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Photometric Path Planning for Vision-Based Navigation

Eder Alejandro Rodrı́guez Martı́nez, Guillaume Caron, Claude Pégard and David Lara Alabazares

Abstract— We present a vision-based navigation system that
uses a visual memory to navigate. Such memory corresponds to
a topological map of key images created from moving a virtual
camera over a model of the real scene. The advantage of our
approach is that it provides a useful insight into the navigability
of a visual path without relying on a traditional learning
stage. During the navigation stage, the robot is controlled by
sequentially comparing the images stored in the memory with
the images acquired by the onboard camera.

The evaluation is conducted on a robotic arm equipped with
a camera and the model of the environment corresponds to a
top view image of an urban scene.

I. INTRODUCTION

Vision-based autonomous navigation is the process of
making the robot able to reach an end pose, which is out of
sensing range from an inital pose, using vision only. Some
representative works are described in [1]–[4].

A vision-based navigation system (VBNS) is able to
plan a path and navigate through the scene. Therefore, the
representation of the environment plays an important role in
this type of system.

Depending on how a VBNS describes the environment, it
is classified as a model-based or appearance-based naviga-
tion system [2]. The following paragraphs briefly recall some
of the most relevant works regarding these classifications.

In the model-based approach, the environment is described
by a model. Generally speaking, this type of system com-
pares the global model (offline) with a local measurement
(online) either to localize itself or to navigate.

The work presented in [5] adapts the Visual Teach &
Repeat (VT&R) methodology [6] to an autonomous safety-
return aerial navigation system. In the teaching stage, the
system performs Visual Odometry (VO) by inserting visual
observations into a map of relative poses and scene structure.
By comparing the map with the environment, the Unmanned
Aerial Vehicle (UAV) localizes itself and reproduces the
learnt trajectory in the opposite way. The system presented
in [7] updates a map during the exploration stage. Its planner
leverages on the geometric and photometric information
of the map in order to propose a path that reduces the
pose uncertainty while heading towards the goal. The well-
known Simultaneous Localization And Mapping (SLAM) [8]
technique, merges different types of sensor data to build
a map and can also be an input to previously mentioned
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methods. When the map is obtained by other means, the
exploration stage can be avoided. Such is the case in [9]
and [10], where the system compares the visual information
acquired during navigation, with a Computer-Aided Design
(CAD) model.

The second type is appearance-based navigation which
describes the environment in a topological approach. The
environment is represented by a graph, where the vertices
correspond to a measurement of the environment and the
edges to the navigability of their corresponding vertices. Two
main strategies are used to create such a graph. With the
first strategy, an image database completely describes the
environment. Then a group of images is selected to form a
connected graph [11]–[13]. A localization can be performed
relative to the closest vertex on the graph [11]. This method
also allows path planning over the graph. With the second
strategy, an expert proposes a navigable path and operates a
robot through it [14]–[18]. Meanwhile, a sequence of images
is collected from which a group is selected to compose the
visual memory (K) of the path, i.e a visual path. Then, at
the navigation stage, the robot trajectory is controlled through
the key images (K ∈ K) on the sensor space, by comparing
each K with current visual measurements.

The following statements can be formulated about the
aforementioned approaches. The shortest path can only be
found when the map fully describes the environment [19].
When the complete model is created during an exploratory
stage, it requires the presence of the robot and it is time-
consuming. Conversely, when a geometrical model is a priori
available, features cannot easily nor reliably be matched
in some areas [10] and it may lead to navigation failure.
Additionally, relying on a geometrical model during the nav-
igation stage may cause error propagation when estimating
the pose [13]. Instead, formulating the planning stage as
a sequence of Image-Based Visual Servoing (IBVS) tasks
avoids such situations. However, the generation of K that
ensures autonomous navigation depends on the skills of the
operator at the teaching stage [15]; thus, it is far from being
autonomous.

A. System Overview

This paper proposes a VBNS called Photometric-A* (or
P-A*, for short) that solves the previously stated problems by
combining the advantages of model-based and appearance-
based approaches to generate a navigable visual path, using
only the appearance-based approach to navigate.

