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Summary

Being the largest internal organ of the human body with the
unique ability of self-regeneration, the liver is involved in a wide
variety of vital functions that require highly orchestrated and
controlled biochemical processes. Increasing evidence suggests
that microRNAs (miRNAs) are essential for the regulation of liver
development, regeneration and metabolic functions. Hence, alter-
ations in intrahepatic miRNA networks have been associated with
liver disease including hepatitis, steatosis, cirrhosis and hepato-
cellular carcinoma (HCC). miR-122 is the most frequent miRNA
in the adult liver, and a central player in liver biology and disease.
Furthermore, miR-122 has been shown to be an essential host
factor for hepatitis C virus (HCV) infection and an antiviral target,
complementary to the standard of care using direct-acting antiv-
irals or interferon-based treatment. This review summarizes our
current understanding of the key role of miR-122 in liver physi-
ology and disease, highlighting its role in HCC and viral hepatitis.
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We also discuss the perspectives of miRNA-based therapeutic
approaches for viral hepatitis and liver disease.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Among the wealth of recently discovered non-protein-coding
RNAs, miRNAs constitute a class of endogenous post-transcrip-
tional regulators of gene expression through RNA interference
(RNAi), which relies on the sequence-specific pairing between a
small non-protein-coding RNA and a target nucleic acid [1,2].
miRNAs have been identified in 206 organisms, ranging from
microbes to animal species, including humans, where �2000
miRNAs are currently reported by the official miRNA repository
miRBase (release 20, [3]). In the canonical miRNA biogenesis
pathway, a miRNA gene is first transcribed as a hairpin-shaped
double-stranded primary RNA (the pri-miRNA), which is cleaved
in the nucleus to generate a �60–70 nt long precursor called
pre-miRNA, that is then exported to the cytoplasm to be further
processed by Dicer into a �22 nt RNA duplex, of which one of
the two strands represents the functional mature miRNA. Mature
miRNAs are then sorted into one of the Argonaute (Ago) proteins
to form the core of the effector RNA-induced silencing complex
(RISC) (reviewed in [4]). The RISC-loaded miRNA (‘guide’ RNA)
recognizes its target RNA, most likely a messenger RNA (mRNA),
by base-pairing typically within its 30 untranslated region (30

UTR). This interaction can result in downregulation of the encoded
protein via mRNA degradation and/or translational repression.
Furthermore, miRNAs have also been shown to regulate their tar-
gets by binding to the 50 UTR. Although miRNA-target interactions
usually lead to target repression/decay, miRNAs can also
stimulate the expression of target genes (reviewed in [5]). Since
the minimal requirement of pairing consists of seven nucleotides
within the 50 proximal part of the miRNA (miRNA seed), a single
miRNA may target a cohort of different mRNAs. Consistently, up
to 60% of all human protein-coding genes were predicted to be
subject to miRNA-mediated regulation [6]. Moreover, different
miRNAs tend to act cooperatively to repress one specific gene
[7,8] or several genes within the same pathway [9]. As such,
miRNAs are part of complex regulatory networks, controlling
gene expression in virtually every biological process including
development, immune response, aging and cell death.
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Key Points

• miR-122 is a key factor, involved in liver development, 
differentiation and homeostasis as well as in metabolic 
functions; loss of miR-122 has been associated with 
liver disease and HCC

• Restoration of miR-122 expression prevents 
development of liver disease and HCC in mouse 
models

• miR-122 also plays a role in the life cycle of liver-
specific pathogens: it is an essential host factor for HCV 
replication but appears to restrict HBV replication

• Clinical proof-of-concept studies have demonstrated 
that miR-122 inhibitors efficiently reduced viral load in 
chronically infected HCV patients without detectable 
resistance but in light of the very high cure rates of 
orally administrated DAAs and a potential liver disease-
promoting effect of miRNA depletion, the role of miR-
122 in future treatment approaches for HCV infection 
remains to be determined

• Given the limited or absent strategies to impair the 
progression of liver disease and to prevent and treat 
HCC, miR-122 mimics may provide a novel strategy 
for the prevention and treatment of HCC with need for 
randomized clinical trials
miRNAs and disease biology

