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Abstract
This paper presents a new dataset of ultra-wide field of view images with accurate ground truth, called PanoraMIS.
The dataset covers a large spectrum of panoramic cameras (catadioptric, twin-fisheye), robotic platforms (wheeled,
aerial and industrial robots), and testing environments (indoors and outdoors), and it is well suited to rigorously validate
novel image-based robot-motion estimation algorithms, including visual odometry, visual SLAM, and deep learning-
based methods. PanoraMIS and the accompanying documentation is publicly available on the Internet for the entire
research community.
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1 Introduction

1.1 Motivation and related work

Panoramic or 360◦ imaging systems have become increas-
ingly popular in the computer vision and robotics commu-
nities. In fact, their ability to capture the appearance of
a complex scene by a single shot, is extremely attractive
for 3-D reconstruction of an unknown environment and
for mobile robot navigation. Over the last two decades, a
solid theoretical foundation for processing and interpreting
spherical images coming from ultra-wide field of view (FoV)
sensors has been laid Geyer and Daniilidis (2001); Barreto
(2006); Benosman and Kang (2013). The need for a common
ground to compare the performance of new vision-based
ego-motion estimation algorithms under different operating
conditions, has also stimulated continued interest in image
datasets and benchmarks. However, to the best of our knowl-
edge, only few databases dedicated to panoramic images and
not tailored to a specific application, are currently available
for robotic research.

In this paper, we describe a new image collection, called
PanoraMIS, that our group has recently created to fill this
vacuum. PanoraMIS presents several original and distinctive
features. It includes real images coming from two ultra-
wide FoV sensors mounted on a variety of robot car-
riers. The image sequences have been recorded indoors
and outdoors in man-made and natural environments, and
come with accurate time-synchronized ground truth poses
from odometry, IMU (Inertial Measurement Unit) and GPS.
We release PanoraMIS in an effort to foster reproducibility,
and help researchers to rigorously validate and compare new
ego-motion estimation and navigation algorithms based on
panoramic images. Target applications include (but are not
limited to) visual-inertial odometry Li and Mourikis (2013);
Matsuki et al (2018), visual SLAM Cadena et al (2016),
and visual navigation based on convolutional neural net-
works Goodfellow et al (2016).

The vast majority of existing robot-vision datasets,
includes perspective images taken either by monocular or
stereo cameras. In what follows, we will briefly review the
most relevant ones for PanoraMIS, with special emphasis
on the few databases which also include panoramic images.
For the reader’s convenience, a summary of the main features
of these datasets is reported in Table 1.

Large-scale image collections of dynamic urban environ-
ments have been recently created for research on automated
or self-driving vehicles. In all cases, car-borne cameras have
been installed on the roof or inside the cockpit. For instance,
the Ford Campus dataset Pandey et al (2011) provides data
acquired by a professional and consumer-grade IMU (with
integrated GPS receiver), a Velodyne 3-D LiDAR, two push-
broom forward-looking RIEGL LiDARS, and a Point Grey
Ladybug 3 omnidirectional camera. The sensor suite was
mounted on a pickup truck that the authors drove in the Ford
Research Campus and in downtown Dearborn, Michigan.
The unprocessed data consist of three main files (containing
the omnidirectional images, timestamps, and data from the
remaining sensors) for each trial. The provided 3-D point
cloud information can also be used for semantic laser/vision
labeling or 3-D object recognition.

Similarly to the Ford Campus dataset, AMUSE, proposed
in Koschorrek et al (2013), includes synchronized data
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Table 1. Overview of related image datasets compared to PanoraMIS (the classification is by type of carrier and year of
publication).

