ri

] s−1
r−1

−

[∑
i

(MG)i

] s−1
r−1


(8.103)

3THAsr (p‖q) =
1

s− 1


[∑

i

(MH)1−r
i (MA)ri

] s−1
r−1

−

[∑
i

(MA)i

] s−1
r−1


(8.104)
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3THQsr (p‖q) =
1

s− 1


[∑

i

(MH)1−r
i (MQ)ri

] s−1
r−1

−

[∑
i

(MQ)i

] s−1
r−1


(8.105)

The divergence:
3TGAsr (p‖q) = 3T sr (p‖q) (8.106)

has been previously expressed;

3TGQsr (p‖q) =
1

s− 1


[∑

i

(MG)1−r
i (MQ)ri

] s−1
r−1

−

[∑
i

(MQ)i

] s−1
r−1


(8.107)

3TAQsr (p‖q) =
1

s− 1


[∑

i

(MA)1−r
i (MQ)ri

] s−1
r−1

−

[∑
i

(MQ)i

] s−1
r−1


(8.108)

Logarithmic forms can be inferred immediately.
Simplified forms of these divergences are developed in chapter 7 dealing
with divergences between means.
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chapter 9 -
Smoothness constraint
regularization.

We consider here, the application of scale invariant divergences to Tikhonov-
type smoothness constraint regularization [93].
This analysis has an obvious interest when one must introduce this type of
regularization in a problem for which there is a constraint on the sum of the
unknown parameters and, in particular, when it is associated with a non-
negativity constraint. Indeed, when regularizing an inverse problem by a
smoothness constraint, we are led to minimize in “x”, an objective function
of the form:

J (x) = D1 (y‖Hx) + γD2 (x‖xd) (9.1)

The first term D1 is a divergence which represents the attachment to the
data (data consistency), i.e. a discrepancy between the measurements and
the model (here linear), whereas the second term D2 is a divergence which
represents a discrepancy between the solution “x” and a default solution
“xd”; this default solution must obviously satisfy the constraints imposed
on the solution, for example, [xd]i ≥ 0 ∀i, and if we have a sum constraint,∑

i [xd]i =
∑

i xi.
The coefficient “γ” is the regularization factor that adjusts the relative im-
portance of the 2 terms of J (x).
We consider here, the case of divergences which are invariant by change of
scale on “q” constructed on the basis of “α” and “β” divergences, and we
consider more specifically the logarithmic forms which are not only invariant
with respect to “q”, but also with respect to “p”.
On the other hand, it was emphasized that when a divergence is made invari-

ant with respect to “q” using the invariance factor K∗ =
∑
j pj∑
j qj

, the resulting

divergence is also invariant with respect to “p”; this type of invariant diver-

167
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gence will also be considered.
The invariant divergences with respect to both arguments have the advan-
tage of applying in all cases, whether the default solution is a constant, or
a linear function of the solution itself (Laplacian case for example).
In the minimization problem, we will use the expression of the gradient:

∂J (x)

∂xl
=
∂D1 (y‖Hx)

∂xl
+ γ

∂D2 (x‖xd)
∂xl

(9.2)

If the divergences D1 and D2 are invariant divergences, the characteristic
property of such divergences will result in:∑

l

xl
∂J (x)

∂xl
= 0 (9.3)

9.1 Invariant divergences derived from the “α” and
“β” divergences.

9.1.1 Constant default solution = C.

In this case, all invariant divergences can be used, whether logarithmic
(LAI, LBI) or not (AI,BI); we will just develop the case for logarithmic
forms.
In the following discussions, for the two-dimensional case, the tables under
consideration are written in lexicographical order.

* With “LAI”.

We have:

LAI (c‖x) =
1

a
log
∑
i

xi −
1

a− 1
log
∑
i

ci +
1

a (a− 1)
log
∑
i

cai x
1−a
i (9.4)

Taking into account the fact that all ci are equals whatever “i”, we have the
gradient:

∂LAI (c‖x)

∂xj
=

1

a

[
1∑
i xi
−

x−aj∑
i x

1−a
i

]
(9.5)

* With “LBI”.

We then have:

LBI (c‖x) =
1

b (b− 1)
log
∑
i

cbi +
1

b
log
∑
i

xbi −
1

b− 1
log
∑
i

cix
b−1
i (9.6)
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Which gradient is:

∂LBI (c‖x)

∂xj
=

xb−1
j∑
i x

b
i

−
xb−2
j∑
i x

b−1
i

(9.7)

* With the general form “LABI”.

The divergence considered is written as follows:

LABI (c‖x) =
1

a+ b− 1

{
1

b− 1
log
∑
i

ca+b−1
i −

a+ b− 1

a (b− 1)
log
∑
i

cai x
b−1
i +

1

a
log
∑
i

xa+b−1
i

}
(9.8)

After some simple calculations, the gradient is written as follows:

∂LABI (c‖x)

∂xj
=

1

a

[
xa+b−2
j∑
i x

a+b−1
i

−
xb−2
j∑
i x

b−1
i

]
(9.9)

The two previous particular cases can be found without difficulty by respec-
tively making a+ b− 1 =1, i.e. b− 1 = 1− a (LAI) and a = 1 (LBI).

9.1.2 Use of the Laplacian operator.

In this case, the default solution “xd” is a smoothed version of the solution
“x”, i.e. in a trivial way, a solution which does not contain high frequencies
or anyway they are reduced; in the classical sense of Tikhonov [93], the
regularization term is written as follows:

D2 (x‖xd) = ‖Lx‖2 (9.10)

Here we must distinguish between 2 situations:

* 1 - One-dimensional case.
In this case, the regularization term “Lx” corresponds to the convolution of
“x” by the mask

[
−1

2 ; 1 ; −1
2

]
.

We can therefore write the result in the form “x−Tx” where the term “Tx”
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written in the sense of the matrix vector product, represents the convolution
of “x” by the mask

[
1
2 ; 0 ; 1

2

]
.

* 2 - Two-dimensional case.
In this case, the regularization term “Lx” corresponds to the convolution of

the table “x” by the mask:

 0 −1/4 0
−1/4 1 −1/4

0 −1/4 0

 . We can therefore write

the result in the form “x−Tx” where the term “Tx” written in the sense of
the matrix vector product, represents the convolution of “x” by the mask: 0 1/4 0

1/4 0 1/4
0 1/4 0

 .

At the end of this operation, the table “Tx” is ordered lexicographically,
as well as the table “x”.

Note that in these conditions, the matrix T is symmetrical, its columns
are normed to 1, that is

∑
i tij = 1 ∀j, then

∑
i (Tx)i =

∑
i xi .

Consequently, as a regularization term one must write a divergence invariant
by scale change between p ≡ x and q ≡ Tx for example; since “p” and “q”
both depend on the “x” solution, it is understandable that we must use the
Logarithmic form which is invariant with respect to both arguments (we can
verify that the non Logarithmic forms do not allow us to develop algorithms
that spontaneously maintain the flow, i.e. which do not spontaneously re-
spect the sum constraint).

* With “LAI”.

Using the notations p ≡ x and q ≡ Tx, the divergence is expressed as:

LAI (x‖Tx) =
1

a
log
∑
i

(Tx)i−
1

a− 1
log
∑
i

xi+
1

a (a− 1)
log
∑
i

xai (Tx)1−a
i

(9.11)
The associated gradient is written:

∂LAI (x‖Tx)

∂xj
=

1

a

[ ∑
i ti,j∑

i (Tx)i
−
∑

i ti,jx
a
i (Tx)−ai∑

i x
a
i (Tx)1−a

i

]
+

1

a− 1

[
xa−1
j (Tx)1−a

j∑
i x

a
i (Tx)1−a

i

− 1∑
i xi

]
(9.12)
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We may observe that, as always with this type of divergence:∑
j xj

∂
∂xj

= 0.

* With “LBI”.

With the notations in the previous paragraph, the divergence considered is
written as follows:

LBI (x‖Tx) =
1

b (b− 1)
log
∑
i

xbi+
1

b
log
∑
i

(Tx)bi−
1

b− 1
log
∑
i

xi (Tx)b−1
i

(9.13)
The gradient will be:

∂LBI (x‖Tx)

∂xj
=

1

b− 1

[
xb−1
j∑
i x

b
i

−
(Tx)b−1

j∑
i xi (Tx)b−1

i

]
+[∑

i ti,j (Tx)b−1
i∑

i (Tx)bi
−
∑

i ti,jxi (Tx)b−2
i∑

i xi (Tx)b−1
i

]
(9.14)

Again, as always with this type of divergence we have:∑
j xj

∂
∂xj

= 0.

* With the general form “LABI”.

If we use the general form of the divergence, the two previous cases can be
recovered without any problem, indeed, the divergence is written as follows:

LABI (x‖Tx) =
1

a+ b− 1

{
1

b− 1
log
∑
i

xa+b−1
i −

a+ b− 1

a (b− 1)
log
∑
i

xai (Tx)b−1
i +

1

a
log
∑
i

(Tx)a+b−1
i

}
(9.15)

We can calculate the gradient, which is expressed as follows:

∂LABI (x‖Tx)

∂xj
=

1

a

[∑
i ti,j (Tx)a+b−2

i∑
i (Tx)a+b−1

i

−
∑

i ti,jx
a
i (Tx)b−2

i∑
i x

a
i (Tx)b−1

i

]
+

1

b− 1

[
xa+b−2
j∑
i x

a+b−1
i

−
xa−1
j (Tx)b−1

j∑
i x

a
i (Tx)b−1

i

]
(9.16)
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The expressions of the two preceding paragraphs are found immediately
by using respectively: a + b − 1 = 1, i.e. b − 1 = 1 − a (which gives LAI)
and a = 1 (which gives LBI).

9.1.3 Important Note.

If, in the Laplacian regularization, we try to use the non logarithmic forms
of the invariant divergences, that is “AI” or “BI”, we loose the property of
spontaneous maintaining of the flow, in fact these divergences are invariant
only with respect to the second argument; to show this, it is enough to
evaluate the gradient of AI (x‖Tx) for example, and to note that the relation
which allows the maintaining of the flow is not fulfilled.
In fact, if we use the expression of “AI”, where p ≡ x and q ≡ Tx, it comes:

AI (x‖Tx) =
1

a− 1

(∑
i

(Tx)i

)a−1
a
(∑

i

xai (Tx)1−a
i

) 1
a

−
∑
i

xi


(9.17)

And according to the expression of the gradient we have:

∑
j

xj
∂AI (x‖Tx)

∂xj
=

1

1− a


∑
j

xj −

∑
j

xaj (Tx)1−a
j

 1
a
∑

j

(Tx)j

a−1
a


(9.18)

This expression could be equal to zero at convergence (x → Tx), but cer-
tainly not at each iteration.

9.2 Effect of the invariance factor K∗ =
∑

j pj∑
j qj

.

In the study of the invariance factors K, the particular role of K∗ =
∑
j pj∑
j qj

has been noted; indeed, the introduction of this factor in any divergence
D (p‖q) , in order to make it invariant with respect to “q”, led to a diver-
gence DI (p‖q) which is invariant with respect to this argument, obtained
easily from the divergence D (p‖q) by replacing “p” and “q” by normalized
variables p̄i = pi∑

j pj
and q̄i = qi∑

j qj
respectively, with a multiplying factor

depending only on
∑

j pj that can be omitted.
Disregarding this multiplicative factor, we obtain a divergence that is not
only invariant with respect to “q”, but also with respect to “p”.
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This observation allows us to consider the use of such divergences in the case
of smoothness constraint regularization using the Laplacian of the solution,
as developed in the previous sections; it is a possible alternative to the use
of logarithmic forms “LAI” et“LBI”.
Some examples to illustrate this point are given in Appendix 6.

9.2.1 Applications of some divergences to regularization.

We analyze in this paragraph the regularization in the sense of Tikhonov [93]
with the Laplacian, as previously considered for the divergences LAI (p‖q)
and LBI (p‖q).
We will focus on the cases of a few classical divergences that are rendered

invariant by the use of the invariance factor K∗ =
∑
j pj∑
j qj

; note that for the

K.L. divergence, this factor is the nominal invariance factor K0.
For the application under consideration here, we have:

p̄i =
xi∑
j xj

, q̄i =
(Tx)i∑
j (Tx)j

(9.19)

With
∑

j tjl = 1 ∀l (the columns of T are normalized to 1), it comes:

∂p̄i
∂xl

=
1∑
j xj

(δi,l − p̄i) ,
∂q̄i
∂xl

=
1∑

j (Tx)j
(til − q̄i) (9.20)

1 - Mean square deviation.

The invariant divergence we obtain is written as follows (see (83) in Ap-
pendix 6):

EQMI (p‖q) =
∑
i

(p̄i − q̄i)2 (9.21)

Then:
∂EQMI (p‖q)

∂xl
=
∑
i

(p̄i − q̄i)
(
∂p̄i
∂xl
− ∂q̄i
∂xl

)
(9.22)

Taking into account the fact that
∑

j xj =
∑

j (Tx)j , we obtain after a few
simple calculations:

∂EQMI (p‖q)
∂xl

=
1∑
j xj

[
(p̄l − q̄l)−

∑
i

(p̄i − q̄i)2 −
∑
i

til (p̄i − q̄i)

]
(9.23)
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or also:

∂EQMI (p‖q)
∂xl

=
1∑
j xj

{[(
I − T T

)
(p̄− q̄)

]
l
−
∑
i

(p̄i − q̄i)2

}
(9.24)

Coming back to the true variables (9.19), it comes:

∂EQMI (p‖q)
∂xl

=
1(∑
j xj

)2

{[(
I − T T

)
(x− Tx)

]
l
− 1∑

j xj

∑
i

[xi − (Tx)i]
2

}
(9.25)

We can verify that, as always:∑
l

xl
∂EQMI (p‖q)

∂xl
= 0 (9.26)

2 - Kullback-Leibler divergence.

Taking into account the invariance factor that is used, and the possible
simplifications, the following is obtained (see (87) in Appendix 6):

KLI (p‖q) =
∑
i

p̄i log
p̄i
q̄i

(9.27)

Then:
∂KLI (p‖q)

∂xl
=
∑
i

(
log

p̄i
q̄i

+ 1

)
∂p̄i
∂xl
−
∑
i

p̄i
q̄i

∂q̄i
∂xl

(9.28)

With the partial derivative expressions previously mentioned (9.20), and
taking into account that

∑
j xj =

∑
j (Tx)j , it comes all calculations made:

∂KLI (p‖q)
∂xl

=
1∑
j xj

[
log

p̄l
q̄l

+ 1−
∑
i

til
p̄i
q̄i
−
∑
i

p̄i log
p̄i
q̄i

]
(9.29)

With
∑

i til = 1, we can write:

∂KLI (p‖q)
∂xl

=
1∑
j xj

{
log

p̄l
q̄l
−
∑
i

p̄i log
p̄i
q̄i

+

[
T T
(

1− p̄

q̄

)]
l

}
(9.30)

Coming back to the true variables (9.19), it comes:

∂KLI (p‖q)
∂xl

=
1∑
j xj

{
log

xl
(Tx)l

−
∑
i

xi∑
j xj

log
xi

(Tx)i
+

[
T T
(

1− x

(Tx)

)]
l

}
(9.31)
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We can verify that, as always:∑
l

xl
∂KLI (p‖q)

∂xl
= 0 (9.32)

3 - Neyman’s Chi2 divergence.

The invariant divergence is written (see (91) in Appendix 6):

χ2
NI (p‖q) =

∑
i

(p̄i − q̄i)2

q̄i
(9.33)

Then:

∂χ2
NI (p‖q)
∂xl

= 2
∑
i

(
p̄i
q̄i
− 1

)
∂p̄i
∂xl

+
∑
i

[
1−

(
p̄i
q̄i

)2
]
∂q̄i
∂xl

(9.34)

Considering the expressions of the partial derivatives of p̄i and q̄i with respect
to “xl” (9.20), it comes all calculations made, and with the simplifications
already indicated:

∂χ2
NI (p‖q)
∂xl

=
1∑
j xj

[
2
p̄l
q̄l
−
∑
i

til

(
p̄i
q̄i

)2

−
∑
i

p̄2
i

q̄i

]
(9.35)

Turning back to the true variables, we have:

∂χ2
NI (p‖q)
∂xl

=
1∑
j xj

{
2

xl
(Tx)l

−
[
T T

x2

(Tx)2

]
l

− 1∑
j xj

∑
i

x2
i

(Tx) i

}
(9.36)

And, then: ∑
l

xl
∂χ2

NI (p‖q)
∂xl

= 0 (9.37)

4 - Pearson’s Chi2 divergence.

The invariant divergence is written (see (95) in Appendix 6):

χ2
P I (p‖q) =

∑
i

(p̄i − q̄i)2

p̄i
(9.38)

Then:

∂χ2
P I (p‖q)
∂xl

=
∑
i

[
1−

(
q̄i
p̄i

)2
]
∂p̄i
∂xl

+ 2
∑
i

[(
q̄i
p̄i

)
− 1

]
∂q̄i
∂xl

(9.39)
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Considering the expressions of the partial derivatives of p̄i and q̄i with respect
to “xl” (9.20), it comes with all the calculations made, with the simplifica-
tions already indicated:

∂χ2
P I (p‖q)
∂xl

=
1∑
j xj

[
−
(
q̄l
p̄l

)2

+ 2
∑
i

til
q̄i
p̄i
−
∑
i

q̄2
i

p̄i

]
(9.40)

And, turning back to the true variables:

∂χ2
P I (p‖q)
∂xl

=
1∑
j xj

{
−
(

(Tx)l
xl

)2

+ 2

[
T T

(Tx)

x

]
l

− 1∑
j (Tx)j

∑
i

(Tx)2
i

xi

}
(9.41)

Then, we have: ∑
l

xl
∂χ2

P I (p‖q)
∂xl

= 0 (9.42)



chapitre 10 -
Algorithmic point of view.

10.1 Some preliminary remarks.

In this chapter, different algorithmic methods for minimizing divergences,
under non-negativity constraint and under sum constraint, are described.
The divergences considered are assumed to be convex and differentiable.
We will first consider the minimization problem under the non-negativity
constraint.
We will distinguish three cases corresponding to specific problems:
* Simplified divergences that can be used for fields of explicitly equal sums
(possibly equal to 1).
* General divergences which contain no simplification related to the sum of
the data fields.
* Divergences invariant by change of scale.
In a second step, one will introduce in addition, the sum constraint on the
unknown parameters.

We’re essentially interested in the separable divergences that will be
noted:

D (p‖q) =
∑
i

D (pi‖qi) =
∑
i

di (10.1)

The non-separable case is easily deduced from this.

Moreover, we will only consider the case of a linear model:

q = Hx ⇒ qi =
∑
j

hijxj ⇒ ∂qi
∂xl

= hil (10.2)
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And we will have:
∂D (p‖q)
∂xl

=
∑
i

∂di
∂qi

∂qi
∂xl

(10.3)

Consequently, with the notation:

∂di
∂qi

=

[
∂D

∂q

]
i

(10.4)

We will have:
∂D (p‖q)
∂xl

=
∑
i

hil
∂di
∂qi

=

[
HT ∂D

∂q

]
l

(10.5)

This justifies “a posteriori”, the fact that for the divergences considered in
this work, the expression of the gradient with respect to the variable “q”
has been given almost systematically.

10.2 Split Gradient Method (S.G.M.).

In this section, we present the method of minimization under non-negativity
constraint, widely developed elsewhere [62], [61], which allows us to under-
stand the origin of multiplicative algorithms and we can easily see why these
algorithms can suffer from convergence problems.
This method applies to divergences D (p‖q) having a minimum for pi =
qi ∀i; it is quite obvious that this excludes simplified divergences which do
not have this property. We will always consider that the “pi” are the “yi”
measures and that the model “qi” is linearly related to the true unknowns
“xi” by the relation qi = (Hx)i.
In a later section dedicated to the introduction of the sum constraint, it will
be shown that, subject to a change of variables, the S.G.M. method can be
applied on simplified divergences which have the property of being zero for
pi = qi ∀i.
In the following sections we will note:

D (p‖q) = D (y‖Hx) ≡ D (x) (10.6)

10.2.1 Non-negativity constraint.

For a strictly convex divergence D (x), we consider the problem:
Minimize with respect to “x”: D (x)
Subject to the constraint x ≥ 0 ≡ xi ≥ 0 ∀i.
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Let L (x, λ) the Lagrangian associated with this problem, which is expressed
in the form of:

L (x, λ) = D (x)− 〈λ, g (x)〉 (10.7)

“λ” is the vector of Lagrange multipliers whose components are positive
or zero (λi ≥ 0 ∀i); 〈λ, g (x)〉 is for the scalar product; g (x) ≡ g (xi) ≡
gi (x) ∀i is a function for expressing constraints; this function must be
positive when the constraints are inactive (xi >0) and zero when the con-
straints are active (xi =0), moreover, if “x∗” denotes the optimum, the zeros
of gi (x∗) / [∇g (x∗)]i must be the same as those of gi (x∗).

We propose to build a constrained minimization algorithm based on
Karush, Kuhn, Tucker (KKT) conditions [19], [17],[28] which must be sat-
isfied at the optimum of the problem, i.e. at the solution (x∗, λ∗).
These conditions are written:

∇xL (x∗, λ∗) = 0 ⇒ λ∗i [∇g (x∗)]i = [∇D (x∗)]i ⇒ λ∗i =
[∇D (x∗)]i
[∇g (x∗)]i

(10.8)
g (x∗) ≥ 0 ⇒ gi (x∗) ≥ 0 ∀i (10.9)

λ∗ ≥ 0 ⇒ λ∗i ≥ 0 ∀i (10.10)

〈λ∗g (x∗)〉 = 0 (10.11)

Note that this last condition, which is a scalar product, results in fact, taking
into account (10.9) and (10.10), in a set of complementary conditions:

λ∗i gi (x∗) = 0 ⇒
[∇D (x∗)]i
[∇g (x∗)]i

gi (x∗) = 0 ∀i (10.12)

Taking into account the properties of g (x), this last condition can be written
as follows:

[∇D (x∗)]i gi (x∗) = 0 ∀i (10.13)

To express it in more explicit way, we will have:

1. Either:

gi (x∗) > 0 ⇒ The constraint is inactive (10.14)

then (10.13) is fulfilled if:

λ∗i = 0 ⇔ [∇D (x∗)]i = 0 (10.15)

then “x∗” is the unconstrained solution of the problem.
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2. Or:
λ∗i > 0 ⇔ [∇D (x∗)]i > 0 (10.16)

then (10.13) is fulfilled if:

gi (x∗) = 0 ⇒ The constraint is active (10.17)

3. or, in an extreme case, we have simultaneously:

λ∗i = 0 ⇒ [∇D (x∗)]i = 0 et gi (x∗) = 0 (10.18)

Then, (10.13) is “a fortiori” fulfilled, this is the case where the minimum
corresponding to ∇D (x) = 0 is located on the constraint.

These situations are illustrated (in the one-dimensional case) in the figure
(10.1) for a constraint xi ≥ m ∀i, by expressing the constraint using the
function g (x) = x−m.

Figure 10.1: Karush, Kuhn, Tucker conditions for a constraint of the form
x ≥ m

The form of the function g (x) used to express the constraints is of funda-
mental importance since it directly influences the final form and the behavior
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of the algorithm.
For a non-negativity constraint, in the simplest case, one chooses g (x) = x
that is gi (x) = xi ∀i.

Algorithm.

To solve (10.13), we rely on the fact that −∇D (x) is a descent direction
for the unconstrained problem, and that if M is a positive definite matrix,
then any vector of the form M [−∇D (x)] is also a descent direction for this
problem; this is especially true if M is a diagonal matrix with positive terms.
We can also similarly rely on the successive substitution method [45] to write
an iterative algorithm in the form:

xk+1
i = xki + αki x

k
i fi

(
xk
) [
−∇D

(
xk
)]

i
(10.19)

In this expression αki > 0 is the descent step size which will ensure both the
fulfillment of the constraint and the convergence of the algorithm (in the
sense of contracting applications, we can say that the proper choice of the
step αki ensures that the algorithm (10.19) of the type xk+1 = F

(
xk
)

is a
contraction).
The function fi (x) is a function having positive values when we are in the
constraint domain; it depends on the forms of D (x) and g (x) as well as on
the wished properties for the algorithm, in particular if we want to obtain
a purely multiplicative form.
We now analyze the properties of the algorithm, and in particular, whether
or not the solution fulfills the KKT conditions.
The non-negativity constraint imposes restrictions on the descent step size.
Indeed, to remain within a general framework, we consider that even if D (x)
is not defined everywhere, its definition domain is entirely contained within
the constraint domain.

Therefore, the condition xi ≥ 0 ∀i must be imposed first.