Given their involvement in regulating cell homeostasis and func-
tions, miRNA expression is tightly controlled in a temporally
restrained and tissue-specific manner [10,11]. This suggests that
miRNAs may be involved in determining and maintaining tissue
identity. These specific expression patterns are controlled by both
transcriptional and post-transcriptional regulatory systems that
may target different steps of miRNA biogenesis and turnover
(for a detailed discussion, see [12]). It is thus not surprising that
dysregulations of miRNA networks have been associated with
various diseases. Indeed, several pieces of evidence have demon-
strated that altered regulation of miRNA expression might con-
tribute to disease processes, including genetic and infectious
diseases as well as cancer. While some diseases have been linked
to the altered functions of enzymes regulating miRNA biogenesis,
others appear to involve altered modulation of miRNA expression
or genetic alterations of genes, encoding miRNAs or their targets,
including deletions and single-nucleotide polymorphisms that
may ultimately lead to a gain or loss of miRNA-target interaction
(reviewed in [13–15]). Therefore, miRNAs represent potentially
interesting druggable targets. Indeed, a miR-122 inhibitor (mira-
virsen) and a miR-34 mimic (MRX34) were the first miRNA-based
molecules to enter the clinic [16,17]. First, clinical trials have
provided the proof-of-concept of the potential of miravirsen as
a novel therapeutic strategy against chronic hepatitis C virus
(HCV) infection, complementary to the standard of care using
direct-acting antivirals (DAAs) or interferon (IFN)-based
treatment [16]. MRX34 is currently in a phase 1 clinical trial in
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patients with unresectable primary liver cancer, and advanced
or metastatic cancer with liver involvement (ClinicalTrials.gov
identifier: NCT01829971A) [17]. Furthermore, given the
association of differential miRNA expression patterns with dis-
eases, both tissue and circulating miRNA expression profiles can
also be used as biomarkers for diagnostic, prognostic and
therapeutic purposes.

The liver is the largest internal organ of the human body with
the unique ability of self-regeneration. It is involved in a wide
variety of vital functions that require highly orchestrated and
controlled biochemical processes. Increasing evidence suggests
that miRNAs are essential for the regulation of liver development,
regeneration and metabolic functions [18]. Hence, alterations in
intrahepatic miRNA networks have been associated with all
aspects of liver disease, including hepatitis, steatosis, cirrhosis
and HCC (reviewed in [19]). miR-122 is the most frequent miRNA
in the adult liver [20–22]. Interestingly, miR-122 can be detected
in the circulation and serum miR-122 has been shown to serve as
a biomarker of liver injury in chronic hepatitis B or C, non-alco-
holic fatty-liver disease (NAFLD) and drug-induced liver disease
[23–29]. Here, we review the key involvement of miR-122 in liver
physiology and disease, highlighting its roles in HCC and viral
hepatitis. We also discuss the perspectives of miRNA-based
therapeutic approaches for viral hepatitis and liver disease.
miR-122 and liver physiology

miR-122 has a liver-enriched expression and is one of the most
abundant miRNAs in the liver, accounting for about 70% and
52% of the whole hepatic miRNome in adult mouse and human,
respectively [20–22]. Consequently, miR-122 plays a central role
in liver development, differentiation, homeostasis and functions
(Fig. 1). miR-122 expression is driven by liver-enriched transcrip-
tion factors (LETFs), including hepatocyte nuclear factor (HNF) 6
and 4a [30–32] that also fine-tune miR-122 dosage during liver
development in vivo [30–32]. Particularly in liver development,
the concertized expression of miR-122 and LETFs was suggested
to regulate the proper balance between cell proliferation and dif-
ferentiation in both the hepatocyte and cholangiocyte lineages
[30,31]. This temporal-regulation of miR-122 expression is
particularly important as miR-122 promotes hepatobiliary
segregation along with the acquisition and maintenance of a hep-
ato-specific phenotype [30,31,33] (Fig. 1). Indeed, during mouse
liver development, miR-122 was shown to gradually repress the
transcription factor cut-like homeobox 1 (CUTL1), thus allowing
terminal liver differentiation [30] (Fig. 1). This important role of
miR-122 in liver development and differentiation was further
demonstrated by studies reporting that antisense-mediated
inhibition of miR-122 delayed liver development in zebrafish
[31] and switched on the expression of genes that were normally
repressed in the adult mouse liver [34]. This is also corroborated
by the fact that the repression of miR-122 in primary HCC with
poor prognosis was associated with suppression of the hepatic
phenotype [33].