Dataset Camera(s) Carrier Environment,
3-D point cloud

Sensors,
ground truth

Stats

Ford Campus, Pandey et al (2011) Omnidirectional
multi-camera

Car Outdoors,
Yes

3-D/2-D LiDAR,
IMU, GPS

2 seqs,
≈ 10 km

AMUSE, Koschorrek et al (2013) Omnidirectional
multi-camera

Car Outdoors,
No

IMU, GPS,
height sensors

7 seqs,
24.4 km

KITTI, Geiger et al (2013) Stereo Car Outdoors,
Yes

IMU, GPS 22 seqs,
39.2 km

IPDS, Korrapati et al (2013) Perspective,
fisheye,

catadioptric

Electric cart Outdoors,
No

IMU, GPS 6 seqs,
18 km

Málaga Urban, Blanco-Claraco et al (2014) Stereo Car Outdoors,
Yes

IMU, GPS,
LiDAR

15 seqs,
36.8 km

Oxford RobotCar, Maddern et al (2017) Fisheye,
trinocular stereo

Car Outdoors,
Yes

3-D/2-D LiDAR,
IMU, GPS

1010 km

Complex Urban, Jeong et al (2019) Stereo Car Outdoors,
Yes

3-D/2-D LiDAR,
IMU, GPS,

3-axis optic gyro

19 seqs,
191 km

New College, Smith et al (2009) Omnidirectional
multi-camera,

stereo

Wheeled robot Outdoors,
Yes

IMU, GPS,
2-D LiDAR

9 seqs,
2.2 km

Rawseeds, Ceriani et al (2009) Trinocular,
perspective,
catadioptric

Wheeled robot In/Outdoors,
No

IMU, GPS,
2-D LiDAR,
odometry

Up to
1.9 km

Marulan, Peynot et al (2010) Perspective Wheeled robot Outdoors,
No

2-D LiDAR,
IR camera,

radar

40 seqs

TUM RGB-D, Sturm et al (2012) RGB-D Wheeled robot,
hand held

Indoors,
Yes

MoCap 39 seqs

UMich NCLT, Carlevaris-Bianco et al (2016) Omnidirectional
multi-camera

Segway
robot

In/Outdoors,
Yes

IMU, GPS,
3-D/2-D LiDAR

27 seqs,
147.3 km

EuRoC MAV, Burri et al (2016) Stereo Hexarotor MAV Indoors,
Yes

MoCap, IMU 11 seqs,
0.9 km

Zurich Urban MAV, Majdik et al (2017) Perspective Quadrotor MAV Outdoors,
Yes

IMU, GPS 1 seq,
2 km

LaFiDa, Urban and Jutzi (2017) Trinocular
fisheye

Helmet In/Outdoors,
No

MoCap,
2-D LiDAR

6 seqs,
190 m

PennCOSYVIO, Pfrommer et al (2017) Perspective,
fisheye, stereo

Hand-held rig In/Outdoors,
No

IMU, visual
tags

4 seqs,
0.6 km

TUM VI, Schubert et al (2018) Stereo w/
fisheye lenses

Hand-held rig In/Outdoors,
No

IMU, MoCap 28 seqs,
20 km

Multi-FoV, Zhang et al (2016) Perspective,
fisheye,

catadioptric

None In/Outdoors Synthetic
data

2 seqs

PanoraMIS (ours) Catadioptric,
twin-fisheye

Wheeled, aerial,
industrial robots

In/Outdoors,
Yes

IMU, GPS,
odometry

8 seqs,
5.6 km

streams recorded by a car equipped with an omnidirectional
camera (a Point Grey Ladybug 3), laser-based height sensors,
an IMU, a velocity sensor and a GPS receiver, in different
testing environments. The KITTI suite Geiger et al (2013) is
well-known in the computer vision community. It provides
ground truth data for visual odometry, stereo reconstruction,
object detection and tracking, optical flow data, and object
labels in the form of 3-D tracklets. The Institut Pascal
Data Sets (IPDS) by Korrapati et al (2013), consist of multi-
sensory data acquired by an electric cart navigating in the
Cézeaux university campus in Clermont-Ferrand, France.
The video sequences were captured by a standard perspective
camera, three synchronized non-overlapping cameras, and

two large FoV color cameras (fisheye and catadioptric). The
ground truth is provided by real-time kinematic GPS. In the
Málaga Urban Dataset Blanco-Claraco et al (2014), a car
was outfitted with a stereo camera and five laser scanners
(among other sensors). The dataset, which was designed for
large-scale visual navigation applications, contains a single
trajectory with centimeter-accuracy GPS ground truth, and
high-resolution, high-rate (20 fps) stereo images. A similar
setup (including a stereo camera) in a complex urban
environment, was recently considered in Jeong et al (2019).
The Oxford RobotCar dataset Maddern et al (2017) was
collected by a car operated along the same route in Oxford,
England, over the course of a year and over 1000 km.
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The goal was to provide a good representation of variations
in seasons and weather, to enable research investigating long-
term localization and mapping for autonomous vehicles.
The dataset consists of almost 20 million images coming
from six cameras mounted on the car. In particular, the
combination of a Point Grey Bumblebee XB3 trinocular
stereo camera and three monocular Point Grey Grasshopper2
cameras with fisheye lenses, provides a full 360 degree
visual coverage of the scene around the vehicle. Three
2-D/3-D LiDARs and an inertial and GPS navigation system,
complete the equipment of the car.

In spite of the large prevalence of car-mounted cameras
for image collection, wheeled robots can be found in
the literature as well. For example, the NewCollege
dataset Smith et al (2009) provides a sequence of panoramic
views obtained by stitching together multiple images
captured by a Point Grey Ladybug 2 camera. It also includes
laser range/reflectance data, 20 Hz stereoscopic imagery
and GPS measurements (not available in all scenarios).
The timestamped data have been gathered by a mobile
robot driving several kilometers through a wooded park
and a campus, and it has been widely used for mobile
robotic research (e.g. visual odometry, visual topological
SLAM). The Rawseeds dataset Ceriani et al (2009) includes
sequences of images captured by a trinocular, perspective
and catadioptric camera along with the relative IMU, real-
time kinematic GPS, 2-D laser (two Hokuyo and two SICK
lasers) and sonar information. The ground truth covers
both indoor and outdoor environments, and the presence of
trajectories with closed loops makes it well suited to evaluate
visual SLAM algorithms. In the Marulan dataset Peynot et al
(2010), the eight-wheel skid-steering Argo platform was
equipped with a monocular color camera together with
four 2-D SICK laser scanners, a frequency-modulated
continuous-wave radar and a thermal infrared camera. The
TUM RGB-D dataset Sturm et al (2012) provides images
from a single RGB-depth camera in an office environment
and an industrial hall, with an accurate ground truth from
a Motion Capture (MoCap) system. The dataset has been
widely exploited for the evaluation of RGB-D SLAM and
visual odometry algorithms. The North Campus Long-Term
(NCLT) dataset Carlevaris-Bianco et al (2016), consists of
omnidirectional imagery (Point Grey Ladybug 3 camera),
3-D LiDAR (Velodyne), planar LiDAR (Hokuyo), consumer
grade GPS, real-time kinematic GPS, and proprioceptive
sensors (IMU, optic gyro) for odometry, collected using a
Segway robotic platform on the University of Michigan’s
North Campus. As for KITTI and TUM RGB-D, a 3-D point
cloud of the environment is also provided in the dataset.

As far as aerial robots are concerned, the EuRoC MAV
datasets Burri et al (2016) contain sequences of hardware
synchronized images captured by a hexarotor Micro Aerial
Vehicle (MAV) flying in an indoor cluttered environment,
using two stereo cameras. The 6-D pose of the hexarotor is
tracked with a Vicon MoCap system and the on-board IMU
data, together with the 3-D point clouds of the environment,
are available as well. Another dataset for visual-inertial
SLAM is the Zurich Urban MAV Majdik et al (2017).
The dataset was recorded by camera on-board a MAV flying
at low altitudes (5 to 15 m above the ground) in the urban
streets of Zurich, Switzerland. The 2 km dataset consists of

time-synchronized aerial high-resolution images, GPS and
IMU sensor data, and ground-level street view images.