Thus, we define an interior points method (all successive estimates will
fulfill the constraints).
So, as a first step, we need to ensure that at each iteration we have:

xki ≥ 0 ⇒ xk+1
i ≥ 0 ∀i (10.20)

Which leads, from (10.19), to the condition:

1 + αki fi

(
xk
) [
−∇D

(
xk
)]

i
≥ 0 ∀i (10.21)



182 CHAPITRE 10 - ALGORITHMIC POINT OF VIEW.

For
[
−∇D

(
xk
)]
i
> 0, the condition (10.21) is always satisfied, in this case,

for the relevant “i” components, there are no restrictions on the descent
stepsize as far as the fulfillment of the constraints is concerned.
On the other hand, for

[
−∇D

(
xk
)]
i
< 0 the condition (10.21) leads for the

corresponding “i” components to:

αki ≤
1

fi (xk) [∇D (xk)]i
(10.22)

This results in a set of descent step size values that guarantee the non-
negativity of each component separately.
At iteration “k”, the maximum step size to ensure the non-negativity of all
the components of the solution will therefore be :

αkM = min
i

1

fi (xk) [∇D (xk)]i
∀i/

[
∇D

(
xk
)]

i
> 0, xi > 0 (10.23)

This maximum step size value being obtained, the value of the descent step
size independent of the components, ensuring the convergence of the algo-
rithm, must be calculated by a one-dimensional minimisation method (pos-
sibly a simplified method of the Armijo type [5]), within the interval

[
0, αkM

]
in the direction:

dk = diag
[
fi

(
xk
)]

diag
[
xki

] [
−∇D

(
xk
)]

(10.24)

This direction, which is no longer that of the opposite of the gradient, re-
mains nevertheless a descent direction for D (x).
The general algorithm is therefore written:

xk+1 = xk + αk dk (10.25)

We can now check that the conditions of KKT (10.15) and (10.16) are ful-
filled at optimum, indeed:

• if x∗i > 0, according to (10.19), we have necessarily [∇D (x∗)]i = 0, that
is λ∗i = 0; the optimum is the unconstrained minimum, the constraint
is inactive.

• if xi ≈ 0 (xi = ε > 0), according to (10.19), to attain the constraint
it will be necessary to have [∇D (x)]i > 0 that is λ∗i > 0, then, the
optimum is located on the constraint which is active.

• of course, one can have simultaneously x∗i = 0 and [∇D (x∗)]i = 0;
then, the optimum is located on the constraint which is active and it
also corresponds to the unconstrained minimum.
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10.2.2 Standard Algorithms - Non multiplicative

The algorithms of this form that we will be led to use, strictly correspond
to the previous method, in which we take:

fi (x) = 1 ∀i (10.26)

10.2.3 Multiplicative Algorithms.

In the algorithm defined by (10.24) and (10.25), a particular choice of the
function fi (x) will allow to obtain purely multiplicative algorithms.
To characterize it for this specific purpose, we observe that if at the conver-
gence of the algorithm we have ∇D (x∗) =0, then, necessarily the gradient
can be written as the difference of 2 terms of the same sign (we can even
say positive without taking anything away from the generality).
We will therefore write:

−∇D
(
xk
)

= U
(
xk
)
− V

(
xk
)

; U
(
xk
)
> 0 V

(
xk
)
> 0 (10.27)

If we define now:

fi

(
xk
)

=
1

[V (xk)]i
(10.28)

The algorithm (10.19), (10.24), (10.25) can be written:

xk+1
i = xki + αki x

k
i

1

[V (xk)]i

[
U
(
xk
)
− V

(
xk
)]

i
(10.29)

Or also:

xk+1
i = xki + αki x

k
i

{[
U
(
xk
)]
i

[V (xk)]i
− 1

}
(10.30)

We can say, even if it is somewhat trivial, that we have substituted the

convergence condition
[
U
(
xk
)]
i
−
[
V
(
xk
)]
i

= 0 by the condition
[U(xk)]

i

[V (xk)]
i

=

1.
According to (10.22), we will have:

αki ≤
1

1− [U(xk)]
i

[V (xk)]
i

; if
[
−∇D

(
xk
)]

i
< 0 ⇔

[
U
(
xk
)]

i
<
[
V
(
xk
)]

i

(10.31)
The values for αki will all necessarily be greater than 1, so does αkM , and we
have to remember that these are limit values ensuring that the solution is
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positive or zero.
If we choose a descent step size αk = 1 ∀k, the algorithm takes the form
”Purely Multiplicative (P.M.)” which is written:

xk+1
i = xki

{[
U
(
xk
)]
i

[V (xk)]i

}
(10.32)

On the contrary, the algorithm (10.30) can be interpreted as a relaxed ver-
sion of (10.32).
It is quite obvious that in (10.32) the successive estimates will be positive if
the initial estimate is positive, and that moreover, if at a given iteration, a
component of the solution reaches the value zero (i.e. is on the constraint),
this component will remain at zero during the following iterations.
However, it should be noted that in general, nothing guarantees the con-
vergence of a purely multiplicative algorithm of type (10.32), only a specific
analysis of the divergence D (x) considered will make it possible to ensure
it.
Such an analysis has been performed for 2 particular divergences, the root
mean square (RMS) divergence that led to the ISRA algorithm [29], [30] and
the Kullback-Leibler divergence that led to the E.M. algorithms [32],[58] or
Richardson-Lucy [83], [69].
Moreover, we must note that even if the algorithm (10.32) converges, its
convergence speed is fixed, because there is no longer any adjustment pa-
rameter available. Indeed, for a fixed descent direction, this role is played
by the descent step size.
The low convergence speed is one of the drawbacks (frequently mentioned
in the literature), of purely multiplicative algorithms of the type (10.32).

10.2.4 Effect of the function expressing the constraints.

We will show that by modifying the function expressing the constraints
gi (x), we can achieve a change in the speed of convergence of the algorithms
exhibited in the preceding sections (as long as they converge).

For this aim we choose for example gi (x) = x
1/n
i , then, the relation (10.13)

is written: [
xki

]1/n {[
U
(
xk
)]

i
−
[
V
(
xk
)]

i

}
= 0 (10.33)

or also:

xki

{[
U
(
xk
)]n

i
−
[
V
(
xk
)]n

i

}
= 0 (10.34)
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Multiplicative Algorithms.

The equation (10.34) can be written as follows:

xki
[V (xk)]

n
i

{[
U
(
xk
)]n

i
−
[
V
(
xk
)]n

i

}
= 0 ⇒ xki

{[
U
(
xk
)]n
i

[V (xk)]
n
i

− 1

}
= 0

(10.35)
Then, the algorithm (10.19)(10.25) can be written as:

xk+1
i = xki + αkxki


[
U
(
xk
)]n
i

[V (xk)]
n
i

− 1︸ ︷︷ ︸
A

 (10.36)

To illustrate the change in the behavior of the algorithm (10.36) with respect
to the algorithm (10.30), in connection with the form of gi

(
xk
)
, we are

looking at the corrective term “A” which can be developed in the form:

1

[V (xk)]
n
i


n−1∑
p=0

[
U
(
xk
)]n−p−1

i

[
V
(
xk
)]p

i

{[U (xk)]i − [V (xk)]i} = 0

(10.37)
Which means that the fi

(
xk
)

factor here takes the form:

fi

(
xk
)

=
1

[V (xk)]
n
i


n−1∑
p=0

[
U
(
xk
)]n−p−1

i

[
V
(
xk
)]p

i

 (10.38)

The expression of fi
(
xk
)

= 1

[V (xk)]
i

(10.28) here is multiplied by:

B =
1

[V (xk)]
n−1
i


n−1∑
p=0

[
U
(
xk
)]n−p−1

i

[
V
(
xk
)]p

i

 (10.39)

Apart from the obvious change in the direction of descent, we observe that
when we are close to convergence, i.e. when

[
U
(
xk
)]
i
→
[
V
(
xk
)]
i

this
change results in B → n; so the descent step size is progressively multiplied
by a factor that tends towards “n”; so we can expect a gain of a factor of
about “n” on the convergence speed.
In a relaxed algorithm, this effect is counterbalanced by the computation of
the descent step size in the modified direction, so there’s no risk of divergence



186 CHAPITRE 10 - ALGORITHMIC POINT OF VIEW.

for the algorithm, but then the gain in speed is partially suppressed.
On the other hand, if we consider the algorithm written in the form (10.36)
and we choose a descent step equal to 1, we will obtain a purely multiplicative
algorithm which is written as follows:

xk+1
i = xki

[
U
(
xk
)]n
i

[V (xk)]
n
i

(10.40)

This is the form frequently proposed in the litterature [90], [97], to achieve
a convergence speed gain of a “n” factor, but again, as is often the case in
fixed step size algorithms, nothing guarantees convergence, and, to put it
roughly: if you want to go too fast, you often go to the wall....

Standard Algorithm - Non multiplicative.

In this case, the equation (10.34) can be written:

xki


n−1∑
p=0

[
U
(
xk
)]n−p−1

i

[
V
(
xk
)]p

i

{[U (xk)]i − [V (xk)]i} = 0

(10.41)
The fonction fi

(
xk
)

= 1 is here replaced by the expression:

fi

(
xk
)

=

n−1∑
p=0

[
U
(
xk
)]n−p−1

i

[
V
(
xk
)]p

i
(10.42)

It should be noted, however, that with such algorithms, for convergence
problems, the calculation of the descent step size is indispensable, which
somewhat cancels out the effect of acceleration, if any.

10.2.5 Specific case of simplified divergences.

The application of the SGM method and, in general, of the methods de-
scribed in the previous section, implies that the divergences considered have
a minimum (possibly zero) when pi = qi ∀i.
This being the case, in the expressions of certain divergences, simplifications
of the type

∑
i pi =

∑
i qi have been explicitly introduced, or in the case of

comparisons between probability densities,
∑

i pi =
∑

i qi = 1.
When this type of simplification has been introduced in a divergence, al-
though the divergence considered is zero for pi = qi ∀i, the gradient with
respect to “q” may either never cancel out or cancel out for pi 6= qi, as has
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been shown in many examples.
These divergences are thus “a priori” not usable in the context which is ours;
however one can nevertheless try to exploit them in spite of the simplifica-
tions carried out, by introducing variables which are explicitly of the same
sum, for example normalized variables.
We will notice that this operation, whose objective is to enable the use of
the simplified divergences, allows to take into account the sum constraint at
the same time as the non-negativity constraint.
This is fully understandable because when one tries to make a divergence
invariant with respect to “q” by introducing an invariance factor K∗ (p, q) =∑

j pj∑
j qj

, one obtains a divergence which has the same expression as the initial

divergence, but with normalized variables p̄i = pi∑
j pj

and q̄i = qi∑
j qj

, thus,

the normalized variables are used “de facto”, so it is not surprising that the
use of such variables allows to take into account the sum constraint; this is
a kind of justification for the introduction of normalized variables that may
seem somewhat artificial.
In order to explicitly account for these normalizations in the simplified
D (p‖q) divergences, we will write them down as D (p̄‖q̄).
If we denote the measurements by “yi” and the linear model by (Hx)i, the
variables used in the expressions of the simplified divergences will be:

p̄i =
pi∑
j pj

C =
yi∑
j yj

C ; q̄i =
qi∑
j qj

C =
(Hx)i∑
j (Hx)j

C ; C > 0

(10.43)
Two cases occur in a classical way (not restrictive): either the data fields are
typically probability densities, then C = 1, or we deal with deconvolution
problems such as those encountered in image deconvolution, then C =

∑
i yi.

Of course, the problem of convexity of the divergence thus modified arises;
indeed, taking into account the normalization introduced, if the divergence
considered D (p̄‖q̄) is convex with respect to “ q̄ ”, is it still convex with
respect to “q”, therefore with respect to “x”?
One fact is certain: if

∑
j (q)j =

∑
j (Hx)j is maintained constant during

the minimization process, D (p̄‖q̄) will be convex with respect to “x”.
We will use the notation:

D (p̄‖q̄) =
∑
i

d (p̄i‖q̄i) =
∑
i

di (10.44)

Then, we have:
∂D (p̄‖q̄)
∂qm

=
∑
i

∂d (p̄i‖q̄i)
∂q̄i

∂q̄i
∂qm

(10.45)
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With:
∂q̄i
∂qm

=
C∑
j qj

(
δim −

q̄i
C

)
(10.46)

So it comes:

∂D (p̄‖q̄)
∂qm

=
C∑
j qj

[
∂d (p̄m‖q̄m)

∂q̄m
−
∑
i

q̄i
C

d (p̄i‖q̄i)
∂q̄i

]
(10.47)

If we now take into account the fact that we are using a linear model, we
have:

∂D (p̄‖q̄)
∂xl

=
∑
j

∂D (p̄‖q̄)
∂qj

∂qj
∂xl

=
∑
j

hjl
∂D (p̄‖q̄)
∂qj

(10.48)

so:

−∂D (p̄‖q̄)
∂xl

=
C∑
j qj

∑
i

hi,l

[
−∂di (p̄‖q̄)

∂q̄i

]
−

∑
j

hj,l

∑
i

q̄i
C

[
−∂di (p̄‖q̄)

∂q̄i

]
(10.49)

Or also:

− ∂D (p̄‖q̄)
∂xl

=
C∑

j (Hx)j


HT −

∑
j

hj,l

 Q̄

C

[−∂D (p̄‖q̄)
∂q̄

]
l

(10.50)
In this expression, Q is a matrix in which all the lines are identical and equal

to [q̄1 q̄2 .....q̄N ] with
∑

i q̄i = C and
[
∂D
∂q̄

]
is the vector of partial derivatives[

∂di
∂q̄i

]
.

Another writting may be more appealing, considering Richardson’s [83] and
Lucy’s [69] deconvolution algorithms (for example):

− ∂D (p̄‖q̄)
∂xl

= C

∑
j hj,l∑
j qj

{[
H
T − Q

C

] [
−∂D (p̄‖q̄)

∂q̄

]}
l

(10.51)

Here, H is a matrix whose columns are of sum 1.

Algorithm.

From the above considerations, we can write an SGM-type algorithm in
the form:

xk+1
l = xkl + δkxkl

[
−∂D (p̄‖q̄)

∂xl

]
(10.52)
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that is:

xk+1
l = xkl + δkxkl C

∑
j hj,l∑
j q

k
j

{[
H
T − Qk

C

] [
−∂D (p̄‖q̄)

∂q̄k

]}
l

(10.53)

or also:

xk+1
l = xkl +δ

k

{
xkl C

∑
j hj,l∑
j q

k
j

[
H
T
[
−∂D (p̄‖q̄)

∂q̄k

]]
l

− xkl

∑
j hj,l∑
j q

k
j

[
Q
k
[
−∂D (p̄‖q̄)

∂q̄k

]]
l

}
(10.54)

With this algorithm, we have:∑
l

xk+1
l =

∑
l

xkl (10.55)

To show this, we calculate:
∑

l x
k+1
l and we look at what are becoming the

terms between the braces of (10.54).
For the first of these terms, we have:∑
l

xkl C

∑
j hj,l∑
j q

k
j

[
H
T
[
−∂D
∂q̄k

]]
l

=
C∑
j q

k
j

∑
l

qkl

[
−∂D
∂q̄k

]
l

=
∑
l

q̄kl

[
−∂D
∂q̄k

]
l

(10.56)
For the second term of the brace, given the properties of the matrix Q in
which all the lines are identical, the term:[

Q
k
[
−∂D
∂q̄k

]]
l

=

[∑
i

q̄ki

[
−∂D
∂q̄k

]
i

]
l

(10.57)

is independent of “l”; therefore, we can write:

∑
l

xkl

∑
j hj,l∑
j q

k
j

[
Q
k
[
−∂D
∂q̄k

]]
l

=

∑
j

∑
l hj,lx

k
l∑

j q
k
j

∑
i

q̄ki

[
−∂D
∂q̄k

]
i

=
∑
i

q̄ki

[
−∂D
∂q̄k

]
i

(10.58)
To summarize, if we are returning to the equation (10.54), the term between
braces will give in the sum, a null contribution, and we will have:∑

l

xk+1
l =

∑
l

xkl (10.59)

In conclusion, the algorithm (10.53),(10.54) ensures that the sum constraint
is satisfied. This is a consequence of the introduction of the variables in the
form (10.43).
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However, it should be noted that the relation (10.59) is absolutely not equiv-
alent to: ∑

l

(
Hxk

)
l

=
∑
l

(
Hxk+1

)
l

(10.60)

so that the convexity of the initial divergence from the “x” variable is still
not assured unless the H matrix is column-normalized.
If this is the case, the relations (10.59) and (10.60) become equivalent; this
property will be reused in the following section.

Purely multiplicative form of the algorithm.

Given the properties of H and of the matrix Q
C (for each line, the sum

of the terms is equal to 1), in the relation (10.53), we can make −∂D
∂q̄ ≥

0 without changing the expression of the gradient, by adding a constant

(−mini

[
−∂di
∂q̄i

]
).

We denote
[
−∂D

∂q̄

]
d

the shifted vector.[
−∂D
∂q̄

]
d

= −∂D
∂q̄
−min

i

[
−∂di
∂q̄i

]
+ ε (10.61)

We can therefore envisage a decomposition of the gradient into a difference
of 2 positive terms.
From this remark, in the case of the simplified divergences considered here,
one can write an algorithm in the form:

xk+1
l = xkl + δkxkl

{[
H
T − Q

k

C

][
−∂D
∂q̄k

]
d

}
l

(10.62)

Or also:

xk+1
l = xkl + δkxkl

{[
H
T
(
−∂D
∂q̄k

)
s

]
l

−
∑
i

q̄ki
C

(
− ∂di
∂q̄ki

)
d

}
(10.63)

It has already been noted that the second term of the expression between
braces is a constant independent of the component “l”.

As long as
∑

i q̄
k
i

(
− ∂di
∂q̄ki

)
d
6= 0, which is generally the case, and with a

descent step size δl = 1, we can exhibit a purely multiplicative form:

xk+1
l = xkl

[
H
T
[
− ∂D
∂q̄k

]
d

]
l∑

i
q̄ki
C

(
− ∂di
∂q̄ki

)
d

= xkl

C
[
HT

[
− ∂D
∂q̄k

]
d

]
l∑

j hj,l
∑

i q̄
k
i

(
− ∂di
∂q̄ki

)
d

(10.64)
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At this point, if we calculate
∑

l x
k+1
l , we obtain nothing but a weighted

sum that is difficult to interpret, indeed,
∑

j hj,l depends on the “l” com-
ponent, on the other hand, if we make the assumption of a matrix H nor-
malized to 1 in columns, i.e.

∑
j hj,l = 1 ∀l, (which is the case in classical

deconvolution problems), we arrive at something simpler which is written
as follows: ∑

l

xk+1
l =

∑
l

(
Hxk

)
l

=
∑
l

xkl (10.65)

Consequently, by introducing the variables in the form (10.43), we also ob-
tained a purely multiplicative algorithm making it possible to fulfill the sum
constraint, at least in the case where the H matrix is normalized in columns,
i.e. in the case of the usual convolution with a positive kernel with integral
equal to 1.

10.3 Introduction of the sum constraint.

In this section, we will rely on the developments of the previous section
and introduce an additional constraint which is the sum constraint on the
unknowns “xi”. Several methods are possible to introduce this constraint;
their use depends essentially on the properties of the divergences considered.

10.3.1 Simplified divergences.

The case of these divergences has been addressed in the previous paragraph.
Indeed, the introduction of an invariance factor equal to

K∗ (p, q) =

∑
j pj∑
j qj

(10.66)

allows to show simplified divergences in which the variables are explicitly of
the same sum. Moreover, we observe that (with the exception of a multi-
plicative factor which depends only on

∑
j pj and which can be omitted),

these divergences are not only invariant with respect to the variable “q”,
but also with respect to the variable “p”.
This property will make it possible to use this type of divergence for regu-
larization problems in which the both arguments of the divergence depends
on the true variable “x”.
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10.3.2 Non-simplified divergences.

This paragraph concerns the Csiszär divergences built on standard convex
functions as well as the Bregman divergences and the Jensen divergences.
With these divergences, we will have pi = yi and qi = (Hx)i.
The algorithms for minimizing these divergences under non-negativity con-
straint are derived from KKT conditions and can result in multiplicative
algorithms.
The sum constraint

∑
i xi = C, C > 0 can be taken into account by intro-

ducing the variable change xi = ui∑
j uj

C.

The problem that arises then is that of the convexity of the divergence to
be minimized with respect to the new variable “u”.
An answer to this problem can be the following: the objective function (i.e.
the considered divergence) being supposed to be convex with respect to “q”,
therefore with respect to “x” since q = Hx, it will be convex with respect to
“u” if

∑
j uj is constant during the minimization process, i.e. in the course

of the iterations.
We must therefore write an algorithm of minimization with respect to “u”
of the divergence D (p‖q) = D (y‖Hx) with: xi = ui∑

j uj
C; this algorithm

must be such that during the iterations
∑

j u
k
j = Cst.

Using the notation:

D (p‖q) =
∑
i

d (pi‖qi) (10.67)

we will have:

∂D

∂xm
=
∑
i

∂d (pi‖qi)
∂qi

∂qi
∂xm

=

[
HT ∂D (p‖q)

∂q

]
m

(10.68)

Then the gradient of D with respect to “u” is written as follows:[
∂D

∂u

]
l

=
∑
m

∂D

∂xm

∂xm
∂ul

(10.69)

With:
∂xm
∂ul

=
1∑
j uj

(C δl m − xl) (10.70)

we have: [
∂D

∂u

]
l

=
1∑
j uj

[
C
∂D

∂xl
−
∑
m

xm
∂D

∂xm

]
(10.71)
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and we have, immediately: ∑
l

ul

[
−∂D
∂u

]
l

= 0 (10.72)

This relationship is the key point of the affair.

Indeed, the iterative minimization algorithm with respect to “u”, founded
on the KKT conditions, ensuring non-negativity is written in the form
(10.19):

uk+1
l = ukl + δkukl

[
− ∂D
∂uk

]
l

(10.73)

Then, with (10.72) we will have:∑
l

uk+1
l =

∑
l

ukl (10.74)

In the course of the iterations, the trajectory of the solutions will thus be
contained in the convexity domain of the objective function; one can thus
return to the initial variable “x” by dividing the 2 members of (10.73) by∑

l u
k+1
l =

∑
l u

k
l , and we will have:

xk+1
l = xkl + δk

1∑
j u

k
j

xkl

[
C

(
− ∂D
∂xk

)
l

−
∑
m

xkm

(
− ∂D
∂xk

)
m

]
(10.75)

Or also:

xk+1
l = xkl + ζkxkl

[
C

(
− ∂D
∂xk

)
l

−
∑
m

xkm

(
− ∂D
∂xk

)
m

]
(10.76)

Note that in this algorithm the second term in square brackets is a constant
that is independent of the component considered; moreover, the quantity:

ζk = δk
1∑
j u

k
j

(10.77)

represents globally a descent step size which is calculated at each iteration
by a one-dimensional minimization procedure as indicated for the S.G.M.
method.
Taking into account the relation

∑
i xi = C, we will thus have at each

iteration, independently of the descent step size:∑
l

xk+1
l =

∑
l

xkl (10.78)

To fulfill the sum constraint at each iteration, it is thus only necessary to
set an initial estimate “x0” such that

∑
i x

0
i = C.
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* Multiplicative form.

From the algorithm, a multiplicative form can be derived.
To do this, we shift the components of the opposite of the gradient to make
them all positive:[

− ∂D
∂xkj

]
d

=

[
− ∂D
∂xkj

]
−min

l

[
− ∂D
∂xkl

]
+ ε (10.79)

The introduction of this offset doesn’t change the algorithm.
We can then propose an algorithm that will be the basis of the purely mul-
tiplicative form, which is written:

xk+1
l = xkl + ζkxkl

 C
(
− ∂D
∂xkl

)
d∑

m x
k
m

(
− ∂D
∂xkm

)
d

− 1

 (10.80)

With this algorithm, the sum-holding property is preserved over iterations,
regardless of the descent step size.
The purely multiplicative form will, as always, be obtained by using a de-
scent step size ζk = 1 ∀k, but then convergence is no longer guaranteed.

10.3.3 Divergences invariant by change of scale.

For these divergences, we rely on the method developed in the previous
sections to build a minimization algorithm that takes into account the non-
negativity constraint.
As far as the summation constraint is concerned, we have two methods at
our disposition:
* Either we normalize at each iteration which does not lead to any variation
of the objective function taking into account the invariance property.
* Either we rely on a specific property of invariant divergences we previously
established.

* Property: Considering a divergence D (p‖q), which we render invari-
ant by scale change using any invariance factor, whether it corresponds to it
(“nominal” invariance factor) or not, we obtain a divergence DI (p‖q), for
which we always have: ∑

l

ql
∂DI (p‖q)

∂ql
= 0 (10.81)
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This property is analogous to(10.72).

Example: Mean square deviation.

The basic divergence is:

MC =
∑
i

(pi − qi)2 (10.82)

By introducing the invariance factor K, we have:

MCI =
∑
i

(pi −Kqi)2 (10.83)

The gradient with respect to “qj” is written, all simplifications made:

∂MCI

∂qj
= −2K (pj −Kqj)− 2

∂K

∂qj

∑
i

qi (pi −Kqi) (10.84)

Then, we have:

∑
j

qj
∂MCI

∂qj
= −2

∑
j

qj (pj −Kqj)

K +
∑
j

qj
∂K

∂qj

 (10.85)

Then, if we use the nominal invariance factor, i.e.:

K0 (p, q) =

∑
l plql∑
l q

2
l

(10.86)

which is a solution to the differential equation:

K +
∑
j

qj
∂K

∂qj
= 0 (10.87)

the expression of the gradient (10.84) becomes simpler because the second
term is zero.
We still have the property (10.81).
Similarly, if we use another expression of K, for example:

K∗ (p, q) =

∑
l pl∑
l ql

(10.88)

which is another solution of (10.87), we also obtain an invariant divergence,
the expression of the gradient (10.84) does not simplify, but we still have
the property (10.81).
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Some comments on the use of K∗ (p, q).