Roughly speaking, P-A* focuses on comparing visual
information of virtual images rendered from a preobtained



model of the scene with acquired images. Such a virtual/real
hybrid system features the following characteristics:

1) The generation of the visual path does not depend on
the skills of the operator but on a topological approach.

2) The navigability of the visual path is evaluated using
a preobtained model of the scene.

3) The navigation mission is defined by a visual path K
made of virtual images.

4) During the navigation mission, the images stored in K
are compared with those acquired in situ.

The novelty of P-A* lies in generation of the visual
memory K from the preobtained model of the scene, which
is our main contribution. Such model is an ortho-image
corresponding to a top view image of the scene at scale.
From it, virtual images IV (V ξ) (where V ξ ∈ R3×SO(3) is
the pose of a virtual camera) are rendered using the inverse
perspective camera transformation and the parameters of the
camera [20]. The memory is generated in a visual path plan-
ning stage by simulating a group of navigation missions in a
topological approach (Sec. III). At the navigation stage, the
robot is controlled from the start pose (W ξs ∈ R3×SO(3),
expressed in world coordinates), to the final pose (W ξf )
using K and the onboard camera (Sec. II-C). As a secondary
contribution, the navigation is a concatenation of hybrid
positioning tasks (Sec. II-C) realized through Photometric
Visual Servoing (PVS) [21]. The novelty here is comparing
the onboard image I(W ξ) with the desired virtual image
IV (V ξ∗) (where V ξ∗ is the desired virtual camera pose),
rather than using a desired onboard image I(W ξ∗) (where
W ξ∗ is the desired onboard camera pose) as desired image.

B. Related works

The closest VBNS to the P-A* was presented in [13]
where a weighted graph is created by matching point fea-
tures detected on an image database that describes the
environment. In their approach, the weight of the edges is
determined by the number of matched features between two
images in the database, so the graph-search algorithm can
propose a more reliable path. By defining the start virtual
pose (V ξs) and the final virtual pose (V ξf ) at the visual path
planning stage (Sec. II-C), P-A* uses Euclidean distances for
the weight of the edges so the graph-search algorithm finds
the shortest path, as in [22]. Another major difference, with
respect to [13], is that P-A* does not need to acquire the
image set with the camera used at the navigation stage.

Regarding systems that describe scenes using a
textured model, the work proposed in [7] compares
the pixel intensities of a dense surface model with
the onboard images to compute their poses while
updating the map. Instead of estimating the camera
pose, P-A* computes the camera velocity (W ξ̇)
in order to follow the visual path. The work presented in
[23] renders desired depth images from a 3D model of
the scene for a positioning task using an RGB-D camera.
Nevertheless, its sensory map is a sequence of depth maps
acquired during manual teaching. Thus, the robot is required

to perform the teaching stage in the navigation scene,
contrary to P-A*.

C. Structure of the paper

The remainder of the paper is organized as follows.
Section II covers the topics related to the vision-based control
exploited by P-A*. Section III describes the generation of
the visual path K. The experiments and their results are
presented in Section IV. Finally, Section V discusses the
performance of P-A*, its advantages, limitations and future
work.

II. EXPLOITING PIXEL INTENSITIES FOR
VISION-BASED NAVIGATION

This Section focuses on the motivation, adaptation and im-
plementation of the PVS to perform vision-based navigation
in the context of P-A*.

A. Visual Information used in P-A*

Concerning visual information considered within naviga-
tion algorithms, feature points have been used in [13] when
comparing images acquired by a camera. Nevertheless, this
method fails when the desired virtual image IV (V ξ∗) is used
instead of a desired onboard image I(W ξ∗). Fig. 1 shows
one of the many cases that we tested where an inaccurate
matching, between IV (V ξ∗) and the onboard image I(W ξ),
occurs using ORB [24] features, even with Random Sample
Consensus (RANSAC) [25]. Clearly, the locations of the
matched ORB features on both images are imprecise. ORB
fails because IV (V ξ∗) and I(W ξ) do not share the same light
source; therefore, the performance is degraded [26]. This
issue causes an erroneous computation of the relative pose
between V ξ∗ and W ξ; thus, such a method is not suitable
within the hybrid context of P-A*.