Other unconventional carriers have been used in some
recent image datasets. LaFiDa Urban and Jutzi (2017) was
recorded by combining a head-mounted trinocular-fisheye
camera with a 2-D Hokuyo laser scanner, and the 6-D pose
ground truth information is provided by a MoCap (Opti-
Track) system. The multi-fisheye camera has been calibrated
and a single omnidirectional image is provided as output to
the user. The PennCOSYVIO dataset Pfrommer et al (2017),
a visual-inertial odometry/SLAM benchmark, was acquired
indoors/outdoors with a hand-held rig. It contains synchro-
nized data from a stereo camera and IMU, two Project Tango
hand-held devices, and three GoPro Hero 4 cameras. The
TUM VI dataset, described in Schubert et al (2018), contains
image sequences captured in different indoor and outdoor
scenarios for evaluating visual-inertial odometry. Data col-
lection was performed using two monochrome cameras in a
stereo setup endowed with fisheye lenses (diagonal FoV, less
than 195◦) and a microcontroller board with integrated 3-axis
IMU, mounted on a hand-held rig. A light sensor between
the cameras also delivers an approximate measurement of the
illuminance of the environment (for photometric calibration).
The stereo camera (working at 20 Hz) and IMU sensor are
time-synchronized in hardware, and for trajectory evaluation,
an accurate pose ground truth is provided by a MoCap at high
frequency (120 Hz).

Finally, in Zhang et al (2016), photorealistic synthetic
images have been created with the Cycles raytracing engine
implemented in Blender. In particular, three sequences of
images of an indoor environment and of outdoor urban
environments have been generated using three simulated
camera models (perspective, fisheye and catadioptric).
The ground truth is available in all cases.

1.2 Original contributions and organization
This paper documents PanoraMIS, a new image dataset
collected with ultra-wide FoV cameras (catadioptric and
twin-fisheye) mounted on wheeled, aerial and industrial
robotic platforms. The time-registered dataset, which
comprises eight indoor/outdoor sequences (upwards of
13000 images and 16.2 GB), has been created to
provide a new challenging testing ground for image-
based robot localization thanks to the large variety of
urban/natural scenarios, and it responds to the scarcity of
generic omnidirectional-vision benchmarks in the literature.
In particular, each sequence has been designed to target
a specific problem: vision-based heading-angle estimation
(Sequences 1, 2, 3 and 5), vision-based attitude estimation
(Sequence 4), visual SLAM (Sequences 6, 7 and 8), and
visual-inertial odometry (Sequences 7 and 8). In summary,
PanoraMIS has at least the following three unique features:

• First dataset to provide calibrated dual-fisheye images
(Ricoh Theta S camera). This contrasts with the
widespread Ladybug-like multi-camera systems, and
alleviates the panoramic image-stitching problem,

• Availability of decoupled translational and rota-
tional motions with precise ground truth (sub-
millimeter/sub-degree 6-D pose accuracy in the case
of the Stäubli TX60 robot),
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• Data have been collected by keeping in mind
the requirements of state-of-the-art visual SLAM
and visual odometry algorithms, thus covering
several small (a few tens of meters) and large
(up to 1 km) loops.

The dataset includes GPS, IMU, and odometry measure-
ments, which are time-synchronized in software with the
omnidirectional RGB images. Dense 3-D point clouds of
the environment surrounding the robot, obtained from the
dual-fisheye images by photogrammetry, are also available
for Sequence 7.

PanoraMIS does not provide a benchmark to evaluate
the performance of vision-based localization algorithms.
However, in Sequences 6, 7 and 8, the users are
recommended to adopt the Absolute Trajectory Error (ATE)
and the Relative Pose Error (RPE), which are popular metrics
to assess the quality of an estimated trajectory with respect
to the ground truth (see Geiger et al (2013); Pfrommer et al
(2017); Schubert et al (2018) and the references therein).

This paper builds upon our previous works
Morbidi and Caron (2017) and Caron and Morbidi (2018),
where part of the omnidirectional images of PanoraMIS
were used to validate a new direct visual compass and
gyroscope, respectively. It is finally worth pointing out
here that the collection of the outdoor sequences was made
particularly challenging by the spherical nature of the
images: in fact, unable to hide from the camera, we did our
best to minimize the impact of our presence and that of
moving cars and pedestrians, on the images.

The remainder of this paper is organized as follows.
Sect. 2 provides details about the omnidirectional cameras
and robotic platforms used in our dataset. In Sect. 3, the data
collection process and the eight sequences of PanoraMIS are
presented. Finally, Sect. 4 is devoted to data organization and
format, and Sect. 5 draws conclusions.

The full dataset and the supplementary material (videos,
code, 3-D point clouds) are publicly available at the address:
mis.u-picardie.fr/˜panoramis

2 Material: cameras and robots

2.1 Catadioptric camera
The catadioptric camera consists of a VStone VS-C450MR-
TK objective screwed on top of an IDS uEye UI-3370CP-C-
HQ CMOS camera. The objective (diameter 59 mm, height
136 mm) includes a hyperbolic mirror, which allows to
capture ultra-wide FoV images when combined with the
perspective camera (see Fig. 1(a)): in fact, the catadioptric
system has a horizontal FoV of 360◦, a vertical FoV of 75◦

(15◦ “upper side” + 60◦ “lower side”), and the RGB uEye
camera has a resolution of 620 pixels × 620 pixels, fitted to
mirror border. For the intrinsic calibration of the catadioptric
camera, we leveraged Barreto’s unified central projection
model (Barreto 2006) and used HySCaS (Caron and Eynard
2011). This yielded the calibration matrix,

K =

⎡
⎣
αu 0 u0

0 αv v0
0 0 1

⎤
⎦ =

⎡
⎣
233.1999 0 304.7138

0 233.7360 308.7574

0 0 1

⎤
⎦,

VStone
objective

IDS
camera

(a) (b)

Figure 1. Catadioptric camera: (a) The camera consists of a
VStone objective with hyperbolic mirror screwed on an IDS
uEye RGB camera; (b) The first of the six images of the
checkerboard pattern used for the intrinsic calibration of the
camera (the camera is held by an industrial robot).

and the related mirror-shape parameter ξ = 0.9701. In the
matrix above, αu and αv denote the focal lengths in pixels
in the horizontal and vertical direction, respectively, and
(u0, v0) are the coordinates of the principal point in pixels.
The image coordinates of the corners of a checkerboard
pattern observed by the camera at six different locations are
provided in PanoraMIS. The first of these images is shown in
Fig. 1(b).