We recall that when a divergence D(p‖q) is made invariant by using the
invariance factor K∗(p, q), the divergence obtained is similar to the initial
divergence in which the variables “p” and “q” are replaced by normalized
variables p̄i = pi∑

j pj
and q̄i = qi∑

j qj
, possibly with a multiplicative scalar

factor which depends only on the measures “pi” and which can be omitted;
simplifications can then appear.
Therefore, the invariant divergence DI(p‖q) obtained with this particular
invariance factor is denoted as D(p̄‖q̄) with:

D(p̄‖q̄) =
∑
i

d(p̄i‖q̄i) (10.89)

and the gradient with respect to “q” is written as follows:

∂DI(p‖q)
∂ql

=
∂D(p̄‖q̄)
∂ql

(10.90)

It is calculated as follows:

∂D(p̄‖q̄)
∂ql

=
∑
i

∂d(p̄i‖q̄i)
∂ql

=
∑
i

∂d(p̄i‖q̄i)
∂q̄i

∂q̄i
∂ql

(10.91)

With:
∂q̄i
∂ql

=
δil∑
j qj
− q̄i∑

j qj
(10.92)

So:
∂D(p̄‖q̄)
∂ql

=
1∑
j qj

[
∂d(p̄l‖q̄l)
∂q̄l

−
∑
i

q̄i
∂d(p̄i‖q̄i)

∂q̄i

]
(10.93)

We can observe that the classical relationship for invariant divergences:∑
l

ql
∂DI(p‖q)

∂ql
=
∑
l

ql
∂D(p̄‖q̄)
∂ql

= 0 (10.94)

is fulfilled.

Algorithm:
In the context of the use of a linear model q = Hx, the calculation of the
gradient with respect to “x”, true unknowns of the problem, follows by the
relation:

∂DI(p‖q)
∂xl

=

[
HT ∂DI(p‖q)

∂q

]
l

(10.95)
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Given this relationship, the algorithms for minimizing scale invariant di-
vergences under non-negativity and sum-of-unknowns constraints can be
written directly according to the method indicated above, in the form of:

xk+1
l = xkl + αkxkl

[
−HT ∂DI(p‖qk)

∂qk

]
l

(10.96)

Non-negativity and convergence are ensured by a computation of the descent
step size, but whatever its value, we will always have:∑

l

xk+1
l =

∑
l

xkl (10.97)

Indeed:∑
l

xk+1
l =

∑
l

xkl + αk
∑
l

{
xkl

[
HT

(
−∂DI (p‖q)

∂qk

)]
l

}
(10.98)

Which can be written:∑
l

xk+1
l =

∑
l

xkl + αk
∑
l

{(
Hxk

)
l

(
−∂DI (p‖q)

∂qk

)
l

}
(10.99)

And then:∑
l

xk+1
l =

∑
l

xkl + αk
∑
l

{
qkl

(
−∂DI (p‖q)

∂qk

)
l

}
(10.100)

Taking into account the property (10.81) we have:∑
l

xk+1
l =

∑
l

xkl (10.101)

It is therefore enough to fix the sum of the components of the initial estimate
to maintain this sum during the iterative process.
Moreover, as for all the algorithms proposed in the preceding sections, the
maximum step size αkM ensuring non-negativity is calculated first,
then the descent step size ensuring the convergence of the algorithm is cal-
culated at each iteration by a one-dimensional search method in the interval
[0, αkM ].
On the other hand, it should be noted that a purely multiplicative algorithm
deduced from the SGM method would not spontaneously possess this prop-
erty of maintaining the sum.
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However, nothing prevents us from proposing such a purely multiplicative
form. Indeed, for all the divergences considered, we can observe (although
there is no formal demonstration of this property) that the opposite of the
gradient is always written as the difference of 2 positive terms, i.e.:[

−HT ∂DI(p‖qk)
∂qk

]
l

= Ukl − V k
l ;Ukl > 0 ;V k

l > 0 (10.102)

Then, following the S.G.M. method, we can propose a multiplicative algo-
rithm obtained using a descent step size αk = 1 ∀k written as:

xk+1
l = xkl

[
Uk

V k

]
l

(10.103)

Of course, there is no evidence of convergence of such algorithms for all the
divergences, since the descent step size is fixed, however, the non-negativity
constraint is satisfied for a positive initial estimate.
On the other hand, the sum constraint, which is not automatic as in algo-
rithms of the form (10.96), can be ensured here by a normalization at each
iteration; indeed, taking into account the invariance property of the diver-
gences considered, this operation does not modify the value of the objective
function i.e. of the divergence.



chapter 11 -
Applications to the Non
Negative Matrix
Factorization.

11.1 Introduction.

In this chapter, there is no attempt to repeat the work dealing with factor-
ization in non-negative matrices (N.M.F.); a very extensive bibliography on
this subject can be found in [25] and in [15].
Instead, we will develop algorithms that take into account the sum con-
straints involved in NMF.
In addition, we will demonstrate the interest of using scale invariant di-
vergences; indeed, some properties of these divergences allow to take into
account easily sum constraints. These properties will be established, and
their influence on the corresponding algorithms will be shown.
Regularized algorithms are also considered, whether the divergences are in-
variant or not.
Some problems related to purely multiplicative regularized algorithms as
proposed in the literature have been reported in Appendix 9 and it will be
explained why such problems do not appear in the methods proposed here.

11.1.1 Linear unmixing.

The problem is presented in the context of hyperspectral data.
At the simplest level, which is the linear unmixing problem, we have the
measurement of a spectrum (1 only). The measured data are therefore the
intensity values at different wavelengths, arranged as a vector “y”; this can
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be seen as the decomposition over wavelengths of the intensity in 1 pixel of
an image. The sum of these intensities thus represents the total intensity
“a” in the pixel considered

∑
i yi = a.

On the other hand, we have a certain number of spectra of simple elements
(endmembers); each of these spectra is arranged in a column (vector), the
juxtaposition of these columns forming a table that can be considered as a
matrix H.
The problem is to find the weights “x” (positive or zero, of course) such that
the observed spectrum is described as a weighted sum of the basic spectra,
that is, of endmembers.
So we have to solve with respect to “x” a problem that is written in a matrix
form:

y = Hx (11.1)

Furthermore, we would want that these unknown coefficients sum to 1, in
order to obtain percentages of each of the elementary spectra in the mea-
sured spectrum.
Without further details on the elementary spectra available (for example
the integrals of these spectra), the problem seems to me to be unsolvable;
for a solution to be envisaged, all the spectra considered, both the measured
and the reference spectra, would have to be of the same integral (i.e. the
corresponding vectors would have to be of the same sum).
One possibility is to use reference spectra normalised to 1, and to impose
as a constraint on the sum of the weighting coefficients

∑
i xi =

∑
i yi, the

percentages being then easily obtained.
Another solution is to use reference spectra normalized to 1, and to nor-
malize the measured spectrum to 1, then the constraint on the sum of the
weighting coefficients at 1 is immediate.
In both cases, the common point is the normalization of the reference spec-
tra, i.e. the sum to 1 of the columns of the H matrix.
However, if we perform a simulation, that is, if we generate the measured
spectrum as a weighted sum of elementary spectra with weighting coefficients
of sum 1, we can hope to find a solution to the inverse problem, whatever
the integrals of the reference spectra, but then we are very far from the real
problem.
The real case that comes closest to this situation is the one where the “end-
members” with the “right” properties are extracted from the data prior to
solving the inverse problem.
Finally, in a real case, an additional problem may arise, because if we have a
very large set of reference spectra, even if we assume that all integrals prob-
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lems are solved, we may think that all reference spectra will not necessarily
contribute to the measured spectrum, then the corresponding weighting co-
efficients will be zero, so we have to consider that the solution of the problem
i.e. the vector of weighting coefficients has a “sparse” structure, which in-
troduces an additional constraint.

11.1.2 Multispectral case.

Here, the problem becomes a little more complicated.
Suppose we have an image, the result of an observation; the intensity in
each of the pixels of the image is decomposed according to wavelengths as
in the previous section, so we will have as many measured spectra as there
are pixels in the image; each of these spectra (vector) constitutes a column
of a table that represents the measurements. For the moment, it is only a
table (not yet a matrix).
Note that the sum of the components in a column represents the total inten-
sity in the corresponding pixel and there is no reason why all these values
should be equal.
Knowing as in the previous section a set of reference spectra (column vec-
tors) juxtaposed to form a matrix H, the problem is thus to find for each
measured spectrum, the vector (column) of the weighting coefficients.
This is just a succession of problems similar to the one described in the
previous section.
If, now, to see the problem as a whole, the (non-negative) weights are ar-
ranged in column vectors, the juxtaposition of these columns forms a table
X which can be called a matrix and treated as such.
The problem can now be written in matrix form:

Y = H X (11.2)

Where Y is of dimension (L ∗ C); “L” is the number of wavelengths, “C” is
the number of pixels in the observed image,
H is of dimension (L ∗M); “M” is the number of reference spectra,
X is (M ∗ C).
Obviously, “L” and “C” are fixed by the experimental conditions from which
the measured spectra are obtained, while “M” depends on the number of
reference spectra that are available.
If the columns of the matrix H are normalized to 1, then we have

∑
i Yij =∑

iXij , ∀j; this last inequality will constitute a constraint of the problem.
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11.1.3 Case of the NMF.

Here, things get even more complicated, indeed, in this case, we only have
the Y measurements and we’re looking for both the reference spectra matrix
H and the weighting coefficients matrix X.
The first difficulty which appears in an obvious way is the multiplicity of
the solutions, indeed, the relation Y = HX can be written Y = HDD−1X,
with D invertible with non-negative terms, and any decomposition of the
form H̃ = HD, X̃ = D−1X also provides a solution.
From this point of view, the introduction of constraints such as

∑
iHij =

1 ∀j and
∑

iXij =
∑

i Yij ∀j, helps to reduce the ambiguity.
However, an appropriate choice of “M” is generally critical, this choice is
of course problem dependent; nevertheless, “M” is often chosen such that
M << min(L,C), which is singularly imprecise. In Lee and Seung’s article
[67] another rule is proposed, it is written M < LC

L+C , which corresponds to
the rule “number of data > number of unknowns” which can be understood
in the context of systems of linear equations.
Finally, it’s clear that the product HX is only an approximation of Y to
the rank “M”.

11.2 Generalities.

All the problems previously mentioned imply looking for the solution of a
minimization problem with respect to the unknown parameters, a discrep-
ancy between the measures Y ≡ P and the linear model HX ≡ Q. By
noting D (P‖Q) the divergence between the tables (matrices) P and Q:

D (P‖Q) =
∑
ij

D (Pij‖Qij) =
∑
ij

Dij (11.3)

With for our applications:

Pij = Yij ; Qij = [HX]ij =
∑
l

H
il
Xlj (11.4)

The minimization techniques proposed in the literature and used in this
book require the calculation of the gradient of this divergence with respect
to the elements of the matrix H as well as with respect to the elements of
the matrix X.
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* Gradient with respect to the elements of the matrix X.

By introducing the matrix [A] such that:

[A]ij =

[
∂D

∂Q ij

]
(11.5)

We can write in matrix form:[
∂D (P‖Q)

∂X

]
nm

=
∂D (P‖Q)

∂Xnm
=
[
HTA

]
nm

=
∑
l

HT
nl

[
∂D

∂Q lm

]
(11.6)

- Details of the calculation.

The gradient is derived as follows:

∂D (P‖Q)

∂Xnm
=
∑
ij

D
(
Yij‖ [HX]ij

)
∂ [HX]ij

∂ [HX]ij
∂Xnm

(11.7)

With:
∂ [HX]ij
∂Xnm

=
∑
l

H
il

∂Xlj

∂Xnm
=
∑
l

Hilδlnδjm (11.8)

We have:
∂ [HX]ij
∂Xnm

= Hinδjm (11.9)

Then:

∂D (P‖Q)

∂Xnm
=
∑
ij

∂D
(
Yij‖ [HX]ij

)
∂ [HX]ij

Hinδjm (11.10)

And finally:
∂D (P‖Q)

∂Xnm
=
∑
i

∂D (Yim‖ [HX]im)

∂ [HX]im
Hin (11.11)

Or also:

∂D (P‖Q)

∂Xnm
=
∑
i

HT
ni

∂D (Yim‖ [HX]im)

∂ [HX]im
=
∑
i

HT
ni

[
∂D

∂Q im

]
(11.12)

* Gradient with respect to the elements of the matrix H.

Using the matrix [A] (11.5), we will have in matrix form:[
∂D (P‖Q)

∂H

]
nm

=
∂D (P‖Q)

∂Hnm
=
[
AXT

]
nm

=
∑
j

[
∂D

∂Qnj

]
XT
jm (11.13)
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- Details of the calculation.

The calculation is as follows:

∂D (P‖Q)

∂Hnm
=
∑
ij

∂D
(
Yij‖ [HX]ij

)
∂ [HX]ij

∂ [HX]ij
∂Hnm

(11.14)

We have:
∂ [HX]ij
∂Hnm

=
∑
l

∂Hil

∂Hnm
Xlj =

∑
l

δinδlmXlj (11.15)

Then:
∂ [HX]ij
∂Hnm

= δinXmj (11.16)

So:

∂D (P‖Q)

∂Hnm
=
∑
ij

∂D
(
Yij‖ [HX]ij

)
∂ [HX]ij

δinXmj (11.17)

And finally:

∂D (P‖Q)

∂Hnm
=
∑
j

∂D
(
Ynj‖ [HX]nj

)
∂ [HX]nj

Xmj (11.18)

Or also:

∂D (P‖Q)

∂Hnm
=
∑
j

∂D
(
Ynj‖ [HX]nj

)
∂ [HX]nj

XT
jm =

∑
j

[
∂D

∂Qnj

]
XT
jm (11.19)

11.3 Algorithmic.

11.3.1 Principle of the method.

The unknowns of the problem are the matrices H and X of the product
HX ≡ Q, the data are the matrix Y ≡ P . We look for H and X by
minimizing a divergence between the matrices Y and HX which is written
as follows:

X; H; = Arg min︸ ︷︷ ︸
X,H

D (Y ‖ [HX]) = Arg min︸ ︷︷ ︸
X,H

∑
j

∑
i

D
(
Yij‖ [HX]ij

)
(11.20)

We can notice that we so write a divergence between the columns of the two
matrices, and that we then sum over all the columns.
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The method of minimization generally proposed is an iterative method in
which one operates alternately on the two unknowns which can be summa-
rized for example according to the diagram:
1 - Iteration on H: Xk , Hk → Xk , Hk+1

2 - Iteration on X: Xk , Hk+1 → Xk+1 , Hk+1

It is this flowchart that will be considered in the rest of the computations,
but the order of update is not mandatory.
In this diagram, one point remains to be clarified: is the updating done
element by element, or column by column?
From my point of view, given the constraints imposed on the columns of H
and X, it is obvious to operate column by column.
Indeed, the constraints imposed on the unknowns are as follows:
* Hij ≥ 0 ∀i, j.
* Xij ≥ 0 ∀i, j.
*
∑

iHij = 1 ∀j.
*
∑

iXij =
∑

i Yij ∀j.
If the columns of the matrix Y are normalized to 1, the sum constraint on
X becomes:
*
∑

iXij = 1 ∀j.
The main difficulty encountered in this problem is that even if the divergence
considered is separately convex in H and X, it is not jointly convex with
respect to the two unknowns; consequently, there is no guarantee that the
absolute minimum is reached by the proposed algorithmic method, one can
only say that a local minimum of the objective function is reached, therefore
a solution that is not necessarily optimal.

* An alternative approach.

In the problems of searching for saddle points in constrained optimization
based on Lagrangian methods, we are led to operate on primary variables
in a minimization step and on dual variables in a maximization step.
Two algorithmic methods are proposed [28] (p.131-132, fig.3.10-3.11):
1 - The Arrow-Hurwitz method, in which an iteration step (minimization) is
performed on the primal variables followed by an iteration step (maximiza-
tion) on the dual variables.
The procedure described in the previous section has a clear analogy with
this method, it is of course understood that in the case of NMF, we must
successively minimize with respect to the two unknowns.
2 - The Uzawa method in which one performs a mininization (several itera-
tive steps) on the primal variables until a stop criterion is met, followed by



206 CHAPTER 11 - APPLICATIONS TO THE N.M.F.

a maximization (several iterative steps) on the dual variables until a stop
criterion is met, and so on.
The Uzawa method allows us to consider a procedure for MMF that would
consist of first minimizing H (for example), doing several iteration steps
(until a stop criterion is fulfilled), then repeating the same procedure on X,
and so on.
Such a procedure has never been considered to my knowledge for NMF,
however, the example shown in [28] seems to indicate better results with the
Uzawa method in terms of convergence speed.
Of course, this is just an example applied to saddle point research, i.e. in a
very different context, and therefore nothing is well established....
This alternative method is not used here; it has been used for blind decon-
volution in [59], [60].

11.3.2 Iterations with respect to H.

Whatever the type of divergence used, whether it is scale invariant
with respect to Q or non-invariant, taking into account the sum
constraint on the columns of H implies to proceed by means of a
variable change method.

- Important remark.
Multiplicative algorithms can always be obtained by introducing
a shift in the terms constituting the gradient of the divergence
considered; this point will be developed in the following section.

**In this section, we note Q = HkXk.

1 - Non-multiplicative algorithm.

In order to take into account the constraint
∑

iHij = 1 ∀j, we proceed to
the change of variables:

Hij =
zij∑
l zlj

(11.21)

First, we build an iterative algorithm on “z”, then we go back to an algo-
rithm on H.
To do that, we have:

∂D

∂znm
=
∑
i

∂D

∂Him

∂Him

∂znm
(11.22)
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With:
∂Him

∂znm
=

1∑
l zlm

(δin −Him) (11.23)

We have:
∂D

∂znm
=
∑
i

∂D

∂Him

1∑
l zlm

(δin −Him) (11.24)

And finally:

∂D

∂znm
=

1∑
l zlm

[
∂D

∂Hnm
−
∑
i

Him
∂D

∂Him

]
(11.25)

One can immediately verify that we have:∑
n

znm
∂D

∂znm
= 0 (11.26)

We are reasoning on the column “m” and we write in a first step, an algo-
rithm on the “n” component:

zk+1
nm = zknm + αknmz

k
nm

[
− ∂D

∂zknm

]
(11.27)

Taking into account the considerations on the determination of the descent
step size outlined in Chapter 10, an algorithm that ensures the non-
negativity and convergence of the algorithm for all “n” components can
be written in the form:

zk+1
nm = zknm + αkmz

k
nm

[
− ∂D

∂zknm

]
(11.28)

and finally, taking into account (11.25):

zk+1
nm = zknm + αkm

zknm∑
l z
k
lm

[(
− ∂D

∂Hk
nm

)
−
∑
i

Hk
im

(
− ∂D

∂Hk
im

)]
(11.29)

From this expression, according to (11.21) and (11.26) we can easily verify
that we have, ∀m: ∑

n

zk+1
nm =

∑
n

zknm (11.30)

With such an algorithm, we move in a solution space such that
∑

n z
k
nm =

Cte ∀k, so if the divergence considered is convex with respect to H, the
convexity is maintained during the change of variables.



208 CHAPTER 11 - APPLICATIONS TO THE N.M.F.

Therefore, going back to the algorithm (11.29), and dividing the whole by∑
n z

k
nm, it comes:

Hk+1
nm = Hk

nm + αkm
Hk
nm∑
l z
k
lm

[(
− ∂D

∂Hk
nm

)
−
∑
i

Hk
im

(
− ∂D

∂Hk
im

)]
(11.31)

or also, with δkm = αkm∑
l z
k
lm

:

Hk+1
nm = Hk

nm + δkmH
k
nm

[(
− ∂D

∂Hk
nm

)
−
∑
i

Hk
im

(
− ∂D

∂Hk
im

)]
(11.32)

Which can be written in condensed form:

Hk+1
nm = Hk

nm + δkmH
k
nm

{(
− ∂D

∂Hk
nm

)
−
[(
Hk
)T (

− ∂D

∂Hk

)]
mm

}
(11.33)

Note that the second of the terms between braces is a constant for the
column “m” considered.
It can then be observed that regardless of the descent step size δkm, we have
∀m: ∑

n

Hk+1
nm =

∑
n

Hk
nm = 1 (11.34)

The algorithm (11.32) (11.33) represents the algorithm correspond-
ing to the iterations on H for the NMF.
It is initialized with:
* H0 such that

∑
nH

0
nm = 1 ∀m.

* X0 such that
∑

nX
0
nm =

∑
n Ynm ∀m.

Note that in this algorithm, one can update the H matrix, column
by column.
Using the expression of the gradient relative to H (11.13), we can also write
the algorithm (11.32) in the form:

Hk+1
nm = Hk

nm + δkmH
k
nm

[(∑
l

[
− ∂D

∂Qnl

]
XT
lm

)

−
∑
i

Hk
im

(∑
l

[
− ∂D

∂Qil

]
XT
lm

)]
(11.35)

Or else in condensed form:

Hk+1
nm = Hk

nm + δkmH
k
nm

{[(
−∂D
∂Q

)
XT

]
nm

−
[(
Hk
)T (

−∂D
∂Q

)
XT

]
mm

}
(11.36)

With, of course, in that expression, X ≡ Xk and Q = HkXk.
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2 - Multiplicative algorithm.

If we want to obtain a multiplicative algorithm while preserving the non-
negativity and sum constraints, we must first introduce an shift of the com-

ponents of the opposite of the gradient

[
− ∂D
∂Hk

ij

]
in such a way as to make

them all non-negative; to do this, one writes:[
− ∂D

∂Hk
ij

]
d

=

[
− ∂D

∂Hk
ij

]
−min

i

[
− ∂D

∂Hk
ij

]
+ ε (11.37)

Taking into account the definition of Hij (11.21), the algorithm (11.32) can
be rewritten:

Hk+1
nm = Hk

nm + δkmH
k
nm

[(
− ∂D

∂Hk
nm

)
d

−
∑
i

Hk
im

(
− ∂D

∂Hk
im

)
d

]
(11.38)

With this algorithm, the property (11.34) is maintained and using the SGM
method presented in Chapter 10, we can write an algorithm which is the
basis of the multiplicative forms, as follows:

Hk+1
nm = Hk

nm + δkmH
k
nm


(
− ∂D
∂Hk

nm

)
d∑

iH
k
im

(
− ∂D
∂Hk

im

)
d

− 1

 (11.39)

As is always the case, a purely multiplicative algorithm can be obtained if
one chooses for all iterations a descent step equal to 1.
The algorithm is then written:

Hk+1
nm = Hk

nm


(
− ∂D
∂Hk

nm

)
d∑

iH
k
im

(
− ∂D
∂Hk

im

)
d

 (11.40)

Using the expression of (11.13), we can also write, with X ≡ Xk et Q =
HkXk:

Hk+1
nm = Hk

nm


(∑

l

[
− ∂D
∂Qnl

]
XT
lm

)
d∑

iH
k
im

(∑
l

[
− ∂D
∂Qil

]
XT
lm

)
d

 (11.41)

But of course, if the non-negativity and sum constraints are fulfilled, there
is no guarantee that such an algorithm will be convergent.
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11.3.3 Iterations on X.

For these unknowns, in order to impose the constraint
∑

iXij =
∑

i Yij ∀j
(possibly =1), two cases must be distinguished depending on whether the
divergence to be minimized is scale invariant or not.
If a non-invariant divergence is used, a change in variables similar to that
used for H must be introduced.
If an invariant divergence is used, the implementation of the general prop-
erty of these divergences deduced from (3.7), allows to ensure that the sum
constraint is satisfied, without it being necessary to introduce a change of
variables; this aspect will be developed in the section devoted to the scale
invariant divergences.

In this section, we develop the case of non-invariant diver-
gences; we therefore proceed by change of variables.

The use of non-invariant divergences associated with the vari-
able change method will lead to multiplicative algorithms for X in
a similar way to what has been done for H.

We have obtained Hk+1, we know Xk, we are looking for Xk+1,
so here, Q = Hk+1Xk.

1 - Non-multiplicative algorithm.

Taking into account the sum constraints imposed on the columns of the
matrix X, the change of variables corresponding to X is written as follows:

Xij =
tij∑
l tlj

∑
l

Ylj ⇔
∑
i

Xij =
∑
l

Ylj (11.42)

For a divergence D (P‖Q), the gradient with respect to “t” is written as:

∂D (P‖Q)

∂tnm
=
∑
i

∂D (P‖Q)

∂Xim

∂Xim

∂tnm
(11.43)

With:

∂Xim

∂tnm
=

∑
l Ylm∑
l tlm

[δin]− Xim∑
l tlm

=

∑
l Ylm∑
l tlm

[δin]− Xim∑
l tlm

(11.44)

We have:

∂D (P‖Q)

∂tnm
=

∑
l Ylm∑
l tlm

∂D (P‖Q)

∂Xnm
− 1∑

l tlm

∑
i

Xim
∂D (P‖Q)

∂Xim
(11.45)
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From this we deduce the iterative algorithm corresponding to the component
“n” of the column “m”:

tk+1
nm = tknm + αknmt

k
nm

[∑
l Ylm∑
l t
k
lm

(
−∂D (P‖Q)

∂Xk
nm

)
− 1∑

l t
k
lm

∑
i

Xk
im

(
−∂D (P‖Q)

∂Xk
im

)]
(11.46)

Taking into account the considerations on the determination of the descent
step size as specified in Chapter 10, an algorithm that will guarantee the
non-negativity and convergence for all the components “n” can be written
in the form:

tk+1
nm = tknm + αkmt

k
nm

[∑
l Ylm∑
l t
k
lm

(
−∂D (P‖Q)

∂Xk
nm

)
− 1∑

l t
k
lm

∑
i

Xk
im

(
−∂D (P‖Q)

∂Xk
im

)]
(11.47)

We can then easily verify that we have:∑
n

tk+1
nm =

∑
n

tknm (11.48)

Consequently, if the divergence considered is convex with respect to X, the
change of variables will not modify this property.