miR-122 also plays a crucial role in the regulation of
cholesterol and fatty acid metabolism in the adult liver (Fig. 1).
In vivo antisense studies, coupled with microarray analysis, have
been instrumental to uncover the role of miR-122 in lipid
metabolism [34–36]. Indeed, antisense-mediated inhibition of
hepatic miR-122 markedly lowered plasma cholesterol levels in
5 vol. 62 j 448–457 449
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Fig. 1. miR-122 is a key regulator of liver physiology and disease biology. The scheme illustrates the different roles of miR-122 in liver development and metabolism (red
boxes) as well as in viral hepatitis and liver disease. Activation (+) or inhibition (�) is indicated dependent on the effect of miR-122 on a specific process. While host miR-
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both mice and non-human primates [34–36]. Transcriptomic
analyses in mice further revealed that transient miR-122
sequestration downregulated the expression of genes involved
in fatty acid metabolism as well as cholesterol biosynthesis,
including the rate-limiting enzyme 3-hydroxy-3-methylgluta-
ryl-CoA-reductase [34,35]. Although the molecular mechanisms
underlying regulation of lipid homeostasis by miR-122 are still
unclear, both AMP-activated protein kinase (APK) and circadian
metabolic regulators of the peroxisome proliferator-activated
receptor (PPAR) family were suggested to be putative effectors of
miR-122-mediated metabolic control [35,37] (Fig. 1). Interestingly,
transcription of the miR-122 locus itself occurs in a circadian man-
ner, suggesting the existence of a link between miR-122, circadian
gene expression and hepatic lipid metabolism [37].
miR-122 and pathogenesis of liver disease and hepatocellular
carcinoma

In line with its essential role in maintaining liver homeostasis
and differentiation, reduced expression of miR-122 has been
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associated with liver disease. The generation of both germline
knock-out (KO) mice and liver-specific KO mice has been pivotal
to revealing a key involvement of miR-122 in liver disease
[38–40]. Indeed, in contrast to transient miR-122 sequestration,
genetic deletion of miR-122 was shown not only to severely
impact on lipid metabolism, but also to drive microsteatosis
and inflammation, which progressed to steatohepatitis and
fibrosis as mice aged [38,39]. Consistently, miR-122 expression
was also lowered in a carbon tetrachloride-induced mouse model
of liver fibrosis [41]. Of note, the restoration of miR-122 levels in
miR-122 KO mice reversed liver inflammation, at least in part, by
repressing two miR-122 targets, namely the chemokine Ccl2,
which was shown to recruit CD11bhiGr1+ inflammatory cells
intrahepatically [38] and the pro-fibrogenic Krüppel-like factor
6 (KLF6), whose expression was enhanced in the miR-122 KO
mouse liver [39]. This piece of data clearly highlights the
anti-inflammatory and anti-fibrotic properties of miR-122 in
the liver (Fig. 2). Although this knowledge has been acquired
using mouse models, it is important to note that reduced miR-
122 expression has been associated with human non-alcoholic
steatohepatitis [42] extending the relevance of these findings to
5 vol. 62 j 448–457



 Plasma cholesterol 

 HCV replication 

 Fibrosis 

 HCC 

anti-
miR-122

miR-122 expression

miR-122
mimics

Fig. 2. Therapeutic effects of miR-122-modulating agents in liver disease.
Current state-of-the-art approaches in modulating miRNAs in vivo comprise
restoration of miRNA expression, using synthetic miRNA mimics or viral vectors
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human liver disease. Furthermore, decreased miR-122 levels have
been associated with poor prognosis and metastasis of liver
cancer, and several targets of miR-122 have been implicated in
tumourigenesis [38,43–49] (Fig. 1). Indeed, a number of validated
miR-122 targets including cyclin G1, ADAM10, IGF1R, SRF, and
Wnt1, were shown to be involved in hepatocarcinogenesis, epi-
thelial-mesenchymal transition, and angiogenesis [49] (Fig. 1).
Altogether, these data suggested that miR-122 acts as a tumour
suppressor in the liver.

