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Public acceptance of and heterogeneity in behavioral beach trip responses to offshore 

wind farm development in Catalonia (Spain) 

 

 

Introduction  

 

Offshore wind energy is known to be a viable avenue to reduce greenhouse gas emissions, 

increase energy security, mitigate global climate change (Devine-Wright, 2011; Pasqualetti, 

2011; Brownlee et al., 2015) and reduce (if not eliminate) disamenities associated with on-

land wind turbines (Ladenburg, 2010). It is also a promising source of employment and 

revenues for local communities (Hattam et al., 2015). However, with the increasing global 

development of wind energy, optimal locations for offshore wind farms (OWFs) (i.e., 

locations that minimize the costs per kWh produced without altering the welfare of coastal 

communities and the economic attractiveness of coastal areas) have become more difficult 

to find (Brownlee et al., 2015; Hevia-Koch and Ladenburg, 2016). This situation has 

generated and still generates strong opposition movements. In some countries, such as 

France (Westerberg et al., 2013) and USA (Fooks et al., 2017), the construction of several 

offshore wind facilities has been delayed or even withdrawn due to protests. The drivers of 

the opposition to OWFs are visual impacts, noise and biodiversity losses (bird deaths) 

(Vechiato, 2014). Improvements in technology and collision risk models have substantially 

reduced noise and avian impacts (Vechiato, 2014). On the other hand, the potential negative 

impact that offshore wind facilities may have on coastal tourism or property values remains 

a major concern (Haggett, 2011; Hevia-Koch and Ladenburg, 2016). Consequently, most 

existing valuation research has focused on visual impacts of wind turbines (see Ladenburg 

and Lutzeyer, 2012; Hevia-Koch and Ladenburg, 2016; Mattmann et al., 2016).  
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The Government of Catalonia (Spain) is considering the use of offshore wind turbines to 

provide renewable energy as part of its Plan of Energy and Climate Change of Catalonia 2012 

– 2020 (PECAC 2020). This plan aims at installing 5,153.6 MW of wind power by 2020 of 

which 570 MW will be generated by OWFs. With 580 km of coastline and about 221 beaches, 

Catalonia has a large offshore wind energy potential. At the same time, the coastal area 

substantially contributes to the economic attractiveness of the region and the welfare of the 

entire population (i.e., both residents and tourists). Any reduction in beach demand could 

lead to significant economic costs, both market costs (e.g., reduction in revenues for coastal 

activities) and nonmarket costs (i.e., welfare loss of the coastal communities). In this 

context, investigating the preferences of affected stakeholders is an important first step to a 

successful implementation of offshore wind energy policies.   

 

The objectives of this paper are to (1) identify the factors affecting whether beach users 

(both residents and tourists) accept the potential OWF project in Catalonia; (2) identify the 

factors affecting whether they would change beach trip behaviour due to the project; (3) 

estimate the potential impact on their demand for trips. Particular emphasis is placed on the 

visual impacts of the project, measured through the density of turbines and their distance 

from the shore. For the third objective, we use a single-site travel cost (TC) model that 

combines actual and contingent beach trip data1. Combining TC and contingent behaviour 

(CB) data allows estimating the change in trip demand that might occur with changes in 

                                                           
1 The TC method is commonly classified into two groups: single-site models and random utility maximisation 
(RUM) models (Parsons, 2017). The single-site TC model is used to estimate recreation demand functions. The 
RUM TC model is useful when the objective of the analysis is to identify how users make choices between 
substitute sites based on the attributes of those sites. This model, however, fails to account for the possibility 
of substitution across time periods in response to a short-term site closure or change in site quality (Parsons 
and Stefanova, 2011). Parsons and Stefanova (2011) addressed this concern through a combined RUM – 
contingent behaviour model in their study valuing short-term closures of beaches on the Texas Gulf coast.  
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attributes of the good (see Whitehead et al., 2008). This is particularly relevant, as policy 

makers require information on historical consumer demand and potential future demands to 

improve their basis for decision-making (Voltaire et al., 2017). The remainder of the paper is 

structured as follows: Section 2 provides a review of the literature on valuation studies 

related to OWFs. Section 3 describes the survey design and data collection. Section 4 

summarizes the data. The econometric models used in the analysis are presented in Section 

5. Results are discussed in Section 6, followed by concluding remarks in Section 7.  

 

2. Previous literature  

 

Several aspects related to wind power development have been analysed. In the field of non-

market valuation, some studies investigated the visual impacts of turbines on residential 

property values using the hedonic pricing method (Jensen et al., 2014; Lang et al., 2014; 

Gibbons, 2015; Heintzelman and Tuttle, 2012; Hoen et al., 2015) and the choice experiment 

(CE) method (Krueger et al., 2011. Mariel et al., 2015). Other research examined their 

impacts on recreation and tourism using the CB method (Lilley et al., 2010), combined TC – 

CB method (Landry et al., 2012; Voltaire et al., 2017; Teisl et al., 2018 ; Parsons et al., 2019), 

contingent valuation method (McCartney, 2006), CE method (Ladenburg and Dubgaard, 

2009; Landry et al., 2012; Westerberg et al., 2013; Lutzeyer et al., 2018) and a within-subject 

field experiment (Fooks et al., 2017).2,3 There are also many empirical works on other 

external effects of wind power. Mattmann et al. (2016) conducted a meta-analysis of the 

                                                           
2 Landry et al. (2012) gathered both TC – CB and CE data in the same survey. 
3 Teisl et al. (2018) was not a TC study per se in that no TC demand models were estimated. However, they 
collected revealed and contingent beach trips like in any combined TC-CB study.  
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stated-preference literature on the externalities generated by wind power (air pollution and 

climate change, fuel independence, biodiversity, and green policy, noise and visual impacts).  

 

Of the studies mentioned above, ten examined the potential impacts of OWF projects on 

recreational beach use, paying particular attention to visual disamenities. Five come closest 

to our study in that they gathered TC – CB trip data (Table 1). From their results it emerges 

(among other things) that OWF projects are seen as visual disamenities, as respondents 

commonly state that they would cause them to reduce the frequency of their trips. In the 

short term, however, these projects could attract some curious visitors (Landry et al., 2012; 

Parsons et al., 2019).4 It is also inferred that the placement of turbines further offshore could 

limit their visual impacts, thereby mitigating potential trip loss.5  

(Table 1 about here) 

 

These studies are not without limitations. For example, one underlying assumption is that 

visitors are homogenous in their preferences for beach recreation, implying that visitors with 

the same observed characteristics would have the same trip behaviour under OWF 

conditions. This assumption is unlikely to be valid if there is substantial unobserved 

heterogeneity in trip preferences. For example, consider two visitors A and B, with A having 

relatively stronger preferences for beach recreation, so that A takes more trips than B under 

status-quo conditions. Due to preference heterogeneity, it is conceivable that the 

installation of an OWF influences differently their beach trip demand, with A still taking 

                                                           
4 Landry et al. (2012) and Parsons et al. (2019) found evidence of a curiosity trip effect among some 
respondents. Parsons et al. (2019), however, argued that such an effect can be expected to fall after the first 
generation of projects.  
5 These same conclusions also hold for studies focusing on coastal tourism and recreation using the CE method.  
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more trips than B. In other words, it is likely that the effect and/or the magnitude of the 

effect of the OWF on beach trip demand differ between A and B. Accounting for unobserved 

heterogeneity in trip preferences allows to better capture the effect and/or the magnitude 

of the effect of factors influencing the frequency of beach trips and to better estimate the 

welfare impacts caused by changes in beach attributes (Hynes and Greene, 2016).  

 

Another limitation is specific to studies gathering TC – CB data on-site. An on-site sample is 

truncated at zero (i.e., no data are collected for individuals who took zero trips in the survey 

period, even though they may have taken trips in previous years, and may again in the 

future) and is endogenously stratified (i.e., frequent users are over-sampled) (Martínez-

Espiñeira and Amoako-Tuffour, 2008; Hynes and Greene, 2013). Failure to account for these 

issues can result in biased and inconsistent parameter estimates (Shaw, 1988; Englin and 

Shonkwiler, 1995). Different econometric models have been developed to account for on-

site sampling in combined TC – CB panel data count models. Hynes and Greene (2013) have 

introduced a Latent Class Negative Binomial (LCNB) model that applies to data where both 

revealed and stated trip data are truncated and endogenously stratified. This is typically the 

case when the CB scenario involves an improvement in site conditions. Under such 

conditions, individuals interviewed on-site rarely predict zero trips (Hynes and Greene, 

2016). The other models adjusted for on-site sampling suit data where the revealed trip data 

are truncated and endogenously stratified, whereas the stated trip data are not. The CB 

scenario then commonly refers to a deterioration in site conditions. Under such conditions, 

some respondents often predict zero trips. These models include the Multivariate Poisson-

log normal (MPLN) model (Egan and Herriges, 2006), seemingly unrelated negative binomial 

(SUNB) model (Egan and Herriges, 2006), random-effect Poisson gamma (REPG) model 
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(Beaumais and Appéré, 2010) and discrete factors method – generalized negative binomial 

(DFM – GNB) model (Nobel et al., 2019). To the best of our knowledge, there is no standard 

program available in statistical packages that allow to estimate such models. This may 

explain the reason why most studies using TC – CB trip data where only the revealed trip 

data are truncated and endogenously stratified ignored these problems (e.g., Simões et al., 

2013; Voltaire et al., 2017)    

 

The present paper compares the estimates of consumer surplus (CS) derived from correcting 

for unobserved heterogeneity in trip preferences to that from correcting for on-site sampling 

bias.6 In addition, it extends the study by Voltaire et al. (2017) that investigated the impact 

of an OWF project on beach recreation demand from tourists using commercial 

accommodation in Catalonia. Contrary to their study, the target population here is all beach 

user groups, both residents and tourists (both those who use commercial and non-

commercial accommodation during their stay). Bearing in mind that preferences of beach 

community residents for the development of offshore wind turbines facilities may be 

different from that of tourists (Fooks et al., 2017), this paper allows capturing potential 

heterogeneity in acceptance of and behavioural trip responses to the OWF project in 

Catalonia among beach users.  

 

 

 

 

 

                                                           
6 To date, there is no econometric model that simultaneously controls for on-site sampling bias and 
unobserved heterogeneity with respect to slope parameters when only the revealed trip data are both 
truncated and endogenously stratified. Developing such a model is beyond the scope of this paper.  
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3. Survey design and data collection  

 

The survey had four sections. The first section collected trip data on the beach where the 

respondent was approached – this beach – under current conditions. In particular, each 

respondent was asked the following questions: (Q1) During the last summer season (June – 

September 2011), how many trips have you taken to this beach? (Q2) During this summer 

season (June – September 2012), (a) how many trips have you taken to this beach to date? 

(b) how many trips do you plan to take to this beach for the remainder of the season? 

Responses to Q1 referred to revealed data (RP2011), whereas those to Q2 referred to mixed 

revealed – stated data (MRS2012).  

 

The second section gathered travel cost expenditure data. Two approaches are typically 

used to estimate the travel cost. The first approach is based on researcher computation. The 

standard practice is to sum the direct costs of visiting the site (the round-trip distance to the 

site multiplied by a fixed cost per Km) and a proxy for the opportunity cost of time (a 

constant fraction of the respondent’s wage rate). The second approach involves using the 

perceived costs as reported by the respondent. Because individuals base trip decisions in 

part on perceptions of cost, which may diverge from actual visitation costs, the second 

approach is considered to be the most likely to accurately reflect the costs affecting trip 

choice (Randall, 1994; Parsons, 2017). Accordingly, we elicited the travel costs by asking 

respondents to report all expenses on the beach trip taken on the day of the survey. The 

same approach was adopted in other studies (e.g., Prayaga et al., 2010; Alberini and Longo, 

2006; Hynes et al., 2017). Items of expenditure included transport, meals, accommodation, 

equipment and other expenses. The third section collected trip data under OWF conditions. 
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It contained questions in relation to how respondents expected that their trip behaviour 

would change during the next summer season from their reported trips for the summer of 

2012. The fourth section elicited socio-economic and demographic data.    

(Figures 1, 2, 3 and 4 about here) 

 

Two attributes pertaining to the OWF were selected: number of turbines and distance from 

the shore, with each attribute having two qualitative levels (Number of turbines: High/Low; 

Distance from the shore: Near/Far). The choice of qualitative levels was motivated by the 

absence of official data on the exact number of turbines that would be installed to generate 

570 MW planned in the PECAC 2020 and the exact distance of these devices from the shore. 

The combination of attributes and levels resulted in four scenarios with different degrees of 

visual impact. In order to mitigate a likely heterogeneity bias in interpreting the attribute 

levels, each scenario was illustrated via simulated photos developed by a team from Consejo 

Superior de Investigaciones Científicas (CSIC) (https://www.csic.es/en) (Figures 1 – 4). Figure 

1 describes an OWF scenario characterized by a high number of turbines placed far from the 

shore (High – Far scenario). Figure 2 depicts a low number of turbines placed far from the 

shore (Low – Far scenario). Figure 3 refers to a scenario with a high number of turbines 

placed near the shore (High – Near scenario). Figure 4 illustrates a low number of turbines 

placed near the shore (Low – Near scenario). Each respondent randomly received one 

scenario. After a careful description of the scenario, the respondent was asked the questions 

presented in Box 1. Thus, three trip responses were provided by each respondent: revealed 

trips for the summer of 2011 (time period 1); mixed revealed – stated trips for the summer 

of 2012 (time period 2) and stated trips for the next summer season under OWF conditions 

(time period 3).   
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(Box 1 about here) 

 

The questionnaire was administered on-site in Catalan, Spanish and English via face-to-face 

interviews in the summer of 2012. Randomly selected individuals were interviewed at eight 

beaches (Table A in Supplementary Material). They were selected from a list of 221 beaches 

classified in terms of the geographical location (municipality), surface, water quality/visibility 

and surrounding environment. The beach sampling strategy was applied with the purpose of 

maximising the representativeness of the survey and ensuring that all beach activities were 

fully covered. Interviews were carried out in two distinct time frames (10:00 – 14:00 and 

15:00 – 19:00), during both weekdays and weekends (14 June – 15 September), on the same 

days at the different survey sites, and using the itinerary method.7  

 

4. Data summary  

 

A total of 641 personal interviews were carried out with adult beach users (18 years of age 

or older), of whom 42.4% and 57.6% were residents and tourists, respectively. Summary 

statistics associated with these two shore audiences are provided in Table 2. One key factor 

thought to influence demand for trips to a site is the trip cost, taken as the implicit own-

price. It includes all expenses required to make the trip possible (Parsons, 2017). As noted 

earlier, trip costs were elicited by asking the respondents to report all expenses (transport, 

meals, accommodation, equipment and other expenses) on the trip taken on the day of the 

survey. A large number of respondents, however, did not report their accommodation and 

food costs. Therefore, these costs were excluded from the trip cost estimates in order to 

                                                           
7 For a presentation of the itinerary method, see Sardá et al. (2009) 
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improve the homogeneity of the data in terms of items of expenditure. In addition, 

consistent with studies using respondent – reported trip costs, the opportunity cost of time 

(both the travel time and on-site time) was ignored.8 The trip cost per trip per person for the 

season of 2012 was calculated for residents and tourists, respectively, as follows:  

 

          ���� ���	 = 	��� + ����                                                                                                         (1) 

 

          ���� ���	 = (�����×�)�������(�×�����)��� !" ,           0 < & ≤ 1                                                        (2)    

 

where tcost is the travel cost reported by respondents from their main home to the beach or 

from their accommodation in Catalonia to the beach; Ecost is the total equipment costs 

related to beach activities; Tcost is the sum of travel costs reported by respondents from their 

place of residence to the Catalonian coast and back; L is the length of stay (in days); MRS2012 

is the number of trips taken in the summer of 2012; and & is a correction factor adjusting 

travel cost for multi-purpose trips. There is no standard approach to deal with the multi-

purpose trip problem in the TC method (see Martínez-Espiñeira and Amoako-Tuffour, 2009). 

