

Decreasing of the Gravitational Mass in materials with Extremely High Permeability subjected to an Alternating Magnetic Field of Extremely Low Frequency

Fran de Aquino

▶ To cite this version:

Fran de Aquino. Decreasing of the Gravitational Mass in materials with Extremely High Permeability subjected to an Alternating Magnetic Field of Extremely Low Frequency. 2020. hal-02492397v1

HAL Id: hal-02492397 https://hal.science/hal-02492397v1

Preprint submitted on 26 Feb 2020 (v1), last revised 21 Sep 2020 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Decreasing of the Gravitational Mass in materials with Extremely High Permeability subjected to an Alternating Magnetic Field of Extremely Low Frequency.

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE Copyright © 2020 by Fran De Aquino. All Rights Reserved. www.professorfrandeaquino.org deaquino@elointernet.com.br

Here we propose a very simple experiment in order to check the decreasing of the *Gravitational Mass* in materials with *Extremely High Permeability* subjected to an Alternating Magnetic Field of Extremely Low Frequency.

Key words: Gravitational Mass, Magnetic Field of Extremely Low Frequency, Extremely High Permeability.

INTRODUCTION

In this paper it is proposed a very simple experimental set-up in order to check the decreasing of the *Gravitational Mass* in materials with *Extremely High Permeability* subjected to an Alternating Magnetic Field of Extremely Low Frequency.

THEORY

In a previous paper [1] we shown that there is a correlation between the gravitational mass, m_g , and the rest inertial mass m_{i0} , which is given by

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{\Delta p}{m_{i0}c}\right)^2} - 1 \right] \right\} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Un_r}{m_{i0}c^2}\right)^2} - 1 \right] \right\} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Wn_r}{\rho c^2}\right)^2} - 1 \right] \right\} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Wn_r}{\rho c^2}\right)^2} - 1 \right] \right\}$$
(1)

where Δp is the variation in the particle's *kinetic* momentum; U is the electromagnetic energy absorbed or emitted by the particle; n_r is the index of refraction of the particle; W is the density of energy on the particle (J/kg); ρ is the matter density (kg/m^3) and c is the speed of light. The *instantaneous values* of the density of electromagnetic energy in an *electromagnetic* field can be deduced from Maxwell's equations and has the following expression

$$W = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \mu H^2 \tag{2}$$

where $E = E_m \sin \omega t$ and $H = H \sin \omega t$ are the *instantaneous values* of the electric field and the magnetic field respectively.

It is known that
$$B = \mu H$$
, $E/B = \omega/k_r$ [2] and
 $v = \frac{dz}{dt} = \frac{\omega}{\kappa_r} = \frac{c}{\sqrt{\frac{\varepsilon_r \mu_r}{2} \left(\sqrt{1 + (\sigma/\omega\varepsilon)^2} + 1\right)}}$ (3)

where k_r is the real part of the *propagation* vector \vec{k} (also called *phase constant*); $k = |\vec{k}| = k_r + ik_i$; ε , μ and σ , are the electromagnetic characteristics of the medium in which the incident (or emitted) radiation is propagating ($\varepsilon = \varepsilon_r \varepsilon_0$; $\varepsilon_0 = 8.854 \times 10^{-12} F/m$; $\mu = \mu_r \mu_0$ where $\mu_0 = 4\pi \times 10^{-7} H/m$; σ is the electrical conductivity in *S/m*). From Eq. (3), we see that the *index of refraction* $n_r = c/v$ is given by

$$n_r = \frac{c}{v} = \sqrt{\frac{\varepsilon_r \mu_r}{2} \left(\sqrt{1 + (\sigma/\omega\varepsilon)^2} + 1\right)}$$
(4)

Equation (3) shows that $\omega/\kappa_r = v$. Thus, $E/B = \omega/k_r = v$, i.e.,

$$E = vB = v\mu H \tag{5}$$

Then, Eq. (2) can be rewritten as follows $W = \frac{1}{2} \varepsilon v^{2} \mu^{2} H^{2} + \frac{1}{2} \mu H^{2} =$ $= \frac{1}{2} \mu H^{2} (\varepsilon v^{2} \mu) + \frac{1}{2} \mu H^{2} = \mu H^{2} \qquad (6)$ For $\sigma \gg \omega \varepsilon$, Eq. (3) gives

$$n_r^2 = \frac{c^2}{v^2} = \frac{\mu\sigma}{2\omega}c^2 \tag{7}$$

Substitution of Eqs. (6) and (5) into Eq. (1) gives $\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty$

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{\mu^3 \sigma}{4\pi f \rho^2 c^2} \right) H^4 - 1} \right] \right\}$$
(8)