2.2 Twin-fisheye camera
The Ricoh Theta S is an innovative omnidirectional camera
consisting of a twin-lens folded optical system coupled
with two photosensitive sensors (1/2.3” 12 MP CMOS).
The two fisheye lenses point in opposite directions and
provide a spherical FoV (see Fig. 2(a)). Each image
generated by the Theta S (1280 pixels × 720 pixels),
contains a pair of fisheye images corresponding to opposite
hemispheres (max frame rate, 30 fps). The camera weighs
125 g, it has an autonomy of 25 minutes with its internal
battery (continuous shooting), and its dimensions are 44 mm
(width) × 130 mm (height) × 22.9 mm (depth).

Two sets of intrinsic parameters are considered, one for
each “fisheye camera”, Pcj =

{
αuj , αvj , u0j , v0j , ξj

}
,

j ∈ {1, 2}, where αuj and αvj are the focal lengths in
pixels in the horizontal and vertical direction, respectively,
(u0j , v0j ) are the coordinates of the principal point in
pixels, and ξj is the distance between the unit sphere’s
first projection center and the perspective second projection
center of fisheye camera j (Barreto 2006). To guarantee the
single-viewpoint property, we assumed that the translation
vector between the fisheye-camera frames Fc1 and Fc2

is zero (a non-zero baseline is shown in Fig. 2(b) for
ease of illustration), and that the frame Fc of the Theta S
coincides with Fc1 . The extrinsic parameters of the Theta S,
which describe the orientation between the optical axes
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Lens 1

Lens 2

Sensor 1

Sensor 2

Prism 1

Prism 2

(a)

Fc

z

y

Fc1

z1

y1

Fc2

z2

y2

c2Rc1

(b)

Figure 2. Twin-fisheye camera: (a) Front, side and top view of
the Ricoh Theta S camera (image courtesy of Ricoh), and
schematic of the optical system with the two fisheye lenses,
prisms and CMOS sensors; (b) Coordinate frames of the
camera and fisheye lenses (top view).

of the two fisheye cameras, are given by r1,2 (axis-angle
representation). Rodrigues’ formula is used to retrieve the
rotation matrix c2Rc1 between the reference frames of
the fisheye cameras, corresponding to the unit vector and
rotation angle in the axis-angle representation. Overall,
ten intrinsic and three extrinsic camera parameters have
then been simultaneously estimated. For the calibration,
the Theta S was modeled as a fisheye stereo camera with
a single center of projection (Barreto 2006). The corners
extracted from multiple images of a calibration rig consisting

(a) (b)

Figure 3. Calibration of the twin-fisheye camera: (a) The
calibration rig consists of six checkerboard patterns attached
to the inside surface of two half cubes; (b) Sample dual-fisheye
image of the calibration rig.

of six checkerboard patterns glued inside two half cubes,
were used as input (see Fig. 3(a)). These images (one of
which is shown in Fig. 3(b)) are available to the end-users
of PanoraMIS. A variant of the calibration algorithm
proposed in Caron and Eynard (2011) was employed: we
set the translation parameters between the two fisheye
lenses to zero and estimated the rotation parameters only
(see Caron and Morbidi (2018)). This yielded
Pc1 = {577.7741, 576.1130, 958.6632, 316.8989, 1.9878},
Pc2 = {567.8953, 565.1663, 321.5507, 319.4833, 1.9392},
and r1,2 = [−0.0082, 3.1319, −0.0108]T rad.

2.3 Industrial robot
The Stäubli TX60 is a 6-axis industrial robot with
anthropomorphic arm and spherical wrist (see Fig. 4). With a
nominal payload of 3.5 kg, the robot guarantees small
positioning error and high repeatability (± 0.02 mm). The
price to pay for the accurate odometry (our ground truth) is
the relatively small work envelope: the maximum reach of
the robot between axis 1 and 6, is 670 mm. The manipulator,
equipped with a CS8C controller, is located in a laboratory
room of size 10.05 m × 7.03 m × 2.70 m (cf. Sequences 1
and 3 in Sect. 3.1 below).

2.4 Wheeled robots
The Pioneer 3-AT, manufactured by Adept MobileRobots1,
is a four-wheel programmable mobile robot intended for
research and education (see Fig. 5(a)). The platform
measures 50.8 cm in length, 38.1 cm in width and 27.7
cm in height, and weighs 12 kg. The wheels are driven
by four reversible DC motors in a skid-steering drive
mechanism, which allows zero-radius turning (maximum
forward speed, 0.7 m/s). Each motor is equipped with a high-
resolution optical quadrature shaft encoder which provides
34000 counts per revolution for use in the odometry module.
The robot has an integrated single-axis (yaw) gyroscopic
sensor for increased rotational accuracy, and the controller
automatically incorporates the gyroscopic corrections into
the odometry-based estimates (from wheel encoders).

Figure 4. Industrial robot: Stäubli TX60 inside its cell.
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Table 2. Summary of the main features of the 8 sequences in PanoraMIS. The last column reports the target problems of each
sequence.