In this paper, the ratio between MRS2012 and L )*+,-./- 01 2 is used as a proxy for the 

degree of importance attached to beach activities; & takes the value of one for tourists for 

whom the ratio is equal to or higher than one. For these tourists, this means that they go to 

                                                           
8 The opportunity cost of time is typically estimated using a fraction of the respondent’s wage rate. Underlying 
is the assumption that visitors have a flexible working arrangement and can substitute work time for leisure 
time at the margin (Parsons, 2017). In fact, this assumption fails for a large majority of visitors, as some are 
outside the formal labor market, others have fixed work schedules (Parsons, 2017) or (in particular for tourists) 
take trips during their holidays, paid vacation days or weekends (Bhat, 2003). For these people, there is no loss 
of income (Ward and Beal, 2000), since the trade-off is not between travelling and working, but rather between 
taking trips to a given site and engaging in other recreational activities (Voltaire et al., 2017). This is not to say 
that they do not have an opportunity cost of time, but simply that the labor-leisure trade-off-based approach is 
not appropriate to valuing their leisure time (for an alternative approach, see Lloyd-Smith et al., 2019).    
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the beach at least once a day during their stay in Catalonia. For tourists for whom 0 < & <
1, this suggests that beach recreation is not the sole purpose of their trip, and therefore the 

travel cost from their place of residence to the Catalonian coast cannot be fully allocated to 

beach activities. 

(Table 2 about here) 

 

Overall, 21% of residents and 13.3% of tourists stated that they accepted the OWF project. 

The difference is significant (Pearson 3- = 6.547; � ≤ 0.011). Of these 21% of residents, the 

majority accepted Low – Far scenario (43.9%), followed by High – Far scenario (42.1%), High 

– Near scenario (8.8%) and Low – Near scenario (5.3%). For the 13.3% of tourists, the 

acceptance rates were somewhat similar across scenarios: 29.8% for High – Far scenario, 

27.7% for High – Near scenario, 25.5% for Low – Far scenario and 17.0% for Low – Near 

scenario. 

 

In terms of potential changes in beach trip behaviour due to the OWF project, no 

respondent claimed that they would take more trips. More than two-thirds of residents 

(68.8%) reported no trip change, 6.6% said that they would reduce the frequency of their 

trips (mostly a 50% drop) and 24.6% predicted no trips at all (Table B in Supplementary 

Material). In particular, the majority of residents predicted no change in their trip plans for 

Low – Far scenario (78.9%), followed by High – Far scenario (71.4%), Low – Near scenario 

(63.4%) and High – Near scenario (52.5%). The trend is similar for tourists, with 67.4% 

expecting no change in their trip plans, 5.4% reporting a reduction (mostly around 50%) and 

27.2% claiming no trips at all (Table C in Supplementary Material). Specifically, the majority 

of tourists predicted no change in beach trips for Low – Far scenario (72.6%), followed by 
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Low – Near scenario (71.6%), High – Far scenario (69.2%) and High – Near scenario (57.3%). 

These results suggest that tourists were neither more nor less inclined than residents to 

change their future plans for trips if OWFs were built at the beaches where they were 

surveyed (Pearson 3- = 1.242; � ≤ 0.265). Among the respondents stating that they would 

take no trips, 95.2% of residents and 92.5% of tourists claimed that they would go to 

different beaches in Catalonia without a view of a farm. This suggests that the installation of 

an OWF would cause a shift in trips to other beaches in Catalonia without wind farms rather 

than to beaches outside of Catalonia.  

 

On average, residents took 27.28 trips (range 0 – 120) during the 2011 summer season and 

31.00 trips (range 1 – 120) during the 2012 summer season. The Wilcoxon rank-sum test 

indicates that the difference is significant (; = −3.689; � ≤ 0.000), suggesting that 

residents took significantly more trips in the summer of 2012 under similar beach conditions. 

Tourists took on average 15.72 trips (range 0 – 120) and 19.23 trips (range 1 – 120) in the 

summers of 2011 and 2012, respectively. The difference is also significant (; = −2.342; � ≤
0.019). There are two plausible (and mutually exclusive) explanations for the discrepancies 

between the mean trips for RP2011 and MRS2012. The first explanation refers to the fact that 

26.1% of residents and 42.6% of tourists intercepted at surveyed beaches in the current 

summer season (i.e., summer of 2012) did not visit those beaches in the preceding summer 

season (i.e., summer of 2011). In other words, the RP2011 data contained zero trips, whereas 

the MRS2012 data did not. In this case, the mean trip for MRS2012 is logically higher than the 

mean trip for RP2011. The second explanation refers to the potential existence of hypothetical 

bias in the MRS2012 data. Whitehead et al. (2000) argue that hypothetical bias exists when 
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stated preference trips (our MRS2012 data) exceed revealed trips (our RP2011 data) under 

similar benefit and cost conditions. This bias will be investigated in Section 5.   

 

On average, residents would take 24.69 trips (range 0 – 120) under OWF conditions. This 

corresponds to a decrease by 20.3%, relative to their average number of trips in the 2012 

summer season. The difference is significant (; = −8.057; � ≤ 0.000). A similar conclusion 

holds for tourists, with a 20.6% drop in their average planned number of trips (15.26 trips; 

range 0 – 120) (; = −9.790; � ≤ 0.000). The trip means under OWF conditions (TripsOWF) 

were estimated as follows:  

 

            �����@AB = *+,-./-(1 − C),           0 ≤ C ≤ 1                                                              (3) 

 

where m is the trip change percent stated by each respondent. It is equal to 0 for 

respondents who reported no change; in this case, �����@AB = *+,-./-. It is equal to 1 for 

respondents who reported no trips at all; hence �����@AB = 0. For any other value of m, 

0 < �����@AB < *+,-./-.  

 

5. Empirical models  

 

5.1. Modelling decisions whether to accept the OWF project and to change trip behaviour  

 

Let us first focus on our objectives 1 (explaining the decision whether to accept the project) 

and 2 (explaining the decision whether to change trip behaviour due to the project). In both 

cases, the dependent variable is binary. One approach to modeling such decisions is to use 
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the binary logit model. The empirical specification takes the following functional form for 

individual i and for each decision j.  

 

DE FGHI 1 − GHIJ K = L. + L/MNHI + L-MOHI + LP0OHI + ⋯ + ∑ LSTSS HI,                       (4) 

 

where the left-hand side is the log of the ratio of the probability that the decision is taken to 

the probability that it is not taken; HF, HN, LN denote the scenarios High_Far, High_Near and 

Low_Near respectively (with Low_Far being the baseline); TS are all other factors, presented 

in Table 2, affecting the decision in question. Equation 4 can be transformed into probability 

(G) as follows: 

 

GHI = 1 1 + UV)W!�W"XBYZ �W X[YZ�W\�[YZ�⋯�∑ W]^]YZ] 2J                                                      (5) 

 

The predicted probability associated with each OWF scenario for an average respondent is 

estimated by substituting 1 into Equation 5 for the variable denoting the scenario under 

consideration, holding the variables denoting the other scenarios at 0 and all other variables 

at their sample means.      

 

5.2. Modelling the demand for beach trips  

 

Now consider our third objective (estimating the welfare impact of the OWF project). Count 

data models are a classic choice for explaining the occurrence of discrete events such as trip 

counts. Similar to Englin and Cameron (1996), Englin et al. (1997), Hanley et al. (2003), 

Huang et al. (2011) and Parsons et al. (2013), to name a few, revealed and stated trips taken 
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by each respondent to all selected beaches are combined in a single equation, generating a 

pseudo-panel trip data. The demand function for recreation trips for individual � during the 

simulated time period 	 is specified as follows: 

 

                           _H� = `(*H�; L, aH�)                                                                                                    (6) 

 

where _ is the number of trips taken by individual � in 	 = 1,2,3; * is the vector of factors 

reported in Table 2 thought to influence _; L is the vector parameters to be estimated, and 

a is the error term. The starting point for our panel of trip data is to assume that _ is drawn 

from a Poisson distribution with density:  

 

                               G�(_H� = E) = bcd(Ve)e]
S! ,                                                                                      (7) 

 

where g is the mean of the assumed distribution.  

 

A drawback of the Poisson model is that it constraints g and the variance to be equal. For 

recreation demand data, however, the variance often exceeds the mean, a property known 

as overdispersion (Cameron and Trivedi, 1986). Overdispersion may arise from 

heterogeneity in the mean event rate of Poisson parameter g (Holmes and Englin, 2010). We 

control for this through the negative binomial (NB) model, where a stochastic random 

variable a is added to the index in the Poisson model (with log-gamma distribution) (Holmes 

and Englin, 2010). The probability density function for _ is: 

 

                            G�(_H� = E) = h)S�"i2
h(S�/)h)"i2 j "i"i�e k"i j e"i�ekS,                                                           (8) 
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where Γ(. ) is the gamma function and 1 m1  is the overdispersion parameter.  

 
 
5.2.1. Controlling for unobserved heterogeneity with respect to covariates  

 

One limitation of the NB model developed above is that the vector of demand parameters 

(β) are assumed to be constant across individuals, failing to account for potential preference 

heterogeneity. We relax this restriction though the random parameters negative binomial 

(RPNB) model (Hynes and Greene, 2013; Hynes and Greene, 2016; Whitehead et al., 2018). 

This model generalizes the NB model by allowing the demand parameters to vary randomly 

across individuals. Under this model, a parameter for an explanatory variable is decomposed 

into a mean value and a deviation from the mean specific to each individual, which informs 

regarding the level of variability around the mean parameter. The estimable parameters are:   

 

                                 Ln = L∗ + pq,                                                                                                       (9)          

                   

where L∗ is the fixed means of the distributions for the random parameters, p is a diagonal 

matrix of standard errors that scale the heterogeneity factors and q is a randomly 

distributed terms (e.g., a normally distributed term with mean 0 and variance 1). Estimation 

is by simulated maximum likelihoods (Hynes and Greene, 2013; Hynes and Greene, 2016).  

 

5.2.2. Controlling for on-site sampling bias 

 

As the trip data were collected on-site, our sample may not be representative of the broader 

population of residents and tourists in Catalonia. We follow the work of Egan and Herriges 
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(2006) to control for on-site sampling bias using a Multivariate Poisson log-normal. Let  

_H = (_H/, _H-, _HP) denote the vector of the number of trips taken by individual � over the 

time period 	 = 1,2,3 and *H� the vector of factors likely to influence _H. We assume that 

there is an unobserved factor uH� associated with the trips taken such that the vector  uH =
(uH/, uH-, uHP) follows a multivariate normal distribution: uH~O(0, w):  

 

Ω = y z/- z/- z/Pz/- z-- z-Pz/P z-P zP-
{ 

 

Each element _H� conditioned by the vector uH is Poisson distributed with parameter 

g|�} = gH� U~�(uH�), where  gH� = U~�  (Ln*H�). The specification of w allows accounting for 

the overdispersion and the correlation between trip counts per individual. Specifically,  z�-  

and z�I accounts for the overdispersion and correlation, respectively. 

 

The probability density function of _H is given by: 

 

G�(_H|*H) = � � U~�(−gH� exp(uH�))(gH� exp(uH�))SY�EH�!
P

��/ ℎ( uH)�uH                                     (10) 

 

where the function h(.) is the multivariate normal density probability function and  EH� is the 

number of trips taken. 

 

Similar to Egan and Herriges (2006), the correction of on-site sampling bias is applied only to 

the trip data for the current summer season (i.e., *+,-./- data or 	 = 2). The corrected on-

site probability density function of _H can be shown as follow: 
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G��_H|*H,_H- > 0� = _H-&H- � � U~�(−gH� U~�(uH�))(gH� U~�(uH�))SY�EH�!
P

��/ ℎ( uH)�uH                    (11) 

 

where the  δ�- is the trip mean for individual i at 	 = 2. More details about the derivation of 

equations used in this subsection can be found in Egan and Herriges (2006). 

 

5.3. Welfare measures  

 

The consumer surplus (CS) per trip generated by a count data model is equal to the negative 

inverse of the parameter for the TC variable (Haab and McConnell, 2002). If the TC variable is 

specified as non-random or, in the case where it is specified as random, if the standard 

deviation parameter is not significant, then the CS estimated is a CS per individual per trip. 

On the other hand, if the standard deviation coefficient is significant, the CS estimated is the 

mean CS per individual per trip.  

 

Predicted trip means based on the RPNB and MPLN models can be written, respectively: 

 

        �(_H�|*H�) = gH� = U~�(Ln*H�)                                                                                             (12)     

                                                                                      &H� = �(_H�|*H�) = gH� U~�(0.5 ∗ z�-)                                                                                    (13) 

 

The CS per season estimated from RPNB and MPLM models is then given, respectively by: 

         �, = − gH� L��1      and       �, = − &H� L��1                                                                              (14) 
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The change in CS under OWF conditions, relative to that for the summer of 2012 (	 = 2) is 

given by:   

       ∆�, = (gHP∗ − gH-) L��J       or         ∆�, = (&HP∗ − &H-) L��J                                                (15) 

 

where gHP∗and &HP∗ are the expected number of trips under OWF conditions estimated from 

the RPNM and MPLN models, respectively.  

 

6. Estimation results 

 

6.1. Logistic regression  

 

Results of separate binary logit models for residents and tourists are summarized in Tables 3 

and 4.9 Starting with the decision whether to accept the OWF project (Table 3), beach 

characteristics are key predictors as at least one of the associated estimated coefficients is 

significant in each model. Socio-economic and demographic factors are also significant 

determinants. In particular, the likelihood that residents accept the project is positively 

correlated with gender, age, household size and negatively related to income. For tourists, 

only the place of residence is significant, with local tourists (people who live in Catalonia and 

spend their holidays in another Catalan city) being more likely to accept the project than 

non-local tourists. The visual impacts of the wind power project play a major role, 

                                                           
9 As some explanatory variables are specific to tourists (Local tourist and Paid_accom), we decided to estimate 
separate models for residents and tourists rather than estimating a pooled model with interaction terms. 
Furthermore, the likelihood ratio test supports the inclusion of these two variables in the regression models, in 
particular, in the logit model that explains the decision whether to change beach behaviour (3- = 10.49; � ≤0.005). It also clearly rejects the pooled model in favour of separate ones at 5% level (3- = 9.71). The 3- 
theoretical value at 5% level is 7.815 for 3 degrees of freedom (the number of coefficients in the separate 
equations – the number of coefficients in the pooled equation).   
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particularly for residents, as reflected by the significance of estimated coefficients on 

dummy variables denoting the scenarios.  

(Tables 3 about here) 

 

Turning to the decision whether to change beach trip behaviour due to the project (Table 4), 

results show that the location of turbines matters. Bearing in mind that Castell and Golfet 

beaches (the base category) are labelled "natural" beaches, the negative sign of estimated 

coefficients on beach variables indicate that respondents would be less likely to reduce their 

trip frequency if an OWF was built at an urban or mixed beach. The variable Familiarity has a 

negative and substantial impact on the probability of changing trip behaviour for residents 

(the more familiar respondents are with the beach where they are interviewed, the lower 

the probability of reducing the trip frequency). The same is true of socio-economic factors, 

including age, household size and household income. For tourists, the place of residence and 

the feature of the accommodation used during their stay in Catalonia play a key role. The 

signs of the estimated coefficients on these variables suggest that local tourists are less likely 

to reduce their trip frequency than non-local tourists, and that tourists who stay in 

commercial accommodation are more likely to adopt such a behavior relative to those 

staying in non-commercial accommodation. Some estimated coefficients on OWF scenarios 

are also significant. 

(Tables 4 about here) 

 

Predicted probabilities associated with each scenario for an average respondent provide 

further insights regarding the visual impacts of the OWF project on the decisions (Table 5). 

The probability that residents accept the project is significantly higher with the 90% 
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confidence interval for scenarios where turbines are placed further offshore (High_Far 

scenario and Low_Far scenario), relative to scenarios where turbines are placed near the 

shore (High_Near scenario and Low_Near scenario), regardless of the number of turbines. 

This suggests that, of two attributes describing the OWF project, the distance from the shore 

is the main driver of its acceptance by residents. In other words, for residents, the visual 

impacts of the project are primarily attributable to the proximity of the farm to the shore, 

rather than the number of turbines. This result is consistent with Lutzeyer et al. (2018). For 

tourists, however, predicted probabilities are statistically similar across scenarios (since the 

90% CI overlap), suggesting that no one single scenario is neither more nor less accepted 

than the others.   

(Table 5 about here) 

 

The probability that residents change their trip behaviour (i.e., reduce their trip frequency) is 

significantly higher for High_Near scenario, relative to Low_Far scenario or High_Far 

scenario. The outcome of the first paired comparison (High_Near scenario vs Low_Far 

scenario) suggests that switching from the scenario with the highest degree of visual impact 

(High_Near scenario) to the scenario with the lowest degree of visual impact (Low_Far 

scenario) significantly reduces the likelihood of changing trip behaviour. The outcome of the 

second paired comparison (High_Near scenario vs High_Far scenario) tells us that proximity 

of the farm to shore is likely to significantly reduce the frequency of trips only if a high 

number of turbines are installed. For tourists, paired comparisons of predicted probabilities 

reveal statistical differences only for High_Near scenario vs Low_Far scenario. This suggests 

that tourists are more inclined to reduce their trip frequency only when switching from the 
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scenario with the lowest degree of visual impact to the scenario with the highest degree of 

visual impact.   