Note that if $H = H_m \sin \omega t$. Then, the average value for H^2 is equal to $\frac{1}{2}H_m^2$ because H varies sinusoidaly (H_m is the maximum value for H). On the other hand, we have $H_{rms} = H_m/\sqrt{2}$. Consequently, we can change H^4 by H_{rms}^4 , and the Eq. (8) can be rewritten as follows

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{\mu^3 \sigma}{4\pi \ f \rho^2 c^2} \right) H_{rms}^4} - 1 \right] \right\}$$
(9)

Note that in this equation the value of the *magnetic permeability*, μ , is raised to the *third* power. This means that the decreasing of the Gravitational Mass in materials with *Extremely* High Permeability ($\mu_r > 100,000$; $\mu = \mu_r \mu_0$; $\mu_0 = 4\pi \times 10^{-7} H/m$) subjected to an Alternating Magnetic Field (H_{rms}) of *Extremely* Low Frequency (f < 100Hz) can be easily observed experimentally.

SUGGESTED EXPERIMENT

Let us consider some known materials with Extremely High Permeability. For example: Metglas, Supermalloy and pure Iron, which the following characteristics [3, 4]:

Metglas (Metglas 2714A, annealed) $\mu_r = 1,000,000$ At 0.5 T $\sigma = 7.04 \times 10^5$ S / m $\rho = 7590 \ kg.m^{-3}$ Supermalloy (annealed in H controlled cooling) $\mu_r = 1,000,000$ At 0.7 T $\sigma = 1.6 \times 10^6$ S / m $\rho = 8770 \ kg.m^{-3}$ Iron (99.95% pure Fe annealed in H) $\mu_r = 200,000$ $\sigma = 1.05 \times 10^7$ S / m $\rho = 7600 \ kg.m^{-3}$ For these materials Eq. (9), respectively, gives

$$\chi_{Metglas} = \left\{ 1 - 2 \left[\sqrt{1 + 2.1 \times 10^{-20} \left(\frac{H_{rms}^4}{f} \right)} - 1 \right] \right\}$$
(10)

$$\chi_{Supermallg} = \left\{ 1 - 2 \left[\sqrt{1 + 3.6 \times 10^{-20} \left(\frac{H_{rms}^4}{f} \right)} - 1 \right] \right\} \quad (11)$$

$$\chi_{Iron} = \left\{ 1 - 2 \left[\sqrt{1 + 2.5 \times 10^{-21} \left(\frac{H_{ms}^4}{f} \right)} - 1 \right] \right\}$$
(12)

For f = 60Hz, the result is

$$\chi_{Metglas} = \left\{ 1 - 2 \left[\sqrt{1 + 3.5 \times 10^{-22} H_{rms}^4} - 1 \right] \right\}$$
(13)
$$\chi_{Supermalloy} = \left\{ 1 - 2 \left[\sqrt{1 + 6.0 \times 10^{-22} H_{rms}^4} - 1 \right] \right\}$$
(14)

$$\chi_{Iron} = \left\{ 1 - 2 \left[\sqrt{1 + 4.1 \times 10^{-23} H_{rms}^4} - 1 \right] \right\}$$
(15)

Then, for
$$H_{rms} = 4 \times 10^5 A/m \ (B = 0.5T)$$
, we get
 $\chi_{Metglas} = -3.3 \implies m_{g(Metglas)} = -3.3m_{i0(Metglas)}$
 $\left(P_{(Metglas)} = m_{g(Metglas)}g = -3.3m_{i0(Metglas)}g = -3.3P\right)$

$$\chi_{Smalloy} = -5.1 \implies m_{g(Smalloy)} = -5.1 m_{i0(Smalloy)}$$
$$\left(P_{(Smalloy)} = m_{g(Smalloy)}g = -5.1 m_{i0(Smalloy)}g\right)$$

$$\chi_{Iron} = -0.13 \implies m_{g(Iron)} = -0.13 m_{i0(Iron)}$$
$$\left(P_{(Iron)} = m_{g(Iron)}g = -0.13 m_{i0(Iron)}g\right)$$

The results above can be easily checked by means of the experimental set-up shown in Fig.1.

References

- De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology,11 (1), pp. 173-232. Available at https://hal.archives-ouvertes.fr/hal-01128520
- [2] Halliday, D. and Resnick, R. (1968) *Physics*, J. Willey & Sons, Portuguese Version, Ed. USP, p.1118.
- [3] Metglas Magnetic Alloy 2714A, Metglas. Metglas.com. Archived from the original on 2012-02-06. Retrieved 2011-11-08.
- [4] Magnetic Properties of Ferromagnetic Materials, Iron. C.R Nave Georgia State University. Retrieved 2013-12-01.

Fig. 1 – Schematic diagram of the experimental set-up to check the decreasing of the *Gravitational Mass* in materials with *Extremely High Permeability* subjected to an Alternating Magnetic Field with frequency f = 60Hz.