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In his seminal paper, Bretherton [J. Fluid Mech., 10:166 (1961)] studied the motion of long
bubbles in capillary tubes, a situation encountered in many two-phase flow systems. Here, we unveil
experimentally and numerically the negative configuration, wherein a long liquid drop formed by the
rupture of a liquid plug is stably transported in a capillary tube and surrounded by a flow-induced
air cushion. After a careful theoretical and numerical analysis of the drop formation process, we
show that the shape of the drop and lubricating air film is reminiscent of Bretherthon’s calculation
and can be inferred from an adapted analytical theory. This work opens tremendous perspectives
for drop fast transport in microfluidic systems without walls contamination and friction.

In his 1961 seminal paper [1], Bretherton studied ex-
perimentally and theoretically the motion of long bubbles
in capillary tubes in the limit of creeping flows, i.e. at
low Reynolds and capillary numbers. This apparently
academic configuration was first explored in millimetric
tubes at very low flow rates or with highly viscous fluids.
Then, the emergence of microfluidics [2, 3] led to some
renewed interest in Bretherton’s theory, owing to its rel-
evance to various two-phase flow configurations at small
scales, including bubbles [1, 4, 5], plugs [6–11] and foam
[12–14] dynamics in capillary tubes. Moreover, his theory
was extended later on to a larger range of flow parame-
ters, e.g. larger capillary and Reynolds numbers [15, 16],
more complex tube geometry [17–19], or non-Newtonian
embedding liquids [20, 21].

In this paper, we investigate experimentally, theoreti-
cally and numerically the negative of Bretherton’s con-
figuration, i.e. a long liquid drop moving in an air-filled
tube, whose contact with the walls is prevented by a self-
induced air cushion. First, we show experimentally and
numerically that these levitating drops can be formed
by pushing a liquid plug inside a microfluidic channel at
a capillary number large enough to induce an inversion
of the meniscus with a radius of curvature smaller than
the radius of the tube. Second, we develop an analyt-
ical model that is able to recover the shape and thick-
ness of the air lubricating film at walls in the limit of
low (air) capillary numbers. Finally we explore a larger
set of parameters and draw a phase diagram delimiting
the regimes in which long levitating droplets are formed.
While systems designed to synthesize bubbles or drops in
liquids are ubiquitous in microfluidics [22–24], the forma-
tion of long levitating drop in air has only been reported
in superhydrophobic channels [25], wherein contact with
the walls is prevented by the specific surface treatment.
This work provides a simple way to generate long drops
of controlled length stably propagating in regular tubes,
that may serve in digital microfluidics to transport liq-
uids without any wall contamination.
Methods and results: Experimentally, a long levi-

tating drop is synthesized inside a capillary tube of radius
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FIG. 1: Transition from a liquid plug to a long levitation
drop. a) Scheme of the experimental device. (b) Snapshot
of an experiment: a 100 cST silicone oil liquid plug of length
19 mm is pushed inside a capillary tube of radius R = 0.5 mm
by a constant flow of air (Q = 11 mL/min) with a syringe
pump, leading to a velocity of the rear interface U of 0.6 ms−1

(corresponding to a capillary number Cla = µlU
σ

= 2.8, with
µl the liquid dynamic viscosity and σ the surface tension).
Image 0 shows the initial plug shape before actuation. Image 1
(t = 0 ms) shows the deformed rear interface and the inverted
front interface when the plug is pushed by a flow of air. Image
2 (t = 0.6 ms) shows the evolution of the liquid plug and the
appearance of a thin film of air surrounding the liquid at
the front of the plug. Image 3 shows (t = 2.3 ms) the drop
detachment and Image 4 shows the detached long liquid drop
stably propagating in the tube.(c) Numerical simulation of the
previous experiment with the same flow parameters: black is
silicone oil, white is air.