 

6.2. Count data regression  

 

6.2.1. Accounting for unobserved heterogeneity with respect to covariates 

 

Tables 6 and 7 provide the estimates of the RPNB model. The first specification includes a 

"composite" scenario variable, OWF, which refers to all scenarios combined (Table 6). The 

second specification includes the dummy variables denoting the four scenarios (Table 7). In 

the sample of tourists, we deleted 23 observations with missing travel cost information. As 

each respondent provided three trip responses, these models are estimated on a panel data 

set of 993 observations. For each sample, each model is estimated by specifying a normally 

distributed functional form of the parameter density function and using simulation-based 

maximum likelihood with 500 Halton draws, as in Whitehead et al. (2018). Because it is 

usually not known which parameters might exhibit statistically significant random variation 

(Holmes and Englin 2010), all explanatory factors are specified as random parameters, 

except for the constant term, beach variables (because they are included in the model only 

to control for demand shifts due to beach characteristics) and the RP variable. We also 

estimated the random effects panel NB model, referred to as the homogenous NB model. 

The estimates of this model are displayed in Supplementary Material (Table D). The RPNB 

model consistently fits the data better than the random effects NB model, as highlighted by 

the value of the log likelihood and the information criteria statistics. It also provides richer 

information about the impact of factors driving the decision to make beach trips, as the 
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estimated standard deviations for most parameters are significantly different from zero, 

suggesting significant level of preference heterogeneity across individuals.  

 

As anticipated, trips decline with increases in trip cost (the higher the trip cost, the lower the 

probability of making a higher frequency of trips). All estimated coefficients on beach 

variables are statistically significant, suggesting that the effect of the OWF project on 

recreation demand is influenced by different types of beach environment (Voltaire et al., 

2017). The RP dummy variable shifts the intercept significantly downwards. This indicates 

that the number of trips taken in the summer of 2011 is significantly lower than the number 

of trips taken in the summer of 2012 under similar status quo conditions. As previously 

mentioned, this could be because a large part of respondents approached at the surveyed 

beaches in the summer of 2012 did not visit those beaches in the summer of 2011 or could 

suggest hypothetical bias. Indeed, the MRS2012 data contain both a revealed part (the 

number of trips taken to a given beach to date) and a contingent part (the number of trips 

planned to take to the same beach for the remainder of the season). Hypothetical bias could 

arise if this contingent part is overstated by respondents. One way to investigate this point is 

to estimate the models on the sample of respondents who took trips in both the 2011 and 

2012 summer seasons. The results are reported in Supplementary Material (Tables E and F). 

They show that the estimated coefficient on the variable RP is not significant for either 

residents or tourists, indicating that those respondents statistically took the same number of 

trips in the summers of 2011 and 2012 under status-quo conditions. Assuming no change in 

respondents’ income from 2011 to 2012, this suggests that the MRS2012 data do not suffer 

from hypothetical bias (Whitehead et al., 2000). Therefore, the significant difference 

observed in the number of trips between 2011 and 2012 can be explained because a large 
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part of respondents intercepted at the surveyed beaches in 2012 were first-time users of 

these beaches. Based on this, we can argue that revealed trips for 2011 and mixed revealed 

– stated trips for 2012 are driven by the same demand function under similar benefit and 

cost beach conditions, and hence can be pooled for estimation purposes (Alberini et al., 

2007; Hoyos and Reira, 2013).  

(Tables 6 and 7 about here) 

 

The negative and significant sign of the estimated coefficient on OWF indicates a downward 

shift of the demand function, suggesting that viewing an OWF from a recreational beach is a 

disamenity for both residents and tourists. The shift in beach demand differs across 

scenarios, as at least one of associated estimated coefficient is significant. In particular, a 

significant downward shift of the demand function is observed under scenarios High_Far, 

High_Near and Low_Near, relative to the scenario Low_Far for residents, and under 

scenarios High_Far and High_Near, relative to the same baseline scenario for tourists 

(RPNB_2). In addition, for residents, trips are positively correlated with the importance that 

respondents attach to swimming and nautical activities in the choice of this beach. 

Significant socioeconomic variables suggest that male respondents take fewer trips under 

both status quo and OWF conditions than female respondents, trips increase with age but 

decrease with household income. For tourists, local tourists take higher trips than non-local 

tourists, respondents staying in commercial accommodation make fewer trips than those 

using non-commercial accommodation, trips increase with age but decrease with household 

size. 
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Table 8 reports the distributions of parameters for factors specified as random parameters. 

The distributions of almost all the parameters have span both the negative and positive, 

suggesting that a positive or negative effect on recreation demand of variables in question 

does not apply to all respondents. For example, the standard deviation parameter for the 

estimated coefficient on the trip cost variable is significant for tourists. It is normally 

distributed with a mean of ‒ 0.01575 and a standard deviation of 0.00828 (RPNBM_1) or 

with a mean of ‒ 0.01114 and a standard deviation of 0.00810 (RPNB_2). This means that 

97.1% of the distribution of respondents is below 0 and 2.9% is above 0 (RPNB_1) or 91.6% 

of the distribution is below 0 and 8.4% is above 0 (RPNBM_2). In other words, a negative trip 

cost effect does not apply to all respondents. Bearing in mind that we used perceived trip 

cost information, this finding could be due in part to the heterogeneity in the perceptions of 

trip cost across respondents. Note that a significant standard deviation for the trip cost 

variable was also obtained in studies using researcher-estimated costs (e.g., Hynes and 

Greene, 2016). The authors related this phenomenon to the hourly wage-based approach 

commonly used to value the opportunity cost of leisure time. 

 

Regarding the visual impact of the project, a significant standard deviation is found for 

High_Near scenario for both residents and tourists. This suggests that moving from the 

scenario with the lowest degree of visual impact (Low_Far, the base category) to the 

scenario with the highest degree of visual impact (High_Near) would decrease trips for 

76.1% of residents and increase trips for the remaining 23.9%, whereas it would decrease 

trips for 97.6% of tourists and increase trips for the remaining 2.4%.   

(Table 8 about here) 
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6.2.2. Accounting for on-site sampling bias 

 

Table 9 provides the estimates of the MPLN model corrected for truncation and endogenous 

stratification.10 The estimates without the correction are displayed in Supplementary 

Material (Table G). The models were estimated using simulated maximum likelihood 

estimation approach with 1000 randomised Halton sequences, as in Egan and Herriges 

(2006). The corrected model produces a slightly higher log likelihood value (in absolute 

terms) than the uncorrected model. Egan and Herriges (2006) found somewhat similar 

results. The signs of the estimated coefficients are identical between corrected and 

uncorrected models, except for a few variables. On the other hand, notable differences in 

the value of some estimated coefficients exist. The biggest difference refers to the value of 

the estimated coefficient on the trip cost variable for tourists, which is much higher in the 

corrected model (in absolute terms). All the estimates z�’s are significantly different from 

zero, indicating overdispersion in the data (Egan and Herriges, 2006). The same is true of 

��q(. ), suggesting correlation between beach trip responses per individual. Consequently, 

jointly modelling +G-.//, *+,-./- and ��N trip data is appropriate.   

(Table 9 about here) 

 

6.2.3. Welfare estimates 

 

Table 10 reports the estimates of CS per trip. The CS per trip derived from correcting for 

unobserved heterogeneity relates only to the current beach users. In contrast, the CS per 

trip derived from controlling for on-site sampling bias refers to the general population of 

                                                           
10 We have developed a R code to estimate the model. It is provided in Supplementary Material.   
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residents and tourists in Catalonia. For example, the CS per trip for resident i and tourist i 

who currently visit the beaches in our survey area is €18.81 and €89.76, respectively, in 

RPNB_2 and MPLN_2 models. It is €11.54 and €74.66 for individual i in the general 

population of residents and tourists, respectively. Overall, the estimates of CS per trip 

corrected for unobserved heterogeneity exceed those corrected for on-site sampling bias by 

a factor ranging from 1.2 to 2.2.  

(Table 10 about here) 

 

The seasonal CS for individual i and variations in CS due to the potential OWF project are 

presented in Table 11. The MPLN models yield inflated estimates of trip demand, providing 

an unsuitable basis to compute the seasonal CS for individual i in the general population.11 

Therefore, only estimates of seasonal CS relating to the current beach users are reported in 

the table. They are derived from RPNB_2 as this model predicts the actual average trip for 

the 2012 summer season (our baseline) slightly more accurately than RPNB_1. Predicted 

average trips for the 2012 summer season and for each OWF scenario are estimated using 

the nonrandom parameters and the distribution of random parameters. The CS per person 

for the summer season of 2012 is €563 and €1,756 for residents and tourists respectively. If 

an OWF is installed, for residents, the seasonal CS is estimated to be reduced by from 3.17% 

under the scenario having the lowest visual impact (Low_Far) to 64.44% under the scenario 

having the highest visual impact (High_Near). For tourists, it is estimated to be reduced from 

4.86% to 50.15% under the same scenarios.  

                                                           
11 From Equation 13 it appears that the inflated measures of expected trip demand may stem from two 
sources, g and exp(0.5z�-). In our case, estimates of g were of plausible magnitude as it lied below on-site 
sample counts. On the other hand, estimates of exp(0.5z�-) were substantially large, in particular for +G-.// 
and ����@AB  data. We also estimated the seemingly unrelated negative binomial model adjusted for on-site 
sampling, an alternative to the MPLN model. We found somewhat similar results.  
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(Table 11 about here) 

 

The aggregate welfare loss (AWL) under each OWF scenario is uncertain as no official data is 

available on (1) the number of wind farms required to generate 570 MW planned in the 

PECAC 2020, (2) the distance of these devices from the shore, and (3) the proportion of the 

Catalan coastline that would be affected. However, Voltaire et al. (2017) made a rough 

estimation of these three factors. Based on the literature review, the authors assumed that 

wind farms have negative visual impact if they are located no more than 24 km from the 

shore, and within a horizontal angle of 135 degrees. With this in mind and using 

trigonometry, they estimated that wind farms located 3 km, 5 km, 10 km, 15 km and 20 km 

away from the coastline generate a visual impact that is extended to 14.5 km, 24.1 km, 43.6 

km, 37.5 km and 26.5 km of the shoreline, respectively.12 In addition, they considered two 

options to estimate the number of wind farms necessary to generate 570 MW. The first 

option was based on an experimental project, labelled ZÈFIR, launched in Catalonia in 2010 

with the purpose of generating 70 MW (http://www.zefirteststation.com/ca/), but finally 

withdrawn due to vigorous opposition from stakeholders, including tourism operators.13 

They estimated that about 8 wind farms would be required. The second option referred to 

the average size of OWFs in Europe. This figure was 337.9 MW in 2015 (European Wind 

Energy Association, 2015), which lead the authors to argue that about 2 OWFs would be 

required. Combining these factors, they then determined the number of kilometers of the 

                                                           
12 Visual impact is not a linear function of distance to the shore because wind farms that are installed close to 
the coastline will be far out in the periphery if seen from a distance of 24km whereas wind farms that are 
installed far from the coastline will be visible only along a relatively short segment of the coastline. 
13 It was partially funded by The Government of Spain. The wind park should be used as a research and testing 
platform for offshore wind turbines in deep waters. However, stakeholders opposed the project by pointing 
out the potential negative impact on the landscape.   
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shoreline that will be visually impacted by 570 MW offshore wind power installations (Table 

H in Supplementary Material)  

 

At this stage, we can roughly estimate the total expected welfare loss associated with the 

generation of 570 MW offshore wind power for residents and tourists. According to the 

Catalan government, 263.7 million trips were made to Catalan beaches in 2012 including 

residents and tourists (Nunes et al., 2015). Based on our survey data for the 2012 summer 

season, it is known that: (1) the average number of adults in a beach recreation party is 3.15; 

(2) the average number of trips is 25.11; (3) 42.4% and 57.6% of the respondents are 

residents and tourists respectively. Combining these statistics, it can be inferred that our 

target beach user population consists of 1,413,575 residents (263,700,000 ÷ 3.15 ÷ 25.11 × 

0.424) and 1,920,328 tourists (263,700,000 ÷ 3.15 ÷ 25.11 × 0.576). The total welfare loss 

associated with each OWF is then estimated as follows: 

 
             ��0 = G ∗ �,��b�HSb ∗ ∆�,@ABY ∗ _�                                                                              (16) 

 

where G is the size of the target population, �,��b�HSb is the CS for the 2012 summer 

season, ∆�,@ABY  is the change in CS due to OWF � relative to 2012 and _� is the percentage 

of coastline with visual impact under each OWF.14 Table 12 reports the welfare loss 

estimates caused by 570 MW offshore wind power installations. They range from €77.1 to 

€150 million per season for residents and from €338.2 to €760 million per season. 

(Table 12 about here) 

 

                                                           
14 AWL under an OWF installed at 10 km from the shore is calculated using the change in CS due the composite 
OWF scenario. 
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7. Discussion and conclusions 

 

OWF projects gain ground in several European countries. Opposition to such projects often 

relates to their potential negative impact on coastal recreation demand. This study explored 

this issue as part of the potential installation of 570 MW offshore wind power in Catalonia. 

Several points about the results presented above are worth noting. First, preferences of 

beach users for the OWF project depend on the specific place of location offshore. This 

suggests that decision-makers could enhance the public’s support and mitigate the potential 

negative impact on beach trips by carefully selecting the policy sites. For example, residents 

and tourists would be more prone to accept the offshore wind power project and less prone 

to reduce their trip frequency if wind farms were built at urban or mixed urban/natural 

beaches than at natural beaches (i.e., Golfet and Castell beaches, our base category).  

 

Second, although the majority of respondents claimed that they would not change their trip 

plans in response to the implementation of the project, a significant proportion (34.03%) 

stated the opposite. This suggests that these respondents perceive the OWF project as a 

visual disamenity. However, the size of the trip loss depends on the OWF scenario 

considered, and therefore on its degree of visual impact. In particular, residents and tourists 

are more likely to reduce their trip frequency under a scenario with a high density of 

turbines placed near the shore (High_Near scenario) than under a scenario with a low 

density of turbines placed far from the shore (Low_Far). Third, the impact of factors 

affecting beach visitation is heterogenous in the population as most parameters have both 

positive and negative signs. One example includes the binary variables denoting the OWF 

scenarios. Beach trips significantly fall when switching from the scenario with the lowest 
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visual impact (Low_Far, the base category) to the scenario with the highest visual impact 

(High_Near). However, this downward shift in beach demand does not apply to all 

respondents. Fourth, implementing the OWF project would lead to a welfare loss to a 

greater or lesser extent depending on the degree of visual disamenities from the OWF 

scenario considered. Specifically, the welfare loss caused by the implementation of 570 MW 

in line with the ZÈFIR investment program would be from €77.1 to €150 million per season 

for residents and from €368.2 to €760.2 million per season for tourists.  

 

However, it should be recalled that about 90% of respondents (both residents and tourists) 

who said that they would reduce their trip frequency if an OWF was built at the beach where 

they were surveyed reported a re-allocation of trips across beaches without wind farms 

within Catalonia rather than outside Catalonia. This suggests that beach demand could be 

expected to increase in Catalan coastal localities not concerned by the project. 

Consequently, at regional level, the estimated negative economic impacts could be 

moderate.15 This finding clearly calls for the design and implementation of redistributive 

instruments to offset the negative impacts in areas where the wind farms would be located.  

 

We should also note that the welfare loss reported above relates to the current beach users 

only. The analysis in this paper showed that correcting for on-site sampling yields smaller 

estimates of CS per trip, relative to correcting for unobserved heterogeneity in trip 

preferences (less than €7 – €17 depending on the individual is a resident or a tourist). The CS 

per trip corrected for on-site sampling both includes the use value attached to the beaches 

                                                           
15 Of course, this is true if and only if beach users in the localities not concerned by the project do not change 
their trip behaviour in response to an increase in the number of beach users.  