Sequ. Camera Robot Environ. Ground truth Calib. data Stats Target problems

1 Catadioptric Industrial Indoors Odometry 6 images 3600 images, 2.27 GB,
1-axis rotation

Heading-angle
estimation

2 Catadioptric Wheeled Indoors Odometry 8 images 158 images, 66.3 MB,
pure rotation

Heading-angle
estimation

3 Twin-fisheye Industrial Indoors Odometry 6 images 720 images, 628 MB,
1-axis rotation

Heading-angle
estimation

4 Twin-fisheye Industrial Indoors Odometry 6 images 94 images, 83.7 MB,
3-axis rotation

Attitude
estimation

5 Catadioptric Wheeled Outdoors Odometry 8 images 156 images, 79.3 MB,
pure rotation

Heading-angle
estimation

6 Catadioptric Wheeled Outdoors Odometry 8 images 318 images, 155 MB,
figure-of-eight trajectory

Visual odometry,
visual SLAM

7 Twin-fisheye Wheeled Outdoors Odometry,
IMU, GPS

None L1 : 5442 images, 5.33 GB,
3-D point cloud, 2.41 GB,

L2 : 2578 images, 2.76 GB,
3-D point cloud, 1.52 GB

Visual-inertial
odometry,

visual SLAM

8 Twin-fisheye Aerial Outdoors IMU, GPS None 6 min 41 s video, 769 MB Visual-inertial
odometry,

visual SLAM

(a) (b)

Figure 5. Wheeled robots: (a) Pioneer 3-AT robot equipped
with the catadioptric camera; (b) Seekur Jr robot outfitted with
the twin-fisheye camera (the external IMU is not shown in
the figure and the forward-facing SICK laser range-finder
was not used).

The Seekur Jr is also a skid-steering four-wheel drive
robot manufactured by Adept MobileRobots (see Fig. 5(b)).
It was designed to have all the qualities of an all-terrain
and all-weather mobile platform, which allows operation
on steep slopes and over rough terrain. Equipped with a
Trimble AG-372 GNSS receiver, a forward-facing SICK
laser range-finder (not used), and an integrated 6-DOF
IMU (Analog Devices ADIS16362 iSensor), the platform
measures 105 cm in length, 84 cm in width and 50 cm

in height, weighs 77 kg and it has a maximum forward
speed of 1.2 m/s. The on-board odometry module is
analogous to that on the Pioneer 3-AT. In order to have
redundant inertial measurements, we installed an external
IMU at the top front of the robot: the Xsens MTi is a
miniature, gyro-enhanced Attitude and Heading Reference
System (AHRS), which provides drift-free 3-D orientation,
calibrated 3-D acceleration, 3-D rate of turn, and 3-D earth-
magnetic field data. It has a static orientation accuracy of
less than 0.5◦ (roll, pitch) and of less than 1.0◦ (yaw),
and a dynamic orientation accuracy of 2◦. The absolute
position accuracy of the GNSS receiver with OmniSTAR HP
correction, is 10 cm after convergence (provided that at least
5 satellites are visible and that PDOP < 4, cf. Sect. 4.4).

2.5 Aerial robot
The Parrot Disco FPV is a fixed-wing unmanned aerial
vehicle powered by a brushless DC motor with a folding bi-
blades propeller (see Fig. 6). It has a wingspan of 1.15 m,

Figure 6. Aerial robot : The twin-fisheye camera was mounted
on the Disco using a custom-made expanded polystyrene hull.
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Figure 7. Sequence 1: Graphical illustration of the organization
of the images acquired with the catadioptric camera on the
Stäubli robot: 3600 images were taken at 25 CPs (black disks)
lying on 8 rays with an angular spacing of 45◦.

it weighs 0.75 kg, it can reach a top speed of 80 km/h,
and it offers 45 minutes of non-stop flight in low-wind
speed conditions (i.e. less than 40 km/h). The drone is
equipped with a front-facing fisheye camera with a FoV of
185◦, and it integrates an inertial navigation system (3-axis
accelerometer, 3-axis gyroscope, 3-axis magnetometer),
and a built-in GNSS module (GPS + GLONASS). The
gyroscope and the magnetometer have a sensitivity of 0.1◦/s
and 1 μT, respectively, and the GNSS receiver delivers a
167 dBm sensitivity with a precision of ± 3 m.

3 Data collection
In the forthcoming subsections, each data collection exercise
is referred to as a Sequence. PanoraMIS comprises
8 Sequences, 4 indoors and 4 outdoors, described in detail
below (see Table 2 for a summary). To obtain reproducible
results, in the sequences involving the wheeled robots,
we synchronized the image acquisition system with the
module that logs the pose estimates of the robot via the C++
ARIA library. A new measurement is recorded only if the
robot has traveled a distance of at least 10 cm or if it has
rotated at least 2◦.

3.1 Indoor environment
3.1.1 Catadioptric camera

Sequence 1: In this first sequence, the catadioptric cam-
era was mounted on the end-effector of the industrial robot.
To account for the geometric constraints (maximum arm
extension) and kinematic singularities of the manipulator, we
limited ourselves to camera poses within a horizontal disk of
radius 450 mm around the vertical axis of the manipulator. To
sample this disk, located 603.3 mm above the platform where
the robot is mounted (see Fig. 7), we chose 25 Collection
Points (CPs) on 8 rays with an angular spacing of 45◦:
on each ray, three locations, at a distance of 100, 250 and
450 mm, were considered (see the black disks in Fig. 7). At

each CP, the camera was rotated by 360◦ about its optical
axis zc with a step size of 2.5◦, yielding 144 images per
CP. For each of the 25 × 144 = 3600 PNG images, we
recorded the 3-D coordinates of the origin of the camera
frame {xc, yc, zc} and its orientation with respect to the
base frame of the robot. We positioned the manipulator at the
25 CPs by running a VAL3 program (that behaves as a server)
on the CS8C controller. Neither master gain nor gamma
correction was considered for the camera to reduce image
noise. However, to capture images having enough luminance,
we set the exposure time to 200 ms, leading to a frame rate
of 5 fps. Such a low frame rate was not an issue in practice,
since the camera was stopped before every acquisition to
avoid image blur. For the extrinsic calibration of the camera,
let us denote by ciTp ∈ SE(3) the rigid transformation
between the frame attached to a checkerboard pattern, “p”,
and the camera’s frame at pose “ci”, i ∈ {1, . . . , 6}. As in
the first image of the sequence the camera is rigidly mounted
on the industrial robot, the end-effector’s pose corresponding
to each of these camera poses should also be considered.
Let eiTb be the rigid transformation between the robot’s
base frame, “b”, and the end-effector’s frame at pose “ei”.
Matrices ciTp and eiTb, i ∈ {1, . . . , 6}, were given as input
to the Tsai & Lenz’s algorithm (in the ViSP-library’s imple-
mentation Marchand et al (2005)) for the estimation of the
extrinsic camera parameters. The following transformation
eTc between the camera’s frame {xc, yc, zc} and the end-
effector’s frame {xe, ye, ze}, was thus obtained (cf. Fig. 8):

eTc =

⎡
⎢⎢⎢⎣

0.0247 0.9988 0.0411 −0.0646

0.9992 −0.0234 −0.0307 −0.0024

−0.0297 0.0418 −0.9987 0.2206

0 0 0 1

⎤
⎥⎥⎥⎦ ,

where distances are in meters.