Therefore, two dense and direct visual criteria were con-
sidered suitable for comparing IV (V ξ∗) and I(W ξ): the
Sum of Squared Differences (SSD) between pixel intensities
and Mutual Information (MI) [27]. Regarding the virtual/real
hybrid context, SSD exhibits three important advantages over
MI, when a Zero-mean Normalization (ZN) is applied to
pixel intensities of the images to be compared; thus leading
to a ZNSSD.

The first reason is related to the shape of the cost function
(C) of ZNSSD of pixel intensities. This cost function is more

Fig. 1. Imprecise matching. The image on the right is the onboard image
whereas the image on the left is the virtual image (contrast enhanced for
display). Relative point locations do not correspond between the two images.



convex and its minimum is more pronounced than the corre-
sponding maximum of MI [28]. These characteristics cause
a more rapid convergence to the optimum while applying the
optimization process; thus reducing the computational cost
at the visual path planning stage (Sec. III).

The second reason is that the domain of convergence (C),
of the ZNSSD is larger than the corresponding one of MI.
Such a statement is supported by the experiments carried out
in [29] between MI and the Zero-mean Normalized Cross
Correlation (ZNCC), and the equivalence between ZNCC
and ZNSSD highlighted by [30]. The wider the convergence
domain, the weaker the number of vertices in the topological
graph of poses for visual path planning (Sec. III-B).

Thirdly, it is true that considering the ZNSSD rather
than the SSD in the control law for visual servoing [21]
slightly increases the computational cost, due to the zero-
mean normalization of pixel intensities before computing
the Extended Photometric Visual Servoing (Extended PVS)
control law (Sec. 5(d)). However, the computational cost
remains far lower than in MI-based visual servoing.

Finally, to conclude this subsection, by aligning every
corresponding pixel of images, the Extended PVS is far more
precise at convergence than an ORB-based visual servoing
would be, with its rough matching in the hybrid context of
this work (Fig. 1).

B. Extended Photometric Visual Servoing

This scheme considers the vector I(ξ) of image intensities
I(x), acquired at the pose ξ, for all x = (x, y) belonging to
the image domain:

I(ξ) = (I1•, I2•, . . . , IN•)
> (1)

where Ii• ∈ N1×M is the i-th line of the image. Here, N is
the width and M the height of the image.

The Extended PVS is formulated as an optimization pro-
cess where its goal is to minimize:

C(ξ) =
1

2
‖Ĩ(ξ)− Ĩ(ξ∗)‖2, (2)

where Ĩ(ξ) and Ĩ(ξ∗), are the Zero-mean Normalized current
and, respectively, desired image intensity vectors and ξ∗

is the desired pose. Using the Gauss-Newton optimization
method, the control law of the Extended PVS is:

ξ̇ = [vX , vY , vZ , ωX , ωY , ωZ ]> = −λL̂+

Ĩ(ξ∗)
(Ĩ(ξ)− Ĩ(ξ∗)),

(3)
where λ is a positive scalar, L̂+

Ĩ(ξ∗)
is the Moore-Penrose

pseudoinverse of the approximation of the interaction matrix
LĨ(ξ∗) = −∇Ĩ(ξ∗)>Lx related to Ĩ(ξ∗). ∇Ĩ(ξ∗) is the
gradient of Ĩ(ξ∗) at location x and:

Lx =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
,

(4)
is the interaction matrix that relates the variations of x to
the velocity of the camera. The interested reader may refer

to [21], [31] and [32] for a more detailed mathematical
development.

For P-A*, the Extended PVS control law (Eq. 3) is either
applied to current and desired virtual images (Section III) or
to current onboard and desired virtual images when following
the visual path. Such a path is defined by the key virtual
images generated by P-A*.