32 
 

by current users and accounts for the option to use the beaches by potential users who 

currently are non-users (Englin and Shonkwiler, 1995). The question that then arises is how 

likely current non-users become users of beaches with wind farms. When a public policy 

refers to an improvement in the quality of a site, a significant part of non-users could be 

expected to become users. In our case, however, (1) none of the respondents predicted in 

increase in their beach demand under OWF conditions; (2) the composite OWF variable has 

a significant negative impact on beach demand and its impact is constant across individuals 

(since the corresponding standard deviation is not significant). All these points taken 

together suggest that an OWF is seen as an unfavorable change to the current beach 

conditions by the vast majority of respondents. Therefore, it is unlikely that a large part of 

current non-users become users of beaches with wind farms in the future, and so a decision-

making based on estimates of welfare loss for the entire population of residents and tourists 

could be flawed.   

 
 
 
Acknowledgements  

 

Financial support of this research was provided by the European under contract agreement 

no. 266445: Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors 

(VECTORS). The authors are grateful to the Associate Editor, George R. Parsons, and two 

anonymous reviewers for their valuable comments and suggestions on an earlier version of 

this manuscript. They would also like to thank Stephen Hynes, William Greene, Anne Nobel 

and David Hoyos for their helpful comments. The usual disclaimers apply. 

 
 
 



33 
 

References 

Alberini, A., Longo, A., 2006. Combining the travel cost and contingent behavior methods to value 
cultural heritage sites: Evidence from Armenia. Journal of Cultural Economics 30, 287-304. 
Alberini, A., Zanatta, V., Rosato, P., 2007. Combining actual and contingent behavior to estimate the 
value of sports fishing in the Lagoon of Venice. Ecological Economics 61, 530-541. 
Anne, N., Sebastien, L., Nele, W., François, R., Robert, M., 2019. The impact of wildfires on the 
recreational value of heathland: A discrete factors approach with adjustment for on-site sampling, 
24th Annual Conference of the European Association of Environmental and Resource Economists, 
Manchester, UK, p. 54. 
Beaumais, O., Appéré, G., 2010. Recreational shellfish harvesting and health risks: A pseudo-panel 
approach combining revealed and stated preference data with correction for on-site sampling. 
Ecological Economics 69, 2315-2322. 
Bhat, M.G., 2003. Application of non-market valuation to the Florida Keys marine reserve 
management. Journal of environmental management 67, 315-325. 
Brownlee, M.T., Hallo, J.C., Jodice, L.W., Moore, D.D., Powell, R.B., Wright, B.A., 2015. Place 
attachment and marine recreationists' attitudes toward offshore wind energy development. Journal 
of Leisure research 47, 263-284. 
Cameron, A.C., Trivedi, P.K., 1986. Econometric models based on count data. Comparisons and 
applications of some estimators and tests. Journal of Applied Econometrics 1, 29-53. 
Devine-Wright, P., 2011. Place attachment and public acceptance of renewable energy: A tidal 
energy case study. Journal of Environmental Psychology 31, 336-343. 
Egan, K., Herriges, J., 2006. Multivariate count data regression models with individual panel data 
from an on-site sample. Journal of Environmental Economics and Management 52, 567-581. 
Englin, J., Cameron, T.A., 1996. Augmenting travel cost models with contingent behavior data. 
Environmental and resource economics 7, 133-147. 
Englin, J., Lambert, D., Shaw, W.D., 1997. A structural equations approach to modeling consumptive 
recreation demand. Journal of Environmental Economics and Management 33, 33-43. 
Englin, J., Shonkwiler, J.S., 1995. Estimating social welfare using count data models: an application to 
long-run recreation demand under conditions of endogenous stratification and truncation. The 
Review of Economics and Statistics 77, 104-112. 
European Wind Energy Association, 2015. The European offshore wind industry - key trends and 
statistics 2015, p. 24. 
Fooks, J.R., Messer, K.D., Duke, J.M., Johnson, J.B., Li, T., Parsons, G.R., 2017. Tourist Viewshed 
Externalities and Wind Energy Production. Agricultural and Resource Economics Review 46, 224-241. 
Gibbons, S., 2015. Gone with the wind: Valuing the visual impacts of wind turbines through house 
prices. Journal of Environmental Economics and Management 72, 177-196. 
Haab, T.C., McConnell, K.E., 2002. Valuing environmental and natural resources: the econometrics of 
non-market valuation. Edward Elgar Publishing. 
Haggett, C., 2011. Understanding public responses to offshore wind power. Energy Policy 39, 503-
510. 
Hanley, N., Bell, D., Alvarez-Farizo, B., 2003. Valuing the benefits of coastal water quality 
improvements using contingent and real behaviour. Environmental and resource economics 24, 273-
285. 
Hattam, C., Hooper, T., Papathanasopoulou, E., 2015. Understanding the Impacts of offshore wind 
farms on well-being. The Crown Estate, 77. 
Heintzelman, M.D., Tuttle, C.M., 2012. Values in the wind: a hedonic analysis of wind power facilities. 
Land Economics 88, 571-588. 
Hevia-Koch, P., Ladenburg, J., 2016. Estimating preferences for wind turbine locations-a critical 
review of visualisation approaches. 



34 
 

Hoen, B., Brown, J.P., Jackson, T., Thayer, M.A., Wiser, R., Cappers, P., 2015. Spatial hedonic analysis 
of the effects of US wind energy facilities on surrounding property values. The Journal of Real Estate 
Finance and Economics 51, 22-51. 
Holmes, T.P., Englin, J.E., 2010. Preference heterogeneity in a count data model of demand for off-
highway vehicle recreation. Agricultural & Resource Economics Review 39, 75. 
Huang, J.-C., Parsons, G.R., Poor, P.J., 2011. Combined conjoint-travel cost demand model for 
measuring the impact of erosion and erosion control programs on beach recreation, in: Whitehead, 
J.C., Haab, T., Huang, J.-C. (Eds.), Preference Data for Environmental Valuation: Combining Revealed 
and Stated Approaches. Routledge, pp. 115-138. 
Hynes, S., Gaeven, R., O'Reilly, P., 2017. Estimating a total demand function for sea angling pursuits. 
Ecological Economics, 73-81. 
Hynes, S., Greene, W., 2013. A panel travel cost model accounting for endogenous stratification and 
truncation: a latent class approach. Land Economics 89, 177-192. 
Hynes, S., Greene, W., 2016. Preference Heterogeneity in Contingent Behaviour Travel Cost Models 
with On-site Samples: A Random Parameter vs. a Latent Class Approach. Journal of Agricultural 
Economics 67, 348-367. 
Jensen, C.U., Panduro, T.E., Lundhede, T.H., 2014. The vindication of Don Quixote: The impact of 
noise and visual pollution from wind turbines. Land Economics 90, 668-682. 
Krueger, A.D., Parsons, G.R., Firestone, J., 2011. Valuing the visual disamenity of offshore wind 
projects at varying distances from the shore. Land Economics 87, 268-283. 
Ladenburg, J., 2010. Attitudes towards offshore wind farms—The role of beach visits on attitude and 
demographic and attitude relations. Energy Policy 38, 1297-1304. 
Ladenburg, J., Dubgaard, A., 2009. Preferences of coastal zone user groups regarding the siting of 
offshore wind farms. Ocean & Coastal Management 52, 233-242. 
Ladenburg, J., Lutzeyer, S., 2012. The economics of visual disamenity reductions of offshore wind 
farms—Review and suggestions from an emerging field. Renewable and Sustainable Energy Reviews 
16, 6793-6802. 
Landry, C.E., Allen, T., Cherry, T., Whitehead, J.C., 2012. Wind turbines and coastal recreation 
demand. Resource and Energy Economics 34, 93-111. 
Lang, C., Opaluch, J.J., Sfinarolakis, G., 2014. The windy city: Property value impacts of wind turbines 
in an urban setting. Energy Economics 44, 413-421. 
Lilley, M.B., Firestone, J., Kempton, W., 2010. The effect of wind power installations on coastal 
tourism. Energies 3, 1-22. 
Lloyd-Smith, P., Abbott, J.K., Adamowicz, W., Willard, D., 2019. Decoupling the value of leisure time 
from labor market returns in travel cost models. Journal of the Association of Environmental and 
Resource Economists 6, 215-242. 
Lutzeyer, S., Phaneuf, D.J., Taylor, L.O., 2018. The amenity costs of offshore wind farms: Evidence 
from a choice experiment. Energy Economics 72, 621-639. 
Mariel, P., Meyerhoff, J., Hess, S., 2015. Heterogeneous preferences toward landscape externalities 
of wind turbines–combining choices and attitudes in a hybrid model. Renewable and Sustainable 
Energy Reviews 41, 647-657. 
Martinez-Espineira, R., Amoako-Tuffour, J., 2008. Recreation demand analysis under truncation, 
overdispersion, and endogenous stratification: An application to Gros Morne National Park. Journal 
of environmental management 88, 1320-1332. 
Martínez-Espiñeira, R., Amoako-Tuffour, J., 2009. Multi-destination and multi-purpose trip effects in 
the analysis of the demand for trips to a remote recreational site. Environmental Management 43, 
1146-1161. 
Mattmann, M., Logar, I., Brouwer, R., 2016. Wind power externalities: A meta-analysis. Ecological 
Economics 127, 23-36. 
McCartney, A., 2006. The social value of seascapes in the Jurien Bay Marine Park: an assessment of 
positive and negative preferences for change. Journal of Agricultural Economics 57, 577-594. 



35 
 

Nunes, P.A., Loureiro, M.L., Piñol, L., Sastre, S., Voltaire, L., Canepa, A., 2015. Analyzing beach 
recreationists’ preferences for the reduction of jellyfish blooms: Economic results from a stated-
choice experiment in Catalonia, Spain. PloS one 10, e0126681. 
Parsons, G.R., 2017. The travel cost model, in: Champ, P.A., Boyle, K.J., Brown, T.C. (Eds.), A primer 
on nonmarket valuation. The Economics of Non-Market Goods and Resources, 2nd Edition ed. Kluwer 
Academic Publishers, Dordrecht, pp. 269-329. 
Parsons, G.R., Chen, Z., Hidrue, M.K., Standing, N., Lilley, J., 2013. Valuing beach width for 
recreational use: Combining revealed and stated preference data. Marine Resource Economics 28, 
221-241. 
Parsons, G.R., Firestone, J., Toussaint, J., Yan, L., 2019. The effect of offshore wind power projects on 
recreational beach use: A contingent-behavior study on the East Coast of the United States, in: 
Delaware, U.o. (Ed.), p. 44. 
Parsons, G.R., Stefanova, S., 2011. Gauging the value of short-term site closures in a travel-cost rum 
model of recreation demand with a little help from stated preference data, in: Whitehead, J.C., Haab, 
T., Huang, J.-C. (Eds.), Preference Data for Environmental Valuation: Combining Revealed and Stated 
Approaches. Routledge, pp. 239-251. 
Prayaga, P., Rolfe, J., Stoeckl, N., 2010. The value of recreational fishing in the Great Barrier Reef, 
Australia: a pooled revealed preference and contingent behaviour model. Marine Policy 34, 244-251. 
Randall, A., 1994. A difficulty with the travel cost method. Land Economics 70, 88-96. 
Sardá, R., Mora, J., Ariza, E., Avila, C., Jimenez, J.A., 2009. Decadal shifts in beach user sand 
availability on the Costa Brava (Northwestern Mediterranean Coast). Tourism Management 30, 158-
168. 
Shaw, D., 1988. On-site samples' regression: Problems of non-negative integers, truncation, and 
endogenous stratification. Journal of Econometrics 37, 211-223. 
Simões, P., Barata, E., Cruz, L., 2013. Joint estimation using revealed and stated preference data: An 
application using a national forest. Journal of Forest Economics 19, 249-266. 
Teisl, M.F., Noblet, C.L., Corey, R.R., Giudice, N.A., 2018. Seeing clearly in a virtual reality: Tourist 
reactions to an offshore wind project. Energy Policy 122, 601-611. 
Vecchiato, D., 2014. How do you like wind farms? Understanding people's preferences about new 
energy landscapes with choice experiments. Aestimum, 15. 
Voltaire, L., Lévi, L., Alban, F., Boncoeur, J., 2017. Valuing cultural world heritage sites: an application 
of the travel cost method to Mont-Saint-Michel. Applied Economics 49, 1593-1605. 
Voltaire, L., Loureiro, M.L., Knudsen, C., Nunes, P.A., 2017. The impact of offshore wind farms on 
beach recreation demand: Policy intake from an economic study on the Catalan coast. Marine Policy 
81, 116-123. 
Ward, F.A., Beal, D.J., 2000. Valuing nature with travel cost models: A manual. Edward Elgar 
Cheltenham. 
Westerberg, V., Jacobsen, J.B., Lifran, R., 2013. The case for offshore wind farms, artificial reefs and 
sustainable tourism in the French Mediterranean. Tourism Management 34, 172-183. 
Whitehead, J.C., Haab, T., Larkin, S.L., Loomis, J.B., Alvarez, S., Ropicki, A., 2018. Estimating Lost 
Recreational Use Values of Visitors to Northwest Florida due to the Deepwater Horizon Oil Spill Using 
Cancelled Trip Data. Marine Resource Economics 33, 000-000. 
Whitehead, J.C., Pattanayak, S.K., Van Houtven, G.L., Gelso, B.R., 2008. Combining revealed and 
stated preference data to estimate the nonmarket value of ecological services: an assessment of the 
state of the science. Journal of economic surveys 22, 872-908. 

 

 

 



Figure 1 The Phase solubility profile of β-CD and TH in water. 

Figure 2 FESEM images of a) β-CD b) TH c) PM d) KN e) CP f) MW. 

Figure 3 FTIR spectra of a) β-CD, TH and PM b) KN, CP and MW. 

                  PXRD pattern of c) β-CD, TH and PM d) KN, CP and MW 

                 e) DSC thermograms of β-CD, MF, PM, KN, CP and MW. 

                   f) Thermal stability of TH, PM, KN, CP and MW. 

                g) 3D structures of β-CD and TH and inclusion of TH inside the cavity of β-CD. 

Figure 4(a-l) FESEM images of CH-GEL HPN (MW) at (a) first; (b) second; (c) third stages 

of biodegradation using soil-burial method. 

FESEM images of CH-GEL-β-CD HPN (MW) at (d) first; (e) second; (f) third stages of 

biodegradation using soil-burial method. 

FESEM images of CH-GEL HPN (MW) at (g) first; (h) second; (i) third stages of 

biodegradation using composting method. 

FESEM images of CH-GEL-β-CD HPN (MW) at (j) first; (k) second and (l) third stages of 

biodegradation using composting method.  

Figure 5(a-d) FTIR of (a) CH-GEL HPN (MW); (b) CH-GEL-β-CD HPN (MW) soil-burial 

method and (c) CH-GEL HPN (MW) and (d) CH-GEL-β-CD HPN (MW) using composting 

method at different stages of biodegradation. 

Figure 6 (a-g) Drug release profile of a) TH from CH-GEL-β-CD: TH (MW) and CH-GEL-

TH (MW).  

b) Drug release profile of TH through CH-GEL-β-CD: TH (MW) at pH 2, 7 and 7.4.  

c), d), e) Drug release kinetics of TH through CH-GEL-β-CD: TH (MW).  

f) Plot of relaxation to the Fickian contribution (R/F) with the fraction of drug release for the 

CH- GEL- β-CD: TH (MW). 
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Table 1. Studies applying the combined TC – CB method to the issue of OWF 

Authors (year) Target population and 

survey mode 

OWF project Use of visual 

aids 

Accounting for 

on-site sampling 

bias 

Accounting for 

unobserved 

heterogeneity 

Main results 

Lilley et al. 

(2010) 

Tourists surveyed on-

site in Delaware (USA) 

Projects located at 4 

distances offshore: 1.5km, 

10km, 22km and out of 

sight 

Yes (static aids) No No Almost one-quarter would switch 

beaches if the project was located 

10 km from the shore.  

The reported avoidance effect 

diminished with greater distance 

from the shore. 

Landry et al. 

(2012) 

Telephone survey data 

collected over coastal 

residents in North 

Carolina (USA) 

100 turbines, standing 

about 400 feet high, 

located 1 mile offshore  

No Not necessary 

given the used 

survey mode 

No  Little impact on aggregate 

recreational visitation, with a loss 

in consumer surplus of about $17 

under OWF conditions 

Voltaire et al. 

(2017) 

On-site survey over 

tourists using 

commercial 

accommodation in 

Catalonia (Spain). 

Four OWF scenarios with 

different degrees of visual 

impact generated by 

varying both the number 

of turbines and their 

proximity to shore 

Yes (static aids) No No Respondents would change their 

trip behavior if an OWF was build.  

Welfare loss to Catalonia's beach 

visitors estimated to range 

between €67.3 and €203 million 

per season 

Teisl et al. 