By introducing the descent step size δkm = αkm∑
l t
k
lm

, we can therefore go back

to the initial variables by dividing the two members of (11.47) by
∑

n t
k
nm,

which leads to:

Xk+1
nm = Xk

nm + δkmX
k
nm

[(∑
l

Ylm

)(
−∂D (P‖Q)

∂Xk
nm

)

−
∑
i

Xk
im

(
−∂D (P‖Q)

∂Xk
im

)]
(11.49)

Which can also be written in condensed form:

Xk+1
nm = Xk

nm + δkmX
k
nm

{(∑
l

Ylm

)(
−∂D (P‖Q)

∂Xk

)
nm

−
[(
Xk
)T (

−∂D (P‖Q)

∂Xk

)]
mm

}
(11.50)
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Note that the second term in the braces is a constant for the whole “m”
column.
With an initialization such as

∑
nX

0
nm =

∑
n Ynm ∀m, taking into account

the change of variables (11.42), we can check without difficulty that the sum
constraint on the columns of X is satisfied and that we have:∑

n

Xk+1
nm =

∑
n

Xk
nm =

∑
n

Ynm ∀m (11.51)

In this algorithm, we will use the expression of the gradient with respect to
X: [

∂D (P‖Q)

∂Xnm

]
=
∑
l

HT
nl

[
∂D

∂Q

]
lm

(11.52)

With H ≡ Hk+1 and Q = Hk+1Xk.

2 - Multiplicative algorithm.

If we wish to obtain a multiplicative algorithm while preserving the non-
negativity and sum constraints, we must first introduce a shift of the com-

ponents of the opposite of the gradient

[
− ∂D
∂Xk

ij

]
in such a way as to make

them all non-negative; to do this, one writes:[
− ∂D

∂Xk
ij

]
d

=

[
− ∂D

∂Xk
ij

]
−min

i

[
− ∂D

∂Xk
ij

]
+ ε (11.53)

We can then rewrite the algorithm (11.49) in the form:

Xk+1
nm = Xk

nm + δkmX
k
nm

[(∑
l

Ylm

)(
−∂D (P‖Q)

∂Xk
nm

)
d

−
∑
i

Xk
im

(
−∂D (P‖Q)

∂Xk
im

)
d

]
(11.54)

According to the SGM method presented in Chapter 10, we can deduce
the algorithm:

Xk+1
nm = Xk

nm + δkmX
k
nm

(
∑

l Ylm)
(
−∂D(P‖Q)

∂Xk
nm

)
d∑

iX
k
im

(
−∂D(P‖Q)

∂Xk
im

)
d

− 1

 (11.55)
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Then, using a descent step size equal to 1, we obtain the purely multiplicative
algorithm:

Xk+1
nm = Xk

nm

(
∑

l Ylm)
(
−∂D(P‖Q)

∂Xk
nm

)
d∑

iX
k
im

(
−∂D(P‖Q)

∂Xk
im

)
d

 (11.56)

We can easily verify that we have:
∑

nX
k+1
nm =

∑
n Ynm.

Nevertheless, for this algorithm, as for all algorithms with a fixed descent
step size, there is no guarantee of convergence, even if all the constraints are
fulfilled.

* Important remark : We will see in the following sections that, in the
particular case of “Alpha divergences”, given the specific expression of
the gradient, the iterative algorithm onH (11.32) and the iterative algorithm
on X (11.49) have a simplified expression that makes the shift unnecessary.
Thus, a multiplicative algorithm can be written directly using the SGM
method presented in Chapter 10.

11.3.4 Non-invariant divergences - Overview of the algorithms.

By performing alternately the iterations, first on H, then on X, and with
the initialisations:
* H0 such that

∑
nH

0
nm = 1 ∀m

* X0 such that
∑

nX
0
nm =

∑
n Ynm ∀m;

we first have:
** X ≡ Xk, H ≡ Hk et Q = HkXk

The algorithm obtained using the change of variables on H is written as
follows (11.32):

Hk+1
nm = Hk

nm + δkmH
k
nm

[(
− ∂D

∂Hk
nm

)
−
∑
i

Hk
im

(
− ∂D

∂Hk
im

)]
(11.57)

or also (11.35):

Hk+1
nm = Hk

nm + δkmH
k
nm

[(∑
l

[
− ∂D

∂Qnl

]
XT
lm

)

−
∑
i

Hk
im

(∑
l

[
− ∂D

∂Qil

]
XT
lm

)]
(11.58)
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The algorithm can equally be obtained in a purely multiplicative form
(11.41):

Hk+1
nm = Hk

nm


(∑

l

[
−∂D
∂Qnl

]
XT
lm

)
d∑

iH
k
im

(∑
l

[
− ∂D
∂Qil

]
XT
lm

)
d

 (11.59)

At this point, we have:

** H ≡ Hk+1, X ≡ Xk and Q = Hk+1Xk.

With δkm = αkm∑
l t
k
lm

, the algorithm obtained using the change of variables

on X (11.49) is written:

Xk+1
nm = Xk

nm + δkmX
k
nm

[(∑
l

Ylm

)(
−∂D (P‖Q)

∂Xk
nm

)

−
∑
i

Xk
im

(
−∂D (P‖Q)

∂Xk
im

)]
(11.60)

In this algorithm, we will use the expression of the gradient with respect to
X: [

∂D (P‖Q)

∂Xnm

]
=
∑
l

HT
nl

[
∂D

∂Q

]
lm

(11.61)

The corresponding algorithm in purely multiplicative form (11.56) is written
as follows:

Xk+1
nm = Xk

nm

(
∑

l Ylm)
(
−∂D(P‖Q)

∂Xk
nm

)
d∑

iX
k
im

(
−∂D(P‖Q)

∂Xk
im

)
d

 (11.62)

At this point, a cycle has been run on the 2 variables; we have therefore
obtained Hk+1 and Xk+1.

11.4 Applications to some typical divergences.

In this section, the algorithms corresponding to the “Alpha” and “Beta”
divergences are discussed.
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11.4.1 “Alpha” divergences.

The basic divergence (5.15) when applied to tables is written as follows:

A (P‖Q) =
1

λ (λ− 1)

∑
j

∑
i

[
P λijQ

1−λ
ij − λPij − (1− λ)Qij

]
(11.63)

The expression of the gradient with respect to Q is written as follows:

∂A (P‖Q)

∂Qnm
=

1

λ

[
1−

(
Pnm
Qnm

)λ]
(11.64)

We proceed alternately to iterations, first on H, then on X.

* Itérations on H.

** First, we have: X ≡ Xk, H ≡ Hk, P = Y and Q = HkXk

From (11.64), we have:

∂A (P‖Q)

∂Hnm
=
∑
j

∂A (P‖Q)

∂Qnj
XT
jm =

1

λ

∑
j

[
1−

(
Pnj
Qnj

)λ]
XT
jm (11.65)

The iterative algorithm on H is then written from (11.35):

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

[(∑
l

[(
Pnl
Qnl

)λ
− 1

]
XT
lm

)

−
∑
i

Hk
im

(∑
l

[(
Pil
Qil

)λ
− 1

]
XT
lm

)]
(11.66)

This algorithm can be used as it is, or a multiplicative algorithm can be
obtained by performing an offset as defined in the previous section.
However, in the particular case of the Alpha divergences, a simplification
occurs and the algorithm (11.66) is rewritten:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

[(∑
l

(
Pnl
Qnl

)λ
XT
lm

)

−
∑
i

Hk
im

(∑
l

(
Pil
Qil

)λ
XT
lm

)]
(11.67)



216 CHAPTER 11 - APPLICATIONS TO THE N.M.F.

Consequently, the multiplicative algorithm will be obtained without the need

for an offset, by taking a descent step size equal to δkm
λ = 1, from the expres-

sion:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm


∑

l

(
Pnl
Qnl

)λ
XT
lm∑

iH
k
im

(∑
l

(
Pil
Qil

)λ
XT
lm

) − 1

 (11.68)

* Itérations on X.

** First, we have: X ≡ Xk, H ≡ Hk+1, P = Y and Q = Hk+1Xk

From the expression (11.64), we have:

∂A (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂A (P‖Q)

∂Qjm
(11.69)

Or also:

∂A (P‖Q)

∂Xnm
=

1

λ

∑
j

HT
nj −

∑
j

HT
nj

(
Pjm
Qjm

)λ (11.70)

Considering the properties of H, it comes:

∂A (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂A (P‖Q)

∂Qjm
=

1

λ

1−
∑
j

HT
nj

(
Pjm
Qjm

)λ (11.71)

From (11.49) the iterative algorithm on X is then written:

Xk+1
nm = Xk

nm +
δkm
λ
Xk
nm

∑
l

Ylm

∑
j

HT
nj

(
Pjm
Qjm

)λ
− 1


−
∑
i

Xk
im

∑
j

HT
ij

(
Pjm
Qjm

)λ
− 1

 (11.72)

Which can be simplified by:

Xk+1
nm = Xk

nm +
δkm
λ
Xk
nm

∑
l

Ylm

∑
j

HT
nj

(
Pjm
Qjm

)λ
−
∑
i

Xk
im

∑
j

HT
ij

(
Pjm
Qjm

)λ (11.73)
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The multiplicative algorithm can be obtained from (11.72) by introducing
an offset to render the bracketed terms positive.
However, due to the simplified form of the Alpha divergences (11.73), a
multiplicative algorithm can also be obtained without the need for an offset.

Indeed, such an algorithm is obtained by taking a descent step δkm
λ equal to

1 ∀k from the expression:

Xk+1
nm = Xk

nm +
δkm
λ
Xk
nm


∑

l Ylm

[∑
j H

T
nj

(
Pjm
Qjm

)λ]
∑

iX
k
im

[∑
j H

T
ij

(
Pjm
Qjm

)λ] − 1

 (11.74)

11.4.2 “Beta” divergences.

The basis divergence (5.20) applied to tables is written as follows:

B (P‖Q) =
1

λ (λ− 1)

∑
j

∑
i

[
P λij − λPijQλ−1

ij − (1− λ)Qλij

]
(11.75)

The expression of the gradient with respect to Q is written as follows:

∂B (P‖Q)

∂Qnm
= Qλ−1

nm −Qλ−2
nm Pnm (11.76)

We proceed alternately to iterations, first on H, then on X.

* Itérations on H.

** First, we have: X ≡ Xk, H ≡ Hk, P = Y and Q = HkXk

From the expression (11.76), we have:

∂B (P‖Q)

∂Hnm
=
∑
j

∂B (P‖Q)

∂Qnj
XT
jm =

∑
j

[
Qλ−1
nj −Q

λ−2
nj Pnj

]
XT
jm (11.77)

The iterative algorithm on H is then written from (11.35):

Hk+1
nm = Hk

nm + δkmH
k
nm

∑
j

(
Qλ−2
nj Pnj −Qλ−1

nj

)
XT
jm

−
∑
i

Hk
im

∑
j

(
Qλ−2
ij Pij −Qλ−1

ij

)
XT
jm

 (11.78)
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To obtain a multiplicative algorithm that maintains the flux, there is no
other solution than to shift the terms in ”

∑
j” of the previous expression to

render them positive.

* Itérations on X.

** First, we have: X ≡ Xk, H ≡ Hk+1, P = Y and Q = Hk+1Xk

From the expression (11.76), we have:

∂B (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂B (P‖Q)

∂Qjm
=
∑
j

HT
nj

(
Qλ−1
jm −Q

λ−2
jm Pjm

)
(11.79)

From (11.49) the iterative algorithm on X is written as follows:

Xk+1
nm = Xk

nm + δkmX
k
nm

(∑
l

Ylm

)∑
j

HT
nj

(
Qλ−2
jm Pjm −Qλ−1

jm

)

−
∑
i

Xk
im

∑
j

HT
ij

(
Qλ−2
jm Pjm −Qλ−1

jm

) (11.80)

Considering the properties of the columns in the X matrix, the flux will be
maintained throughout the iterations.
The multiplicative algorithm can be obtained from (11.80) by introducing
an offset in order to make positive the terms of the form ”

∑
j” of the pre-

vious expression.

Note: Unlike the case of Alpha divergences, a grouping of terms
with the same sign in (11.78) and (11.80) can lead to a multiplica-
tive algorithm; however, the algorithm thus obtained will not have
the properties of preserving the sum constraints during iterations.

11.5 Fundamental property of scale invariant di-
vergences.

Two cases are considered in this paragraph:
In the first case, the divergence we will construct will be scale invariant
when all the elements of the Q matrix are multiplied by the same positive
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constant. The divergences obtained will have interesting properties in the
case of blind deconvolution for example.
In the second case the scale invariance property relates to each column of the
matrix Q, i.e. the divergence obtained will be invariant when each column
of Q is multiplied by a positive scalar which is specific to it. The divergences
obtained will have properties that will be specifically adapted to the case of
NMF.

11.5.1 General case - All components of Q are concerned
simultaneously.

Here, starting with a divergence D (P‖Q) , we first construct a divergence
DI (P‖Q) that remains scale invariant when the elements of the Q matrix
are multiplied by the same positive constant.
In this case, the nominal invariance factor, valid for the Q matrix as a whole,
is calculated as follows:

K0 (P,Q) = Arg minK
∑
ij

∂D (Pij‖KQij)
∂K

(11.81)

* Fundamental property.

The general property of the scale invariant divergences with re-
spect to the Q matrix as a whole is written as follows:∑

nm

Qnm
∂D (P‖KQ)

∂Qnm

=
∑
nm

Qnm
∂DI (P‖Q)

∂Qnm

= 0 (11.82)

Obviously, this is strictly equivalent to the calculus developed in Chapter 3,
equation (3.7), as long as the matrices Q and ∂DI(P‖Q)

∂Q are written lexico-
graphically.

Note that with the matrix relationship Q ≡ HX, the invariance
on Q translates into an invariance on X, but not on H.

- Detail of the calculation.

The general property of these divergences can be established as follows.
We have:

∂D (P‖KQ)

∂Qnm

=
∑
ij

∂D (Pij‖KQij)
∂ (KQij)

∂ (KQij)

∂Qnm
(11.83)
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but:
∂ (KQij)

∂Qnm
=
∂ (KQij)

∂K

∂K

∂Qnm
+
∂ (KQij)

∂Qij

∂Qij

∂Qnm
(11.84)

That is:
∂ (KQij)

∂Qnm
= Qij

∂K

∂Qnm
+Kδinδjm (11.85)

which results in:

∂D (P‖KQ)

∂Qnm

=
∑
ij

Qij
∂D (Pij‖KQij)

∂ (KQij)

∂K

∂Qnm
+K

∂D (Pnm‖KQnm)

∂ (KQnm)

(11.86)

then, with Qij =
∂(KQij)
∂K , we obtain:

∑
nm

Qnm
∂D (P‖KQ)

∂Qnm

=

∑
ij

∂D (Pij‖KQij)
∂K

[K +
∑
nm

Qnm
∂K

∂Qnm

]
(11.87)

The first term of the second member is zero by definition of the nominal
invariance factor, otherwise the second term of the second member is zero
if the invariance factor satisfies the differential equation, whether or not the
invariance factor is the nominal invariance factor.
So we have: ∑

nm

Qnm
∂DI (P‖Q)

∂Qnm

= 0 (11.88)

Therefore, this relation is equivalent to the relation (3.7) which is established
in the Chapter 3 dealing with scale invariant divergences.

11.5.2 The invariance is derived for each column of Q.

This situation is particularly adapted to NMF; it corresponds to the case
where a sum constraint on the component occurs on each column of the X
matrix (in the product [HX] ≡ Q).
It is quite clear that the multiplication of the column X.j by a constant,
results in the multiplication of the homologous column [HX].j ≡ Q.j by the
same constant.
A divergence must therefore be constructed with a scale invariance property
when multiplying the columns of Q by various coefficients; consequently, an
invariance factor must be calculated for each column of Q.
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By denoting the column index as “j” and the row index as “i”, the basic
divergence is written as follows:

D (P‖Q) =
∑
j

∑
i

D (Pij‖Qij) =
∑
j

∑
i

Dij (11.89)

The nominal invariance factor corresponding to the column “m” of the ma-
trix Q is defined by:

K0m = Arg minK
∑
i

D (Pim‖KQim) (11.90)

When the derivation is possible, the different nominal invariance factors are
therefore obtained by calculating for every column “m”, K0m such that:∑

i

∂D (Pim‖KQim)

∂K
= 0 (11.91)

Obviously, the scalar factor K0m will only contain terms corresponding to
the columns labeled “m” in the P and Q matrices.
The resulting scale invariant divergence will be written:

DI (P‖Q) =
∑
j

∑
i

D (Pij‖K0jQij) (11.92)

* Property.

The general property of the scale invariant divergences, when the
invariance factor is calculated separately for each column “m” of
Q is written: ∑

n

Qnm
∂DI (P‖Q)

∂Qnm
= 0 (11.93)

- Détail of the calculation.

The derivation of the gradient with respect to Q is as follows:

∂DI (P‖Q)

∂Qnm
=
∑
j

∑
i

∂D (Pij‖K0jQij)

∂ (K0jQij)

∂ (K0jQij)

∂Qnm
(11.94)

In this expression, the term
∂(K0jQij)
∂Qnm

is zero, unless j = m, so it leaves:

∂DI (P‖Q)

∂Qnm
=
∑
i

∂D (Pim‖K0mQim)

∂ (K0mQim)

∂ (K0mQim)

∂Qnm
(11.95)
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The second term of the second member is written:

∂ (K0mQim)

∂Qnm
=
∂ (K0mQim)

∂K0m

∂K0m

∂Qnm
+
∂ (K0mQim)

∂Qim

∂Qim
∂Qnm

(11.96)

That is:
∂ (K0mQim)

∂Qnm
= Qim

∂K0m

∂Qnm
+K0mδin (11.97)

Coming back then to the expression of the gradient (11.95), we obtain:

∂DI (P‖Q)

∂Qnm
=
∑
i

Qim
∂D (Pim‖K0mQim)

∂ (K0mQim)

∂K0m

∂Qnm
+K0m

∂D (Pnm‖K0mQnm)

∂ (K0mQnm)

(11.98)
And finally:∑
n

Qnm
∂DI (P‖Q)

∂Qnm
=

[∑
n

∂D (Pnm‖K0mQnm)

∂ (K0mQnm)

][
K0m +

∑
n

Qnm
∂K0m

∂Qnm

]
(11.99)

The first term of the second member is zero if the invariance factor is the
nominal invariance factor for the column under consideration (“m”), while
the second term of the second member is zero for all invariance factors
satisfying the differential equation:

K0m +
∑
n

Qnm
∂K0m

∂Qnm
= 0 (11.100)

Consequently: ∑
n

Qnm
∂DI (P‖Q)

∂Qnm
= 0 ∀m (11.101)

This relation is similar to the property (3.7) applied on each column of the
matrix Q.

11.6 Iterative algorithm for invariant divergences.

For these divergences denoted DI, by operating column by column, we rely
on the property (11.93) (11.101).

11.6.1 Iterations on H.

Since the invariance on Q translates into an invariance on X, but
not on H, there is no particular thing to expect regarding itera-
tions on H.
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Consequently, the iterative algorithm on H will be deduced from the
variable change method; it is given in (11.32) (11.35) and is written for an
invariant divergence DI, with H = Hk, X = Xk, Q = HkXk:

Hk+1
nm = Hk

nm + δkmH
k
nm

[(∑
l

[
− ∂DI
∂Qnl

]
XT
lm

)

−
∑
i

Hk
im

(∑
l

[
−∂DI
∂Qil

]
XT
lm

)]
(11.102)

A multiplicative algorithm can be obtained by proceeding in an
similar way to what has been previously developed for non-invariant
divergences.

At this point, we have obtained Hk+1.

11.6.2 Iterations on X.

1 - Non-multiplicative algorithm.

The iterative algorithm on X allowing to exploit the properties of invariant
divergences, can be written, with the method developed in Chapter 10, as
follows:

Xk+1
nm = Xk

nm + αkmX
k
nm

[
− ∂DI

∂Xk
nm

]
(11.103)

With this algorithm, the constraint
∑

nX
k
nm = Cte ∀k is ensured as shown

in the following calculation.
In the previous sections, we have shown (11.5) that with:

[A]ij =

[
∂D

∂Q

]
ij

(11.104)

One could write (11.6) in matrix form:[
∂DI (P‖Q)

∂X

]
nm

=
∂DI (P‖Q)

∂Xnm
=
[
HTA

]
nm

=
∑
l

HT
nl

∂DI (P‖Q)

∂Qlm

(11.105)
Taking into account the fact that H ≡ Hk+1 and Q = Hk+1Xk, the algo-
rithm (11.103) can therefore be rewritten:

Xk+1
nm = Xk

nm + αkmX
k
nm

[∑
i

HT
ni

(
−∂DI (P‖Q)

∂Qim

)]
(11.106)
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Then:

∑
n

Xk+1
nm =

∑
n

Xk
nm + αkm

∑
n

{
Xk
nm

[∑
i

HT
ni

(
−∂DI (P‖Q)

∂Qim

)]}
(11.107)

By reversing the order of the summations, it comes:∑
n

Xk+1
nm =

∑
n

Xk
nm + αkm

∑
i

(
−∂DI (P‖Q)

∂Qim

)∑
n

HT
niX

k
nm (11.108)

or also:∑
n

Xk+1
nm =

∑
n

Xk
nm + αkm

∑
i

(
HXk

)
im

(
−∂DI (P‖Q)

∂Qim

)
(11.109)

So, with (11.93), it comes: ∑
n

Xk+1
nm =

∑
n

Xk
nm (11.110)

It is therefore sufficient to choose an initial estimate with the correct sum
(i.e.

∑
nX

0
nm =

∑
n Ynm), to ensure that this sum is maintained during the

iterations.

The algorithm (11.103) (11.106) represents the iterative algo-
rithm on X when minimizing an invariant divergence.

2 - Multiplicative algorithm.

A multiplicative algorithm can be obtained from (11.103) (11.106) by oper-
ating as follows:
The SGM method is strictly applied; the opposite of the gradient is first
split into a difference of 2 positive terms:

− ∂DI

∂Xk
nm

= Uknm − V k
nm ; Uknm > 0 ; V k

nm > 0 (11.111)

This allows in a first step (with the usual restrictions on the descent step
size), to write a multiplicative algorithm in the form:

X̃k+1
nm = Xk

nm

[
Uknm
V k
nm

]
(11.112)



11.7. APPLICATIONS TO SOME PARTICULAR INVARIANT DIVERGENCES.225

But then the property
∑

n X̃
k+1
nm =

∑
nX

k
nm is lost, unlike what we had with

algorithms (11.103) (11.106).
However, we can recover this property by introducing an extra step of nor-
malization by writing:

Xk+1
nm =

X̃k+1
nm∑

n X̃
k+1
nm

∑
n

Ynm (11.113)

Due to the property of invariance with respect to X, this normalization does
not lead to any change in the invariant divergence considered.
The association of (11.112) and (11.113) is thus a multiplicative algorithm
having the summation property on the columns of X. This is subject of
course to the convergence of (11.112) in relation to the choice of the descent
step size (equal to 1).

11.7 Applications to some particular invariant di-
vergences.

In the previous sections, it was shown that the proposed algorithms used,
for a given divergence, the gradient expression:

∂D (P‖Q)

∂Qnm
(11.114)

Consequently, we give for some invariant divergences, the expression of this
gradient and the iterative algorithm on X that we can obtain.

11.7.1 Invariant “Alpha” divergences.

From the basic divergence (11.63), the invariance on each column of the table
(matrix) Q is obtained by deriving the nominal invariance factor (which is
possible); this gives, for the column “j”:

K0j =

(∑
i P

λ
ijQ

1−λ
ij∑

iQij

) 1
λ

(11.115)

The divergence we obtain, invariant with respect to the columns of Q, is
written as follows:

AIQ (P‖Q) =
1

λ− 1

∑
j

(∑l P
λ
ljQ

1−λ
lj∑

lQlj

) 1
λ ∑

i

Qij −
∑
i

Pij

 (11.116)
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That is:

AIQ (P‖Q) =
1

λ− 1

∑
j

[
K0j

∑
i

Qij −
∑
i

Pij

]
(11.117)

The construction of the algorithms implies the calculation of the gradient
with respect to the elements of the column “m” of the matrix Q which is
written after some calculations:

∂AIQ (P‖Q)

∂Qnm
=

1

λ

(∑l P
λ
lmQ

1−λ
lm∑

lQlm

) 1
λ

−

(∑
l P

λ
lmQ

1−λ
lm∑

iQlm

) 1−λ
λ P λnm
Qλnm

 (11.118)

That is:
∂AIQ (P‖Q)

∂Qnm
=

1

λ

[
K0m −K1−λ

0m

P λnm
Qλnm

]
(11.119)

We can verify that the fundamental relation (11.93) for scale invariant di-
vergences with respect to the columns of Q is satisfied and that we have:∑

n

Qnm
∂AIQ (P‖Q)

∂Qnm
= 0 (11.120)

In the particular case (λ = 1) which corresponds to the Kullback-Leibler
divergence, we obtain from the expression of the gradient (11.119), the gra-
dient of the K.L. divergence , invariant with respect to the columns of Q;
such divergence is denoted KLIQ:

∂KLIQ (P‖Q)

∂Qnm
=

∑
l Plm∑
lQlm

− Pnm
Qnm

(11.121)

* Itérations on H.

With (11.119), it comes:

∂AIQ (P‖Q)

∂Hnm
=
∑
l

∂AIQ (P‖Q)

∂Qnl
XT
lm =

1

λ

∑
l

[
K0l −K1−λ

0l

P λnl
Qλnl

]
XT
lm

(11.122)
With X = Xk, H = Hk, Q = HkXk and taking into account the fact that
the invariance factor K0l given by (11.115) varies with the iteration because
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it depends on Q, the iterative algorithm on H deduced from (11.102) is then
written after simplification:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

[∑
l

K1−λ
0l

(
P λnl
Qλnl
−
∑
i

Hk
im

P λil
Qλil

)
XT
lm

]
(11.123)

* Itérations on X.