R = 0.5 mm (i) by injecting with a needle a controlled
amount of silicone oil in the tube leading to the formation
of a liquid plug as depicted on Fig. 1.a and (ii) by pushing
this liquid plug with a large constant air flow rate Q in
the range [1 mL/min, 50 mL/min]. The tubes were care-
fully cleaned prior to experiments with acetone, isopropyl
alcohol and dichloromethane. The plug and then droplet
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evolution is recorded at 10000 or 15000 frames per sec-
ond with a high speed camera (Photron SA3) mounted
on a Leica Z16 macroscope (Fig. 1.a and supplementary
movie M1). At rest (Image 0), the plug front and rear
menisci are two opposite half-sphere tangent to the walls,
which fulfill both Young-Laplace law (leading to spherical
liquid/air interfaces) and the perfectly wetting condition
of silicone oil on the walls (leading to a 0◦ contact an-
gle). Then, a flow rate sufficient to induce an inversion of
the curvature of the front interface with a radius of cur-
vature smaller than the tube radius is imposed (Image
1). This leads to the formation of a thin air film sur-
rounding the front part of the liquid plug as evidenced
by the greyer color of the liquid (indicating that the liq-
uid is no more contacting the walls). The thin film of
air extends progressively downward the plug (Image 2)
until it contacts the rear interface of the plug (Image 3)
leading to the detachment of the drop, which then prop-
agates stably in the tube (Image 4). The shape of the
drop evokes the shape of Bretherton’s bubble [1], with
a phase inversion. Note that to improve the repeata-
bility of the experiments and ease the comparison with
the simulations (avoid contact line problems), the walls
were prewetted prior to the experiments, by injecting a
liquid plug inside the channel and pushing it with a low
constant flow rate Q = 4.5µL/min (corresponding to a
low capillary number Cla ≈ 4.6× 10−4 leading to the de-
position on the walls of a thin liquid film of controlled
thickness [1, 9] hp = 0.643R

(
3Cla
)2/3 ≈ 4µm, with R

the radius of the capillary tube, Cla = µlU
σ the capillary

number of the liquid comparing viscous effects to surface
tension ones, µl the liquid dynamic viscosity and U the
speed of the rear interface of the plug.

Numerically, the same dynamics (Fig. 1.c) is simu-
lated in a 2D axisymmetric configuration with a Vol-
ume of Fluid Method (VOF) [26] implemented in the
open-source code OpenFOAM solving the following set
of equations:

∇ · u = 0

∂tρu +∇ · (ρu⊗ u) = ρg −∇ (p) + µ∆ (u) + σκnδS

∂tα+∇. (αu) = 0

ρ = αρl + (1− α) ρg ; µ = αµl + (1− α)µg

where σ is the surface tension, µi and ρi the viscosity and
density of the phase i, (i = l for the liquid and g for the
gas), u the fluid velocity, p the dynamic pressure and g
the gravitational acceleration. α is a phase marker equal
to 0 in the liquid and 1 in the gas. The interface be-
tween the two fluids thus corresponds to α ∈ ]0 ; 1[. The
term taking into account the effects of surface tension is
σκnδS , with δ the chronecker symbol, equal to 1 on the
interface. This modeling was introduced by Brackbill et
al. [27] and called the Continuum Surface Force (CSF)
model. Since the Volume of Fluid method is known to

generate parasitic currents [28–30], i.e. spurious hydro-
dynamic vortices close to the interface, a restrictive time
step was imposed to guarantee the stability of this par-

asitic flow [31] ∆t ≤ max

(
0.1
√

ρ∆x3

σ
; 10µ∆x

σ

)
, with ∆x

the characteristic length of a mesh cell. We also imple-
mented an adaptive mesh in the code. Indeed, the correct
calculation of the flow close to the walls and interfaces
requires a refined mesh for the sake of precision. Without
adaptive mesh, the calculation cost would be prohibitive.
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FIG. 2: (a) Numerical evaluation of the front interface cur-
vature Rcurv of the front interface of a liquid plug divided by
the tube radius R as a function of the capillary number Cla
(at constant Ohnesorge number Oh = 0.4). When the radius
of curvature exceeds the tube radius (snapshot (b)), spher-
ical droplets are formed when the plug ruptures. When it
becomes smaller than the tube radius (above a critical cap-
illary number), a thin film of air appears between the plug
and the walls (snapshot (c)) leading to the formation of an
anti-Bretherton drop. (b) Snapshot of numerical simulation:
Cla = 0.7, Oh = 0.4 (c) Snapshot of numerical simulation:
Cla = 1.5, Oh = 0.4

Transition from liquid plug to long levitat-
ing drop: The dynamics of liquid plugs in perfectly
wetting channels has been widely studied experimen-
tally [8, 9, 32], numerically [33–35] and theoretically [6–
8, 10, 11, 36]. From a theoretical perspective, a liquid
plug can be seen as a bridge of liquid trapped between
two semi-infinite air bubbles. Hence, the laws of deforma-
tion of the front (respectively rear) interface of a liquid
plug can be inferred from corresponding laws derived for
the deformation of the rear (respectively front) interface
of long bubbles [1, 4, 37, 38]. Nevertheless, most studies
have been conducted in the analytically tractable low or
intermediate [15, 16] capillary number limit, wherein the
curvature sign of the meniscus is not changed.
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Hoffman [39] studied experimentally the evolution of
the front meniscus of an advancing liquid finger on a large
range of liquid capillary number (ranging from ≈ 4×10−5