(2018) 

Tourists surveyed 

on-site in Monhegan 

Island (USA)  

6 MW floating deep-

water offshore wind 

turbine prototypes 

placed about 2.9 miles 

from the Island 

Yes (virtual 

reality or 

dynamic wind 

turbines) 

No No The type of visual aids affect 

beach trip behavior, with 

respondents receiving the 

dynamic visual aid reporting 

fewer trips compared to those 

receiving the static photo.   

Parsons et al. 

(2019) 

Internet-based data 

collected from beach 

users in 20 states from 

Massachusetts to 

South Carolina (USA). 

Wind power projects 

located at different 

distances offshore (2.5 to 

20 miles) in clear and hazy 

conditions and at night 

Yes (static aids) Not necessary 

given the used 

survey mode 

No At 2.5-miles offshore, 29% of 

respondents claimed that they 

would take fewer trips compared 

to 5% at 20-miles offshore.  

Welfare effects for a project at 

12.5 miles offshore were about $5 

million per year. 
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Table 2. Descriptive statistics  

 

  Residents  Tourists 

Variables Description Mean (std. dev.)  Mean (std. dev.) 

 

Dependent variables  

 

   

RP2011 Trips taken during the 2011 summer season 27.28 (36.560)  15.72 (25.862) 

MRS2012 Mixed revealed – stated trips taken for the 2012 summer season 31.00 (32.87)  19.23 (24.587) 

TripsOWF Trips the respondents would take under OWF conditions 24.69 (31.999)  15.26 (24.168) 

 

Independent variables 

 

 

 

   

RP 1 if revealed trip behaviour during the 2011 summer season  0.33 (0.472)  0.33 (0.472) 

MRS 1 if both revealed and planned trip behaviour during the 2012 

summer season  

0.33 (0.472)  0.33 (0.472) 

OWF 1 if contingent trip behaviour under the offshore wind farm scenarios  0.33 (0.472)  0.33 (0.472) 

High_Far scenario 1 if contingent trip behaviour under the scenario High_Far 0.28 (0.451)  0.27 (0.447) 

High_Near scenario 1 if contingent trip behaviour under the scenario High_Near 0.22 (0.413)  0.27 (0.444) 

Low_Near scenario 1 if contingent trip behaviour under the scenario Low_Near 0.15 (0.358)  0.20 (0.402) 

Low_Far scenario 1 if contingent trip behaviour under the scenario Low_Far 0.35 (0.478)  0.25 (0.436) 

TC Travel cost per person for the 2012 summer season (in euro) 2.66 (5.276)  15.56 (54.289) 

Local_tourist 1 if the respondent was a local tourist    0.62 (0.487) 

Paid_accom 1 if the respondent stays in a paid accommodation   0.42 (0.494) 

Length_stay The length of stay of the respondent in Catalonia   16.06 (22.950) 

Barceloneta 1 if the respondent was interviewed in the beach “Barceloneta”  0.26 (0.438)  0.08 (0.270) 

Bogatell 1 if the respondent was interviewed in the beach “Bogatell” 0.20 (0.400)  0.04 (0.195) 

Sabanell 1 if the respondent was interviewed in the beach “Sabanell” 0.08 (0.273)  0.19 (0.390) 

Blanes 1 if the respondent was interviewed in the beach “Blanes” 0.10 (0.300)  0.10 (0.298) 
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Gran de Palamos 1 if the respondent was interviewed in the beach “Gran de Palamos” 0.10 (0.304)  0.16 (0.363) 

Fosca 1 if the respondent was interviewed in the beach “Fosca” 0.10 (0.304)  0.14 (0.346) 

Castell 1 if the respondent was interviewed in the beach “Castell” 0.11 (0.318)  0.13 (0.337) 

Golfet 1 if the respondent was interviewed in the beach “Golfet” 0.04 (0.206)  0.17 (0.378) 

Imp_swimming Rating of the importance of swimming/bathing activity in the 

respondent’s decision to go this beach (from 0 not at all important to 

4 fully important) 

3.30 (0.944)  3.47 (0.828) 

Imp_nautical activity Rating of the importance of nautical activity in the respondent’s 

decision to go this beach (from 0 not at all important to 4 fully 

important) 

1.00 (1.093)  1.32 (1.000) 

Familiarity 1 if 0 trip taken in 2011; 2 if 0 – 5 trips taken; 3 if 5 – 20 trips taken; 4 

if more than 20 trips taken 

2.68 (1.226)  2.02 (0.916) 

Men Dummy indicating whether the respondent is a male 0.46 (0.499)  0.50 (0.500) 

Age Age of the respondent, in years 42.04 (13.580)  43.32 (13.55) 

Household size The number of people living in the house 2.65 (1.212)  3.00 (1.218) 

Household income Mid-point of income bracket 2588.55 

(4066.057) 

 5015.50 (9263.65) 
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Table 3. Results of the logistic regression models explaining the decision whether to accept 

the OWF project 

 

 Residents Tourists 

 

Constant −3.891 �1.080
 ∗∗∗ −4.000 �1.286
 ∗∗∗ 

Barceloneta 1.293 �0.555
 ∗∗ 1.857 �0.746
 ∗∗ 

Bogatell 1.227 �0.590
 ∗∗ 2.240 �0.785
 ∗∗∗ 

Sabanell 1.172 �0.677
 ∗ 1.100 �0.559
 ∗∗ 

Blanes 0.490 �0.732
 1.275 (0.610) ** 

Gran de Palamos −0.597 �0.784
 0.993 �0.613
 

Fosca  

��������� 

0.797 �0.672
 

Golfet & Castell ��������� 

High_Far scenario 0.072 �0.366
 0.009 �0.446
 

High_Near scenario −1.512 �0.544
 ∗∗∗ −0.067�0.457
 

Low_Near scenario −1.568 �0.728
 ∗∗ −0.130 �0.504
 

Low_Far scenario Reference Reference 

Local_tourist  0.784 �0.428
 ∗ 

Paid_accom  0.353 �0.373
 

Imp_swimming  0.020 �0.198
 0.134 �0.223
 

Imp_nautical activity 0.243 �0.186
 −0.142 �0.178
 

Familiarity −0.036 �0.151
 −0.001 �0.004
 

Male 0.902 �0.353
 ∗∗ 0.379 �0.319
 

Age 0.029 �0.013
 ∗∗ 0.006 �0.014
 

Household size 0.340 �0.130
 ∗∗∗ −0.055 �0.165
 

Household income −3.02� − 04  
�1.59� − 04
 ∗ 

1.97� − 06  
�2.08� − 05
 

   

Log likelihood −114.293 −129.424 

Wald �� 37.73 16.93 

Pseudo �� 18.15% 06.64% 

Observations 272 354 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 



5 

 

Table 4. Results of the logistic regression models explaining the decision whether to change 

beach trip behavior 

 

 Residents Tourists 

 

Constant 1.946 �0.925
 ∗∗ 0.006 �0.898
 

Barceloneta −1.854 �0.601
 ∗∗∗ −1.542 �0.556
 ∗∗∗ 

Bogatell −0.933 �0.486
 ∗ −2.144 �0.766
 ∗∗ 

Sabanell  −0.969 �0.612
 −1.518 �0.389
 ∗∗∗ 

Blanes −1.930 �0.723
 ∗∗∗ −0.722 �0.481
 

Gran de Palamos −0.072 �0.522
 −1.016 �0.391
 ∗∗∗ 

Fosca −0.196 �0.543 −0.366 �0.385
 

Golfet & Castell Reference Reference 

High_Far scenario 0.520 �0.403
 0.294 �0.357
 

High_Near scenario 1.464 �0.417
 ∗∗∗ 0.928 �0.339
 ∗∗∗ 

Low_Near scenario 0.691 �0.472
  −0.070 �0.358
  

Low_Far scenario Reference Reference 

Local_tourist  −0.502 �0.297
 ∗ 

Paid_accom  0.629 �0.273
 ∗∗ 

Imp_swimming  −0.151 �0.156
 0.111 �0.148
 

Imp_nautical activity 0.010 �0.166
 0.108 �0.133
 

Familiarity −0.213 �0.131
 ∗ 0.001 �0.003
 

Male −0.201 �0.306
 −0.358 �0.251
 

Age −0.025 �0.012
 ∗∗ −0.013 �0.010
 

Household size −0.246 �0.130
 ∗ −0.019 �0.106
 

Household income 1.13� − 04  
�6.71e − 05
 ∗ 

8.61� − 06 

 �1.64e − 05
 

   

Log likelihood −136.558  −200.776 

Wald �� 44.25 48.08 

Pseudo �� 19.54% 13.10% 

Observations 272 354 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5. Predicted probabilities  

 

 

 Decision whether to accept the OWF project  Decision whether to change trip behavior due to 

the OWF project 

 Residents Tourists  Residents Tourists 

High_Far scenario 23.11 

[14.30 – 31.93] 

11.75% 

[06.49 – 17.02] 

 25.83 

[16.60 – 35.07] 

32.97% 

[23.90 – 42.05] 

High_Near scenario 05.81 

[01.25 – 10.36] 

10.99 

[05.63 – 16.35] 

 47.24 

[35.52 – 58.96] 

48.12 

[38.81 – 57.42] 

Low_Near scenario 05.44 

[01.26 – 09.61] 

10.38 

[04.72 – 16.05] 

 29.24 

[16.03 – 42.44] 

25.47 

[17.24 – 33.69] 

Low_Far scenario 23.11 

[14.38 – 31.85] 

11.66 

[05.72 – 17.60] 

 17.15 

[09.96 – 24.34] 

26.82 

[18.70 – 34.94] 

Note: [.]: 90% CIs by delta method 

 

 

 

 

 

 

 

 

 



7 

 

Table 6. RPNB_1: Results of the Random parameters negative binomial model  

 Residents 

 

 Tourists 

 Mean coefficient  Standard deviation  Mean coefficient  Standard deviation 

Constant 0.264 �0.226
 �/�  0.422 �0.244
 ∗ �/� 

TC −0.055  �0.008
 ∗∗∗ 0.001 �0.007
  −0.016  �0.002
 ∗∗∗ 0.008 �0.001
 ∗∗∗ 

Barceloneta 1.792 �0.128
 ∗∗∗ �/�  1.285 �0.149
 ∗∗∗ �/� 

Bogatell 1.698 �0.126
 ∗∗∗ �/�  1.058 �0.172
 ∗∗∗ �/� 

Sabanell  1.875 �0.154
 ∗∗∗ �/�  1.257 �0.098
 ∗∗∗ �/� 

Blanes 2.357 �0.150
 ∗∗∗ �/�  1.192 �0.129
 ∗∗∗ �/� 

Gran de Palamos 2.016 �0.144
 ∗∗∗ �/�  1.240 �0.102
 ∗∗∗ �/� 

Fosca 0.678 �0.135
 ∗∗∗ �/�  1.160 �0.105
 ∗∗∗ �/� 

Golfet & Castell Reference �/�  Reference �/� 

RP −0.382 �0.130
 ∗∗∗ �/�  −0.608 �0.100
 ∗∗∗ �/� 

MRP Reference Reference  Reference  

OWF −0.414 �0.158
 ∗∗∗ 0.004 �0.068
  −0.463 �0.131
 ∗∗∗   0.004 �0.060
 

Local_tourist    0.263 �0.083
 ∗∗∗ 0.634 �0.040
 ∗∗∗ 

Paid_accom    −0.641 �0.071
 ∗∗∗ 0.412 �0.052
 ∗∗∗ 

Swimming 0.216 �0.035
 ∗∗∗ 0.135 �0.010
 ∗∗∗  −0.007 �0.037
 0.201 �0.009
 ∗∗∗ 

Nautical activities 0.081 �0.036
 ∗∗ 0.086 �0.024
 ∗∗∗  0.029 �0.036
 0.008 �0.019
 

Men −0.251 �0.069
 ∗∗∗ 0.180 �0.050
 ∗∗∗  0.080 �0.064
 0.338 �0.044
 ∗∗∗ 

Age 0.016 �0.003
 ∗∗∗ 0.017 �0.001
 ∗∗∗  0.033 �0.003
 ∗∗∗ 0.005 �0.001
*** 

Household size 0.025 �0.029
 0.084 �0.012
 ∗∗∗  −0.074 �0.028
 ∗∗ 0.204 �0.011
 ∗∗∗ 

Household income −0.274� − 04  
�0.124� − 04
 ∗∗ 

0.803� − 06  
�0.907� − 05
 

 −0.651 � − 05 

 �0.412� − 05
 

0.246� − 05  
�0.341� − 05
 

# 1.239 �0.063
 ∗∗∗ �/�  1.459 �0.076
 ∗∗∗ �/� 

Log likelihood −3213.226  −3249.606 

McFadden Pseudo 

�� 

96.04%  94.33% 
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Akaike Information 

Criterion (AIC) 

6476.5  6557.2 

Observations 816  993 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 7. RPNB_2: Results of the Random parameters negative binomial model results  

 

 Residents 

 

 Tourists 

 Mean coefficient  Standard deviation  Mean coefficient  Standard deviation 

Constant 0.216 �0.205
 �/�  0.218 �0.234
 �/� 

TC −0.053  �0.008
 ∗∗∗ 0.001 �0.007
  −0.011  �0.002
 ∗∗∗ 0.008 �0.001
 ∗∗∗ 

Barceloneta 1.773 �0.122
 ∗∗∗ �/�  1.353 �0.150
 ∗∗∗ �/� 

Bogatell 1.681 �0.123
 ∗∗∗ �/�  1.142 �0.169
 ∗∗∗ �/� 

Sabanell  1.879 �0.148
 ∗∗∗ �/�  1.257 �0.097
 ∗∗∗ �/� 

Blanes 2.396 �0.143
 ∗∗∗ �/�  1.206 �0.128
 ∗∗∗ �/� 

Gran de Palamos 2.043 �0.137
 ∗∗∗ �/�  1.291 �0.101
 ∗∗∗ �/� 

Fosca 0.710 �0.134
 ∗∗∗ �/�  1.100 �0.105
 ∗∗∗ �/� 

Golfet & Castell Reference �/�  Reference Reference 

RP −0.318 �0.088
 ∗∗∗ �/�  −0.552 �0.085
 ∗∗∗ �/� 

MRP Reference Reference  Reference  

High_Far scenario −0.271 �0.157
 ∗ 0.001 �0.126
  −0.509 �0.142
 ∗∗∗ 0.069 �0.111
 

High_Near scenario −1.280 �0.149
 ∗∗∗ 1.791 �0.199
 ∗∗∗  −0.676 �0.138
 ∗∗∗ 0.343 �0.115
 ∗∗∗ 

Low_Near scenario −0.526 �0.206
 ∗∗ 0.006 �0.182
  −0.228 �0.178
 0.016 �0.153
 

Low_Far scenario Reference Reference  Reference Reference 

Local_tourist    0.401 �0.082
 ∗∗ 0.706 �0.041
 ∗∗∗ 

Paid_accom    −0.651 �0.071
 ∗∗∗ 0.497 �0.053
 ∗∗∗ 

Swimming 0.202 �0.034
 ∗∗∗ 0.129 �0.010
 ∗∗∗  0.005 �0.037
 0.208 �0.009
 ∗∗∗ 

Nautical activities 0.073 �0.036
 ∗∗ 0.186 �0.024
 ∗∗∗  0.003 �0.036
 0.152 �0.020
 ∗∗∗ 

Men −0.217 �0.066
 ∗∗∗ 0.224 �0.048
 ∗∗∗  0.102 �0.065
 0.463 �0.044
 ∗∗∗ 

Age 0.016 �0.002
 ∗∗∗ 0.016 �0.001
 ∗∗∗  0.032 �0.003
 ∗∗∗ 0.007 �0.001
*** 

Household size 0.027 �0.028
 0.084 �0.011
 ∗∗∗  −0.057 �0.028
 ∗∗ 0.105 �0.010
 ∗∗∗ 

Household income −0.225� − 04 

 �0.113� − 04
 ∗∗ 

0.376� − 05  
�0.842� − 05
 

 −0.490� − 05  
�0.398� − 05
 

0.489� − 05  
�0.337� − 05
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# 1.392 �0.063
 ∗∗∗ �/�  1.463 �0.071
 ∗∗∗ �/� 

      

Log likelihood −3209.682  −3252.359 

McFadden Pseudo �� 96.04%  94.32% 

Akaike Information 

Criterion (AIC) 

6477.4  6570.7 

Observations 816  993 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8.  Distributions of parameters for explanatory variables specified as random parameters 