xc

yc

zc

ye

xe

ze

eTc

Figure 8. Extrinsic calibration of the catadioptric camera:
The camera mounted on the end-effector of the industrial robot
and coordinate frames superimposed upon it. Here eTc

denotes the 3-D rigid transformation between the camera’s
frame {xc, yc, zc} and the end-effector’s frame {xe, ye, ze}.
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(a) (b)

Figure 9. Sequence 2: (a) Pioneer 3-AT indoors; (b) First
catadioptric image of the sequence.

Sequence 2: In this sequence, we outfitted the Pioneer
3-AT with the catadioptric camera, and considered a pure
rotational motion about its vertical axis (see Fig. 9).
We applied a constant angular velocity to the skid-steering
robot in order to have a regular step. Overall, 160 images
were acquired during 49.69 s. In order to have an elevated
viewpoint, the camera was placed on top of a mast, 134 cm
above the ground (110 cm above the robot). We used a two-
axis bubble level to orient the optical axis of the camera
perpendicularly to the ground plane. The exposure time of
the camera was left free but limited to 50 ms, yielding

xc

yc

zc

ye

xe

ze

eTc

Camera

Figure 10. Extrinsic calibration of the twin-fisheye camera: The
camera mounted on the end-effector of the industrial robot and
coordinate frames superimposed upon it.

a frame rate of 20 fps. The catadioptric camera was re-
calibrated for this sequence, leading to:

K =

⎡
⎢⎣
231.4617 0 319.7041

0 232.4225 310.9443

0 0 1

⎤
⎥⎦, ξ = 0.9583.

The same intrinsic parameters were also used in Sequences 5
and 6 below.

3.1.2 Twin-fisheye camera

Sequence 3: The experimental setup considered for
this sequence is similar to that reported in Fig. 7 for
Sequence 1, but the catadioptric camera was replaced with
the twin-fisheye camera. Five collection points (CP1, CP2,
. . . , CP5) located on the same line parallel to the ground were
considered (the camera’s center was 60 cm above the base of
the robot, see Fig. 10). At each CP, the camera was rotated
of 360◦ about the vertical axis, with a step size of 2.5◦,
yielding 144 images. The distance between CP1 and CP2,
CP3, CP4 and CP5 is 40, 120, 240 and 400 mm, respectively.
Again, we used the Tsai & Lenz’s algorithm in the ViSP-
library implementation, to extrinsically calibrate the camera
with respect to the robot end-effector, i.e. to compute eTc ∈
SE(3) (see Fig. 10). The calibration rig was observed by the
camera from six different poses (cf. Fig. 3(b)), yielding:

eTc =

⎡
⎢⎢⎢⎣

−0.0136 0.9997 0.0222 −0.0401

0.0142 −0.0220 0.9996 0.0000

0.9998 0.0139 −0.0139 0.2372

0 0 0 1

⎤
⎥⎥⎥⎦ ,

where distances are in meters.

Sequence 4: The material used to generate this sequence
is the same as that presented in Sequence 3 (twin-fisheye
camera mounted on the industrial robot): however, more
involved 3-D rotations were considered for the camera. In
fact, we took a single collection point of Sequence 3, CP3,
and the robot was moved to obtain the maximum number of
distinct 3-D orientations of the camera (94 overall), which
also complied with the mechanical constraints of the robot.

(a) (b)

Figure 11. Sequence 5: (a) Pioneer 3-AT outdoors; (b) First
catadioptric image of the sequence.
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Figure 12. Sequence 6: (a) Figure-of-eight trajectory of the Pioneer 3-AT (the robot is marked with a triangle every 10 frames or
about every 5 s); (b) First catadioptric image of the sequence.

At these locations, the camera was rotated about its z-axis
with a step size of 45◦.

3.2 Outdoor environment
3.2.1 Catadioptric camera

Sequence 5: In this sequence, the catadioptric camera
was mounted on the Pioneer 3-AT (cf. Sequence 2). The
robot was manually driven with a joystick at Bois Bonvallet,
a 4.5 ha public park in Amiens, France. The robot rotated
about its vertical axis of 360◦ for 50.22 s, and the camera
took 156 images (see Fig. 11 and cf. Sequence 2).

Sequence 6: For this sequence, we considered the same
setup and outdoor scenario as Sequence 5 (cf. Fig. 5(a)).
The robot was manually controlled with a joystick along
a 25.27 m figure-of-eight trajectory (see Fig. 12(a)): its
forward and angular velocities were limited to 0.2 m/s and
12 deg/s, respectively. The mean speed along the path was
0.187 m/s. During the 160.99 s trajectory, 318 images were
acquired. Note that with the exception of a lamppost and a
paved footpath, few recognizable landmarks are visible in
the images, making Sequence 6 challenging for vision-based
robot localization.

3.2.2 Twin-fisheye camera

Sequence 7: The motivation for this sequence came
from the ongoing Interreg VA FCE ADAPT project, which
aims at developing a smart and connected electrically-
powered wheelchair. In recent years, a growing effort has
been devoted to assistive robotic technologies (see e.g.
Rebsamen et al (2010); Pasteau et al (2016); Podobnik et al
(2017); Morales et al (2018) and the references therein), but
the full potential of omnidirectional vision has not yet been
fully exploited. In fact, a panoramic camera can improve the
perceptual awareness of the wheelchair users and assist them
in difficult tasks (e.g. negotiate a narrow doorway or enter
an elevator). Having a similar footprint, in Sequence 7 we
used the Seekur Jr equipped with the twin-fisheye camera
to simulate the motion of a four-wheel electrically-powered
wheelchair. As with the Pioneer 3-AT, the camera was

mounted on the top of a mast to have an elevated viewpoint
of the environment around the Seekur Jr (150 cm above the
ground). The mast was aligned with the vertical axis of the
body frame of the robot, as shown in Fig. 5(b).