The proof-of-concept that miR-122 has an anti-tumour func-
tion in the liver was again provided using miR-122 KO mice
[38,39]. These mice spontaneously develop liver tumours and
demonstrate abnormal expression of genes involved in cell
growth and cell death, epithelial-mesenchymal transition and
cancer [38,39]. Importantly, tumour development in these mice
could be prevented by restoration of miR-122 expression
in vivo [38,39]. Moreover, by using a mouse model where
tumours developed in the absence of inflammation, it has been
demonstrated that miR-122 has an anti-tumour function that is
independent of its role in preventing liver disease and inflamma-
tion [38]. miR-122 may thus be used as a potential therapeutic
tool against HCC. Indeed, given that the decrease of miR-122
can promote hepatocarcinogenesis, and that restoration of miR-
122 in HCC cells can reverse the tumourigenic properties of these
cells, preventing HCC development in vivo [38,39,43–45,50,51],
miR-122 mimics represent an interesting strategy to prevent
and treat HCC (Fig. 2). Furthermore, it has also been shown that
restoration of miR-122 also sensitizes HCC cells to chemotherapy,
suggesting that combination of miR-122 and chemotherapeutic
agents may have an additive or synergistic effect against liver
cancer [44,45,50]. It is worth noting that the first miRNA mimic
reached phase 1 clinical studies, indicating the feasibility of
modulating miRNA expression in human liver (ClinicalTrials.gov
identifier: NCT01829971A) [17]. Taken together, results from
these studies broadened our understanding of HCC-development,
enabled researchers to draw arresting conclusions regarding the
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association between loss of miR-122 and diverse aspects of liver
disease as well as HCC, and highlighted important implications
regarding the therapeutic potential of miR-122 [38–40].

Despite the fact that proof-of-concept studies have elegantly
demonstrated the tumour suppressor function of miR-122
[38,39], it is important to point out that HCC is not consistently
associated with loss of miR-122. Indeed, HCC is a multifactorial
and heterogeneous disease and miR-122 expression appears to
be dependent on the aetiology of the liver cancer. Interestingly,
reduced miR-122 expression has been associated with hepatitis
B virus (HBV)-related HCC, while miR-122 levels appear normal
or increased in HCV-related HCC [52,53]. One can hypothesize
that this is due to different roles of miR-122 in the life cycle of
these two viruses (see below), and at least with respect to
miR-122, each of the two viruses causes HCC in different ways
(Fig. 1). These data underscore that HCC is not the result of the
deregulated expression of a single gene, and rather several lines
of evidence indicate that various signalling pathways are
deregulated in HCC (reviewed in [19,54,55]). Further studies are
required to better understand the molecular mechanisms
underlying HCC and the role of miRNAs in this disease.
miRNAs and virus-host interactions

Chronic viral hepatitis due to HBV or HCV infection is a major
cause of chronic liver disease and HCC. HBV and HCV are both
characterized by a tight species and tissue tropism, almost
exclusively infecting human hepatocytes. This cell specificity
may be explained by the fact that both viruses depend at each step
of their respective life cycle on several host factors, which happen
to be expressed in hepatocytes. Within the past years, numerous
proteins have been uncovered to be required for either the HBV
or the HCV life cycle, and increasing evidence indicates that non-
protein-coding RNAs, such as miRNAs also plays important roles
in these processes (reviewed in [56–61]). Furthermore, in addition
of using host miRNAs for their replicative cycle, HBV and HCV have
also been reported to modulate the expression profile of the cellu-
lar miRNome to favour viral persistence, which may contribute to
pathogenesis of liver disease (reviewed in [62,63]). Accumulating
evidence points to a role of human miRNAs in modulating viral
infectivity, cell tropism and host immune responses [64,65]. The
outcome of this miRNA-virus interplay can have either a positive
(proviral) or negative (antiviral) effect on the virus. In addition,
there are different levels of interactions, which are not mutually
exclusive, as described below.