C. Hybrid Visual Path Following

The robot must follow the ordered set of key images
K describing virtual camera poses V ξk ∈ ΞK . Thus,
to reach the k-th key image Kk = IV (V ξk), ĨV (V ξk)
and Ĩ(W ξ) are considered in the Extended PVS con-
trol law (Eq. 3), instead of Ĩ(ξ∗) and Ĩ(ξ), respectively.
The navigation is initialized by roughly placing the cam-
era in such a way that I(W ξ) ≈ K0. At the naviga-
tion stage, P-A* is considered to have converged to Kk

when ‖W ξ̇‖ < εs, where εs is a threshold of the norm
of the speed and W ξ̇ is the output of the hybrid control
law (Eq. 3). When the robot reaches the last V ξ|K|−1, the
navigation is completed, i.e. the robot has reached W ξf .

III. VISUAL PATH PLANNING

The goal of the visual path planning stage of P-A* is
to find a navigable visual path, i.e. a set of poses to pass
through, each of them defined by an image stored in K. The
visual path K is generated by means of a group of simulated
navigation missions which are executed in order to validate
the visual path meant to be followed at the navigation stage.
A simulated navigation mission, proposed by the planning
algorithm, is a concatenation of virtual positioning tasks
(Sec. III-D) whose goal is to successively reach each virtual
pose (V ξp) in an ordered set of proposed virtual poses
(ΞP ). If ΞP allows the simulated navigation mission to be
completed, then ΞK = ΞP and virtual images are rendered
at each pose of ΞK to make K.

ΞP is selected by a graph-search algorithm (Sec. III-C)
from a set ΞS of virtual poses tessellating the virtual search
space. For the sake of simplicity, the latter space is defined
in R2 for the rest of the article, but considering control laws
exploiting either 2, 4 or 6 Degrees of Freedom (DoF) for
generality.

The initial tessellation density depends on the extent of the
hybrid domain of convergence (HC). The latter is determined
from hybrid positioning tasks where Zero-mean Normalized
intensities of the desired virtual image ĨV (V ξ∗) are used
instead of I(ξ∗) in the Extended PVS control law (Eq. 3).

The rest of the Section formally describes the determina-
tion of the Extended PVS convergence domain, the creation
of the graph G of poses representing the search space,
the graph-search algorithm, the execution of the virtual
positioning tasks and, finally the algorithm that generates
K.

A. Borders of the Hybrid Domain of Convergence

Analogously to the determination of the borders of the
domain of convergence C of any kernel-based method [33],



the borders of HC are experimentally determined from hybrid
positioning tasks. In these tasks, the onboard camera velocity
W ξ̇ is computed from Eq. 3 with Ĩ(ξ) = Ĩ(W ξ) and
Ĩ(ξ∗) = ĨV (V ξc), where V ξc = (V ξs + V ξf )/2 is the
central virtual camera pose. The latter V ξc corresponds to
the central onboard camera pose W ξc = (W ξs + W ξf )/2.

Then, for each direction i ∈ [[0, Ni − 1]] regularly
surrounding W ξc, hybrid positioning tasks (called hybrid
positioning test) are executed using the same DoF as those
used at the navigation stage. Such a test consists of running
Extended PVS from initial poses (W ξi) farther and farther
from W ξc, with step ∆ ∈ R∗+, along direction i, until it
fails to converge. Let WX(t) = (WX(t),WY (t),WZ(t))>

be the location and WΘ(t) = (W Θ(t),W Φ(t),W Ψ(t))> the
orientation of W ξ at the time step t. WXc and WΘc are
equivalently defined for W ξc. Then, the goal of the task is
achieved if ‖WX(t)−WXc‖ < εd, |W Θ(t) − W Θc| < εo,
|W Ψ(t)−W Ψc| < εo, |W Φ(t)−W Φc| < εo and t < εk,
where εd, εo and εk are thresholds on the distance, on
the orientation difference and on the number of time steps,
respectively. These conditions determine if W ξ(t) is close
enough to W ξc before a certain number of time steps.

Poses W ξi furthest from W ξc, in every direction, de-
termine the borders of HC. Distances Hdi, from W ξc to
the borders of HC, are computed for every direction i by
Hdi = ‖WXi − WXc‖, WXi being the position of the
furthest pose W ξi from W ξc. Gathering distances Hdi in
set HD, Hdmin is defined as the minimum element of HD.

Hdmin is then considered to define the density of the graph
of poses used for planning hereafter.