In order to have a large variety of scenarios for the
simulated wheelchair, we considered both unstructured park
areas including sidewalk ramps and a narrow timber bridge
(Bois Bonvallet, length 500 m) and urban environments
(Quai de la Somme, Rue de l’Orée du Bois, a parking lot,
for a total distance of 450 m). The full trajectory of the
Seekur Jr, which was manually driven with a joystick, is
shown in Fig. 13(a) (total time: 21 minutes). Figs. 13(b),
13(c) report 6 snapshots from the data collection campaign.
Between waypoints 3 and 4, the reception of GPS signals was
locally perturbed by the dense vegetation around the Seekur
Jr, which resulted in an inaccurate localization of the robot
(see Fig. 14, which corresponds to location B in Fig. 13(a)).
However, in the interest of clarity, we did not manually
correct the data (which correspond to 13% of the overall
trajectory), and the raw GPS values are made available in
the dataset. Local occlusions in the images due to passing
pedestrians and cars, were also experienced. The Seekur Jr
returned to the starting point (red disk): hence the 950 m
trajectory contains a loop closure. The dataset consists of
time-synchronized dual-fisheye images, and GPS, odometry
and IMU data recorded by the robot (the external Xsens MTi
IMU is the orange box visible in Fig. 13(d)). One of the dual-
fisheye images captured at location A, is shown in Fig. 13(e).
The forward and angular velocity of the robot along the
trajectory was limited to 0.7 m/s and 10 deg/s, respectively.

Agisoft Metashape was used for the 3-D reconstruction
of the environment surrounding the robot, by spherical
photogrammetry (see Fig. 15(a)). In fact, one every
two images of the sequence (in equirectangular format),
together with the corresponding GPS coordinates for robust
initialization and fast convergence, was given as input to
Metashape to generate an accurate and dense 3-D cloud
of 89 million points (PLY format). A mask containing
a fixed part (the robot) and a variable one (the sky),
was applied to the images. As a comparison, Fig. 15(b)
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Figure 13. Sequence 7 : (a) An overview of the trajectory (L1) followed by the Seekur Jr, overlaid atop of an aerial image from
Google Maps; (b),(c) Six snapshots from the data acquisition campaign: snapshots 1 and 3 show the robot climbing a curb and
crossing a narrow timber bridge, respectively, while snapshots 4-6 show the robot moving in an urban environment; (d) The
fully-equipped Seekur Jr at the beginning of the trajectory (red disk in (a)); (e) Dual-fisheye image captured by the Theta S at
location A.

Figure 14. Sequence 7 : GPS localization was inaccurate in
some portions of the trajectory (fewer than 5 satellites tracked),
because of the dense canopy (“green tunnel”). Here, the critical
location B in Fig. 13(a), is shown.

reports the corresponding 3-D map and trajectory of the
robot (green) obtained with OpenVSLAM (Sumikura et al
2019), an indirect visual SLAM approach based on fast
binary descriptors and pose-graph optimization to minimize
the drift accumulated along the trajectory. A video in
equirectangular format, generated from the dual-fisheye
images of Sequence 7, was the only input we provided
to OpenVSLAM. We set the frame rate to 4 fps
(default: 30 fps), and the resolution of the video to 1280
pixels × 520 pixels (to crop the area containing the chassis
of the robot). For reference purposes, the data of a second
smaller loop (total length 410 m) recorded the same day on
the south-east side of Bois Bonvallet, are also included in
Sequence 7 (the two loops are referred to as L1 and L2 in
Table 2 and in the dataset website).

Sequence 8: Attitude estimation, localization and
navigation algorithms for aerial vehicles could benefit from
omnidirectional vision. In response to this need, PanoraMIS
includes an MP4 video (30 fps) recorded by the twin-fisheye
camera mounted on the Disco (see Fig. 6 and Fig. 16).
We chose a front elevated position for the camera, in order to
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Figure 15. Sequence 7: mapping of the environment :
(a) 3-D point cloud obtained by spherical photogrammetry with
Agisoft Metashape; (b) 3-D map and robot trajectory (green)
obtained with OpenVSLAM (Sumikura et al 2019).

have as unobstructed a view of the surrounding environment
as possible, and to not overly perturb the center of mass of
the drone. The Disco was remotely controlled over an open
field, 10 km north of Amiens (Vaux-en-Amiénois), France.
It reached a maximum altitude of 106 m and a maximum
ground speed of 85.9 km/h. The total flight time was 6 min
41 s, the total distance travelled 4.2 km, and the major
axis of the trajectory measured 383.3 m (see Fig. 16(a)).
All the flight data (GPS, IMU, etc.) were recorded using the
on-board computer of the Disco.

4 Data organization
PanoraMIS is organized in folders and the directory layout
is shown in Fig. 17. Sequences 1-6 have the same data
structure, while Sequences 7 and 8 also include GPS and
IMU measurements. Sequences 1-6 have a folder called
“Calibration”, containing the images used for calibration
as well as the estimated internal/external calibration
parameters. Each sequence is available for download as a zip
archive. We will briefly describe below the file formats and
data types.

4.1 Images
All the RGB images of PanoraMIS, whether captured by
the catadioptric or the twin-fisheye camera, have been
stored as lossless compressed PNG files. In Sequences 1, 3
and 4 (industrial robot), we considered the following naming
convention for the images:

• 1st block of 6 digits: image number,
• 2nd block of 4 digits: angular direction (azimuth) of

the camera in decidegrees (0-3600),
• 3rd block of 4 digits: angular direction (elevation) of

the camera in decidegrees (0-3600),
• 4th block of 4 digits: distance from the origin of the

reference frame at CP1 in millimeters,
• 5th block of 4 digits: rotation of the camera about its
z-axis in decidegrees (0-3600),

• 6th block of 4 digits: rotation of the camera about its
y-axis in decidegrees (0-3600),

• 7th block of 4 digits: rotation of the camera about its
x-axis in decidegrees (0-3600).