Cellular miRNAs have been demonstrated to directly target
defined viral genomes or transcripts (Table 1). The best described
example so far is the binding of miR-122 within the HCV genomic
RNA that has a positive effect on viral translation, replication and
infectious particle production (see below) [66,67]. Actually, the
positive outcome of miR-122 for HCV is more of an oddity than
the rule, as most direct binding of miRNAs to viral RNAs is dele-
terious. Indeed, miR-199a also directly targets HCV RNA but this
leads to an inhibition of HCV replication [68]. Likewise, HBV tran-
scripts have also been reported to contain binding sites for cellu-
lar miRNAs, including miR-122, miR-199a, and miR-210 that all
repress HBV mRNA expression [69,70]. Noteworthy, to counteract
inhibition by cellular miRNAs, RNA viruses appear to have
evolved strategies to escape direct miRNA-mediated repression.
Indeed, a recent comprehensive survey on the roles of miRNAs
5 vol. 62 j 448–457 451



Table 1. miRNA-mediated regulation of viral infection.

Concept Mechanism Examples References
miRNA-binding to viral 
genome or transcript

miRNA-induced stability or decay/
translational repression of the viral RNA

• miR-122 binds to the HCV genome 
and enhances viral translation and 
replication

• miR-199a and miR-210 bind to HBsAg 
mRNA leading to reduced HBsAg 
expression

• miR-32 binds PFV-1 mRNA and inhibits 
viral translation

[66,73,89,97]

[69,70]

[124]

miRNA-mediated 
regulation of host factors

miRNA-induced translational repression or 
decay of host mRNAs involved in restriction of 
the viral life cycle and/or antiviral reponses

• miR-196 translationally represses 
BACH1, thus enhancing HMOX1-
mediated antioxidant and anti-
inflammatory response against HCV

• miR-141 inhibits HBV replication by 
targeting PPARα

[22]

[74]

Virus-mediated modulation 
of host miRNA

Viral transcripts or proteins modulate 
expression of host miRNAs that in turn 
modulate expression of viral or host proteins

• HCV increases miR-130a expression to 
reduce IFITM1 expression to promote 
viral replication

• HBx decreases miR-15b to increase 
HNF1α expression in order to moderate 
HBV replication during acute infection

• KSHV, HSV-1 and HCMV enhance 
transcription of miR-132 that represses 
innate immunity through p300

• Herpes virus saimiri non-protein-coding 
RNA HSUR 1 binds miR-27a to induce 
its degradation

[77]

[80]

[125]

[81]

Virus-encoded miRNA-
mediated modulation of 
host or viral factors

Virus-encoded miRNAs usually promote the 
viral infection by modulating viral or host 
factors to limit the lytic cycle of the virus, 
prolong the longevity of infected cells and/or 
inhibit immune responses

• HSV-1-encoded miRNAs regulates the 
viral gene ICP0, to switch between lytic 
and latent cycles

• No experimental evidence for any HBV- 
or HCV-encoded miRNA

[126]

[87]
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in different virus infections using Dicer KO HEK293 cells
indicated that miRNAs had only a limited impact on the viruses
tested, and hence that most of the viruses have evolved to be
resistant to cellular miRNAs [71]. While the molecular
mechanisms underlying viral evasion from miRNAs remain to
be determined, first evidence indicated that HIV-1 was able to
adopt extensive RNA secondary structures to avoid efficient
inhibition by host miRNAs [72]. Taken together, these data
suggest that the crosstalk between miRNAs and viral RNAs likely
lead viruses to develop strategies to escape antiviral immunity
and indicate that the dependence on a host miRNA as seen with
miR-122 and HCV is rare [71].