 

 Residents Tourists  Residents Tourists 

 

Variables  RPNBM_1 RPNBM_1  RPNBM_2 RPNBM_2 

TC NS 97.1% −  | 02.9% +   91.6% −  | 08.4% + 

OWF NS     

High_Far scenario    NS NS 

High_Near scenario    76.1% −  | 23.9% + 97.6% −  | 02.4% + 

Low_Near scenario    NS NS 

Low_Far scenario    Reference Reference 

Local_tourist  34.1% −  | 65.9% +   28.4% −  | 71.6% + 

Paid_accom  93.9% −  | 06.1 % +   90.5% −  | 09.5 % + 

Swimming 05.5% −  | 94.5% + NS  05.8% −  | 94.2% + NS 

Nautical activities 17.4% −  | 82.6 % + NS  34.8% −  | 65.2 % + NS 

Men 91.8% −  | 8.2% + NS   83.4% −  | 15.6% + NS 

Age 17.6% −  | 82.4% + 0.0% −  | 100.0% +  16.6% −  | 83.4% + 0.0% −  | 100.0% + 

Household size NS 64.1% −  | 35.9% +  NS 70.5% −  | 29.5% + 

Household income NS NS  NS NS 

NS: Standard deviation is not significant 
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Table 9. Results of the Multivariate Poisson Lognormal model adjusted for on-site sampling 

 

 Residents  

 

 Tourists 

 MPLN_1 MPLN_2  MPLN_1 MPLN_2 

Constant 0.411 �0.118
 ∗∗∗ 0.599 �0.121
 ∗∗∗  −0.052 �0.134
 −0.388 �0.138
 ∗∗∗ 

TC −0.111 �0.007
 ∗∗∗ −0.087 �0.006
 ∗∗∗  −0.012 �0.003
 ∗∗∗ −0.013 �0.002
 ∗∗∗ 

Barceloneta 1.384 �0.069
 ∗∗∗ 1.870 �0.080
 ∗∗∗  1.156 �0.103
 ∗∗∗ 1.448 �0.087
 ∗∗∗ 

Bogatell 1.112 �0.062
 ∗∗∗ 1.300 �0.065
 ∗∗∗  0.651 �0.084
 ∗∗∗ 0.840 �0.080
 ∗∗∗ 

Sabanell  1.564 �0.069
 ∗∗∗ 0.673 �0.060
 ∗∗∗  1.078 �0.053
 ∗∗∗ 2.143 �0.059
 ∗∗∗ 

Blanes 1.890 �0.067
 ∗∗∗ 1.620 �0.058
 ∗∗∗  −0.083 �0.062
 ∗∗∗ 0.301 �0.051
 ∗∗∗ 

Gran de Palamos 1.707 �0.067
 ∗∗∗ 1.260 �0.059
 ∗∗∗  1.140 �0.059
 ∗∗∗ 1.370 �0.049
 ∗∗∗ 

Fosca 0.111 �0.066
 ∗∗∗ 0.049 �0.069
 ∗∗∗  1.310 �0.059
 ∗∗∗ 1.656 �0.058
 ∗∗∗ 

Golfet & Castell Reference Reference  Reference ��������� 

RP −0.675 �0.063
 ∗∗∗ −0.675 �0.079 
 ∗∗∗  −0.395 �0.105
 ∗∗∗ −0.382 �0.066
 ∗∗∗ 

MRP Reference Reference  Reference Reference 

OWF −0.521 �0.071
 ∗∗∗   −0.459 �0.076
 ∗∗∗  

High_Far scenario  −0.215 �0.060
 ∗∗∗   −0.457 �0.061
 ∗∗∗ 

High_Near scenario  −0.731 �0.059
 ∗∗∗   −0.376 �0.068
 ∗∗∗ 

Low_Near scenario  −0.541 �0.081
 ∗∗∗   −0.471 �0.064
 ∗∗∗ 

Low_Far scenario  Reference   Reference 

Local_tourist    0.160 �0.038
 ∗∗∗ 0.065 �0.037
 ∗ 

Paid_accom    −1.040 �0.035
 ∗∗∗ −0.942  �0.041
 ∗∗∗ 

Swimming −0.023 �0.016
 −0.135 �0.019
 ∗∗∗  0.147 �0.020
 ∗∗∗ 0.126 �0.020
 ∗∗∗ 

Nautical activities 0.179 �0.012
 ∗∗∗ 0.062 �0.011
 ∗∗∗  −0.064 �0.018
 ∗∗∗ −0.072 �0.014
 ∗∗∗ 

Men −0.289 �0.027
 ∗∗∗ −0.281 �0.026
 ∗∗∗  −0.355 �0.038
 ∗∗∗ 0.338 �0.028
 ∗∗∗ 

Age 0.034 �0.001
 ∗∗∗ 0.031 �0.001
 ∗∗∗  0.032 �0.001
 ∗∗∗ 0.025 �0.001
*** 

Household size −0.068 �0.009
 ∗∗∗ 0.087 �0.009
 ∗∗∗  −0.029 �0.015
 ∗ −0.051 �0.014
 ∗∗∗ 
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Household income −2.56� − 05 �8.80�

− 06
 ∗∗∗ 

−4.59� − 05 �1.10�

− 05
 ∗∗

∗ 

 −9.63� − 06 �2.62�

− 06
 ∗∗∗ 

−1.080� − 05  
�3.400� − 06
 ∗∗∗ 

()*+,--
 1.699 �0.392
 ∗∗∗ 2.018 �0.483
 ∗∗∗  2.761 �0.711
 ∗∗∗ 2.211 �0.516
 ∗∗∗ 

(.)/+,-+
 0.983 �0.228
 ∗∗∗ 1.091 �0.261
 ∗∗∗  1.149 �0.270
 ∗∗∗ 1.215 �0.266
 ∗∗∗ 

(012 1.796 �0.447
 ∗∗∗ 1.337 �0.318
 ∗∗∗  1.517 �0.365
 ∗∗∗ 1.587 �0.397
 ∗∗∗ 

345 ��6�788, :�;�78�
 0.970 �0.058
 ∗∗∗ 1.258 �0.071
 ∗∗∗  1.264 �0.146
 ∗∗∗ 1.544 �0.090
 ∗∗∗ 

345 ��6�788, <�=>?012
 1.303 �0.071
 ∗∗∗ 0.840 �0.071
 ∗∗∗  1.485 �0.150
 ∗∗∗ 1.432 �0.094
 ∗∗∗ 

345 �:�;�78�, <�=>?012
 1.134 �0.064
 ∗∗∗ 0.759 �0.064
 ∗∗∗  1.247 �0.077
 ∗∗∗ 1.213 �0.064
 ∗∗∗ 

      

Log likelihood −3,307.507 −3,345.772   −3,431.033 −3,407.34  

Observations 816 816  993 993 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 10. The estimates of consumer surplus per trip 

 

 

Models  Accounting for unobserved 

heterogeneity in trip preferences 

 

 Accounting for on-site sampling bias 

 

RPNB_1 and MPLN_1 Residents €18.22  €9.01 

 Tourists €63.49  €80.23 

     

RPNB_2 and MPLN_2 Residents €18.81  €11.54 

 Tourists €89.76  €74.66 
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Table 11. Conditional expectations and welfare estimates  

 

  

 Residents  Tourists 

 

 Predicted mean 

trip 

 

CS per 

season  

Change in CS 

relative to 2012  

 Predicted mean 

trip 

 

CS per season  Change in CS 

relative to 

2012  

2012 summer season 

90% CI 

29.95 

[27.74 − 32.15] 

€563.35   19.56 

[17.93 − 21.17] 

€1,755.71  

OWF scenario 20.55 

[19.29 − 21.82] 

€386.55 −31.40%  12.21 

[11.35 − 13.08] 

1,095.97 −37.58% 

High_Far scenario 

90% CI 

22.11 

[20.77 − 23.44] 

€415.89 −26.18%  11.08 

[10.28 − 11.87] 

€994.54 −43.35% 

High_Near scenario 

90% CI 

10.62 

[9.69 − 11.53] 

€199.76 −64.54%  9.75 

[9.05 − 10.45] 

€875.16 −50.15% 

Low_Near scenario 

90%CI  

17.13 

[16.09 − 18.17] 

€322.22 −42.80%  14.98 

[13.91 − 16.04] 

€1,344.60 −23.42% 

Low_Far scenario 

90% CI 

29.00 

[27.25 − 30.76] 

€545.49 −03.17%  18.61 

[17.28 − 19.92] 

€1,670.43 −04.86% 
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Table 12. Welfare loss estimates caused by visual disamenities from 570 MW offshore wind power installations (in million Euros). 

 

  Residents  Tourists 

 

  Distance to coastline  Distance to coastline 

 

 

 

Density 

 Near (3 km) Moderate (10 

km) 

Far (20 km) 

 

 Near (3 km) Moderate 

(10 km) 

Far (20 km) 

 

High (8 wind 

farms) 

102.8 150.0 77.1  338.2 760.2 540.8 

Low (2 wind 

farms) 

17.0 37.5 2.3  39.5 190.1 14.7 

Example – High (8 wind farms)_Near(3 km) for residents: 6 = 1,413,575; 3;DEFGHIJG = 563.35; ∆3;012L
= 0,6454; MN = 0.20 
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Supplementary Material 

 

Table A. The surveyed beaches 
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Table B. Changes in beach trip behaviour and mean trips for residents under OWF conditions 

 

 High – Far scenario Low – Far scenario High – Near scenario Low – Near scenario Pooled scenario 

 

More trips 0.0% 0.0% 0.0% 0.0% 0.0% 

No change 71.4% 78.9% 52.5% 63.4% 68.8% 

Fewer trips 7.8% 3.2% 10.2% 7.3% 6.6 

Stated percent decrease: 

 

                                20% 

 

 

    

//// //// 1.7% //// 0.4% 

                                30% 1.3% 1.1% //// //// 0.8% 

                40% 1.3% /// 1.7% //// 0.7% 

                45% 1.3% 2.1% //// //// 1.1% 

                                50% 2.6% //// 3.4% 2.4% 1.8% 

                                60% //// //// 1.7% 4.8% 1.2% 

                                65% 1.3% //// //// //// 0.4% 

                                80% //// //// 1.7% //// 0.4% 

No trips at all 20.8% 17.9% 37.3% 29.3% 24.6% 

      

Mean (range) 

[standard deviation] 

25.96 (0 – 120)  

[32.23] 

29.41 (0 – 120) 

 [34.33] 

21.53 (0 – 120) 

[30.72] 

15.93 (0 – 120) 

[25.99]  

24.69 (0 – 120)  

[32.00] 
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Table C. Changes in beach trip behaviour and mean trips for tourists under OWF conditions 

  

 High – Far scenario Low – Far scenario High – Near scenario Low – Near scenario Pooled scenario 

 

More trips 0% 0% 0% 0% 0% 

No change 69.2% 72.6% 57.3% 71.6% 67.4% 

Fewer trips 2.2% 3.6% 4.5% 13.4% 5.4% 

Stated percent decrease: 

                

                 25% 

 

 

    

//// //// //// 1.5% 0.3% 

                                30% //// //// 1.1% //// 0.3% 

                                40% //// //// //// 3.0% 0.6% 

                                50% 2.2% 2.4% 2.2% 7.5% 3.3% 

                                65% //// //// //// 1.5% 0.3% 

                                70% //// 1.2% //// //// 0.3% 

               75%  //// //// 1.1% /// 0.3% 

No trips at all 28.6% 23.8% 38.2% 14.9% 27.2% 

      

Mean (range) 

[standard deviation] 

15.13 (0 – 120) 

[25.02] 

14.40 (0 – 120] 

[23.92] 

13.34 (0 – 93) 

[22.81]  

19.07 (0 – 120) 

[25.15]  

15.26 (0 – 120)  

[24.17] 
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Table D. Results of the random-effects negative binomial (RENB) model  

 

 RENB_1  RENB_2 

 

 Residents Tourists  Residents Tourists 

 Coefficients (std. dev)  Coefficients (std. dev)  Coefficients (std. dev) Coefficients (std. 

dev) 

 

Constant −1.000 �0.300
 ∗∗∗ −0.224 �0.378
  −1.142 �0.298
 ∗∗∗ −0.288 �0.379
 

TC −0.022  �0.009
 ∗∗∗ −0.002  �0.001
  −0.021  �0.010
 ∗∗ −0.001  �0.001
 

Barceloneta 1.099 �0.168
 ∗∗∗ 0.598 �0.225
 ∗∗∗  1.101 �0.168
 ∗∗∗ 0.648 �0.226
 ∗∗∗ 

Bogatell 0.753 �0.178
 ∗∗∗ 0.659 �0.275
 ∗∗∗  0.810 �0.178
 ∗∗∗ 0.671 �0.277
 ∗∗ 

Sabanell  1.024 �0.209
 ∗∗∗ 0.485 �0.154
 ∗∗∗  1.174 �0.208
 ∗∗∗ 0.516 �0.155
 ∗∗∗ 

Blanes 1.568 �0.202
 ∗∗∗ 0.607 �0.195
 ∗∗∗  1.700 �0.201
 ∗∗∗ 0.655 �0.197
 ∗∗∗ 

Gran de Palamos 0.698 �0.198
 ∗∗∗ 0.900 �0.158
 ∗∗∗  0.693 �0.197
 ∗∗∗ 0.942 �0.158
 ∗∗∗ 

Fosca 0.164 �0.192
 0.569 �0.166
 ∗∗∗  0.169 �0.192
 0.511 �0.166
 ∗∗∗ 

Golfet & Castell Reference Reference  Reference Reference 

RP −0.561 �0.068
 ∗∗∗ −0.682  �0.067
 ∗∗∗  −0.498  �0.065
 ∗∗∗ −0.638  �0.065
 ∗∗∗ 

MRP Reference Reference  Reference Reference 

OWF −0.482 �0.066
 ∗∗ −0.482 �0.061
 ∗∗∗    

High_Far scenario    −0.322 �0.106
 ∗∗∗ −0.591 �0.108
 ∗∗∗ 

High_Near scenario    −1.010 �0.154
 ∗∗∗ −0.663 �0.120
 ∗∗∗ 

Low_Near scenario    −0.415 �0.161
 ∗∗∗ −0.234 �0.110
 

Low_Far scenario    Reference Reference 

Local_tourist  0.316 �0.128
 ∗∗   0.298 �0.129
 ∗∗ 

Paid_accom  −0.573 �0.115
 ∗∗∗   −0.585 �0.115
 ∗∗∗ 

Swimming 0.060 �0.052
 −0.032 �0.061
  0.041 �0.052
 −0.044 �0.061
 

Nautical activities 0.005 �0.048
 0.007 �0.055
  0.011 �0.049
 0.022 �0.056
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Men −0.025 �0.095
 0.353 �0.103
***  0.025 �0.095
 0.354 �0.103
 ∗∗∗ 

Age 0.013 �0.004
 ∗∗∗ 0.014 �0.004
 ∗∗∗  0.015 �0.004
 ∗∗∗ 0.014 �0.004
 ∗∗∗ 

Household size 0.038 �0.038
 −0.073 �0.044
 ∗  0.046 �0.038
 −0.068 �0.044
 

Household income −2.48� − 05  
�1.48� − 05
 ∗ 

2.87� − 07  
�5.49� − 06
 

 −2.58� − 05 

 �1.48� − 05
 ∗ 

−2.92� − 07  
�5.48� − 06
 

Parameter, r 1.619 �0.201
 1.192 �0.108
  1.632 �0.202
 1.193 �0.108
 

Parameter, s 15.842 �3.387
 4.638 �0.713
 ∗∗∗  15.552 �3.289
 4.599 �0.698
 

      

Log likelihood −3197.807 −3228.482  −3190.669 −3227.130 

Wald �� 295.16 ∗∗∗ 337.37  299.18 ∗∗∗ 334.67 

CS per visitor per trip €45.13 N/A  €48.75 N/A 

Observations 816 993  816 993 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 



22 

 

Table E. RPNB_1: Results of the Random parameters negative binomial model for beach users in both 2011 and 2012 summer season  

 

 Residents 

 