At this point in the calculation, we have H ≡ Hk+1, X ≡ Xk, Q ≡
Hk+1Xk.
It has been shown that:

∂AIQ (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂AIQ (P‖Q)

∂Qjm
(11.124)

That is, with (11.119):

∂AIQ (P‖Q)

∂Xnm
=

1

λ

∑
j

HT
nj

[
K0m −K1−λ

0m

P λjm

Qλjm

]
(11.125)

Considering that
∑

j H
T
nj = 1, the iterative algorithm on X given by (11.103)

is written:

Xk+1
nm = Xk

nm +
αkm
λ
Xk
nm

(Kk
0m

)1−λ∑
j

HT
nj

(
P λjm

Qλjm

)
−Kk

0m

 (11.126)

In this expression, we have taken into account the fact that the invariance
factor depends on iteration, indeed, we recall that:

K0m =

(∑
i P

λ
imQ

1−λ
im∑

iQim

) 1
λ

(11.127)

with Q ≡ Hk+1Xk; to avoid any ambiguity, we have denoted his expression:
Kk

0m.
Since Kk

0m >0 and considering the very particular expression of the gradient,
this also leads to the expression which is at the basis of the multiplicative
algorithm:

Xk+1
nm = Xk

nm +
Kk

0mα
k
m

λ
Xk
nm

(Kk
0m

)−λ∑
j

HT
nj

(
P λjm

Qλjm

)
− 1

 (11.128)
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By taking a descent step size
Kk

0mα
k
m

λ equal to 1, we obtain the purely mul-
tiplicative form:

Xk+1
nm = Xk

nm

(
Kk

0m

)−λ∑
j

HT
nj

(
P λjm

Qλjm

)
(11.129)

Using the expression of Kk
0m, it can be shown after some simple calculations

that
∑

nX
k+1
nm =

∑
nX

k
nm.

Logarithmic form.

As proposed for Alpha divergences, we can give a logarithmic form for the
invariant divergence AIQ, it is written as follows:

LAIQ (P‖Q) =
1

λ− 1

log

∑
j

∑
i

(∑
l P

λ
ljQ

1−λ
lj∑

lQlj

) 1
λ

Qij


− log

∑
j

∑
i

Pij

 (11.130)

It can be observed that, as with all logarithmic forms, this divergence is
invariant not only with respect to the columns of Q, but also with respect
to the columns of P .
The gradient with respect to Q is written as:

∂LAIQ (P‖Q)

∂Qnm
=
A

λ

(∑l P
λ
lmQ

1−λ
lm∑

lQlm

) 1
λ

−

(∑
l P

λ
lmQ

1−λ
lm∑

iQlm

) 1−λ
λ P λnm
Qλnm

 (11.131)

That is:
∂LAIQ (P‖Q)

∂Qnm
= A

∂AIQ (P‖Q)

∂Qnm
(11.132)

with:

A =
1∑

i

∑
j

(∑
l P

λ
ljQ

1−λ
lj∑

lQlj

) 1
λ

Qij

=
1∑

i

∑
jK0jQij

(11.133)
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The gradient with respect to Q can then be written in a simpler way:

∂LAIQ (P‖Q)

∂Qnm
= A

K0m

λ

(
1−K−λ0m

P λnm
Qλnm

)
(11.134)

We then deduce the expression of the gradient with respect to X:

∂LAIQ (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂LAIQ (P‖Q)

∂Qjm
(11.135)

That is:

∂LAIQ (P‖Q)

∂Xnm
= A

K0m

λ

1−K−λ0m

∑
j

HT
nj

P λjm

Qλjm

 (11.136)

Hence the iterative algorithm on X:

Xk+1
nm = Xk

nm +A
Kk

0mα
k
m

λ
Xk
nm

(Kk
0m

)−λ∑
j

HT
nj

(
P λjm

Qλjm

)
− 1

 (11.137)

As with the AI(P‖Q) divergence, we will take into account the fact that
H ≡ Hk+1, Q = Hk+1Xk, and therefore K0m ≡ Kk

0m depends on the itera-
tion.
Note that this algorithm is analogous to (11.128), except for the multiplica-
tive factor “A” that occurs in the correction term and can be included in
the descent step size; therefore, the sum constraint (flux-holding) property
highlighted in (11.128) is maintained.
Due to the particular expression of the Gradient, a multiplicative flux-
holding algorithm is obtained as for the AI(P‖Q) divergence.

11.7.2 Invariant “Beta” divergences .

The basis divergence (5.20) applied to tables is written as follows:

B (p‖q) =
1

λ (λ− 1)

∑
j

∑
i

[
P λij − λPijQλ−1

ij − (1− λ)Qλij

]
(11.138)

The invariance on each column of the table (matrix) Q is obtained by calcu-
lating the nominal invariance factor (which is possible); thus, for the column
“j” we obtain:

K0j =

∑
i PijQ

λ−1
ij∑

iQ
λ
ij

(11.139)
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The divergence generated, invariant with respect to the columns of Q, is
written as follows:

BIQ (P‖Q) =
1

λ (λ− 1)

∑
j

∑
i

P λij −

(∑
l PljQ

λ−1
lj∑

lQ
λ
lj

)λ∑
i

Qλij

 (11.140)

Or also:

BIQ (P‖Q) =
1

λ (λ− 1)

∑
j

[∑
i

P λij −Kλ
0j

∑
i

Qλij

]
(11.141)

The calculation of the gradient of this divergence with respect to Q leads
to:

∂BIQ (P‖Q)

∂Qnm
=

(∑l PlmQ
λ−1
lm∑

lQ
λ
lm

)λ
Qλ−1
nm

−

(∑
l PlmQ

λ−1
lm∑

lQ
λ
lm

)λ−1

PnmQ
λ−2
nm

 (11.142)

That is to say more simply:

∂BIQ (P‖Q)

∂Qnm
=
[
Kλ

0mQ
λ−1
nm −Kλ−1

0m PnmQ
λ−2
nm

]
(11.143)

One can verify that the fundamental relationship for divergences invariant
with respect to the columns of Q is satisfied.
The case (λ = 1) corresponding to the Kullback-Leibler divergence is ob-
tained without difficulty; its gradient has been given by (11.121), whereas
in the particular case (λ = 2) corresponding to the mean square deviation
MCIQ, the gradient obtained from (11.142) is written as follows:

∂MCIQ (P‖Q)

∂Qnm
=

(∑
l PlmQlm∑
lQ

2
lm

)2

Qnm −
(∑

l PlmQlm∑
lQ

2
lm

)
Pnm (11.144)

* Itérations on H.

With (11.143), we have:

∂BIQ (P‖Q)

∂Hnm
=
∑
l

∂BIQ (P‖Q)

∂Qnl
XT
lm =

∑
l

[
Kλ

0lQ
λ−1
nl −K

λ−1
0l PnlQ

λ−2
nl

]
XT
lm

(11.145)
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With X = Xk, H = Hk, Q = HkXk and taking into account that the
invariance factor K0l given by (11.139) varies with the iteration via Q, the
iterative algorithm on H deduced from (11.102) is written as follows:

Hk+1
nm = Hk

nm + δkmH
k
nm

[∑
l

Kλ−1
0l

(
PnlQ

λ−2
nl −

∑
i

Hk
imPilQ

λ−2
il

)
XT
lm

−
∑
l

Kλ
0l

(∑
i

Hk
imQ

λ−1
il −Qλ−1

nl

)
XT
lm

]
(11.146)

* Itérations on X.

At this point of the calculus, we haveH ≡ Hk+1, X ≡ Xk, Q ≡ Hk+1Xk.
Taking into account that:

∂BIQ (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂BIQ (P‖Q)

∂Qjm
(11.147)

It comes from the expression (11.143):

∂BIQ (P‖Q)

∂Xnm
=
∑
j

HT
nj

[
Kλ

0mQ
λ−1
jm −K

λ−1
0m PjmQ

λ−2
jm

]
(11.148)

To take into account the fact that the invariance factor varies with iteration,
we will denote Kk

0m; it is given by the expression (11.139), where Q ≡
Hk+1Xk.
The iterative algorithm on X given by (11.103) is then written as follows:

Xk+1
nm = Xk

nm + αkm

(
Kk

0m

)λ−1
Xk
nm

∑
j

HT
nj

(
PjmQ

λ−2
jm −K

k
0mQ

λ−1
jm

)
(11.149)

One can check that with this algorithm, the property
∑

nX
k+1
nm =

∑
nX

k
nm

is ensured, however, a multiplicative form deduced from this expression will
not have this property any more.
To obtain a multiplicative form having the property of maintaining the flow,
it will be necessary to proceed in 2 steps as indicated in (11.6.2).
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Logarithmic form.

As proposed for the Alpha divergences, we can give a logarithmic form for
the BIQ divergence; it is written as follows:

LBIQ (P‖Q) =
1

λ (λ− 1)

log

∑
j

∑
i

P λij


− log

∑
j

∑
i

(∑
l PljQ

λ−1
lj∑

lQ
λ
lj

)λ
Qλij

 (11.150)

It can be observed that, as with all logarithmic forms, this divergence is
invariant not only with respect to columns of Q, but also with respect to
columns of P .
The gradient with respect to Q is written as follows:

∂LBIQ (P‖Q)

∂Qnm
= B

(∑l PlmQ
λ−1
lm∑

lQ
λ
lm

)λ
Qλ−1
nm

−

(∑
l PlmQ

λ−1
lm∑

lQ
λ
lm

)λ−1

PnmQ
λ−2
nm

 (11.151)

That is:
∂LBIQ (P‖Q)

∂Qnm
= B

∂BIQ (P‖Q)

∂Qnm
(11.152)

with:

B =
1∑

j

∑
iQ

λ
ij

(∑
l PljQ

λ−1
lj∑

lQ
λ
lj

)λ =
1∑

i

∑
jK

λ
0jQ

λ
ij

(11.153)

The gradient with respect to Q is written in a simpler way:

∂LBIQ (P‖Q)

∂Qnm
= BKλ−1

0m

(
K0mQ

λ−1
nm − PnmQλ−2

nm

)
(11.154)

We then deduce the expression of the gradient with respect to X:

∂LBIQ (P‖Q)

∂Xnm
=
∑
j

HT
nj

∂LBIQ (P‖Q)

∂Qjm
(11.155)
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That is:

∂LBIQ (P‖Q)

∂Xnm
= BKλ−1

0m

∑
j

HT
nj

(
K0mQ

λ−1
jm − PjmQ

λ−2
jm

) (11.156)

Hence the iterative algorithm on X:

Xk+1
nm = Xk

nm + αkmBK
λ−1
0m Xk

nm

∑
j

HT
nj

(
PjmQ

λ−2
jm −K

k
0mQ

λ−1
jm

)
(11.157)

As with the BI(P‖Q) divergence, we will take into account the fact that
H ≡ Hk+1, Q = Hk+1Xk and that, consequently, K0m ≡ Kk

0m is dependent
on iteration.
Note that this algorithm is analogous to (11.149), except for the multiplica-
tive factor “B” which is involved in the corrective term and can be included
in the descent step size.
We can verify that with this algorithm, the property

∑
nX

k+1
nm =

∑
nX

k
nm

is ensured, however, a multiplicative form deduced from this expression will
no longer possess this property .
To obtain a multiplicative form having the property of flow holding, it will
be necessary to proceed in 2 steps as indicated in (11.6.2).

11.8 Régularisation. Non-invariant divergences

In the context of NMF, a smoothness constraint regularization can only be
performed on the columns of the H matrix, in fact, each column represents
the spectrum of an elementary component.
With respect to the X matrix, whose columns contain weighting factors,
such a smoothness constraint regularization has no meaning.
On the other hand, a much more logical form of regularization is to introduce
a certain degree of “sparsity” on the elements in the columns of X.
In any case, solving the regularized problem requires minimizing with respect
to H and X, a functional of the form:

J (H,X) = D (Y ‖HX) + γDH (H) + µDX (X) (11.158)

The minimization is carried out under the non-negativity and sum con-
straints already specified.
The “γ” and “µ” coefficients are the positive regularization factors.
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Since the iterative process of minimization is performed alternately on H
then on X ( for example), one works first concerning H on a composite
divergence:

DCH = D (Y ‖HX) + γDH (H) (11.159)

then, concerning X, on a composite divergence:

DCX = D (Y ‖HX) + µDX (X) (11.160)

11.8.1 Regularization of the columns of the matrix H.

The regularization is performed separately on each of the columns of H.
The basic algorithm is given by (11.32) applied to the composite divergence
DCH; it is written:

Hk+1
nm = Hk

nm + δkmH
k
nm

{
−∂ (DCH)

∂Hk
nm

+
∑
i

Hk
im

∂ (DCH)

∂Hk
im

}
(11.161)

We are now considering 2 particular cases of regularization by smoothness
constraint:

1 - Euclidean norm of the solution.

DH (H) = DH (H‖C) =
1

2

∑
j

∑
i

(Hij − C)2 (11.162)

For columns of H with “N” components, taking into account the constraint∑
iHij = 1 ∀j, we will have C = 1

N .

∂DH

∂Hnm
= (Hnm − C) (11.163)

2 - Euclidean norm of the Laplacian of the solution.

One can as well use a regularization term expressed by the Euclidean norm
of the Laplacian, which will be expressed by:

DH (H) = DH (H‖TH) =
1

2

∑
j

∑
i

[
Hij − (TH.j)i

]2
(11.164)

Where the matrix operation (TH.j) corresponds to the convolution of the
column “j” of H by the mask [0.5 ; 0 ; 0.5].
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The regularization is performed independently for each column of H.
In this case, we have:

∂DH

∂Hnm
= Hnm −

[(
T + T T

)
H.m

]
n

+
[(
T TT

)
H.m

]
n

(11.165)

Of course, taking into account the symmetry of the convolution mask, T T =
T .

11.8.2 Regularization of the columns of the matrix X.

The regularized algorithm is developed on the basis of the algorithm (11.49),
taking into account the fact that the divergence considered is the composite
divergence DCX;

Xk+1
nm = Xk

nm + δkmX
k
nm

[(∑
l

Ylm

)(
−∂DCX
∂Xk

nm

)

−
∑
i

Xk
im

(
−∂DCX
∂Xk

im

)]
(11.166)

* Expression of the penalty term.

Here again, the regularization applies to each column of the X matrix, but,
contrary to the H matrix, the regularization does not relate to the smooth-
ness of the solution, but to its “sparsity”.
The measure of “sparsity” used here was proposed by Hoyer [47]; by denot-
ing Xj the column “j” of X, if “N” is the number of elements of Xj , the
sparsity factor for this column is expressed by:

sj =

√
N − ‖Xj‖1‖Xj‖2√
N − 1

(11.167)

This relationship induces a relationship between ‖Xj‖1 and ‖Xj‖2 which we
will express in the form:

‖Xj‖22
‖Xj‖21

= A2
j ; Aj =

1
√
N − sj

(√
N − 1

) (11.168)

The complete “sparsity” corresponds to sj = 1, that is Aj = 1, while the
absence of “sparsity” corresponds to sj = 0, that is Aj = 1√

N
.
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Furthermore, the constraints imposed during the minimization process for
a column “j” of X, which are the non-negativity and the fixed sum, will
result in ‖Xj‖1 = ‖Yj‖1, at each iteration.
We will express the corresponding penalty term as:

DX (X) =
∑
j

[
1

2
‖Xj‖22 −

A2
j

2
‖Xj‖21

]2

(11.169)

The gradient with respect to X will be expressed by:

∂DX (X)

∂Xnm
= Xnm ‖Xm‖22 +A4

m ‖Xm‖31−A
2
mXnm ‖Xm‖21−A

2
m ‖Xm‖1 ‖Xm‖22

(11.170)
Or also, by taking into account the sum constraint:

∂DX (X)

∂Xnm
= Xnm ‖Xm‖22 +A4

m ‖Ym‖
3
1 −A

2
mXnm ‖Ym‖21 −A

2
m ‖Ym‖1 ‖Xm‖22

(11.171)

11.9 Some examples of regularized algorithms.

Regarding the “data consistency” term, we will deal with the “α” divergence
and the “β” divergence.
The regularization term on H will be the Euclidean norm of the solution.
The regularization on X will be made in the sense of Hoyer.

11.9.1 Regularized “Alpha” divergence.

* Régularization on H.

The basis algorithm is given by (11.161).
The gradients involved in the basic algorithm are given respectively by
(11.65) and (11.163).
Taking into account the simplifications related to the property

∑
iH

k
im = 1,

and with X ≡ Xk, the regularized algorithm is written according to (11.32):

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

[(∑
l

(
Ynl

(HkX)nl

)λ
XT
lm

)
− γHk

nm

−
∑
i

Hk
im

(∑
l

(
Yil

(HkX)il

)λ
XT
lm − γHk

im

)]
(11.172)
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It can also be written in a condensed form:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

{[(
Y

(HkX)

)λ
XT − γHk

]
nm

−

[(
Hk
)T ( Y

(HkX)

)λ
XT − γ

(
Hk
)T

Hk

]
mm

}
(11.173)

We can easily verify that the λ = 1 case corresponding to the Kullback-
Leibler divergence can be found as well by using the “β” divergences.

- Multiplicative form.

By denoting:

Uknm =

[(
Y

(HkX)

)λ
XT − γHk

]
nm

(11.174)

The algorithm (11.172) is written:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

{
Uknm −

∑
i

(
Hk
mi

)T
Ukim

}
(11.175)

We proceed to the shift:[
Uknm

]
d

= Uknm −min
n

(
Uknm

)
+ ε > 0 (11.176)

Taking into account the properties of H, the algorithm is written as follows:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

{[
Uknm

]
d
−
∑
i

(
Hk
mi

)T [
Ukim

]
d

}
(11.177)

This makes it possible to write an algorithm which will be at the basis of
the purely multiplicative algorithm:

Hk+1
nm = Hk

nm +
δkm
λ
Hk
nm

{ [
Uknm

]
d∑

i

(
Hk
mi

)T [
Ukim

]
d

− 1

}
(11.178)

The purely multiplicative algorithm will be obtained by choosing a descent

step size δkm
λ = 1.
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* Régularization on X.

The basic algorithm is given by (11.166) and the expressions of the involved
gradients are given by (11.71) and (11.171).
Considering these expressions and the constraint

∑
lX

k
lm =

∑
l Ylm, some

simplifications occur in the expression of the basic algorithm which can be
rewritten in the simplified form:

Xk+1
nm = Xk

nm + δkmX
k
nm

[(∑
l

Ylm

)
Uknm −

∑
i

Xk
imU

k
im

]
(11.179)

With:

Uknm =
1

λ

∑
j

HT
nj

(
Pjm
Qjm

)λ
+ µ

(
Xk
nm −A2

m‖Ym‖1
) (
A2
m‖Ym‖21 − ‖Xm‖22

)
(11.180)

In this expression we take into account the fact that:

Q = Hk+1Xk (11.181)

- Multiplicative form.

To obtain such a form, one carries out, as already proposed, the shift which
allows to make the expression of Uknm positive whatever the component “n”
considered: [

Uknm

]
d

= Uknm −min
n

(
Uknm

)
+ ε (11.182)

The algorithm (11.179) will be written identically with the shifted quantities.
We can then propose a pseudo multiplicative algorithm which is written as
follows:

Xk+1
nm = Xk

nm + δkmX
k
nm

[
(
∑

l Ylm)
[
Uknm

]
d∑

iX
k
im

[
Ukim

]
d

− 1

]
(11.183)

This makes it possible to obtain, by taking a descent step size equal to 1,
the purely multiplicative form:

Xk+1
nm = Xk

nm

[
(
∑

l Ylm)
[
Uknm

]
d∑

iX
k
im

[
Ukim

]
d

]
(11.184)



11.9. SOME EXAMPLES OF REGULARIZED ALGORITHMS. 239

11.9.2 Regularized “Beta” divergence.

* Régularization on H.

The basis algorithm is given by (11.161).
The gradients involved in this algorithm are given respectively by (11.77)
and (11.163).
Using a procedure analogous to that of the previous paragraph, taking into
account the simplifications related to the property

∑
iH

k
im = 1, and with

X ≡ Xk, we introduce the expression:

Uknm =
∑
j

[(
HkX

)λ−2

nj
Ynj −

(
HkX

)λ−1

nj

]
XT
jm − γHk

nm (11.185)

Then, the regularized algorithm is written according to (11.32):

Hk+1
nm = Hk

nm + δkmH
k
nm

(
Uknm −

∑
i

Hk
imU

k
im

)
(11.186)

Or also in condensed form:

Hk+1
nm = Hk

nm + δkmH
k
nm

{
Uknm −

[(
Hk
)T

Uk
]
mm

}
(11.187)

The case λ = 1 corresponding to the Kullback-Leibler divergence allows us
to recover the result already obtained for the “α” divergence, while λ = 2
corresponds to the mean square deviation.
In order to obtain a multiplicative algorithm, we perform the shift:[

Uknm

]
d

= Uknm −min
n

(
Uknm

)
+ ε (11.188)

The multiplicative algorithm then takes a form similar to (11.178), subject
to choosing a descent step size equal to δkm = 1 ∀k,m.

* Régularization on X.

The basis algorithm is given by (11.166) and the expressions for the involved
gradients are given by (11.79) and (11.171).
Taking into account these expressions and the constraint

∑
lX

k
lm =

∑
l Ylm,

some simplification occurs in the expression of the basis algorithm which
can be rewritten in the simplified form:

Xk+1
nm = Xk

nm + δkmX
k
nm

[(∑
l

Ylm

)
Uknm −

∑
i

Xk
imU

k
im

]
(11.189)
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With:

Uknm =
∑
j

HT
nj

[
Pjm (Qjm)λ−2 − (Qjm)λ−1

]
+ µ

(
Xk
nm −A2

m‖Ym‖1
) (
A2
m‖Ym‖21 − ‖Xm‖22

)
(11.190)

In this expression we take into account the fact that:

H ≡ Hk+1 ; Q = Hk+1Xk (11.191)

- Multiplicative form.

To obtain such a form, one performs, as already proposed, the shift that
allows to make the expression of Uknm positive whatever the component “n”
considered: [

Uknm

]
d

= Uknm −min
n

(
Uknm

)
+ ε (11.192)

The algorithm (11.179) will be written identically with the shifted quantities.
We can then propose a pseudo multiplicative algorithm which is written as
follows:

Xk+1
nm = Xk

nm + δkmX
k
nm

[
(
∑

l Ylm)
[
Uknm

]
d∑

iX
k
im

[
Ukim

]
d

− 1

]
(11.193)

This allows us to obtain, by taking a descent step size equal to 1, the purely
multiplicative form:

Xk+1
nm = Xk

nm

[
(
∑

l Ylm)
[
Uknm

]
d∑

iX
k
im

[
Ukim

]
d

]
(11.194)

11.10 Regularization. Scale invariant divergences.

In this case, the resolution of the regularized problem implies the minimiza-
tion with respect to H and X of a functional founded on the use of invariant
divergences, which is written:

JI (H,X) = DI (Y ‖HX) + γDIH (H) + µDIX (X) (11.195)

The minimization is carried out under the non-negativity and sum con-
straints already specified.
The “γ” and “µ” coefficients are the positive regularization factors.
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The iterative process of minimization being alternately on H and then on
X (for example).
As far as the H is concerned, we operate on a composite divergence:

DCIH = DI (Y ‖HX) + γDIH (H) (11.196)

Regarding the “data consistency” term DI (Y ‖HX), since the in-
variance with respect to Q = HX results in an invariance with
respect to X, but not with respect to H, there’s nothing particu-
lar to be expected from using an invariant divergence concerning
the iterations on H.

Thus, regardless of the choice of “data consistency” term, the mini-
mization with respect to H will necessarily involve a change in variables
as already indicated; more generally, concerning H, one can think that it
is not even necessary to introduce an invariant divergence inasmuch as the
D (Y ‖HX) divergence reflecting the “data consistency” and the correspond-
ing invariant divergence DI (Y ‖HX) have the same minimum.
As a consequence, a regularization on the columns of H using an invariant
form of the penalty term is not absolutely necessary, but, for the sake of ho-
mogeneity, it is still possible to operate by a variable change on H in DCIH.

Concerning X, we operate on a composite divergence:

DCIX = DI (Y ‖HX) + µDIX (X) (11.197)

For these divergences denoted DI, we rely on the properties (11.82)(11.93),
and more precisely, in our particular problem, on (11.93)(11.101).

An iterative algorithm on X can be written, with the method developed
in Chapter 10, in the form given by (11.103):

Xk+1
nm = Xk

nm + αkmX
k
nm

[
−∂DCIX

∂Xk
nm

]
(11.198)

Of course, this writing implies the use of a penalty term DIX that is invari-
ant with respect to X.
We can easily show that with this algorithm, the constraint

∑
nX

k
nm =

Cte ∀k is fulfilled.

The algorithm (11.198) is the iterative algorithm on X when
minimizing a regularized invariant divergence.
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* Penalty term on X. Invariant form.