B. Graph of Poses Construction

The virtual search space (R2 in this paper) is uniformly
tessellated into the set of poses ΞS so that the distance
between each neighboring pair of poses is Hdmin, at most.
ΞS is represented as a weighted kinggraph G [34] of which
each vertex is connected to its eight nearest neighbors
(leading to Ni = 8, Sec. III-A), except for those at the
boundaries. G is also a lattice graph of which the vertices
set V depends on Hdmin. Considering V Xf and V Xs are
the locations of V ξf and V ξs, we define:

n =

⌈
‖V Xf − V Xs‖

Hdmin

⌉
, (5)

leading to |V| = (n+ 1)2.
As a 2D lattice graph, each pose V ξv associated with

vertex v ∈ V belongs to ΞS . Start V ξs and final V ξf
poses are associated with, respectively, vertices vs = v0 and
vf = v(n+1)2−1. Fig. 2 shows G initialized with |V| = 9.
Considering vertices v and v′, v 6= v′, associated with
locations V Xv and V Xv′ , the weight function γ(·) of their
edge ev,v′ is defined as the Euclidean distance: γ(ev,v′) =
‖V Xv − V Xv′‖.

C. Path Search

The graph-search algorithms A* [35] and Djikstra [36],
have been frequently implemented on VBNS such as [11],

Fig. 2. Graph initialization. Each vertex of the graph is related to a virtual
camera pose.

[12] and [17]. A* is preferred for P-A* due to the drastic
reduction of the vertex expansion at the graph-search, related
to the predefinition of vs and vf in G, as stated in [22].

Then, A* selects the set P∗ of proposed vertices vp ∈ P∗
in graph G using the weight function as the heuristic. In P∗,
vp0

= vs, vpm−1
= vf with |P∗| = m. Since a pose is

associated with each vertex of G, each proposed P∗ directly
leads to an ordered set ΞP of poses defining a proposed path
to be followed.

D. Virtual Positioning Task

In order to evaluate the navigability of a proposed path
ΞP , a group of successive virtual positioning tasks is applied
for virtual visual path following (similar to Sec. II-C).

A virtual positioning task consists of reaching
V ξp+1 ∈ ΞP , from an initial V ξ(0) = V ξp ∈ ΞP , by
updating V ξ with the virtual control law:

V ξ̇ = −λL̂+

ĨV (V ξp+1)
(ĨV (V ξ)− ĨV (V ξp+1)). (6)

Convergence success is evaluated as in Section III-A, i.e.
by precision tolerance and iteration number thresholds.

E. Visual Memory Generation

The generation of K is summed up below:

1) Create G as a weighted kinggraph of poses with
|V| = (n+ 1)2 (Sec. III-B).

2) Check if any chain in G connects vs with vf . If so,
proceed to the next step. Otherwise, increment n by
one and return to step 1.

3) Run A* in G (Sec. III-C). Execute virtual positioning
tasks (Sec. III-D) between successive pairs of poses
{V ξp, V ξp+1} ⊂ ΞP . If one of the tasks fails, discon-
nect the corresponding edge evp,vp+1 in G and return
to step 2. Otherwise, continue to the next step.

4) At this step, ΞP had produced a successful simulated
navigation mission. Thus, ΞK = ΞP and render each
Kk = ĨV (V ξk), V ξk ∈ ΞK . Finally, enqueue every
Kk in K, the visual path made of virtual images to be
followed by the real camera at the navigation stage.



IV. EXPERIMENTATIONS

The evaluation of P-A* is conducted on a Stäubli TX2-
60 robotic arm equipped with an uEye camera at the end-
effector. The robotic arm is considered as a testbed to obtain
precise ground truth (poses and trajectories) for a relevant
analysis. The robot and the camera (512 × 640 pixels) are
connected to an HP ZBook laptop by TCP/IP and USB,
respectively. The distance between WXs and WXf , positions
of start and final poses W ξs and, respectively, W ξf , over the
scene is 495 mm. This length is bounded by the range of the
robot. Hence, the camera is set close to the scene, i.e. at
209 mm, and uses a lens with a focal length of 13 mm, so
that the camera field of views at WXs and WXf are far from
sharing any part of the scene. The visual path planning and
the navigation algorithms are developed in C++. An aerial
image, provided by Google Earth, was printed on a tarpaulin
and used as the model of the scene. Fig. 3(a) shows the
experimentation setup.