 Tourists 

 Mean coefficient  Standard deviation  Mean coefficient  Standard deviation 

Constant 0.708 �0.198
 ∗∗∗ �/�  1.838 �0.263
 ∗∗∗ �/� 

TC −0.071  �0.008
 ∗∗∗ 0.001 �0.007
  −0.091  �0.006
 ∗∗∗ 0.066 �0.005
 ∗∗∗ 

Barceloneta 1.229 �0.119
 ∗∗∗ �/�  1.585 �0.205
 ∗∗∗ �/� 

Bogatell 1.030 �0.124
 ∗∗∗ �/�  0.328 �0.196
 ∗ �/� 

Sabanell  1.304 �0.138
 ∗∗∗ �/�  0.954 �0.103
 ∗∗∗ �/� 

Blanes 1.753 �0.131
 ∗∗∗ �/�  0.462 �0.122
 ∗∗∗ �/� 

Gran de Palamos 1.365 �0.130
 ∗∗∗ �/�  0.635 �0.101
 ∗∗∗ �/� 

Fosca 0.800 �0.143
 ∗∗∗ �/�  0.676 �0.107
 ∗∗∗ �/� 

Golfet & Castell Reference �/�  Reference �/� 

RP −0.037 �0.111
 �/�  −0.064 �0.125
 �/� 

MRP Reference Reference  Reference Reference 

OWF −0.350 �0.137
 ∗∗ 0.011 �0.054
  −0.349 �0.145
 ∗∗   0.013 �0.055
 

Local_tourist    0.157 �0.089
 ∗ 0.093 �0.036
 ∗∗∗ 

Paid_accom    −0.286 �0.077
 ∗∗∗ 0.190 �0.062
 ∗∗∗ 

Swimming 0.272 �0.032
 ∗∗∗ 0.009 �0.009
  0.095 �0.039
 ∗∗ 0.130 �0.009
 ∗∗∗ 

Nautical activities −0.051 �0.032
 0.388 �0.026
 ∗∗∗  0.027 �0.037
 0.031 �0.020
 

Men −0.372 �0.061
 ∗∗∗ 0.420 �0.044
 ∗∗∗  0.015 �0.065
 0.313 �0.043
 ∗∗∗ 

Age 0.015 �0.002
 ∗∗∗ 0.014 �0.001
 ∗∗∗  0.013 �0.002
 ∗∗∗ 0.008 �0.001
 ∗∗∗ 

Household size 0.053 �0.026
 ∗∗ 0.061 �0.010
 ∗∗∗  −0.002 �0.031
 0.049 �0.010
 ∗∗∗ 

Household income 0.657� − 05  
�0.163� − 04
 

0.233� − 05  
�0.980� − 05
 

 −0.167� − 04  
�0.339� − 05
 ∗∗∗ 

0.102� − 05  

�0.285� − 05
 

# 2.229 �0.135
 ∗∗∗ �/�  2.244 �0.143
 ∗∗∗ �/� 

Log likelihood −2556.608  −2287.717 
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McFadden Pseudo 

�� 

96.50%  95.46% 

Akaike Information 

Criterion (AIC) 

5163.2  4633.4 

Observations 603  570 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table F. RPNB_2: Results of the random parameters negative binomial model for beach users in both 2011 and 2012 summer season 

 

 Residents 

 

 Tourists 

 Mean coefficient  Standard deviation  Mean coefficient  Standard deviation 

Constant 0.859 �0169
 ∗∗∗ �/�  1.617 �0.207
 ∗∗∗ �/� 

TC −0.072  �0.008
 ∗∗∗ 0.003 �0.007
  −0.081  �0.005
 ∗∗∗ 0.062 �0.004
 ∗∗∗ 

Barceloneta 1.151 �0.108
 ∗∗∗ �/�  1.393 �0.168
 ∗∗∗ �/� 

Bogatell 0.946 �0.114
 ∗∗∗ �/�  0.441 �0.162
 ∗∗∗ �/� 

Sabanell  1.241 �0.127
 ∗∗∗ �/�  0.825 �0.086
 ∗∗∗ �/� 

Blanes 1.685 �0.119
 ∗∗∗ �/�  0.410 �0.101
 ∗∗∗ �/� 

Gran de Palamos 1.341 �0.117
 ∗∗∗ �/�  0.530 �0.084
 ∗∗∗ �/� 

Fosca 0.779 �0.130
 ∗∗∗ �/�  0.541 �0.089
 ∗∗∗ �/� 

Golfet & Castell Reference �/�  Reference �/� 

RP −0.017 �0.067
 �/�  −0.056 �0.066
 �/� 

MRP Reference Reference  Reference  

High_Far scenario −0.192 �0.118
 0.027 �0.094
  −0.892 �0.102
 ∗∗∗ 1.423 �0.118
 ∗∗∗ 

High_Near scenario −1.888 �0.165
 ∗∗∗ 2.371 �0.223
 ∗∗∗  −0.982 �0.117
 ∗∗∗ 1.601 �0.148
 ∗∗∗ 

Low_Near scenario −0.317 �0.159
 ∗∗ 0.028 �0.142
  −0.218 �0.120
 ∗ 0.003 �0.096
 

Low_Far scenario Reference Reference  Reference Reference 

Local_tourist    0.155 �0.076
 ∗∗ 0.388 �0.030
 ∗∗∗ 

Paid_accom    −0.394 �0.064
 ∗∗∗ 0.274 �0.053
 ∗∗∗ 

Swimming 0.248 �0.029
 ∗∗∗ 0.043 �0.008
 ∗∗∗  0.127 �0.032
 ∗∗∗ 0.096 �0.007
 ∗∗∗ 

Nautical activities −0.120 �0.028
 ∗∗∗ 0.367 �0.023
 ∗∗∗  0.041 �0.031
 0.118 �0.017
 ∗∗∗ 

Men −0.315 �0.054
 ∗∗∗ 0.207 �0.039
 ∗∗∗  0.007 �0.053
 0.075 �0.035
 ∗∗ 

Age 0.014 �0.002
 ∗∗∗ 0.016 �0.001
 ∗∗∗  0.013 �0.002
 ∗∗∗ 0.009 �0.001
 ∗∗∗ 

Household size 0.040 �0.023
 ∗ 0.053 �0.010
 ∗∗∗  0.037 �0.025
 0.082 �0.008
 ∗∗∗ 

Household income 0.110� − 04  0.637� − 05   −0.220� − 05 0.708� − 05 
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�0.151� − 04
 �0.903� − 05
  �0.323� − 05
 ∗∗∗  �0.265� − 05
 ∗∗∗ 

# 3.037 �0.139
 ∗∗∗ �/�  3.714 �0.208
 ∗∗∗ �/� 

      

Log likelihood −2526.076  −2272.762 

McFadden Pseudo 

�� 

96.553%  95.49% 

Akaike Information 

Criterion (AIC) 

5110.2  4611.5 

Observations 603  570 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table G. Results of the Multivariate Poisson Lognormal model unadjusted for on-site sampling 

 

 Residents  

 

 Tourists 

 MPLN_1 MPLN_2  MPLN_1 MPLN_2 

 Coefficients (std. dev) Coefficients (std. dev)  Coefficients (std. dev) Coefficients (std. dev) 

Constant 0.965 �0.110
 ∗∗∗ 1.037 �0.111
 ∗∗∗  1,852 �0,122
 ∗∗∗ 1.960 �0.125
 ∗∗∗ 

TC −0.073  �0.005
 ∗∗∗ −0.090 �0.006
 ∗∗∗  −0,008 �0,001
 ∗∗∗ −0.002 �0.002
 

Barceloneta 0.931 �0.059
 ∗∗∗ 0.766 �0.067
 ∗∗∗  2,347 �0,105
 ∗∗∗ 1.131 �0.096
 ∗∗∗ 

Bogatell 1.509 �0.066
 ∗∗∗ 1.399 �0.0715
 ∗∗∗  1,818 �0,096
 ∗∗∗ 0.993 �0.098
 ∗∗∗ 

Sabanell  1.581 �0.073
 ∗∗∗ 1.013 �0.071
 ∗∗∗  0,526 �0,051
 ∗∗∗ 1.887 �0.065
 ∗∗∗ 

Blanes 1.073 �0.058
 ∗∗∗ 1.896 �0.073
 ∗∗∗  0,470 �0,052
 ∗∗∗ 0.554 �0.059
 ∗∗∗ 

Gran de Palamos 1.182 �0.059
 ∗∗∗ 1.201 �0.074
 ∗∗∗  2,068 �0,061
 ∗∗∗ 1.074 �0.047
 ∗∗∗ 

Fosca −0.631 �0.068
 ∗∗∗ 0.323 �0.077
 ∗∗∗  3,106 �0,081
 ∗∗∗ 0.974 �0.057
 ∗∗∗ 

Golfet & Castell Reference Reference  Reference ��������� 

RP −0.832 �0.070
 ∗∗∗ −0.965 �0.055 
 ∗∗∗  −0,791 �0,045
 ∗∗∗ −0.969 �0.059
 ∗∗∗ 

MRP Reference Reference  Reference Reference 

OWF −0.749 �0.058
 ∗∗∗   −0,530 �0,040
 ∗∗∗  

High_Far scenario  −0.899 �0.089
 ∗∗∗   −0.932 �0.070
 ∗∗∗ 

High_Near scenario  −0.937 �0.073
 ∗∗∗   −1.245 �0.097
 ∗∗∗ 

Low_Near scenario  −0.899 �0.075
 ∗∗∗   −0.155 �0.068
 ∗∗ 

Low_Far scenario  Reference   Reference 

Local_tourist    0,373 �0,038
 ∗∗∗ 0.054 �0.053
 

Paid_accom    −1,347 �0,042
 ∗∗∗ −1.426 �0.047
 ∗∗∗ 

Swimming 0.100 �0.015
 ∗∗∗ 0.060 �0.016
 ∗∗∗  −0,019 �0,020
 0.144 �0.025
 ∗∗∗ 

Nautical activities 0.060 �0.011
 ∗∗∗ 0.126 �0.018
 ∗∗∗  0,223 �0,016
 ∗∗∗ −0.398 �0.018
 ∗∗∗ 

Men −0.175 �0.022
 ∗∗∗ −0.148 �0.031
 ∗∗∗  −1,538 �0,051
 ∗∗∗ −0.082 �0.030
 ∗∗∗ 

Age 0.022 �0.001
 ∗∗∗ 0.025 �0.001
 ∗∗∗  0,032 �0,001
 ∗∗∗ 0.010 �0.001
*** 

Household size 0.009 �0.011
 0.012 �0.009
  −0,152 �0,017
 ∗∗∗ −0.098  �0.015
 ∗∗∗ 
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Household income −3.82� − 06 �9.40�

− 06
 

−2.36� − 05 �1.02�

− 05
 ∗∗∗ 

 −2,32� − 05 �7,76�

− 06
 ∗∗∗ 

−1.68� − 05  
�4.01� − 06
 ∗∗∗ 

()*+,--
 1.978 �0.505
 ∗∗∗ 1.823 �0.422
 ∗∗∗  2,407 �0,515
 ∗∗∗ 2.032 �0.481
 ∗∗∗ 

(.)/+,-+
 0.989 �0.226
 ∗∗∗ 1.055 �0.247
 ∗∗∗  1,775 �0,382
 ∗∗∗ 1.392 �0.327
 ∗∗∗ 

(012 1.617 �0.412
 ∗∗∗ 1.838 �0.554
 ∗∗∗  1,986 �0,401
 ∗∗∗ 1.698 �0.412
 ∗∗∗ 

345 ��6�788, :�;�78�
 1.169 �0.065
 ∗∗∗ 1.198 �0.069
 ∗∗∗  3,590 �0,157
 ∗∗∗ 2.227 �0.122
 ∗∗∗ 

345 ��6�788, <�=>?012
 1.458 �0.076
 ∗∗∗ 1.505 �0.064
 ∗∗∗  3,258 �0,153
 ∗∗∗ 1.772 �0.113
 ∗∗∗ 

345 �:�;�78�, <�=>?012
 0.948 �0.052
 ∗∗∗ 1.132 �0.055
 ∗∗∗  2,965 �0,135
 ∗∗∗ 1.800 �0.098
 ∗∗∗ 

      

Log likelihood −3,217.282769 −3,215.955   −3,382.056 −3,283.062 

Observations 816 816  993 993 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table H. Coastline impacted by visual disamenities from 570 MW offshore wind power installations (% of the Catalonian coastline in brackets). 

 

 

 

Density of 

turbines 

 Distance from wind farms to coastline 

 

3 km 5 km 10 km 15 km 20 km 

 

70 MW 8 wind farms 115.8 (20%) 193.1 (33%) 349.1 (60%) 299.7 (52%) 212.3 (37%) 

 

337.9 MW 

 

2 wind farms 

 

29.0 (5%) 

 

48.3 (8%) 

 

87.3 (15%) 

 

74.9 (13%) 

 

53.1 (9%) 

Source: Voltaire et al. (2017)  
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Statistical program: The R code developed to estimate the MPLN adjusted for on-site 

sampling bias 

 

log_like_MPLN <- function(param, mydata, on_site=TRUE){ 

        # Data log-likelihood function assuming independent between trips 

        # 

        nn.ind <- length(mydata) 

        Like_i <- function(data, param, on_site){ 

             

            density.y <- function(y, t){ 

                exp(-lambda[t])*(lambda[t]^y)/factorial(y) 

            } 

            log.density.y <- function(y, t){ 

                - lambda[t] + y*log(lambda[t]) - log(factorial(y)) 

            } 

            ## 

            y             <- as.matrix(data$y) 

            X             <- as.matrix(data$X) 

            n.T           <- nrow(y) 

            n.X           <- ncol(X) 

            ##################################################### 

            val           <- t(X%*%param) 

            lambda        <- exp(val)   

            dy            <- log.density.y(y,1:n.T) 

            dy            <- sum(dy) 

             

            if(on_site){ 

                Like.obs          <- log(y[2]) - val[2] + dy 

            }else{ 

                Like.obs          <- dy 

            } 

             

            return(Like.obs) 

        } 

         

        log_like <- 0 

        for (i in 1:nn.ind) { 
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            log_like <- log_like +  Like_i( mydata[[i]], param, on_site) 

        } 

        return(-log_like) 

    } 

    ### 

    Like_i_M_MPLN <- function(rand, data, param, on_site){ 

        # Likelikood function of Mixed Poison Lognormal for each individual i 

        y             <- as.matrix(data$y) 

        X             <- as.matrix(data$X) 

        n.T           <- nrow(y) 

        n.X           <- ncol(X) 

        rdraw         <- nrow(rand) 

        ##################################################### 

        parameter_a      <- param[1:n.X] 

        parameter_b      <- matrix(0,nrow = 3,ncol = 3) 

        #matrix duplication 

        parameter_b[1,1] <- exp(param[n.X+1]) 

        parameter_b[2,1] <- param[n.X+2] 

        parameter_b[3,1] <- param[n.X+3] 

        parameter_b[2,2] <- exp(param[n.X+4]) 

        parameter_b[3,2] <- param[n.X+5] 

        parameter_b[3,3] <- exp(param[n.X+6]) 

        parameter_bb     <- tcrossprod(parameter_b) 

        val_temp1        <- t(X%*%parameter_a) 

        val_temp2        <- val_temp1[2] + 0.5*parameter_bb[2,2] 

        val_temp3        <- matrix(rep(c(val_temp1),rdraw),byrow = TRUE, ncol=3 )  + 

tcrossprod(rand,parameter_b) 

         

        sdensity   <- sapply(1:rdraw, function(r){ 

            lambda       <- as.matrix(exp(val_temp3[r,])) 

            dy           <- exp(sum(-lambda + y*log(lambda)-log(factorial(y))))/rdraw 

            return(dy) 

        }) 

        density.i <- sum(sdensity) 

        Like.obs  <- ifelse(on_site,(y[2]/exp(val_temp2))*density.i,density.i) 

        return(Like.obs) 

    } 
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    # 

    boot_fx <- function(i,mydata, mysim,param, on_site){ 

        # Allow defining individual loglikelihood using by function parLapply of package parallel 

        log_like <- log(Like_i_M_MPLN(mysim[[i]], mydata[[i]], param, on_site)) 

        return(log_like) 

    } 

     

    # 

    log_like_M_MPLN <- function(param, mydata, mysim, on_site, 

numscore,pseudo_draw,rdraw){ 

        # This function compute the minus data log_likelihood  

        # Data is by parallelise using the  package paralell 

        nn.ind    <- length(mydata) 

        cl        <- makeCluster(numscore)     # set the number of processor cores 

        setDefaultCluster(cl=cl) # set 'cl' as default cluster 

        clusterExport(cl, varlist=c("Like_i_M_MPLN")) 

        plog_like <- parLapply(cl,1:nn.ind,boot_fx,mydata, mysim, param, on_site) 

        stopCluster(cl) 

        log_like <- Reduce("+", plog_like) 

        return(-log_like) 