The regularization with respect to X reflects the “sparsity” of the compo-
nents in a column of the X matrix.
An invariant form of the penalty term, inferred from (11.169) is written:

DIX (X) =
1

2

∑
j

[
‖Xj‖22
‖Xj‖21

−A2

]2

(11.199)

The gradient with respect to X will be written as follows:

∂DIX (X)

∂Xnm
=

(
A2 − ‖Xm‖22

‖Xm‖21

)(
‖Xm‖22
‖Xm‖21

− Xnm

‖Xm‖1

)
1

‖Xm‖1
(11.200)

We can easily verify that:∑
n

Xnm
∂DIX (X)

∂Xnm
= 0 (11.201)

11.10.1 Regularized invariant “Alpha” divergence.

The “data attachment” term is the Invariant Alpha divergence (11.116) or
(11.117).
With P ≡ Y , Q ≡ HX and K0m given by (11.115), of which we reproduce
the expression;

K0m =

(∑
n P

λ
nmQ

1−λ
nm∑

nQnm

) 1
λ

(11.202)

The expressions of the involved gradients are given by (11.125) and (11.200);
they lead to:

∂DCIX

∂Xnm
=

1

λ

∑
j

HT
nj

[
K0m −K1−λ

0m P λjmQ
−λ
jm

]
+ µ

(
A2 − ‖Xm‖22

‖Xm‖21

)(
‖Xm‖22
‖Xm‖21

− Xnm

‖Xm‖1

)
1

‖Xm‖1
(11.203)

Taking into account the fact that the invariance factor depends on the iter-
ation, the iterative algorithm on X (11.198), is written:

Xk+1
nm = Xk

nm + αkmX
k
nm

{
1

λ

∑
j

HT
nj

[(
Kk

0m

)1−λ
P λjm

(
Qkjm

)−λ
−Kk

0m

]

− µ
(
A2 − ‖X

k
m‖22

‖Xk
m‖21

)(
‖Xk

m‖22
‖Xk

m‖21
− Xk

nm

‖Xk
m‖1

)
1

‖Xk
m‖1

}
(11.204)
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In this expression, the following relationships must be taken into account:
* H ≡ Hk+1

* Qk ≡ Hk+1Xk

* ‖Xk
m‖1 = ‖Ym‖1 by initialization and properties of the algorithm.

* the invariance factor Kk
0m is deduced from (11.202) by introducing the

expression of Qk mentioned above.

11.10.2 Regularized invariant “Beta” divergence.

The “data attachment” term is the invariant Beta divergence (11.140) or
(11.141).
With P ≡ Y , Q ≡ HX and K0m given by (11.139)

K0m =

∑
n PnmQ

λ−1
nm∑

nQ
λ
nm

(11.205)

The expressions of the involved gradients are given by (11.148) and (11.200);
they lead to:

∂DCIX

∂Xnm
=
∑
j

HT
nj

[
Kλ

0mQ
λ−1
jm −K

λ−1
0m PjmQ

λ−2
jm

]
+ µ

(
A2 − ‖Xm‖22

‖Xm‖21

)(
‖Xm‖22
‖Xm‖21

− Xnm

‖Xm‖1

)
1

‖Xm‖1
(11.206)

Taking into account the variation of the invariance factor during the itera-
tion, we will write:

Kk
0m =

∑
n Pnm

(
Qknm

)λ−1∑
n (Qknm)

λ
(11.207)

The iterative algorithm on X (11.198), is then written:

Xk+1
nm = Xk

nm + αkmX
k
nm

{∑
j

HT
nj

[(
Kk

0m

)λ−1
Pjm (Qjm)λ−2 −

(
Kk

0m

)λ
(Qjm)λ−1

]

− µ
(
A2 − ‖X

k
m‖22

‖Xk
m‖21

)(
‖Xk

m‖22
‖Xk

m‖21
− Xk

nm

‖Xk
m‖1

)
1

‖Xk
m‖1

}
(11.208)

In this expression, the following relationships must be taken into account:
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* H ≡ Hk+1

* Q ≡ Hk+1Xk

* ‖Xk
m‖1 = ‖Ym‖1 by initialization and properties of the algorithm.

11.11 Overview of the techniques implemented.

11.11.1 Iterations on H.

For any kind of divergence, with or without regularization:
a) Method of variables change.
b) The obtention of multiplicative algorithms requires shifting the compo-
nents of the gradient.

11.11.2 Iterations on X.

1 - Non-invariant divergences, with or without a non-invariant
regularization term.

a) Method of variables change.
b) The obtention of multiplicative algorithms requires shifting the compo-
nents of the gradient.

2 - Invariant divergences, with or without an invariant regulariza-
tion term.

a) Use of the specific property of invariant divergences.
b) Obtaining multiplicative algorithms with fulfilled sum constraint implies
the application of the SGM method, followed by normalization.



chapter 12 -
Application to Blind
Deconvolution.

12.1 Introduction.

In this chapter, we do not attempt to revisit the well-known difficulties of
signal deconvolution problems; these aspects have been widely developed in
the literature dedicated to inverse problems [31] [16], and more precisely to
the deconvolution of images and spectra [3], [50], [51].
In a general context, the use of scale invariant divergences to obtain multi-
plicative algorithms that simultaneously ensure non-negativity and the sum
constraint, implies, at each iteration, to carry out a normalization that will
not modify the value of the invariant divergence considered.
However, with regard to particular the problem of blind deconvolution, and
more precisely with regard to the respect of the non-negativity constraints,
and especially the sum constraints, the use of scale invariant divergences
and of their properties leads to particularly well adapted reconstruction al-
gorithms, without the help of a normalization procedure.
On the other hand, whatever the type of divergence used, the method of
variables change makes it possible to obtain multiplicative algorithms tak-
ing into account the sum constraints.

Consequently, the first part of this chapter is devoted to the
use of invariant divergences and to their minimization within the
framework of blind deconvolution problems, then the second part
is devoted to non-invariant divergences and the associated multi-
plicative algorithms.
In both cases, we will discuss the smoothness constraint regular-

245
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ization of the solution.

To establish a parallel with the NMF problem of the previous chapter, we
will take advantage of the fact that the convolution product is commutative
as opposed to the matrix product.
Indeed the basic relationship is given by a Fredholm integral of the first
kind:

Y (r, s) =

∫ +∞

−∞

∫ +∞

−∞
H (r, s, ξ, η) X (ξ, η) dξdη (12.1)

In the case of convolution, the kernel H is invariant under translation:

H (r, s, ξ, η) = H (r − ξ, s− η) (12.2)

We denote:

H⊗X =

∫ +∞

−∞

∫ +∞

−∞
H (r − ξ, s− η) X (ξ, η) dξdη (12.3)

In imaging, in the case of classical deconvolution Y (r, s) is the measured
image, usually corrupted by noise, H (r, s, ξ, η) is the supposedly known,
non-negative system Point Spread Function (PSF), X (ξ, η) is the unknown
non-negative image we’re trying to reconstruct.
Moreover, the Point Spread Function of the system, i.e. the kernel of the
integral equation, has generally an integral equal to 1.∫ ∫

H (u, v) dudv = 1 (12.4)

As a result of which:∫ ∫
Y (r, s) drds =

∫ ∫
X (ξ, η) dξdη (12.5)

The “simple” deconvolution problem is similar to the linear unmixing prob-
lem discussed in the previous chapter.
We can notice that in this problem, the non-negativity of the X solution
and the relation (12.5) are the constraints.
On the other hand, in the blind deconvolution problem, we dispose only of
the measured image Y, and the unknowns are the kernel H and the true
object X.
The constraints are the non-negativity of H and X on the one hand, and
the relations (12.4) and (12.5) on the other hand.
Of course, despite the constraints, the problems associated with multiple
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solutions are not completely solved.
This problem is similar to the NMF problem in the previous chapter, with
the already mentioned advantage of the commutativity of the convolution
product. In the convolution problem, the measured image, the unknown
object and the impulse response are both pixelated and contained in arrays
of the same dimensions.
The basic relationship:

Y = H⊗X ⇔ Y (r, s) =

∫ +∞

−∞

∫ +∞

−∞
H (r − ξ, s− η) X (ξ, η) dξdη (12.6)

is written after discretization, in the vector form:

y = Hx (12.7)

In this matrix form, the measured image of size (N ∗N) is lexicographically
ordered as a vector “y” of length

(
N2
)
; the same applies to the unknown

object “x”, then, ”H” is a circulating Toeplitz block matrix of dimension(
N2 ∗N2

)
.

Given the commutativity of the convolution product, we also have:

Y = X⊗H⇔ Y (r, s) =

∫ +∞

−∞

∫ +∞

−∞
X (r − ξ, s− η) H (ξ, η) dξdη (12.8)

which results in:
y = Xh (12.9)

Here, vectors “h” and “y” of length
(
N2
)

correspond to the lexicographical
organization of the arrays H and Y, then, X is a circulating Toeplitz block
matrix of size

(
N2 ∗N2

)
.

By using the notations already introduced in the analysis of the divergences,
we will have:

p ≡ y ; q ≡ Hx ≡ Xh (12.10)

Referring to the notations of relations (12.7) (12.9) (12.10), the resolution
of the blind deconvolution problem consists in recovering the PSF “h” and
the object “x” by minimizing a divergence D (p‖q) under the constraints:

xi ≥ 0 ∀i ;hi ≥ 0 ∀i ;
∑
i

hi = 1 ;
∑
i

xi =
∑
i

yi (12.11)

Due to the lexicographical organization of the images (tables),
all considerations and operations concerning divergences between
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vectors are directly applicable in deconvolution or blind decon-
volution problems; the image aspects (tables) will only appear in
calculations using Fourier transforms.

Note that during calculations, expressions of the form
(
HTx

)
and

(
XTh

)
will be used; these operations expressed in the context of continuous func-
tions correspond to:

HTu ≡
∫ ∫

H (−r,−s, ξ, η) U (ξ, η) dξdη (12.12)

with, in the case of convolution:

H (−r,−s, ξ, η) = H (−r − ξ,−s− η) (12.13)

and

XTu ≡
∫ ∫

X (−r,−s, ξ, η) U (ξ, η) dξdη (12.14)

with, in the case of convolution:

X (−r,−s, ξ, η) = X (−r − ξ,−s− η) (12.15)

12.1.1 Some details related to the calculus.

To perform the calculus of the convolution products, it is interesting to
use the Fourier Transforms noted F ; indeed, the classical property of the
convolution product allows to write [85]:∫ +∞

−∞

∫ +∞

−∞
H (r − ξ, s− η) X (ξ, η) dξdη = F−1 [F (H)F (X)] (12.16)

and moreover, we have:

H (−r,−s) = F [F (H (r, s))] ; X (−r,−s) = F [F (X (r, s))] (12.17)

In doing so, we will only handle tables of the size of the object, image, and
PSF.
As a result, in the reconstruction iterative process, the unknown images
(tables) are updated as a whole.
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12.2 Algorithmic method.

The method described applies to all divergences, whether invariant or not.
Leaving aside the regularization aspects, the problem is posed as a con-
strained minimization problem of a divergence between the measures p ≡ y
and the convolutional model q ≡ Hx ≡ Xh ≡ [h⊗ x], which reflects the
“data attachment”.
min︸︷︷︸
x,h

DI (y‖ [h⊗ x])

s.t. xi > 0 ∀i ;
∑

i xi =
∑

i yi et hi > 0 ∀i ;
∑

i hi = 1.

The proposed blind deconvolution method is structurally inspired by the
one initially proposed in [7] and extended by the use of iterative algorithms
in [59] [60] for example.
This method, in which we operate alternately on the two unknowns is anal-
ogous to the one developed for MMF in chapter 11.

It can be synthesized, for example, according to the following scheme:
1 - xk , hk → xk , hk+1

2 - xk , hk+1 → xk+1 , hk+1

This is the scheme that will be considered in further calculations.
Note that we might as well iterate first on “x” and then on “h”.
In blind deconvolution, as in simple deconvolution, the updating is done on
all the components of “x” simultaneously; similarly, the updating to “h” is
done on all the components simultaneously.
This last point differs from what is done in the case of the NMF where the
updating Hk → Hk+1 is carried out successively column by column as well
as the updating Xk → Xk+1 .
The alternative iterative method inspired by Uzawa’s algorithm suggested
in Chapter 11 for NMF, can also be considered for blind deconvolution; it
was used in [59], [60]. Such a method will not be developed here.

12.3 Application to scale invariant divergences.

12.3.1 Property of scale invariant divergences with respect
to “q”.

The use of invariant divergences with respect to “q” is particularly interest-
ing for the blind deconvolution problem, because their use associated with
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the commutativity of the convolution product allows to take into account
simply the sum constraints on the two unknowns, i.e.

∑
i hi = 1 ;

∑
i xi =∑

i yi.
Let’s recall the property of invariant divergences arising here (3.7):

∑
m

qm

[
∂DI (p‖q)

∂q

]
m

= 0 (12.18)

* Initialization.

The algorithm is initialized with x0 /
∑

i x
0
i =

∑
i yi and h0 /

∑
i h

0
i = 1.

* Itérations on “h” - Non-multiplicative form.

We have at our disposal xk, hk; here, q = Xkhk.
For a divergence invariant with respect to “q” denotedDI (p‖q), the iterative
algorithm on “h” is written :

hk+1
l = hkl + αkl h

k
l

[
−∂DI (p‖q)

∂hkl

]
(12.19)

The gradient with respect to “h” is given by:

∂DI (p‖q)
∂hl

=
∑
i

∂DI (pi‖qi)
∂qi

∂qi
∂hl

(12.20)

With
∂qi
∂hl

= Xil (12.21)

We have:

∂DI (p‖q)
∂hl

=
∑
i

∂DI (pi‖qi)
∂qi

Xil =
∑
i

XT
li

∂DI (pi‖qi)
∂qi

(12.22)

And finally:
∂DI (p‖q)

∂hl
=

[
XT ∂DI (p‖q)

∂q

]
l

(12.23)

The iterative algorithm on “h” is then written with x ≡ xk ⇔ X ≡ Xk and
q = Xkhk:

hk+1
l = hkl + αkl h

k
l

[
−XT ∂DI (p‖q)

∂q

]
l

(12.24)
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As in all analogous algorithms, as indicated in Chapter 10, we must in a
first step calculate the step size

[
αkl
]
Max

ensuring the non-negativity of all

the components of hk+1, then calculate by a one-dimensional search method
over the interval

{
0,
[
αkl
]
Max

}
, the descent step size αk ensuring the con-

vergence of the algorithm:

hk+1
l = hkl + αkhkl

[
−XT ∂DI (p‖q)

∂q

]
l

(12.25)

For the whole “h” vector, we can write in a more explicit way:

hk+1 = hk + αkhk �
[
−XT ∂DI (p‖q)

∂q

]
(12.26)

In this writing the symbol � is the pointwise product of two vectors.
With such an algorithm, considering the property (3.7), we obtain

∑
l h

k+1
l =∑

l h
k
l , whatever the descent step size αk, as shown by the following simple

calculation.

* Démonstration of
∑

l h
k+1
l =

∑
l h

k
l

From (12.19), we have:∑
l

hk+1
l =

∑
l

hkl + αk
∑
l

{
hkl

[
−XT ∂DI (p‖q)

∂q

]
l

}
(12.27)

By explaining: [
XT ∂DI (p‖q)

∂q

]
l

=
∑
m

XT
lm

[
∂DI (p‖q)

∂q

]
m

(12.28)

Putting in the previous equation, it comes:∑
l

hk+1
l =

∑
l

hkl + αk
∑
l

{
hkl

[
−
∑
m

XT
lm

[
∂DI (p‖q)

∂q

]
m

]}
(12.29)

By swapping the order of the summations, it comes:∑
l

hk+1
l =

∑
l

hkl + αk
∑
m

[
−∂DI (p‖q)

∂q

]
m

∑
l

hklX
T
lm (12.30)

That is:∑
l

hk+1
l =

∑
l

hkl + αk
∑
m

[
−∂DI (p‖q)

∂q

]
m

∑
l

Xmlh
k
l (12.31)

Given the property (3.7) the second term of the second member of the
previous equation is zero, hence the announced result.
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* Itérations on “h” - Multiplicative form.

In order to obtain a multiplicative form of the algorithm, from the relations
(12.19) (12.25), we strictly apply the SGM method and we carry out in a
first step the decomposition:[

−∂DI (p‖q)
∂hk

]
l

=

[
−XT ∂DI (p‖q)

∂q

]
l

= Ukl − V k
l (12.32)

Avec Ukl > 0, V k
l > 0.

We then write in the next step:

h̃k+1
l = hkl + αkhkl

[
Ukl
V k
l

− 1

]
l

(12.33)

Then, by choosing a descent step size equal to 1 for any “k”, we get:

h̃k+1
l = hkl

[
Ukl
V k
l

]
l

(12.34)

At this point, we don’t have
∑

l h̃
k+1
l =

∑
l h

k
l = 1.

However, the invariance properties of the divergences allow to carry out, in a
last step, a normalization which does not modify the value of the divergence,
and we finally have:

hk+1
l =

h̃k+1
l∑
l h̃

k+1
l

(12.35)

* Itérations on “x” - Non multiplicative form.

At this point we have xk, hk+1; here, q = Hk+1xk.
The iterative algorithm on “x” is written as follows:

xk+1
l = xkl + βkl x

k
l

[
−∂DI (p‖q)

∂xkl

]
(12.36)

The gradient with respect to “x” is written:

∂DI (p‖q)
∂xl

=
∑
i

∂DI (pi‖qi)
∂qi

∂qi
∂xl

(12.37)

With:
∂qi
∂xl

= Hil (12.38)
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It comes:

∂DI (p‖q)
∂xl

=
∑
i

∂DI (pi‖qi)
∂qi

Hil =
∑
i

HT
li

∂DI (pi‖qi)
∂qi

(12.39)

And finally:
∂DI (p‖q)

∂xl
=

[
HT ∂DI (p‖q)

∂q

]
l

(12.40)

The iterative algorithm on “x” is then written with h ≡ hk+1 ⇔ H ≡ Hk+1

and q = Hk+1xk:

xk+1
l = xkl + βkl x

k
l

[
−HT ∂DI (p‖q)

∂q

]
l

(12.41)

As in all analogous algorithms, as indicated in Chapter 10, we must in a
first step calculate the step size

[
βkl
]
Max

which ensures the non-negativity

of all the components of xk+1, then calculate by a one-dimensional search
method over the interval

{
0,
[
βkl
]
Max

}
, the descent step size βk ensuring the

convergence of the algorithm:

xk+1
l = xkl + βkxkl

[
−HT ∂DI (p‖q)

∂q

]
l

(12.42)

A demonstration similar to the one developed for “h” makes it easy to
establish that with this type of algorithm one obtains

∑
l x

k+1
l =

∑
l x

k
l ,

regardless of the descent step size βk.
An expression of this algorithm for the “x” vector as a whole, is:

xk+1 = xk + βkxk �
[
−HT ∂DI (p‖q)

∂q

]
(12.43)

In this expression, the symbol odot represents the pointwise product.
At this point, we have obtained hk+1, xk+1.

* Iterations on “x” - Multiplicative form.

To obtain this form, we strictly follow what has been described for “h” ( the

decomposition here is about
[
−HT ∂DI(p‖q)

∂q

]
l
), until we obtain x̃k+1

l , after

which, the normalization step is written:

xk+1
l =

x̃k+1
l∑
l x̃

k+1
l

∑
l

yl (12.44)

Such normalization will not change the value of the divergence.



254 CHAPTER 12 - APPLICATION TO BLIND DECONVOLUTION.

12.4 Analysis of 2 particular cases.

12.4.1 Invariant “Beta” divergence.

In Chapter 5, we developed the invariance aspects concerning the Beta
divergence.
The initial divergence is given by (5.20).
The expression of the invariance factorK is obtained explicitly, it is therefore
the nominal value which is written as follows (5.45):

K0 =

∑
i piq

λ−1
i∑

i q
λ
i

(12.45)

And the corresponding divergence invariant by scale change on “q” is written
(5.47):

BI (p‖q) =
1

λ (λ− 1)

[∑
i

pλi −
∑
i

Kλ
0 q

λ
i

]
(12.46)

Its gradient with respect to “q” has been previously written in the form
(5.49):

∂BI (p‖q)
∂qj

= Kλ
0

[
qλ−1
j − (K0)−1 pjq

λ−2
j

]
(12.47)

The algorithm can then be written:
Initialization:

h0
i /

∑
i

h0
i = 1 ; x0

i /
∑
i

x0
i =

∑
i

yi (12.48)

* Iteration on “h” according to (12.19):

We know hk, xk → Xk ≡ X, p = y, q = Xkhk
(
= Hkxk

)
.

The invariance factor is iteration dependent and is written as:

Kk
0 =

∑
i piq

λ−1
i∑

i q
λ
i

(12.49)

hk+1
l = hkl + αk

(
Kk

0

)λ
hkl

∑
j

XT
lj

[(
Kk

0

)−1
pλj q

λ−2
j − qλ−1

j

] (12.50)

At this point, we have obtained hk+1 → H ≡ Hk+1, we know p = y, xk,
q = Hk+1xk, then, updating Kk

0 according to (12.49), we iterate on “x”.
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* Iteration on “x” according to (12.42):

xk+1
l = xkl + αk

(
Kk

0

)λ
xkl

∑
j

HT
lj

[(
Kk

0

)−1
pλj q

λ−2
j − qλ−1

j

] (12.51)

12.4.2 Invariant mean square deviation.

For the root mean square deviation which corresponds to λ = 2 for the Beta
divergence, the nominal invariance factor K0 can be explicitly computed and
is written as follows:

K0 =

∑
l plql∑
l q

2
l

(12.52)

The corresponding invariant divergence is given by:

MCI (p‖q) =
1

2

∑
i

[
p2
i −

(∑
l plql∑
l q

2
l

)2

q2
i

]
(12.53)

Its gradient with respect to “q” is written as follows:

∂MCI (p‖q)
∂qj

=

(∑
l plql∑
l q

2
l

)2

qj −
(∑

l plql∑
l q

2
l

)
pj = K2

0qj −K0pj (12.54)

According to the relation (12.19), after discussion about the descent step
size and taking into account the variarion of K0 during iterations, it comes
for the entire vector “h”:

hk+1
l = hkl + αkhkl

{
XT

[
Kk

0 p−
(
Kk

0

)2
q

]}
l

(12.55)

In this expression, x ≡ xk ⇔ X ≡ Xk, q = Hkxk = Xkhk, and Kk
0 is

expressed as:

Kk
0 =

∑
l yl
(
Hkxk

)
l∑

l (H
kxk)

2
l

(12.56)

We then iterate on “x” according to the relationship (12.42); after dis-
cussion about the descent step size and with h ≡ hk+1 ⇔ H ≡ Hk+1 et
q = Hk+1xk, it comes for the entire vector “x”:

xk+1
l = xkl + βkxkl

{
HT

[
Kk

0 p−
(
Kk

0

)2
q

]}
l

(12.57)

The invariance factor Kk
0 variable during iterations, will be expressed

by:

Kk
0 =

∑
l yl
(
Hk+1xk

)
l∑

l (H
k+1xk)

2
l

(12.58)
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12.4.3 Invariant Alpha divergence.

In Chapter 5, we discussed the invariance aspects concerning the Alpha
divergence.
The initial divergence is given by (5.15).
The expression of the invariance factor K is obtained explicitly, so it is the
nominal value which is written as (5.27):

K0 =

(∑
i p
λ
i q

1−λ
i∑

i qi

) 1
λ

(12.59)

And the corresponding divergence invariant by scale change on “q” is written
(5.29):

AI (p‖q) =
1

λ− 1

[∑
i

K0qi −
∑
i

pi

]
(12.60)

Its gradient with respect to “q” has been written in the form (5.33):

∂AI (p‖q)
∂qj

=
1

λ

[
K0 −K1−λ

0 pλj q
−λ
j

]
(12.61)

With the initialization:

h0
i /

∑
i

h0
i = 1 ; x0

i /
∑
i

x0
i =

∑
i

yi (12.62)

The algorithm can then be described as follows:

* Iteration on “h” according to (12.19):

We know hk, xk → Xk ≡ X, p = y, q = Xkhk.
The iteration-dependent invariance factor is written as:

Kk
0 =

(∑
i p
λ
i q

1−λ
i∑

i qi

) 1
λ

(12.63)

The iteration is written for “h” as a whole:

hk+1 = hk +
αkKk

0

λ
hk �

{
XT

[(
Kk

0

)−λ
pλq−λ − 1

]}
(12.64)

The symbol “�” corresponds to the pointwise multiplication of the two vec-
tors.
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At this point, we obtained hk+1.

* Iteration on “x” according to (12.42):

We have hk+1 → Hk+1 ≡ H, xk, p = y, q = Hk+1xk.
The iteration-dependent invariance factor is updated according to (12.63),
and it comes:

xk+1 = xk +
αkKk

0

λ
xk �

{
HT

[(
Kk

0

)−λ
pλq−λ − 1

]}
(12.65)

The symbol “�” corresponds to the pointwise multiplication of the two
vectors.
At this point, we obtained hk+1, xk+1.

12.4.4 Kullback-Leibler invariant divergence.

This divergence corresponds to the case λ = 1 of the Alpha divergence as
well as the Beta divergence. This is the point in common between these two
types of divergence.
The nominal invariance factor K0 can be explicitly derived and is written:

K0 =

∑
l pl∑
l ql

(12.66)

The corresponding invariant divergence is given by:

KLI (p‖q) =
∑
l

pl
∑
i

pi∑
l pl

log

(∑
l ql∑
l pl

)
pi
qi

(12.67)

Its gradient with respect to “q” is written as follows:

∂KLI (p‖q)
∂qj

=

∑
l pl∑
l ql
− pj
qj

= K0 −
pj
qj

(12.68)

According to the relationship (12.19) and after discussing the step size, he
comes for “h” as a whole:

hk+1 = hk + αkhk �
[
XT

(
p

q
−Kk

0

)]
(12.69)

In this expression, p ≡ y, x ≡ xk ⇔ X ≡ Xk and q = Hkxk = Xkhk.
The invariance factor Kk

0 will be expressed by:

Kk
0 =

∑
l yl∑

l (X
khk)l

(12.70)
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We then iterate on “x” according to the relation (12.42); after discussion
on the descent step size, it comes for “x” as a whole:

xk+1 = xk + βkxk �
[
HT

(
p

q
−Kk

0

)]
(12.71)

with p ≡ y, h ≡ hk+1 ⇔ H ≡ Hk+1, q = Hk+1xk and Kk
0 given by:

Kk
0 =

∑
l yl∑

l (H
k+1xk)l

(12.72)

12.5 Regularization - Scale invariant divergences.

In the context of deconvolution or blind deconvolution, we classically impose
a property of smoothness of the solution; this is the regularization in the
sense of Tikhonov [93].
The 2 classical methods used to introduce such a property consist in using
as a penalty term either the Euclidean norm of the deviation between the
solution and its mean value, or the Euclidean norm of the Laplacian of the
solution.
In a first step, we develop the expressions of the penalty terms having the
invariance properties, which will be associated with the “data attachment”
term.