In this Section convergence thresholds (Sec. III-A) are
experimentally set once for every convergence domain and
planning experiment: εd = 0.5 mm, εk = 500 iterations,
εo = 1.74× 10−6 rad.

In the following, convergence domains are first determined
experimentally, for several configurations and sets of DoF, in
order to be able to tesselate the search space and build the
graph of poses. Considered sets of DoF are vX , vY (2 DoF),
vX , vY , vZ and ωZ (4 DoF) and the full camera 6 DoF
(ξ̇, Eq. 3). Then, eight experiments of P-A* are reported in
order to evaluate its behavior.

A. Experimental Determination of Convergence Domain

Three configurations are considered for determination and
comparison of the Extended PVS convergence domains:

1) Real Configuration: The velocity of the onboard cam-
era W ξ̇ is computed from Eq. 3 with Ĩ(ξ∗) = Ĩ(W ξc).

2) Hybrid Configuration: This is the hybrid extended
PVS (as in Sec. II-C).

(a) Environment set up. (b) Central images.

Fig. 3. (a) The scene, the robotic arm and the camera. (b) The virtual (top)
and the onboard (bottom) images.

3) Virtual Configuration: Obviously, this configuration
does not need to be performed either by the robot or the
camera. The control law is computed from Eq. 6 with
ĨV (V ξc) instead of ĨV (V ξp+1).

Fig. 3(b) displays the central pose images used as desired
image to determine the convergence domain. Table I shows
the distances from the center location (Xc) to the borders of
each domain of convergence C in eight directions spanning
the 360o surrounding Xc and with increment ∆ = 2 mm (see
Sec. III-A).

The borders of C, in each direction, are labeled counter-
clockwise beginning from i = 0 at the middle-right location
of the central pose (ξc) (Fig. 4).

TABLE I
CONVERGENCE DOMAIN LIMITS EVALUATION (UNIT: MM)

Direction 0 1 2 3 4 5 6 7 min
Real 2 DoF 16 14 22 46 20 18 24 30 14

Hybrid 2 DoF 16 14 18 42 24 20 28 36 14
Virtual 2 DoF 26 18 28 48 22 18 26 32 18
Virtual 4 DoF 16 18 22 16 16 18 22 16 16
Virtual 6 DoF 18 20 22 16 16 20 24 18 16

B. Navigation Tasks

The eight navigation tasks consider the same convergence
threshold (Sec. II-C) εs = 10−8, experimentally determined.

1) Virtual versus Hybrid convergence domain limits: The
last column of Table I shows the shortest extents of the
Extended PVS convergence domain in each real, hybrid and
virtual configuration. Theoretically, Hdmin must be consid-
ered to tesselate the search space and build the graph of poses
(Sec. III-B) for P-A*. To limit the experimental time, Hdmin

for 4 DoF and 6 DoF, noted H
4 dmin and H

6 dmin, are deduced
from both V

4 dmin = 16 mm, respectively V
6 dmin = 16 mm,

the equivalent for the virtual configuration, and the ratio
H
2 dmin/

V
2 dmin = 14/18, made of hybrid and virtual dmin

with 2 DoF, i.e:{
H
4 dmin ≈ V

4 dmin
H
2 dmin/

V
2 dmin ≈ 12.44 mm

H
6 dmin ≈ V

6 dmin
H
2 dmin/

V
2 dmin ≈ 12.44 mm

. (7)

Fig. 4. Domain of convergence around the center (•) of the model. Borders
of the domain of convergence for the real (+), hybrid (x), both with 2 DoF,
and those of the virtual case with 2 (o), 4 (�) and 6 DoF (♦).