Host miRNAs are also able to indirectly target a virus through
the miRNA-mediated regulation of specific host factors (Table 1).
This kind of interaction has for example been described in the
context of the antiviral response to HCV infection. Indeed, recent
studies indicated that miR-196 may play a role in counteracting
HCV infection in vitro by both enhancing antioxidant and
anti-inflammatory responses and direct targeting of the HCV
genome [22,73], which merits further validation in vivo. Further-
more, HBV replication has been shown to be regulated by differ-
ent miRNAs, which modulate the expression of transcription
factors, having an impact on the virus life cycle [74,75]. Given
the widely spread regulation of cellular proteins by cellular
miRNAs, it is likely that the tuning of host cell gene expression
by host miRNAs contributes to modulating viral life cycles.

If host miRNAs modulate viral RNA expression, likewise
viruses can impact on host miRNA expression, which in turn could
452 Journal of Hepatology 201
target either host or viral RNAs (Table 1). Viral infection has been
reported to modulate the expression of miRNAs that can promote
viral replication and/or contribute to viral evasion as well as path-
ogenesis. For instance, HCV infection promotes the expression of
miRNAs that suppress the innate immune response pathways,
thereby leading to an increase of viral replication [76–78].
Furthermore, the HBV X protein (HBx) has been reported to mod-
ulate the expression of cellular miRNAs that likely contribute to
the pathogenesis of liver disease [79,80]. Beside viral proteins,
virus-encoded transcripts can also play a role in regulating miRNA
abundance in host cells by degrading miRNAs or interfering with
their biogenesis [81–83] (Table 1). Taken together, these data
demonstrate that viruses have evolved several strategies to mod-
ulate cellular miRNAs. While this may allow the virus to escape
antiviral immunity and establish persistent infection, virus-
induced changes in the host miRNome may ultimately also con-
tribute to cellular transformation and oncogenesis.

Finally, viruses can also encode miRNAs, which can target
either host or viral RNAs [65,84,85] (Table 1). Virus-encoded
miRNAs can either be specific to a virus or be analogues of host
miRNAs, and they usually promote viral infection by prolonging
the longevity of infected cells, inhibiting immune responses,
and/or regulating host or viral genes to limit the lytic cycle
(reviewed in [86]). Interestingly, although a computational
approach indicated that HBV putatively encodes a candidate
pre-miRNA that might yield a mature miRNA with putative
binding sites within the HBV mRNA [87], to date there is no
experimental evidence for any HBV- or HCV-encoded miRNA.
5 vol. 62 j 448–457
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miR-122 and HCV infection: Host-dependency factor and
antiviral target

HCV is a single-stranded RNA virus of positive polarity [88]. The
role for miR-122 in HCV infection was first demonstrated by
sequestration of endogenous miR-122, which led to a substantial
reduction in HCV RNA abundance [66]. Unlike most miRNAs that
repress their targets through binding the 30 UTR of mRNAs, miR-
122 directly pairs with two adjacent sites in the 50 UTR of the
viral RNA, thus enhancing viral replication [73,89–92] (Fig. 1).
These target sites are located upstream of the HCV internal ribo-
some entry site (IRES), and are conserved across HCV genotypes.
Recent studies indicated that miR-122 positively acts on the HCV
life cycle by enhancing viral translation and genome stabilization.
Indeed, it has been shown that miR-122 binding to the 50 UTR of
the HCV genome enhances the association of ribosomes with the
viral RNA [90,93,94]. Furthermore, the association of miR-122
and the HCV genome together with Ago2 within the RISC com-
plex also stabilizes viral RNA by protecting it from degradation
by exonucleases [92,95–97]. The importance of miR-122 in HCV
infection is also underscored by a number of studies, which indi-
cated the involvement of this miRNA in allowing HCV replication
in non-HCV permissive cell lines. Indeed, hepatoma cell lines as
well as non-liver derived HEK-293T or HeLa cells, which do not
express significant amounts of miR-122 and are unable to sustain
HCV replication, were rendered permissive to HCV replication
upon ectopic miR-122 expression [98–103]. Interestingly, in
addition to the direct effect, mediated by miR-122 targeting of
the HCV RNA, an indirect effect has been reported that involves
the downregulation of HMOX1, the latter having been shown to
inhibit HCV replication [104] (Fig. 1). miR-122 was also discov-
ered to prompt alcohol-induced HCV RNA replication [105,106].
In particular, acute alcohol exposure in HCC cell lines was shown
to enhance HCV replication by upregulating miR-122 expression
while downregulating the miR-122 target cyclin G1 [105]. Taken
together, these data indicate that miR-122 represents an essential
hepatocyte-specific host factor for HCV infection.