On the other hand, in Sequences 2, 5, 6 and 7 (wheeled
robots), the images were labeled according to the following
convention:

−200 −150 −100 −50 0 50 100 150
−250
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−150

−100

−50

0
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100
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200

 

Start

East [m]

N
or
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[m

]

(a)

(b)

Figure 16. Sequence 8: (a) GPS trajectory of the Disco
overlaid atop of an aerial image from Google Maps (local
geodetic frame). The starting point of the drone is marked
with a red disk; (b) An airborne snapshot from the MP4 video.
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Sequences 1-6 Sequence 7 Sequence 8

PNG ImagesPNG Images
poses.txtposes.txt

times.txttimes.txt

times.txt

GPS.txt

GPS.txt

IMUint.txt
IMUint.txt

IMUext.txt

MP4 Video

Calibration

L1, L2

3-D Point Cloud

Figure 17. Directory layout of PanoraMIS: Sequences 1-6 have the same data structure, while Sequences 7 and 8 also include
GPS and IMU measurements.

• 1st block of 6 digits: image number,
• 2nd block of 4 digits: heading angle of the camera-

robot in decidegrees (0-3600),
• 3rd block of 4 digits: distance between the initial and

current position of the robot in centimeters,
• 4th block of 4 digits: rotation of the camera about its
z-axis in decidegrees (0-3600).

More precisely, if (x(t), y(t), θ(t)) denotes the position
(centimeters) and orientation (degrees) of the mobile robot
at time t provided by the odometry, the 2nd block of
4 digits corresponds to 10(180/π)atan2(y(t), x(t)), the 3rd
to

√
x2(t) + y2(t), and the 4th to 10 θ(t). Although this

filename convention might seem cumbersome at first glance,
it allows the user to easily determine when and where an
image was taken without consulting the corresponding pose
file (see Sect. 4.2).

4.2 Poses
The odometric data from the robotic platforms were stored in
the text file poses.txt. Each line corresponds to a time-
indexed measurement,

[x, y, z, Rotx, Roty, Rotz],

where [x, y, z] denotes the x, y and z position of the
camera in meters with respect to the reference frame of the
base of the industrial robot, and [Rotx, Roty, Rotz] the
attitude of the camera in radians (i.e. the rotation angles
about the x-, y- and z-axes, respectively). For the wheeled
robots, only [x, y, Rotz] is provided, i.e. the planar position
and orientation of the robot with respect to the initial
reference frame.

4.3 Times
The text file times.txt contains the timestamps in
milliseconds provided by the clock of the computer on the
robot (the time elapsed from the beginning of data collection,
i.e. from t = 0ms). The omnidirectional images and the data
stream coming from the sensors on-board the robots have
been time-synchronized in software.

4.4 GPS
GPS data are provided for Sequences 7 and 8 (in fact,
only the Seekur Jr and the Disco are equipped with GNSS

receivers) and stored in the text file GPS.txt. Each line in
the GPS log file corresponds to a measurement over time.
The GPS data from the Disco are organized as follows,

[latitude, longitude, number-of-satellites],

where the latitude and longitude coordinates
are given in degrees, and number-of-satellites
indicates the instantaneous number of satellites tracked
(generally between 5 and 9, and up to 15). The GPS
information on the Seekur Jr is richer, and the following
additional fields are available: altitude, the altitude of
the robot in meters, speed, the speed of the robot in m/s,
and timestamp, the absolute time provided by the GNSS
receiver in the HH:mm:ss.SSS format. Information about the
geometric “Dilution Of Precision” (DOP), which refers to
the accuracy of the data collected by the GPS at the time of
use (Farrell 2008), is also provided. In summary, the format
of Seekur Jr’s GPS log file is the following :

[latitude, longitude, altitude, speed,

timestamp, number-of-satellites,

PDOP, HDOP, VDOP],

where PDOP, HDOP and VDOP stand for the Position,
Horizontal, and Vertical DOP (unitless), respectively. PDOP
is a computed measurement of the geometry of satellites
above the current location of the receiver: a low PDOP means
that the positioning of satellites in the sky is good, and hence
good positional accuracy is expected.

4.5 IMU
Two IMUs are installed on the Seekur Jr: one is integrated
into the robot (ADIS16362) and the other is external
(MTi). Therefore, two different time-indexed text files are
provided in Sequence 7: IMUint.txt and IMUext.txt.
The first file contains the following fields,

[rotX, rotY, rotZ, velX, velY, velZ,

accX, accY, accZ],

where [rotX, rotY, rotZ] are the rotation angles of
the robot about the x-, y-, and z-axes in radians,
[velX, velY, velZ] are the angular velocities of the
robot about the x-, y-, and z-axes in rad/s, and
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[accX, accY, accZ] are the linear accelerations of the
robot along the x-, y-, and z-axes in m/s2. The second file,
IMUext.txt, only contains the rotation angles of the
robot about the x-, y-, and z-axes provided by the MTi
IMU, i.e. [rotX, rotY, rotZ]. For Sequence 8, the
angular measurements from the IMU on-board the Disco
are stored in the text file IMUint.txt, using again the
[rotX, rotY, rotZ] format.

5 Conclusion
This paper documented PanoraMIS, a new dataset of ultra-
wide field of view images captured by catadioptric and twin-
fisheye cameras mounted on wheeled, aerial and industrial
robots. The data collection covers a large range of indoor
and outdoor scenarios with dynamic changes in the scene
appearance owing to lighting (direct sun, cast shadows, etc.).
It is our hope that PanoraMIS will narrow the gap between
theory and practice, and will foster research and encourage
reproducible results in the active field of robot vision.
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