12.5.1 Euclidean norm of the solution.

The non-invariant penalty term for the variable “x” is written as:

DRQx =
∑
i

(ci − xi)2 (12.73)

Where ci = 1/N2 ∀i and where xi is the image of dimension N ∗N lexico-
graphically ordered.
First we need to obtain a form that is invariant with respect to “x”.
To do that, we derive the invariance factor, which is written:

K0 =

∑
j cjxj∑
j x

2
j

(12.74)

The corresponding invariant divergence is written as follows:

DRQIx =
∑
i

(ci −K0xi)
2 (12.75)
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After a few calculations, the gradient with respect to “x” is expressed as
follows:

∂DRQIx
∂xl

= K2
0xl −K0cl (12.76)

We can easily verify that we have:

∑
l

xl
∂DRQIx
∂xl

= 0 (12.77)

12.5.2 Use of the Laplacian norm of the solution.

The classical non-invariant penalty term for the variable “x” is written as:

DRLx = ‖Lx‖2 = ‖x− Tx‖2 (12.78)

The term “Lx” corresponds to the convolution of the table X by the Lapla-

cian mask:

 0 −1/4 0
−1/4 1 −1/4

0 −1/4 0

 .

The resulting table is written in lexicographical order.
We can thus write the vector “Lx” in the form (x− Tx) where the term
“Tx” is a vector which, in lexicographic order, corresponds to the convolu-

tion of X by the mask:

 0 1/4 0
1/4 0 1/4
0 1/4 0

 .

The “x” vector corresponds to the lexicographical writing of the table X.
We will note that under these conditions, the matrix T is symmetrical, it is
normalized to 1 in columns, i.e.

∑
i Tij = 1 ∀j, thus

∑
i (Tx)i =

∑
i xi.

However, the penalty term so described is not invariant with respect to “x”.
This aspect of the problem was discussed in Chapter 9.
In order to have the property of invariance, one can use, to express the dis-
crepancy between “x” and “Tx”, the divergences LAI or LBI, which are
invariant to both arguments and which are given respectively by (9.11) and
(9.13).
The corresponding gradients with respect to “x” are given respectively by
(9.12) and (9.14).
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We use here their expressions; for LAIa (x‖Tx), we have (9.12):

∂LAIa (x‖Tx)

∂xl
=

1

a

[ ∑
i Til∑

i (Tx)i
−
∑

i Tilx
a
i (Tx)−ai∑

i x
a
i (Tx)1−a

i

]
+

1

a− 1

[
xa−1
l (Tx)1−a

l∑
i x

a
i (Tx)1−a

i

− 1∑
i xi

]
(12.79)

The case a = 1 which corresponds to the basis of a Kullback-Leibler diver-
gence imply the computation of a limit which leads after some calculations
to the expression:

∂LAI1 (x‖Tx)

∂xl
=

1∑
i xi

[∑
i

Til −
∑
i

Til
xi

(Tx)i

]
(12.80)

Or else by simplifying, taking into account the properties of the matrix T :

∂LAI1 (x‖Tx)

∂xl
=

1∑
i xi

[
1−

∑
i

Til
xi

(Tx)i

]
(12.81)

One can observe that, as always with this type of divergence,∑
l xl

∂
∂xl

= 0.

Similarly, as regards LBIb (x‖Tx), we have (9.14):

∂LBIb (x‖Tx)

∂xl
=

1

b− 1

[
xb−1
l∑
i x

b
i

−
(Tx)b−1

l∑
i xi (Tx)b−1

i

]
+[∑

i Til (Tx)b−1
i∑

i (Tx)bi
−
∑

i Tilxi (Tx)b−2
i∑

i xi (Tx)b−1
i

]
(12.82)

The special case b = 1 leads to the same result as the divergence LAI1,
whereas the case b = 2 which corresponds to a basis divergence which is the
mean square deviation, does not imply a passage to the limit and leads to:

∂LBI2 (x‖Tx)

∂xl
=

xl∑
i x

2
i

−
∑

i Til (Tx)i∑
i (Tx)2

i

(12.83)

Or else, given the properties of the matrix T (T = T T ):

∂LBI2 (x‖Tx)

∂xl
=

xl∑
i x

2
i

−
[T (Tx)]l∑
i (Tx)2

i

(12.84)

We have, again, as always with this type of divergence:∑
l xl

∂
∂xl

= 0.
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12.6 Regularized algorithm.

The problem here is to minimize under constraints, with respect to the two
unknowns “x” and “h”, an invariant composite divergence of the form:

DCI = DI (y‖ [h, x]) + γDRI (h) + µDRI (x) (12.85)

The coefficients “γ” and “µ” are the positive regularization factors.
For the DI (y‖ [h, x]) divergence representing the attachment to the data,
we can use any divergence invariant with respect to q ≡ Hx ≡ Xh.
In contrast, as far as the terms of regularization are concerned, there are
two possible cases.
* either this term translates the discrepancy to a constant, which is the case
for example of the mean square deviation proposed in the previous section,
then an invariant form of this term i.e. (12.75) is usable.
This is valid for any invariant divergence between a constant and the vari-
able considered.
* or the variable is involved in the two arguments of the divergence express-
ing the penalty, this is the case of a Laplacian type regularization, then one
must use invariant divergences with respect to its both arguments, as it is
the case for divergences of type LAI or LBI developed in the preceding
section.
These considerations being taken into account, the algorithmic
method developed in section (12.2) applies to the composite di-
vergence DCI without any change.

12.7 Blind deconvolution - Non-invariant diver-
gences.

In the previous section, it was shown that the use of invariant divergences
allows us to obtain multiplicative algorithms while maintaining sum con-
straints on the unknowns, subject to a normalization step.
In order to propose such algorithms without resorting to this procedure,
we develop here Blind Deconvolution algorithms using non-invariant diver-
gences. In order to take into account the sum constraints on “h” and on
“x”, we rely on the variable change method proposed in the section 10.3.2,
and more specifically on the algorithm (10.76).
The general structure of the algorithm remains as proposed in the previous
section, which consists of iterating alternately on the two unknowns.
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Considering a non-invariant divergence:

D (p‖q) =
∑
i

d (pi‖qi) (12.86)

With pi ≡ yi et qi ≡ (Hx)i ≡ (Xh)i.

* Iterations on “h” - Non-multiplicative form.

We have xk ⇔ Xk and hk, we are searching for hk+1.
After performing the variable change hj =

tj∑
n tn

, and according to (10.76),

we obtain the algorithm:

hk+1
l = hkl + δkhkl

{[
−
∂D

(
y‖Xkhk

)
∂hkl

]
−
∑
m

hkm

[
−
∂D

(
y‖Xkhk

)
∂hkm

]}
(12.87)

We can easily verify that we have
∑

l h
k+1
l =

∑
l h

k
l ; as a consequence,

considering the initialization
∑

j h
0
j = 1, we will have

∑
l h

k+1
l = 1.

* Iterations on “h” - Multiplicative form.

Unlike invariant divergences, the use of non-invariant divergences allows
multiplicative forms of the algorithms to appear, without the need to use
normalization.
This is done by shifting the components of the opposite of the gradient
involved in (12.87), in order to make them all positive.[
−
∂D

(
y‖Xkhk

)
∂hk

]
d

=

[
−
∂D

(
y‖Xkhk

)
∂hk

]
− min︸︷︷︸

l

[
−
∂D

(
y‖Xkhk

)
∂hkl

]
+ ε

(12.88)
Obviously, given the properties of “h”, such an offset will not change the
algorithm.
We can then write an algorithm that will allow us to obtain a purely mul-
tiplicative form:

hk+1
l = hkl + δkhkl


[
−∂D(y‖Xkhk)

∂hkl

]
d∑

m h
k
m

[
−∂D(y‖Xkhk)

∂hkm

]
d

− 1

 (12.89)

The purely multiplicative form is obtained, as always, by taking a descent
step size δk = 1 ∀k, however, there is no guarantee of convergence of such
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an algorithm over which we no longer have any control.

* Iterations on “x”- Non-multiplicative form.

We know hk+1 ⇔ Hk+1 and xk, we want to obtain xk+1.
After having carried out the change of variables xj =

uj∑
n un

∑
i yi, referring

to (10.76), one obtains the algorithm:

xk+1
l = xkl +β

kxkl

{∑
i

yi

[
−
∂D

(
y‖Hk+1xk

)
∂xk

]
l

−
∑
m

xkm

[
−
∂D

(
y‖Hk+1xk

)
∂xk

]
m

}
(12.90)

Taking into account that
∑

j xj =
∑

j yj , we will have
∑

l x
k+1
l =∑

l x
k
l =

∑
j yj .

* Iterations on “x” - Multiplicative form.

As proposed for the variable “h”, a multiplicative algorithm can be ob-
tained; to do so, we shift the components of the opposite gradient in involved
in (12.90), in order to make them all positive.

[
−
∂D

(
y‖Hk+1xk

)
∂xk

]
d

=

[
−
∂D

(
y‖Hk+1xk

)
∂xk

]
−min︸︷︷︸

l

[
−
∂D

(
y‖Hk+1xk

)
∂xkl

]
+ε

(12.91)
Obviously, an offset like that will not change the algorithm.
We can then write an algorithm that will allow us to obtain a purely mul-
tiplicative form:

xk+1
l = xkl + βkxkl


∑

i yi

[
−∂D(y‖Hk+1xk)

∂xkl

]
d∑

m x
k
m

[
−∂D(y‖Hk+1xk)

∂xkm

]
d

− 1

 (12.92)

The purely multiplicative form is obtained, as always, by taking a descent
step size βk = 1 ∀k, but there’s no convergence guarantee for such an algo-
rithm over which we no longer have any control.
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12.7.1 Regularization.

In this case, with q ≡ Hx ≡ Xh, we have to minimize a composite diver-
gence:

DC = D (y‖q) + γDRx (x) + µDRh (h) (12.93)

Decomposing the problem as described in the previous paragraph leads us
to:
1 - For known ”x”, minimize with respect to ”h”, under constraints, a
divergence of the form:

DCh = D (y‖Xh) + γDRh (h) (12.94)

2 - For known ”h”, minimize with respect to ”x”, under constraints, a
divergence of the form:

DCx = D (y‖Hx) + µDRx (x) (12.95)

Expressions of regularization terms.

For both ”h” and ”x”, we use here a smoothness constraint regularization
of the solution which is written:
either in the form (12.73):

DRQx =
1

2

∑
i

(c− xi)2 (12.96)

Where c =
∑
i yi
N ; ”N” is the number of components of ”y” and/or ”x”, i.e.

the number of pixels in the measured and/or reconstructed image.

with:
∂DRQx
∂xl

= xl − c (12.97)

, or in the form (12.78):

DRLx =
1

2
‖Lx‖2 = ‖x− Tx‖2 (12.98)

With, taking into account the symmetry of the matrix ”T”:

∂DRLx
∂xl

= x2
l − 2 (Tx)l + [T (Tx)]l (12.99)



12.7. BLIND DECONVOLUTION - NON-INVARIANT DIVERGENCES.265

Algorithms.

The regularized algorithms are based on the expressions (12.87) and (12.90),
replacing the unregularized divergence D by the composite divergences re-
spectively DCh and DCx.
The expressions of the involved gradients are then written as follows:

∂DCh
(
y‖Xkhk

)
∂hkl

=
∂D

(
y‖Xkhk

)
∂hkl

+ γ
∂DRh

(
hk
)

∂hkl
(12.100)

and

∂DCx
(
y‖Hk+1xk

)
∂xkl

=
∂D

(
y‖Hk+1xk

)
∂xkl

+ µ
∂DRx

(
xk
)

∂xkl
(12.101)

In these expressions, the regularization terms DR are either DRQ or DRL.
So the non-multiplicative regularized algorithms are written in the form:

hk+1
l = hkl + δkhkl

{[
−∂DCh

∂hkl

]
−
∑
m

hkm

[
−∂DCh
∂hkm

]}
(12.102)

xk+1
l = xkl + βkxkl

{∑
i

yi

[
−∂DCx

∂xkl

]
−
∑
m

xkm

[
−∂DCx
∂xkm

]}
(12.103)

* Multiplicative forms.

They are obtained by following the procedure indicated in the previous sec-

tion; the components of the opposite of the gradients
[
−∂DCh

∂hkl

]
and

[
−∂DCx

∂xkl

]
are shifted in order to obtain components that are all positive, and we build
the algorithms:

hk+1
l = hkl + δkhkl


[
−∂DCh

∂hkl

]
d∑

m h
k
m

[
−∂DCh

∂hkm

]
d

− 1

 (12.104)

xk+1
l = xkl + βkxkl


∑

i yi

[
−∂DCx

∂xkl

]
d∑

m x
k
m

[
−∂DCx

∂xkm

]
d

− 1

 (12.105)

Purely multiplicative forms are obtained, as always, by taking the descent
step size βk = δk = 1 ∀k, but there’s no guarantee that such algorithms,
over which we have no control, will converge.
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Appendix 1 - Generalized
Logarithm.

A reminder on the Generalized Logarithm function.

The function “Generalized Logarithm” or “Deformed Logarithm” (d-
logarithm, Box-Cox transformation) is written as follows:

logd (x) =
x1−d − 1

1− d
(1)

The limit cases are the function log x when d → 1 and the linear function
(x− 1) when d→ 0.
The inverse function is the “Generalized exponential” or “Deformed expo-
nential” function:

expd (x) = [1 + (1− d)x]
1

1−d (2)

This last function is obviously only defined if the quantity in square brackets
is positive or zero.
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Appendix 2 - Means.

Recalls on means.

For a set of real numbers aj ≥ 0 j = 1...N and a set of weights wj ≥ 0
we define:

A. Weighted arithmetic mean.

Ma =

∑
j wjaj∑N
i=1wi

=
∑
j

cjaj ; cj =
wj∑N
i=1wi

;
∑
j

cj = 1 (3)

In the particular case where all the weights are equal, we have cj = 1
N and

the unweighted arithmetic mean is written as follows:

Ma =

∑
j aj

N
(4)

B. Weighted geometric mean.

Mg =

∏
j

a
wj
j

 1∑N
i=1

wi

= exp

 1∑N
i=1wi

∑
j

wj log aj

 (5)

Which can also be written:

Mg =
∏
j

a
cj
j = exp

∑
j

cj log aj

 ; cj =
wj∑N
i=1wi

;
∑
j

cj = 1 (6)

In the particular case where all the weights are equal, we have cj = 1
N and

the unweighted geometric mean is written as follows:

Mg =
∏
j

a
1
N
j =

∏
j

aj

 1
N

(7)
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C. Weighted harmonic mean.

Mh =

∑N
i=1wi∑
j
wj
aj

=
1∑
j
cj
aj

; cj =
wj∑N
i=1wi

;
∑
j

cj = 1 (8)

In the particular case where all the weights are equal, we have cj = 1
N and

the unweighted harmonic mean is written as follows:

Mh =
N∑
j

1
aj

(9)

D. Generalized mean with exponent “t” - Power mean - Hôlder
mean.

For non-zero real “t”, we define:

Mt =

 1

N

∑
j

atj

 1
t

(10)

- t = 1 ⇒ Arithmetic mean
- t = 2 ⇒ Quadratic mean Mq (Square root mean)
- t = −1 ⇒ Harmonic mean
- t→ 0 ⇒ one tends towards the geometric mean ( caution, it is a passage
to the limit.
- t→ +∞ ⇒ one tends towards : max [aj ]
- t→ −∞ ⇒ one tends towards : min [aj ]

The weighted versions are obtained by the relation:

Mt =

 1∑N
i=1wi

∑
j

wja
t
j

 1
t

(11)

or also:

Mt =

∑
j

cja
t
j

 1
t

; cj =
wj∑N
i=1wi

;
∑
j

cj = 1 (12)

An interesting inequality: if t1 < t2 we have Mt1 ≤Mt2.
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This allows us to recover the inequalities between the different means:

min ≤Mh ≤Mg ≤Ma ≤Mq ≤ max (13)

This notion can be extended to the generalized mean in the meaning of
a function “f”.

E. Generalized “f” mean.

Let “f” be an injective and continuous function, the weighted average
in the meaning of the function “f” is defined by:

Mf = f−1

[∑
j wjf (aj)∑N
i=1wi

]
(14)

or also:

Mf = f−1

∑
j

cjf (aj)

 ; cj =
wj∑N
i=1wi

;
∑
j

cj = 1 (15)

If all the weights wj are equal, we obtain the unweighted version:

Mf = f−1

[∑
j f (aj)

N

]
(16)

Remarks:
- the function “f” is assumed to be injective to ensure that “f−1” exists.
- the function “f” is assumed to be continuous to ensure that the quantities[∑

j f(aj)

N

]
or
[∑

j f(aj)∑N
i=1 wi

]
belong to the domain of “f−1”.

- if “f” is injective and continuous, it is strictly monotonous, which results
in:

min [aj ] ≤Mf ≤ max [aj ] (17)

The various classical means can be considered as special cases:
- if f (x) = x we recover the arithmetic mean.
- if f (x) = log x we recover the geometric mean.
- if f (x) = 1

x we recover the harmonic mean.
- if f (x) = xt we recover the Hölder mean (generalized mean with exponent
”t”).

Application to our problem:
In our applications, we have 2 data fields “p” and “q” whose homologous
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points are noted pi and qi; the means considered are made always between
2 homologous points, and are then extended to the whole field by simply
summing the means between homologous points.
Therefore, in all relations concerning means, we always have N=2.
In the weighted means, we will use weights in the form of (α) and (1− α),
0 < α < 1.
And so we have:
* Weighted arithmetic mean:

Ma (p, q) =
∑
i

[αpi + (1− α) qi] (18)

* Weighted geometric mean:

Mg (p, q) =
∑
i

pαi q
1−α
i (19)

* Weighted harmonic mean:

Mh (p, q) =
∑
i

piqi
(1− α) pi + αqi

(20)

* Weighted quadratic mean:

Mq (p, q) =

√∑
i

αp2
i + (1− α) q2

i (21)



Appendix 3 - Generalization
of GHOSH.

Generalization of GHOSH et al. [38]

With the change of denomination of the parameters, and considering that
it is necessary to introduce the multiplicative factor already mentioned, the
divergence of Ghosh et al. is written as that of BHHJ, by replacing in this
one: 1⇔ A and β ⇔ B, or equivalently, in our divergences: λ⇔ A+B and
λ− 1⇔ B.
This leads to the generalized divergence:

GH(p‖q) =
1

A (A+B)

[∑
i

qA+B
i +

A

B

∑
i

pA+B
i − A+B

B

∑
i

pAi q
B
i

]
(22)

The gradient with respect to “q” will be written as follows:

∂GH (p‖q)
∂qi

=
1

A
qB−1
i

(
qAi − pAi

)
(23)

The dual divergence will be written:

GH(q‖p) =
1

A (A+B)

[∑
i

pA+B
i +

A

B

∑
i

qA+B
i − A+B

B

∑
i

qAi p
B
i

]
(24)

The gradient with respect to “q” will be expressed as:

∂GH (q‖p)
∂qi

=
1

B
qA−1
i

(
qBi − pBi

)
(25)

If, from the divergence of Ghosh et al. we want to obtain the invariant
form of this divergence by scale change on “q”, by applying the appropriate
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procedure, we obtain the factor K:

K =

(∑
i p
A
i q

B
i∑

i q
A+B
i

) 1
A

(26)

This leads after simplification to the invariant divergence:

GHI(p‖q) =
1

B

∑
i

pA+B
i −

(∑
i p
A
i q

B
i∑

i q
A+B
i

)A+B
A ∑

i

qA+B
i

 (27)

We can easily verify that if we replace “q” by “Kq”, nothing changes, so we
have well obtained the required result.
This expression is the difference of 2 positive terms (disregarding the con-
stant multiplicative factor 1

B ), one can thus apply on each term of this
difference the same increasing function, the “Generalized Logarithm” for
example, then the extreme form, the “Log” which will lead to:

LGHI(p‖q) =
1

B
log

(∑
i

pA+B
i

)
−A+B

AB
log

(∑
i

pAi q
B
i

)
+

1

A
log

(∑
i

qA+B
i

)
(28)

We can see, which is true in all cases, that this divergence is not only in-
variant by a change of scale on “q”, but also by a change of scale on “p”.
At this point, we can re-examine the dual Ghosh’s divergence which is writ-
ten:

GH(q‖p) =
1

A (A+B)

[∑
i

pA+B
i +

A

B

∑
i

qA+B
i − A+B

B

∑
i

qAi p
B
i

]
(29)

It is rendered invariant by scale change with respect to “q” by introducing
the invariance factor:

K =

(∑
i q
A
i p

B
i∑

i q
A+B
i

) 1
B

(30)

We so obtain:

GHI(q‖p) =
1

A (A+B)

∑
i

pA+B
i −

(∑
i q
A
i p

B
i∑

i q
A+B
i

)A+B
B ∑

i

qA+B
i

 (31)

Hence, the Logarithmic form:

LGHI(q‖p) =
1

A (A+B)

[
log
∑
i

pA+B
i − A+B

B
log
∑
i

qAi p
B
i +

A

B
log
∑
i

qA+B
i

]
(32)



Appendix 4 - Gradient of
invariant divergences.

Computation of the gradient of an invariant divergence; influence
of the invariance factor.

Considering a divergence of D (p, q), which we make invariant with re-
spect to “q” by introducing the invariance factor K (p, q) , we attempt here
to answer the following question:
What happens to the expression of the gradient with respect to “q” de-
pending on whether we use the “nominal” invariance factor K0, or another

acceptable expression of K, in this case K1 =
∑
i pi∑
i qi

?

The two cases to be distinguished are therefore:

* Either K = K0, where K0 is the “nominal” invariance factor , obtained
by solving the equation:

∑
i

∂D (pi‖Kqi)
∂K

= 0 (33)

Then, the gradient ∂D(p‖Kq)
∂qj

is given by (3.59).

∂D (p‖K0q)

∂qj
= K0

[
∂D (p‖Kq)
∂ (Kqj)

]
K=K0

(34)

* Or, K = K1, in this case, the gradient ∂D(p‖Kq)
∂qj

is given by (3.60)

∂D (p‖Kq)
∂qj

=
∂K1

∂qj

[∑
i

∂D (pi‖Kqi)
∂K

]
K=K1

+K1

[
∂D (p‖Kq)
∂ (Kqj)

]
K=K1

(35)
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Note that this expression can also be written as follows:

∂D (p‖Kq)
∂qj

=
∂K1

∂qj

[∑
i

qi
∂D (pi‖Kqi)
∂ (Kqi)

]
K=K1

+K1

[
∂D (p‖Kq)
∂ (Kqj)

]
K=K1

(36)
We observe that when K 6= K0, the first term of the second member of this
expression is no longer zero.

In both cases, we still have:∑
j

qj
∂D (p‖Kq)

∂qj
= 0 (37)

If we consider the case of a linear model, that is to say qj = (Hx)j , then:

∂qj
∂xl

= hjl ⇒
∂D (p‖Kq)

∂xl
=
∑
j

∂D (p‖Kq)
∂qj

∂qj
∂xl

(38)

and:

∂D (p‖Kq)
∂xl

=
∑
j

hjl
∂K

∂ql

[∑
i

qi
∂D (pi‖Kqi)
∂ (Kqi)

]
+K

∑
j

hjl

[
∂D (p‖Kq)
∂ (Kql)

]
(39)

If K = K0, the first term will be zero.