Counter-intuitively, the beneficial role of miR-122 for the
virus in vitro does not translate into a positive correlation
between its expression and HCV load in patients. Particularly
non-responders to IFN-based therapy have lower miR-122
pre-treatment levels [107–110], suggesting that pre-treatment
miR-122 levels could be used as a biomarker to predict the
therapeutic outcome. While it has been shown that IFN-based
therapy does not appear to decrease intrahepatic miR-122 in
patients [107], another study reported that reduced serum
miR-122 correlates with therapeutic success, probably by
reflecting reduced liver damage [27].

Given its essential role in the HCV life cycle and its liver-
enriched expression, miR-122 represents a target for antiviral
therapy (Fig. 2). The first animal studies using antisense miR-
122 oligonucleotides of different chemistry were encouraging
as they indicated that targeting miR-122 did not result in liver
toxicity in mice and African green monkeys [35,111]. In addition,
the treatment decreased their plasma cholesterol levels and this
effect was sustained for several weeks but reversible following
withdrawal of the inhibitor [35,111], suggesting that targeting
miR-122 might also be a potential therapeutic strategy for hyper-
cholesterolemia (Fig. 2). A study using chronically HCV-infected
chimpanzees then provided the first proof-of-concept for the
potential of the miR-122 inhibitor SPC3649, now known as
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miravirsen, as an efficient antiviral. Indeed, the inhibitor reduced
HCV RNA levels in the majority of treated animals and its effect
was gradually lost once the inhibitor was withdrawn [112], con-
firming a sustained but reversible inhibition of miR-122 in vivo.
The potential of this inhibitor has recently been confirmed in a
phase 2a clinical trial [16]. Administration of this inhibitor for
5 weeks resulted in a dose-dependent and sustained reduction
of HCV RNA levels up to 3 logs for the highest dose of 7 mg/kg
with several patients transiently achieving undetectable HCV
RNA levels. However, viral RNA levels rebounded in patients that
did not start an IFN-based therapy at the end of the trial. No dose-
limiting adverse events were observed but patients exhibited a
sustained and reversible decrease in serum cholesterol levels.
Nevertheless, the miR-122 inhibitor half-life and long-term
implications of miR-122 inhibition in vivo may merit further
studies. Very importantly, no adaptive mutations were detected
with in the HCV miR-122 binding regions, indicating that
miR-122 inhibitors have a high barrier to resistance [16]. Despite
these interesting results, given the recent tremendous advances
in the treatment of chronic HCV infection with the approval of
orally administered DAAs with pan-genotypic activity and high
barrier to resistance (reviewed in [113]) that enable very high
rates of sustained virological response (SVR), it is likely that
miR-122 inhibitors that require parenteral administration will
not play a major role in the future antiviral therapy against
HCV. However, since patients who cleared HCV remain at risk
for HCC (reviewed in [113]), a better understanding of the miRNA
networks, modulated in the course of HCV infection and involved
in development of HCC, will allow to ultimately uncover
pathways that may represent potential therapeutic targets to
prevent/treat HCC.
miR-122 and HBV infection: A viral restriction factor?