    } 

    # 

    estim <- function(mydata , y , model, rdraw=100,pseudo_draw=FALSE,on_site=TRUE, 

numscore=1){ 

        #Allow treatment of data, estimation of the model and tratment of results 

         

        #####################################Scale the data using function 

scale################################# 

        hh                        <- levels(factor(mydata$id)) 

        nn.ind                    <- length(hh) 

        nn.obs                    <- length(mydata$id) 

        mydata$const              <- 1 

        cols                      <- model[-1] 

        sd_cols                   <- c(1,apply(mydata[cols], 2, function(x) sqrt(sum(x^2)/(nn.obs-1)))) 

        mean_cols                 <- c(1,apply(mydata[cols],2,mean)) 

        mydata[cols]              <- scale(x=mydata[cols], center = FALSE, scale = TRUE) 
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        #######################################Make data as a 

list################################################# 

        mydata_list=NULL 

        for (i in 1:nn.ind) { 

            yit           <- as.matrix(mydata[mydata[,"id"]==hh[i],y]) 

            xit           <- as.matrix(mydata[mydata[,"id"]==hh[i],model]) 

            mydata_list[[i]]=list(y=yit, 

                                  X=xit) 

        } 

        ########################Simulation using Halton draws or pseudo random 

draws################################ 

        stride <- 1000 

        mysim_list      <- lapply(1:nn.ind, function(i){ 

            if(pseudo_draw){ 

                val       <- mvrnorm(n=rdraw, mu=rep(0,3), Sigma=diag(1,3)) 

            }else{ 

                x         <- rhalton(rdraw, 3 ,singleseed = i*stride) 

                x         <- qnorm(x) 

                val       <- x 

            } 

        }) 

        ####################################Definition of initial values of parameters 

######################################## 

        parm          <- rep(0,ncol(mydata_list[[1]]$X)) 

        names(parm)   <- model 

        est_ind       <- optim(    par      = parm, 

                                   fn       = log_like_MPLN, gr = NULL, 

                                   mydata   = mydata_list, 

                                   on_site  = on_site, 

                                   method   = c("BFGS"), 

                                   hessian = T) 

        par_ind       <- est_ind$par 

        theta         <- c(theta_11=0,theta_12=0, theta_13=0, theta_22=0 , theta_23=0 , 

theta_33=0 ) 

        init_param    <- c(par_ind,theta) 

        ######################################Minimization of minus data log-

likelihood using optim ######## 
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        est           <- optim(    par      = init_param, 

                                   fn       = log_like_M_MPLN, gr = NULL, 

                                   pseudo_draw    = FALSE, 

                                   rdraw=rdraw, 

                                   mydata   = mydata_list, 

                                   mysim    = mysim_list, 

                                   on_site  = on_site, 

                                   numscore = numscore, 

                                   method   = c("BFGS"), 

                                   hessian = T) 

        ##################################### Treatment of 

result########################################### 

        vcov_est                  <- solve(est$hessian) 

        se                        <- sqrt(diag(vcov_est)) 

        ######################Ajustment of parameter by accounting for data 

scale############################ 

        se[1:length(model)]       <- se[1:length(model)]/sd_cols 

        parms                     <- est$par 

        parms[1:length(model)]    <- parms[1:length(model)]/sd_cols 

        t                         <- parms/se 

        pval                      <- 2*(1-pt(abs(t),nrow(data)- length(model) - 6+1)) 

        results                   <- cbind(parms,se,t,pval) 

        colnames(results)         <- c("coef","se","t","pvalue") 

        rownames(results)         <- c(model,names(theta)) 

        Likelihood                <- -est$value 

        AIC                       <- -2*Likelihood + 2*(length(model)+6) 

        # print(results,digits=3) 

        res_log_cholesky_parametrization <- results 

        ############ Matrix omega ###################### 

        omega              <- matrix(0,3,3) 

        omega[1,1]         <- exp(est$par[length(model)+1]) 

        omega[2,1]         <- est$par[length(model)+2] 

        omega[3,1]         <- est$par[length(model)+3] 

        omega[2,2]         <- exp(est$par[length(model)+4]) 

        omega[3,2]         <- est$par[length(model)+5] 

        omega[3,3]         <- exp(est$par[length(model)+6]) 

        omega              <- tcrossprod(omega) 
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        colnames(omega)    <- c("O2011", "O2012", "OC") 

        rownames(omega)    <- c("O2011", "O2012", "OC") 

        vech_omega         <- vech(omega) 

        ############ Method of delta to compute the standard error of sigma 

################## 

        vcov_theta         <- 

vcov_est[(length(model)+1):(length(model)+6),(length(model)+1):(length(model)+6)] 

        f_a <- function(x){ 

            a <- exp(2*x[1]) 

        } 

        f_b <- function(x) x[2]*exp(x[1]) 

        f_c <- function(x) x[3]*exp(x[1]) 

        f_d <- function(x) x[2]^2 + exp(2*x[4]) 

        f_e <- function(x) x[2]*x[3] + x[5]*exp(x[4]) 

        f_f <- function(x) x[3]^2 + x[5]^2 + exp(2*x[6]) 

         

        d_a <- grad(f_a,x=est$par[(length(model)+1):(length(model)+6)]) 

        d_b <- grad(f_b,x=est$par[(length(model)+1):(length(model)+6)]) 

        d_c <- grad(f_c,x=est$par[(length(model)+1):(length(model)+6)]) 

        d_d <- grad(f_d,x=est$par[(length(model)+1):(length(model)+6)]) 

        d_e <- grad(f_e,x=est$par[(length(model)+1):(length(model)+6)]) 

        d_f <- grad(f_f,x=est$par[(length(model)+1):(length(model)+6)]) 

         

        se_omega <- function(d,v){ 

            ecart <- sqrt(t(d)%*%v%*%d) 

            return(ecart) 

        } 

        ecart_omega    <- rep(0,6) 

        ecart_omega[1] <- se_omega(d_a,vcov_theta) 

        ecart_omega[2] <- se_omega(d_b,vcov_theta) 

        ecart_omega[3] <- se_omega(d_c,vcov_theta) 

        ecart_omega[4] <- se_omega(d_d,vcov_theta) 

        ecart_omega[5] <- se_omega(d_e,vcov_theta) 

        ecart_omega[6] <- se_omega(d_f,vcov_theta) 

        ###################################### 

        parms[(length(model)+1): 

                  (length(model)+6)]  <- vech_omega 
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        se[(length(model)+1): 

               (length(model)+6)]     <- ecart_omega 

        t                         <- parms/se 

        pval                      <- 2*(1-pt(abs(t),nrow(data)- length(model)- 6 +1)) 

        results                   <- cbind(parms,se,t,pval) 

        colnames(results)         <- c("coef","se","t","pvalue") 

        rownames(results)         <- c(model, 

"omega_11","omega_21","omega_31","omega_22","omega_32","omega_33") 

        ################################ Population Trips 

############################### 

        lambda          <- 0 

        for (i in 1:nn.ind) { 

            X           <- as.matrix(mydata_list[[i]]$X) 

            lambda      <- lambda + exp(X%*%as.matrix(est$par[1:length(model)]))/nn.ind 

        } 

        mean_trip_pop              <- lambda*exp(0.5*diag(omega)) 

        mean_trip_on_site          <- c(mean_trip_pop[1],1,mean_trip_pop[3])+ 

mean_trip_pop[2]*c(exp(omega[2,1])-1,exp(omega[2,2]),exp(omega[2,3])-1) 

        colnames(lambda)           <- "Pop_Mean_Trips" 

        rownames(lambda)           <- c("OB2011","OB2012", "CB") 

        colnames(mean_trip_pop)    <- "Pop_Mean_Trips" 

        rownames(mean_trip_pop)    <- c("OB2011","OB2012", "CB") 

         

        return(list(res_log_cholesky_parametrization  =  res_log_cholesky_parametrization, 

                    res_omega                         =  results, 

                    loglikelihood                     =  Likelihood, 

                    lambda                            =  lambda, 

                    mean_trip_pop                     =   mean_trip_pop, 

                    mean_trip_on_site                 =  mean_trip_on_site, 

                    AIC                               =  AIC)) 

    } 
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    # Coded by Art B. Owen, Stanford University. 

    # April 2017 

    # 

    rhalton <- function(n,d,n0=0,d0=0,singleseed,seedvector){ 

        # 

        # Randomly scrambled Halton sequence of n points in d dimensions. 

        # 

        # If you already have n0 old points, set n0 to get the next n points. 

        # If you already have d0 old components, set d0 to get the next d inputs. 

        # Get points n0 + 0:(n-1) in dimensions d0 + (1:d) 

        # 

        # seedvector = optional vector of d0+d random seeds, one per dimension 

        # singleseed = optional scalar seed (has lower precedence than seedvector) 

        # Handle input dimension correctness and corner cases 

        if( min(n0,d0) < 0 ) 

            stop(paste("Starting indices (n0, d0) cannot be < 0, input had (",n0,",",d0,")")) 

        if( min(n,d) < 0 ) 

            stop(paste("Cannot have negative n or d")) 

        if( n==0 || d==0 ) # Odd corner cases: user wants n x 0 or 0 x d matrix. 

            return(matrix(nrow=n,ncol=d)) 

        D <- nthprime(0,getlength=TRUE) 

        if( d0+d > D ) 

            stop(paste("Implemented only for d <=",D)) 

        # Seed rules 

        if( !missing(singleseed) && length(singleseed) != 1 ) 

            stop("singleseed, if supplied, must be scalar") 

        if( !missing(seedvector) && length(seedvector) < d0+d ) 

            stop("seedvector, if supplied, must be have length at least d0+d") 

        if( missing(seedvector) && !missing(singleseed) ) 

            seedvector <- singleseed + 1:(d0+d) - 1 

        # Generate and return the points 

        ans <- matrix(0,n,d) 

        for( j in 1:d ){ 

            dimj <- d0+j 

            if( !missing(seedvector) )set.seed(seedvector[dimj]) 

            ans[,j] <- randradinv( n0 + 0:(n-1), nthprime(dimj) ) # zero indexed rows 

        } 



37 

 

        ans 

    } 

    randradinv <- function(ind,b=2){ 

        # Randomized radical inverse functions for indices in ind and for base b. 

        # The calling routine should set the random seed if reproducibility is desired. 

        if(any(ind!=round(ind))) 

            stop("Indices have to be integral.") 

        if(any(ind<0)) 

            stop("Indices cannot be negative.") 

        if(!(is.vector(b) && length(b)==1 && b==floor(b) && b>1)) 

            stop("b must be a single integer >= 2") 

        b2r <- 1/b 

        ans <- ind*0 

        res <- ind 

        while( 1-b2r < 1 ){ # Assumes floating point comparisons, fixed precision. 

            dig <- res %% b 

            perm <- sample(b)-1 

            pdig <- perm[1+dig] 

            ans <- ans + pdig * b2r 

            b2r <- b2r/b 

            res <- (res - dig)/b 

        } 

        ans 

    } 

    nthprime <- function(n,getlength=FALSE){ 

        # Get the n'th prime, using a hard coded list (or get the length of that list). 

        # First fifty-eight prime numbers from OEIS A000040, April 2017 

        primes <- c( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 

                     31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 

                     73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 

                     127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 

                     179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 

                     233, 239, 241, 251, 257, 263, 269, 271) 

        # First 1000 prime numbers from primes.utm.edu/lists/small/1000.txt, April 2017 

        primes <- c( 

            2, 3, 5, 7, 11, 13, 17, 19, 23, 29 

            , 31, 37, 41, 43, 47, 53, 59, 61, 67, 71 
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            , 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 

            , 127, 131, 137, 139, 149, 151, 157, 163, 167, 173 

            , 179, 181, 191, 193, 197, 199, 211, 223, 227, 229 

            , 233, 239, 241, 251, 257, 263, 269, 271, 277, 281 

            , 283, 293, 307, 311, 313, 317, 331, 337, 347, 349 

            , 353, 359, 367, 373, 379, 383, 389, 397, 401, 409 

            , 419, 421, 431, 433, 439, 443, 449, 457, 461, 463 

            , 467, 479, 487, 491, 499, 503, 509, 521, 523, 541 

            , 547, 557, 563, 569, 571, 577, 587, 593, 599, 601 

            , 607, 613, 617, 619, 631, 641, 643, 647, 653, 659 

            , 661, 673, 677, 683, 691, 701, 709, 719, 727, 733 

            , 739, 743, 751, 757, 761, 769, 773, 787, 797, 809 

            , 811, 821, 823, 827, 829, 839, 853, 857, 859, 863 

            , 877, 881, 883, 887, 907, 911, 919, 929, 937, 941 

            , 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013 

            , 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069 

            , 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151 

            , 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223 

            , 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291 

            , 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373 

            , 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451 

            , 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511 

            , 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583 

            , 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657 

            , 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733 

            , 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811 

            , 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889 

            , 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987 

            , 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053 

            , 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129 

            , 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213 

            , 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287 

            , 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357 

            , 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423 

            , 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531 

            , 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617 

            , 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687 
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            , 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741 

            , 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819 

            , 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903 

            , 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999 

            , 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079 

            , 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181 

            , 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257 

            , 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331 

            , 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413 

            , 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511 

            , 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571 

            , 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643 

            , 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727 

            , 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821 

            , 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907 

            , 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989 

            , 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057 

            , 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139 

            , 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231 

            , 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297 

            , 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409 

            , 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493 

            , 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583 

            , 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657 

            , 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751 

            , 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831 

            , 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937 

            , 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003 

            , 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087 

            , 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179 

            , 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279 

            , 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387 

            , 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443 

            , 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521 

            , 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639 

            , 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693 

            , 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791 
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            , 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857 

            , 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939 

            , 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053 

            , 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133 

            , 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221 

            , 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301 

            , 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367 

            , 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473 

            , 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571 

            , 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673 

            , 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761 

            , 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833 

            , 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917 

            , 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997 

            , 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103 

            , 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207 

            , 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297 

            , 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411 

            , 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499 

            , 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561 

            , 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643 

            , 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723 

            , 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829 

            , 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919 

        ) 

        p <- length(primes) 

        if( getlength ) 

            return(p) 

        if( any(n<1) ) 

            stop(paste(sep="","The n'th prime is only available for n >= 1, not n = ",min(n))) 

        if( any(n>p) ) 

            stop(paste(sep="","The present list of primes has length ",p, 

                       ". It does not include the n'th one for n = ",max(n),".")) 

        return(primes[n]) 

    } 
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setwd("C:/Users/REE/Documents/Project/Multivariate_Poisson_Log_Normal_model/Paper_r

evision/on_site") 

        source("fun_MPLN.R") 

        library(OpenMx) 

        library(parallel) 

        library(stats) 

        library(MASS) 

        library(readxl) 

        library(numDeriv) 

        model_const                <- c("const") 

 

        model_1_resident           <- c("const","t_cost", 

                                        

"barceloneta","bogatell","sabanell","blanes","g_palamos","de_la_fosca", 

                                        "RP", "OWF", 

                                        "imp_swim","imp_nautical","men","age", "nb_size","h_income") 

        model_2_resident           <- c("const","t_cost", 

                                        

"barceloneta","bogatell","sabanell","blanes","g_palamos","de_la_fosca", 

                                        "RP",  

                                        "HF_B", "HN_B" , "LN_B" , 

                                        "imp_swim","imp_nautical","men","age", "nb_size","h_income") 

        model_1_tourist            <- c("const","t_cost", 

                                        

"barceloneta","bogatell","sabanell","blanes","g_palamos","de_la_fosca", 

                                        "RP", "OWF", 

                                        "local_tourist", "paid_accom",  

                                        "imp_swim","imp_nautical","men","age", "nb_size","h_income") 

        model_2_tourist            <- c("const","t_cost", 

                                        

"barceloneta","bogatell","sabanell","blanes","g_palamos","de_la_fosca", 
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                                        "RP",  

                                        "HF_B", "HN_B" , "LN_B" , 

                                        "local_tourist", "paid_accom",  

                                        "imp_swim","imp_nautical","men","age", "nb_size","h_income") 

        y                         <- c("trips") 

         

        # Upload and treatment of data    

        #data                     <- read_excel("ResidentsOwf.xlsx") 

        data                      <- read_excel("TouristsOwf.xlsx") 

        mydata                    <- data[order(data$id,data$time),]  

        res                       <- estim(mydata=mydata, y=y, model = model_1_tourist, rdraw = 

1000, on_site=TRUE, pseudo_draw=FALSE, numscore=3) 

 

 

 

 