Applications to some divergences.
If we use:

K = K1 =

∑
j pj∑
j qj

⇒ ∂K

∂ql
=
∂K1

∂ql
= −

∑
j pj(∑
j qj

)2 (40)

In a first step, it comes:

∂D (p‖K1q)

∂xl
=

∑
j pj∑
j qj

{
− 1∑

j qj

[∑
i

qi
∂D (p‖K1q)

∂ (K1qi)

] [
HT 1

]
l
+

[
HT ∂D (p‖K1q)

∂ (K1q)

]
l

}
(41)

We can now specify the divergence under consideration:

1 - Mean Square Deviation.
We have here:

D (p‖Kq) = MC (p‖Kq) =
1

2

∑
i

(pi −Kqi)2 (42)
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Using the nominal invariance factor: K = K0 =
∑
i piqi∑
i q

2
i

, we obtain:

∂MC (p‖K0q)

∂qj
= −K0 (pj −K0 qj) = −

∑
i piqi∑
i q

2
i

(
pj −

∑
i piqi∑
i q

2
i

qj

)
(43)

and it comes:

∂MC (p‖K0q)

∂xl
= −

∑
i piqi∑
i q

2
i

[
HT

(
p−

∑
i piqi∑
i q

2
i

q

)]
l

(44)

With another invariance factor K1, we have:

MC (p‖K1q) =
1

2

∑
j

(pj −K1qj)
2 ⇒ ∂MC (p‖K1q)

∂ (K1qi)
= − (pi −K1qi)

(45)

from where, in a first step, with K1 =
∑
j pj∑
j qj

, we have :

∂MC (p‖K1q)

∂xl
=

∑
j pj∑
j qj

{
1∑
j qj

[∑
i

qi (pi −K1qi)

] [
HT 1

]
l
−
[
HT (p−K1q)

]
l

}
(46)

so, all simplifications made:

∂MC (p‖K1q)

∂xl
=

(∑
j pj

)2∑
j qj

{[∑
i

q̄i (p̄i − q̄i)

] [
HT 1

]
l
−
[
HT (p̄− q̄)

]
l

}
(47)

2 - Kullback-Leibler divergence.
In this case, K0 et K1 are the same, so:

KL (p‖K1q) =
∑
i

pi log
pi
K1qi

+K1qi − pi =
∑
i

d (pi‖K1qi) (48)

d (pi‖K1qi)

∂ (K1qi)
= − pi

K1qi
+ 1 (49)

From the equation (41), we have:

∂KL (p‖K1q)

∂xl
=

∑
j pj∑
j qj

{
− 1∑

j qj

[∑
i

qi

(
− pi
K1qi

+ 1

)] [
HT 1

]
l
+

[
HT

(
− p

K1q
+ 1

)]
l

}
(50)
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With K1 =
∑
j pj∑
j qj

= K0, we have, all simplifications made:

∂KL (p‖K1q)

∂xl
=

∑
j pj∑
j qj

−
[∑

i

q̄i

(
1− p̄i

q̄i

)]
︸ ︷︷ ︸

=0

[
HT 1

]
l
+

[
HT

(
1− p̄

q̄

)]
l


(51)

We can see that the first term of the expression between braces is zero; this
is related to the fact that the invariance factor used here corresponds to the
one that would be computed explicitly for this divergence, so it is in fact
the “nominal” invariance factor K0 for the Kullback-Leibler divergence and
the gradient has a simplified expression (3.59) (34), then, finally:

∂KL (p‖K1q)

∂xl
=

∑
j pj∑
j qj

{[
HT

(
1− p̄

q̄

)]
l

}
(52)

3 - Neyman Chi2.
We have:

χ2
N (p‖Kq) =

∑
i

(pi −Kqi)2

Kqi
=
∑
i

d (pi‖Kqi) (53)

∂χ2
N (p‖Kq)
∂Kqi

= 1− p2
i

(Kqi)
2 (54)

From equation (41), it comes:

∂χ2
N (p‖K1q)

∂xl
=

∑
j pj∑
j qj

{[
HT

(
1− p2

(K1q)
2

)]
l

− 1∑
j qj

[∑
i

qi

(
1− p2

i

(K1qi)
2

)] [
HT 1

]
l

}
(55)

With K1 =
∑
j pj∑
j qj

, we have, all simplifications made:

∂χ2
N (p‖K1q)

∂xl
=

∑
j pj∑
j qj

{[
HT

(
1− p̄2

q̄2

)]
l

−

[∑
i

q̄i

(
1− p̄i

2

q̄i2

)] [
HT 1

]
l

}
(56)

With K = K0 =

√∑
j p

2
jq
−1
j∑

j qj
, we have, from equation (54)

∂χ2
N (p‖K0q)

∂K0qi
= 1−

(
pi
K0qi

)2

(57)
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Then, with (34):

∂χ2
N (p‖K0q)

∂qj
= K0

[
1−

(
pi
K0qi

)2
]

(58)

And finally:

∂χ2
N (p‖K0q)

∂xl
= K0

[
HT .1

]
l
− 1

K0

[
HT

(
p2

q2

)]
l

(59)
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Appendix 5 - Expressions of
the invariance factor.

Here we give the expressions of the “nominal” invariance factor
K0 (p, q) for some particular divergences.

General form:

K0 (p, q) =

(∑
j p

α
j q

β
j∑

j p
δ
jq
γ
j

)µ
; α+ β = δ + γ ; µ =

1

γ − β
(60)

In a more synthetic form, one can write, taking into account the relations
between the parameters:

K0 (p, q) =

[∑
i

(
pi
qi

)α−δ pδi q
γ
i∑

j p
δ
jq
γ
j

] 1
α−δ

(61)

It is, for quantities of the form (pi/qi), a weighted generalized mean of the
order “t” with the exponent t = α − δ, and weighting factors wi such that∑

iwi = 1, which are written as follows:

wi =
pδi q

γ
i∑

j p
δ
jq
γ
j

(62)

In the case of the dual Kullback-Leibler divergence, the invariance factor
appears as a generalized mean based on a “ψ” function of the form:

K0 = ψ−1

[∑
i

wiψ

(
pi
qi

)]
(63)

With ψ (x) = log x.
The general form of the weighting factors (62) remains unchanged.
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1 - Kullback-Leibler divergence:

K0 (p, q) =

∑
j pj∑
j qj

(64)

Here, we have: α = 1, β = 0, γ = 1, δ = 0,
then α− δ = 1, γ − δ = 1.

wi =
qi∑
j qj

(65)

2 - Dual Kullback-Leibler divergence:

K0 = ψ−1

[∑
i

wiψ

(
pi
qi

)]
(66)

With ψ (x) = log x.

wi =
qi∑
j qj

(67)

3 - Mean square deviation:

K0 (p, q) =

∑
j pjqj∑
j q

2
j

(68)

We have here: α = 1, β = 1, γ = 2, δ = 0,
so, α− δ = 1, γ − δ = 2.

wi =
q2
i∑
j q

2
j

(69)

4 - Neyman’s Chi2:

K0 (p, q) =

√√√√∑j p
2
jq
−1
j∑

j qj
(70)

Here: α = 2, β = −1, γ = 1, δ = 0,
then α− δ = 2, γ − δ = 1.

wi =
qi∑
j qj

(71)



283

5 - Pearson’s Chi2:

K0 (p, q) =

∑
j qj∑

j p
−1
j q2

j

(72)

We have here: α = 0, β = 1, γ = 2, δ = −1,
then α− δ = 1, γ − δ = 3.

wi =
p−1
i q2

i∑
j p
−1
j q2

j

(73)

6 - Arithmetic-Geometric mean

K0 (p, q) =

(∑
j
√
pjqj∑

j qj

)2

(74)

We have: α = 1/2, β = 1/2, γ = 1, δ = 0,
then α− δ = 1/2, γ − δ = 1.

wi =
q3
i∑
j q

3
j

(75)

7 - Alpha divergence:

K0 (p, q) =

(∑
j p

λa
j q

1−λa
j∑

j qj

) 1
λa

(76)

If λa = 1 we recover K0 corresponding to the K.L. divergence.
We have here: α = λa, β = 1− λa, γ = 1, δ = 0,
so: α− δ = λa, γ − δ = 1.

wi =
qi∑
j qj

(77)

8 - Beta divergence:

K0 (p, q) =

∑
j pjq

λb−1
j∑

j q
λb
j

(78)
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If λb = 1 we recover K0 corresponding to the K.L. divergence.
If λb = 2 we recover K0 corresponding to the mean square deviation.
Here: α = 1, β = λb − 1, γ = λb, δ = 0,
then: α− δ = 1− λb, γ − δ = λb.

wi =
qλbi∑
j q

λb
j

(79)



Appendix 6 - Effects of the
invariance factor.

Here we show the effects of using an invariance factorsuch as

K =
∑
j pj∑
j qj

on some classical divergences.

These effects can be summarized by:

Rule:
Except for a multiplicative coefficient, which depends only on∑

j pj, the invariant divergence can be obtained by replacing in
the initial divergence, the variables pi and qi by the normalized
variables p̄i = pi∑

j pj
and q̄i = qi∑

j qj
.

1 - Mean square deviation:
We have the base divergence:

EQM (p‖q) =
∑
i

(pi − qi)2 (80)

With K =
∑
j pj∑
j qj

, we have:

EQM (p‖Kq) =
∑
i

(
pi −

∑
j pj∑
j qj

qi

)2

(81)

then:

EQMI (p‖q) =

∑
j

pj

2∑
i

(p̄i − q̄i)2 (82)
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which can be reduced to an invariant divergence with respect to both argu-
ments:

EQMI (p‖q) =
∑
i

(p̄i − q̄i)2 (83)

2 - Kullback-Leibler divergence:
The initial divergence is written:

KL (p‖q) =
∑
i

pi log
pi
qi

+ qi − pi (84)

With K =
∑
j pj∑
j qj

, it comes:

KL (p‖Kq) =
∑
i

pi log
pi∑
j pj∑
j qj

qi
+

∑
j pj∑
j qj

qi − pi (85)

That is:

KL (p‖Kq) = KLI (p‖q) =
∑
j

pj

[∑
i

p̄i log
p̄i
q̄i

+ q̄i − p̄i

]
(86)

which can be reduced to an invariant divergence with respect to both argu-
ments:

KLI (p‖q) =

[∑
i

p̄i log
p̄i
q̄i

+ q̄i − p̄i

]
=

[∑
i

p̄i log
p̄i
q̄i

]
(87)

It is a Kullback-Leibler between normalized variables.

3 - Neyman’s Chi2:
The initial divergence is written:

χ2
N (p‖q) =

∑
i

(pi − qi)2

qi
(88)

With K =
∑
j pj∑
j qj

, we have:

χ2
N (p‖Kq) =

∑
i

(
pi −

∑
j pj∑
j qj

qi

)2

∑
j pj∑
j qj

qi
(89)
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That is:

χ2
NI (p‖q) =

∑
j

pj
∑
i

(p̄i − q̄i)2

q̄i
(90)

which can be reduced to an invariant divergence with respect to both argu-
ments:

χ2
NI (p‖q) =

∑
i

(p̄i − q̄i)2

q̄i
(91)

4 - Pearson’s Chi2:
The initial divergence is written:

χ2
P (p‖q) =

∑
i

(qi − pi)2

pi
(92)

With K =
∑
j pj∑
j qj

, we obtain:

χ2
P I (p‖q) =

∑
i

(∑
j pj∑
j qj

qi − pi
)2

pi
(93)

That is:

χ2
P I (p‖q) =

∑
j

pj
∑
i

(q̄i − p̄i)2

p̄i
(94)

which can be reduced to an invariant divergence with respect to both argu-
ments:

χ2
P I (p‖q) =

∑
i

(q̄i − p̄i)2

p̄i
(95)
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Appendix 7 - Inequalities
between invariant
divergences.

We show here, for some classic divergences denoted D (p, q), that
if K0 (p, q) is the “nominal” invariance factor, and if K1 (p, q) 6=
K0 (p, q) is another possible invariance factor, we have:

D (p‖K0q) ≤ D (p‖K1q) (96)

This is an obvious consequence of the definition of the “nominal”
invariance factor.
On the other hand, we have the relationship:

D (p‖K1q)−D (p‖K0q) = D (K0‖K1) (97)

This is the basic divergence taken between the scalar quantities
K0 and K1.

1 - Mean square deviation:
We have here:

MC (p‖K0q) =
∑
i

(pi −K0qi)
2 , MC (p‖K1q) =

∑
i

(pi −K1qi)
2 (98)

We can write:

MCK1 −MCK0 = (K1 −K0)

[
(K0 +K1)

(∑
i

q2
i

)
− 2

∑
i

piqi

]
(99)

For this divergence the nominal invariance factor K0 is computed analyti-
cally and is written as follows:

K0 =

∑
j pjqj∑
j q

2
j

(100)
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This immediately leads to:

MCK1 −MCK0 =
∑
i

q2
i (K1 −K0)2 ≥ 0 (101)

Consequently:

MC (p‖K0q) ≤MC (p‖K1q) (102)

With an equality (at 0 moreover) for pi = qi ∀i, with then: K0 = K1 = 1.
We also note, moreover, that:

MC (p‖K1q)−MC (p‖K0q) ≈MC (K0‖K1) (103)

2 - Kullback-Leibler divergence:
We have here:

KL (p‖K0q) =
∑
i

(
pi log

pi
K0qi

+K0qi − pi
)

(104)

KL (p‖K1q) =
∑
i

(
pi log

pi
K1qi

+K1qi − pi
)

(105)

We can write:

KLK1 −KLK0 =
∑
i

pi

[
log

K0

K1
+ (K1 −K0)

∑
i qi∑
i pi

]
(106)

For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

∑
j pj∑
j qj

(107)

This allows to write:

KLK1 −KLK0 =
∑
i

qi

[
K0 log

K0

K1
+K1 −K0

]
(108)

So [KLKL1 −KLK0 ] is, with the exception of the multiplicative factor
∑

i qi,
equal to the Kullback-Leibler divergence between the scalars factors K0 et
K1 denoted KL (K0‖K1) ≥ 0.

Consequently:

KLK0 ≤ KLK1 (109)
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With equality (to zero) if pi = qi ∀i, i.e. equivalently K0 = K1 = 1.

3 - Pearson’s Chi2:
In this case, we have:

χ2
P (p‖K0q) =

∑
i

(pi −K0qi)
2

pi
, χ2

P (p‖K1q) =
∑
i

(pi −K1qi)
2

pi
(110)

We can write:

χ2
P,K1

− χ2
P,K0

= (K1 −K0)
∑
i

(K0 +K1) q2
i − 2piqi

pi
(111)

For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

∑
j qj∑

j q
2
j p
−1
j

(112)

This leads to:

χ2
P,K1

− χ2
P,K0

=
∑
i

qi
(K0 −K1)2

K0
(113)

This expression is obviously positive, and therefore:

χ2
P,K0

≤ χ2
P,K1

(114)

With equality (to zero) if pi = qi ∀i, then K0 = K1 = 1.
It can be seen that with the exception of a multiplicative factor, we have:

χ2
P,K1

− χ2
P,K0

≈ χ2
K0,K1

(115)

4 - Neyman’s Chi2:
In this case, we have:

χ2
N (p‖K0q) =

∑
i

(pi −K0qi)
2

K0qi
, χ2

N (p‖K1q) =
∑
i

(pi −K1qi)
2

K1qi
(116)

We can write:

χ2
N,K1

− χ2
N,K0

=
(K0 −K1)

K0K1

(∑
i

p2
i q
−1
i −K0K1

∑
i

qi

)
(117)
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For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

(∑
j p

2
jq
−1
j∑

j qj

) 1
2

(118)

We obtain immediately:

χ2
N,K1

− χ2
N,K0

=
∑
j

qj
(K0 −K1)

K0K1

(
K2

0 −K0K1

)
=
∑
j

qj
(K0 −K1)2

K1

(119)
This expression is obviously positive, and therefore:

χ2
N,K0

≤ χ2
N,K1

(120)

With equality (to zero) if pi = qi ∀i, then K0 = K1 = 1.
As in the previous examples, we have:

χ2
N (p‖K1q)− χ2

N (p‖K0q) ≈ χ2
N (K0‖K1) (121)



Appendix 8 - Order relations
between divergences.

We show on a few examples that for a divergence D (p‖q) rendered
invariant by using its nominal factor K0, that is D (p‖K0q), we have:

D (p‖K0q) ≤ D (p‖q) (122)

with equality to ”0” if pi = qi ∀i.
This is a consequence of the definition of the nominal invariance
factor, because D (p‖q) corresponds to K = 1.

1 - Mean square deviation.
Here, we have:

MC (p‖q) =
∑
i

(pi − qi)2 , MC (p‖K0q) =
∑
i

(pi −K0qi)
2 (123)

We can write:

MC −MCK0 = (1−K0)

[
(1 +K0)

(∑
i

q2
i

)
− 2

∑
i

piqi

]
(124)

With:

K0 =

∑
i piqi∑
i q

2
i

(125)

it comes:
MC −MCK0 =

∑
i

q2
i (1−K0)2 ≥ 0 (126)

2 - Kullback-Leibler divergence.
We have:

KL (p‖q) =
∑
i

(
pi log

pi
qi

+ qi − pi
)
, KL (p‖K0q) =

∑
i

(
pi log

pi
K0qi

+K0qi − pi
)

(127)
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We can write:

KL−KLK0 =
∑
i

qi

[∑
i pi∑
i qi

logK0 + (1−K0)

]
(128)

For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

∑
j pj∑
j qj

> 0 (129)

Then:

KL−KLK0 =
∑
i

qi (K0 logK0 + 1−K0) ≥ 0 (130)

3 - Pearson’s Chi2.
In this case, we have:

χ2
P (p‖q) =

∑
i

(pi − qi)2

pi
, χ2

P (p‖K0q) =
∑
i

(pi −K0qi)
2

pi
(131)

We can write:

χ2
P − χ2

P,K0
= (1−K0)

∑
i

(1 +K0) q2
i − 2piqi

pi
(132)

For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

∑
j qj∑

j q
2
j p
−1
j

> 0 (133)

Then:

χ2
P − χ2

P,K0
=

(∑
i

q2
i p
−1
i

)
(1−K0) [(1 +K0)− 2K0] (134)

Or, also:

χ2
P − χ2

P,K0
=

(∑
i

q2
i p
−1
i

)
(1−K0)2 (135)

And:

χ2
P − χ2

P,K0
=
∑
i

qi
1

K0
(1−K0)2 ≥ 0 (136)
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4 - Neyman’s Chi2.
We have, in this case:

χ2
N (p‖q) =

∑
i

(pi − qi)2

qi
, χ2

N (p‖K0q) =
∑
i

(pi −K0qi)
2

K0qi
(137)

We can write:

χ2
N − χ2

N,K0
=

(
1− 1

K0

)∑
i

p2
i q
−1
i + (1−K0)

∑
i

qi (138)

Then:

χ2
N − χ2

N,K0
=
∑
i

qi

[∑
i p

2
i q
−1
i∑

i qi

(
1− 1

K0

)
+ (1−K0)

]
(139)

For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

(∑
j p

2
jq
−1
j∑

j qj

) 1
2

> 0 (140)

Consequently, we have:

χ2
N − χ2

N,K0
=
∑
i

qi

[
K2

0

(
1− 1

K0

)
+ (1−K0)

]
=
∑
i

qi (1−K0)2 ≥ 0

(141)
4 - Alpha Divergence.

Using the expression Alpha divergence (5.15), it comes:

AC −ACK0 =
1

λa (λa − 1)

[∑
i

pλai q
1−λa
i

(
1−K1−λa

0

)
− (1−K0)

]
(142)

For this divergence the nominal invariance factor K0 is derived analytically
and is written as follows:

K0 =

(∑
j p

λa
j q

1−λa
j∑

j qj

) 1
λa

> 0 (143)

Finally, we have:

AC −ACK0 =

∑
i qi

λa (λa − 1)

[
Kλa

0 − λaK0 − 1 + λa

]
(144)
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That expression is always positive if K0 ≥ 0.
The specific case of λa → 0 leads to:

K0 − logK0 − 1 ≥ 0 (145)

In a similar way, λa → 1 leads to:

K0 logK0 −K0 + 1 ≥ 0 (146)

4 - Beta Divergence.
Using the expression of the Beta divergence (5.20), the derivation of the
nominal invariance factor leads to:

K0 =

∑
i piq

λb−1
i∑

i q
λb
i

(147)

and we obtain after a few calculations:

BC −BCK0 =

∑
i q
λb
i

λb (λb − 1)

[
Kλb

0 − λbK0 − 1 + λb

]
≥ 0 (148)

This expression is analogous to that obtained for the Alpha Divergence and
the particular cases can be derived from it immediately.



Appendix 9 - Regularization
problems for the NMF.

In this appendix, we indicate the difficulties that arise when constructing
purely multiplicative regularized algorithms for NMF, as they have been
proposed in the literature [25] [79] [15].
Non-regularized multiplicative algorithms as they are proposed in the liter-
ature dedicated to NMF [25] [67] are immediately deduced from the SGM
method described in Chapter 10.
All these algorithms only take into account the non-negativity constraint.
The method proposed in the literature can be summarized as follows:
For a divergence D (Y ‖HX) representing the data attachment term, the
algorithmic method always consists, as previously indicated, of alternately
performing a H descent step, followed by a X descent step.
Considering that we have obtained Hk+1 from Hk, Xk, the basic algorithm
can be written, with respect to the variable X for example, with X0 > 0, in
the form:

Xk+1
nm = Xk

nm + αkXk
nm

[
− ∂D

∂Xk

]
nm

(149)

With Uknm > 0 and V k
nm > 0, it is always possible to write:[

− ∂D

∂Xk

]
nm

= Uknm − V k
nm (150)

This leads to:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm − V k

nm

]
(151)

From this, we deduce an algorithm which is at the base of purely multiplica-
tive algorithms:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm
V k
nm

− 1

]
(152)

297



298 APPENDIX 9 - REGULARIZATION PROBLEMS FOR THE NMF.

The initial direction of displacement Xk
[
− ∂D
∂Xk

]
has of course been modified,

and becomes Xk

Vk

[
− ∂D
∂Xk

]
, but remains a descent direction because V k is

positive. After which, by choosing a descent step size αk = 1 ∀k, we obtain
the purely multiplicative form:

Xk+1
nm = Xk

nm

[
Uknm
V k
nm

]
(153)

In the case where the term of attachment to the data is given by the mean
square (RMS) deviation:

D (Y ‖HX) =
∑
ij

[
Yij − (HX)ij

]2
(154)

The multiplicative algorithm is written from (153), with H ≡ Hk+1:

Xk+1
nm = Xk

nm

[ (
HTY

)
(HTHXk)

]
nm

(155)

This algorithm was proposed by Lee and Seung [67]. It is the direct transpo-
sition of the ISRA algorithm [29], well known in the field of deconvolution.
Similarly, for a data attachment term, which is the Kullback-Leibler diver-
gence, we obtain a purely multiplicative algorithm, which is the immediate
transposition of the Richardson-Lucy (RL) algorithm [83] [69] well known
in the field of deconvolution, which is written, with H ≡ Hk+1:

Xk+1
nm =

Xk
nm∑
lH

T
nl

[
HT Y

HXk

]
nm

(156)

As in all descent algorithms, the convergence is ensured by a computation of
the descent step size, so that with a fixed descent step size for all iterations,
and equal to 1, nothing is guaranteed for convergence, even if non-negativity
is ensured subject to the choice of a positive initial iterate.
In the case of deconvolution, the convergence of such algorithms has been
demonstrated for the two divergences mentioned above.
In the case of NMF, multiplicative algorithms have been proposed for many
of the divergences listed in the book by Cichocki et al. [25].

* Problems related to regularization.
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When we consider the regularized algorithms, things get a little worse.
For example, again with the X variable, it is now a matter of minimizing
under a non-negativity constraint, a composite divergence:

J (Y,HX) = D (Y ‖HX) + µ DR (X) (157)

where DR (X) is the penalty term, and “µ” the positive regularization fac-
tor. Basically, knowing Xk and Hk+1, the algorithm for the variable X is
written as follows:

Xk+1
nm = Xk

nm + αkXk
nm

[
− ∂D

∂Xk
+ µ

(
−∂DR
∂Xk

)]
nm

(158)

The method generally proposed in the literature consists of decomposing
− ∂D
∂Xk in a difference of 2 positive terms Uk and V k: − ∂D

∂Xk = Uk − V k as
previously proposed, but on the other hand such a decomposition is not ap-
plied to the regularization term −∂DR

∂Xk , which means to implicitly consider
that this term is always positive.

This is false. It is only true for certain penalty functions (such
as DR (X) = ‖X‖2 for example).

From there, one thing leads to another; the proposed algorithm is first
written:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm − V k

nm + µ

(
−∂DR
∂Xk

)]
(159)

Then:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm

V k
nm + µ

(
∂DR
∂Xk

)
nm

− 1

]
(160)

And finally, by taking a descent step size equal to 1, we obtain a multiplica-
tive algorithm which is written as follows:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm

V k
nm + µ

(
∂DR
∂Xk

)
nm

]
(161)

It is absolutely clear (in principle) that all this is only valid if[
V k
nm + µ

(
∂DR
∂Xk

)
nm

]
is strictly positive; otherwise we have trans-

formed a descent algorithm into an ascent algorithm.....
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Authors who apply this type of algorithm prudently point out that if the
regularization factor “µ” is small, everything is fine; it is just as clear that
everything is fine regardless of “µ” if the penalty term is DR (X) = ‖X‖2,
because in this case the gradient of the penalty term is positive.
It should be mentioned that this method is the transposition to the NMF of
a rather old algorithm designated in the literature as One Step Late (OSL)
by P.J.Green [39], in which the author clearly mentions the limits of use of
his algorithm.

In fact, in order for this to work in all cases, it is necessary to
proceed as described in Chapter 10 regarding the SGM method.

∗ The opposite of the gradient of the penalty term must be
decomposed into the form:(

−∂DR
∂Xk

)
nm

= URknm − V Rknm (162)

With URknm ≥ 0 and V Rknm ≥ 0.
Then, we first write the algorithm in the form:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm − V k

nm + µ URknm − µ V Rknm + ε− ε
]

(163)

We have: Uknm + µ URknm + ε > 0 and V k
nm + µ V Rknm + ε > 0.

From this, we deduce the algorithm that will be the basis of the purely
multiplicative algorithms:

Xk+1
nm = Xk

nm + αkXk
nm

[
Uknm + µ URknm + ε

V k
nm + µ V Rknm + ε

− 1

]
(164)

Which does not cause any problems with regard to the descent properties
since V k

nm + µ V Rknm + ε > 0.
After that, a purely multiplicative algorithm is obtained by taking a descent
step size equal to 1 for all the iterations:

Xk+1
nm = Xk

nm

[
Uknm + µ URknm + ε

V k
nm + µ V Rknm + ε

]
(165)

Obviously, the same reasoning applies for iterations on H, leading to Hk+1

knowing Hk and Xk.
Nevertheless, the convergence of this type of algorithm is not demonstrated
in all generality because of the particular choice of the descent step size.
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