HBV is a DNA virus with a relaxed circular partially double-
stranded genome (rcDNA) that is converted into a covalently
closed circular DNA (cccDNA) in the host cell nucleus, following
infection of human hepatocytes. The cccDNA serves as a template
for the transcription of four viral RNAs that represent templates
for the translation of the HBV proteins and for viral replication,
involving reverse transcription [114]. In contrast to its role as a
host-dependency factor for HCV, miR-122 appears to restrict
HBV replication. Indeed, it has been shown that miR-122 directly
targets a conserved region of the HBV pregenomic RNA that func-
tions as a bicistronic mRNA, encoding the HBV polymerase and
core protein [69] (Fig. 1). However, the exact mechanisms by
which miR-122 binding to HBV RNA results in the inhibition of
HBV protein expression, transcription and replication remain to
be determined. Furthermore, miR-122 has been shown to indi-
rectly interfere with HBV replication by decreasing expression
of cyclin G1, which results in p53-mediated inhibition of HBV
transcription [115]. However, in human hepatoma cell lines,
miR-122 was also observed to indirectly enhance HBV replication
by repressing HMOX1, which in turn interfered with HBV
replication by reducing the stability of the HBV core protein
[116] (Fig. 1). In contrast to HCV, HBV infection downregulates
miR-122 expression and viral load was shown to inversely
correlate with miR-122 expression in HBV-infected patients
[69,115,117]. The exact underlying mechanisms are not fully
understood, but one possibility could be that all HBV mRNAs
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contain a miR-122 binding site and could act as sponges to
sequester miR-122 [117]. Moreover, a recent study demonstrated
that the HBx protein could bind PPARc, thereby leading to inhibi-
tion of miR-122 transcription [118]. HBx can also decrease the
stability of miR-122 by downregulating germline development
2 (Gld2) that is involved in miR-122 adenylation [119].

Given the important role of miR-122 in liver physiology, this
virus-induced suppression of miR-122 may alter liver function
and contribute to the development of liver disease including
HCC. Indeed, it has been reported that the HBV-mediated down-
regulation of miR-122 increases the expression of the tumour
promoter N-myc downstream regulated gene 3 (NDRG3) [120].
Furthermore, this increases expression of the miR-122 target
cyclin G1 (CCNG1) that results in enhanced Akt activation
leading to epithelial-mesenchymal transition [121]. Moreover,
HBV-induced inhibition of miR-122 also results in an increase
in pituitary tumour-transforming gene 1-binding factor (PTTG1)
that promotes tumour growth and cell invasion [117]. Taken
together, these HBV-induced changes in regulatory networks
may contribute to the development of HCC (Fig. 1). Given that
restoration of miR-122 has been shown to reverse the
tumourigenic properties of hepatoma cells and to prevent HCC
development in vivo [38,39,43–45,50,51], potential future thera-
peutic strategies, aiming at restoring miR-122 to prevent/treat
HCC in patients with reduced/absent miR-122 levels might be
an interesting strategy for patients with HBV-induced HCC.
Conclusions and perspectives

Given its central role in liver biology and disease, miR-122 repre-
sents an interesting therapeutic target for the treatment of liver
disease including viral hepatitis, fibrosis, steatosis and HCC.
Proof-of-concept studies have elegantly demonstrated that a
miR-122 inhibitor efficiently reduces viral load in chronically
infected HCV patients without detectable resistance [16]
(Fig. 2). However, given the very high cure rates of orally admin-
istrated DAAs with a high genetic barrier for resistance (reviewed
in [113]), the need for parenteral administration of miRNA-122
inhibitors [16], and a potential HCC/liver disease-promoting
effect of miRNA depletion, the role of miR-122 inhibitors in the
future treatment approaches for HCV infection remains to be
determined. The exploration of miR-122 as a therapeutic target
for HBV infection is ongoing. While experimental studies suggest
that miR-122 plays a role in the HBV life cycle as a potential
restriction factor, further studies are needed to assess whether
targeting miR-122 would result in cccDNA eradication and viral
cure – the ultimate goal for novel HBV therapeutic approaches.
Given the limited or absent strategies to impair progression of
liver disease and to prevent and treat HCC (reviewed in [122])
and the association between loss of miR-122 and liver inflamma-
tion, fibrosis, steatosis and HCC, miR-122 mimics may provide a
novel strategy to slow down liver disease progression and to pre-
vent and treat HCC. Current and future randomized clinical trials
with miRNA-based molecules will shed light on the perspective
of this approach for advanced liver disease and HCC. Finally,
given the major involvement of miR-122 in liver homeostasis,
cholesterol biosynthesis and fatty acid metabolism, additional
preclinical studies will be required to determine the optimal level
of miRNA mimics in therapy and to assess the potential risks
associated with miR-122 overexpression or depletion.
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