Then, P-A* is executed six times between the same W ξs
and W ξf , i.e two times per number of DoF, one considering
V dmin and another one considering Hdmin. On the one
hand, as expected, only the consideration of H

4 dmin and
H
6 dmin leads to a planned visual path successfully followed
with 4 and 6 DoF, respectively. It means the deduction of
Hdmin for both 4 and 6 DoF thanks to Eq. 7 is relevant,
although it has no value of generality. On the other hand, both
V
2 dmin and H

2 dmin lead to a planned visual path successfully
followed with 2 DoF. However, the visual path planned
considering V

2 dmin is not straight (Fig. 5(a)) whereas it is
when considering H

2 dmin (similar to the 4 DoF case of
Fig. 5(d)). Although both P-A* experiments with H

2 dmin and
H
6 dmin are not reported in the paper, they are shown in the
video accompanying the paper1.

2) Robustness to scene and model contents: This last set
of experiments aims at showing the power and limits of
adaptability of P-A* with respect to the scene content. The
camera 2 DoF result obtained with V

2 dmin above in nominal
conditions serves as reference with respect to which two ad-
ditional P-A* experiments are compared. Both experiments
are challenging in the sense that the first one involves a
textureless zone, of more than 50% of both the scene and
its model, and the second one an outdated model made 10
years before looking at today’s actual scene.

The three experiments are reported and compared below.
a) Nominal Case: At the visual path planning stage, G

was initialized with |V| = 841 in 2.3 s. The shortest visual
path K, in the sense of A*, was produced in 2286.5 s. K
is composed of 35 images. The robot successfully reaches
each K ∈ K (see its trajectory superimposed on the planned
path in Fig. 5(a)).

b) Textureless Zone: In this experiment, a textureless
area is set at the center of the scene and its model. The
interest here is to study the case where no visual path along
the straight line between W ξs and W ξf is fully navigable
(no visual information to control the camera DoF in some
area of the scene). At the visual path planning stage, P-A*
automatically determines that some visual paths, far from the
straight line, are navigable. The shortest path, in the sense
of A*, was found from G with |V| = 841 (initialized in
2.3 s as well) in 2245.8 s. The visual path K is made up of
35 images. At the navigation stage, the camera successfully
reaches the final pose W ξf despite some difficulties when
reaching the textureless zone (Fig. 5(b)).

c) Outdated Model: The image on this model was
acquired at a different time of day and ten years before the
image printed on the tarpaulin. Consequently, its content and
the content of today’s scene vary in two main aspects: the
orientation and the size of the shadows, and some remodeled
buildings. Notice that this experiment is similar to the case
when the preobtained model of the scene had not been
recently updated on a real navigation task performed by an
aerial robot, for instance. The shortest K, in the A* sense,

1available at http://mis.u-picardie.fr/˜g-caron/
videos/2020_ICRA.mp4

(a) Nominal case. (b) Textureless zone.

(c) Outdated model. (d) 4 DoF case.

Fig. 5. Planned paths (multicolor o) and executed trajectories (green lines,
+ for start and x for final poses) with (a)-(c) 2 DoF, considering V dmin;
(d) 4 DoF, considering Hdmin.

was found in 1831.7 seconds from G with |V| = 841 (also
initialized in 2.3 seconds). K includes 34 images. Despite the
dissimilarities between the images in K and the scene, the
camera traveled a distance of 225 mm over 495 mm towards
its goal (Fig. 5(c)) before diverging, which was expected
since nothing is done at the image comparison level (Eq. 2)
to be robust to such differences of content between the actual
scene and its model.

In all of the experiments presented in this Section, the
discontinuous velocities produced by the memory update do
not cause enough disruptions in the robot to prevent the
mission from being achieved. This issue must be addressed
for robots that navigate at higher speed.

V. CONCLUSION

In this paper we introduced the Photometric-A*, P-A*,
a Vision-Based Navigation System that exploits the charac-
teristics of photometric visual servoing. P-A* combines the
advantages of relying on a preobtained model of the scene
and navigating using a visual memory. Given start and final
poses over the scene, the planner of P-A* outputs a short
and navigable visual path by leveraging on the preobtained
model. The robot, equipped with a camera, is successfully
controlled with 2, 4 and 6 degrees of freedom through the
scene following such a visual path. Future works will be
dedicated to exploring different models (e.g. dense surface
model or 3D model), to search paths on graphs in higher
dimensions than R2 as well as other sensors.
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