to ≈ 35). He reported an evolution of the apparent con-
tact angle from ≈ 5◦ to ≈ 180◦, corresponding to an in-
version of the front meniscus curvature from C ≈ −2/R
to C ≈ 2/R (with R the radius of the tube). This
behaviour was rationalized later on by Boender et al.
[40] with approximate analytical models. Here we show
both experimentally (Fig. 1b) and numerically (Fig 2a,c)
that when the capillary number exceeds the critical cap-
illary number Cla,crit at which the radius of cuvature be-
comes equal to the tube radius R (or more precisely
R− hp in this paper owing to the existence of a prewet-
ting film), this latter continues to decrease (while more
slowly) through the appearance of a thin film of air which
fills the gap between the front meniscus and the walls
(Fig. 2c) . The appearance of this film of air is the key
ingredient toward the formation of long levitating drops
from the fast dynamics of liquid plugs. Indeed, this film
of air extends progressively backward (Fig. 1b) until it
reaches the back of the drop, hence provoking its detach-
ment. Interestingly, this deposition of a thin film of air
behind the drop front interface is reminiscent of the de-
position of a thin film of liquid behind the front interface
of a bubble predicted by Bretherthon’s theory, but with
a phase inversion.
Thin air film thickness prediction: anti-

Bretherton. Since these two configurations share some
similarities, we derived a model to evaluate the thick-
ness of the air film as a function of the capillary num-
ber by following a similar procedure as the one proposed
by Bretherton. First, it is important to stress out that
two capillary numbers are involved in this problem: one
based on the gaseous phase Cga = µgU/σ and one based
on the liquid Cla = µlU/σ of course proportional to each
other, Cga = µg/µl Cla, with a constant depending on the
gas and liquid viscosity ratio. The condition for the for-
mation of an Anti-Bretherton drop from a liquid plug
imposes that Cla > Cla,crit ∼ O(1), since viscous stresses
must overcome surface tension to induce an inversion of
the front interface up to a point wherein the radius of
curvature becomes smaller than the radius of the tube.
On the other hand, the thickness of the film of air ap-
pearing behind the drop front interface relies on the cap-
illary number in the air Cga . This capillary number re-
mains small (Cga ∈

[
10−4 ; 10−2

]
) in all the simulations

and experiments provided in this paper, as well as the
Reynolds number associated to the flow in the air film
(Rge ∈

[
10−3 ; 2

]
). Hence, the classic lubrication ap-

proximation can be used to describe the flow in the thin
air film: {

∂xpg = µg∂
2
yyux

∂ypg = 0
⇒ dp

dx
= µ

d2ux
dy2

(1)

with ux and pg the longitudinal velocity and pressure

Air film thickness haa) 

b) 

FIG. 3: a. Simulation showing a long levitating drop mov-
ing in a capillary tube and separated from the walls by a
thin air film of thickness ha b. Evaluation of the thickness
of the air film ha as a function of the air capillary number
Cga . Triangles: numerical simulation. Cyan continuous line:
adapted Bretherton theory for levitating drops. Blue dashed
line: Bretherton’s theory for bubbles.

in the air film. Owing to the large difference of vis-
cosity between the fluid and the air, the thin prewet-
ting film of liquid on the walls can be considered at rest
and the velocity inside the detaching drop can be con-
sidered as constant. This approximation is confirmed
by the numerical simulations. Hence, in the drop frame
of reference, the boundary conditions at the walls (or
more precisely a the prewetting film surface) becomes:
ux (y = 0) = −U with U the drop speed, while at the
interface between the film and the drop, i.e. at y = h(x),
we have ux(h(x)) = 0 where h(x) denotes the thickness of
the air film. The normal stress balance at the drop inter-
face gives: p = −σ

(
1
R + d2h(x)

dx2

)
, with p = pg−pl, where

pg and pl are the pressures in the gas and liquid phase re-
spectively. Finally, the mass conservation in the air film
gives:

∫ h(x)
0

uxdy = −UH, with H, the constant thick-
ness of the film far from the drop front meniscus. The
only difference with the equations derived by Bretherton
is the boundary condition at y = h(x), which for a drop
(present case) is an adherence condition ux(h(x)) = 0,
while for a bubble is a zero stress condition. The com-
bination of these equations with the change of variable
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x = H (12 Cga)
−1/3

ξ and h(x) = Hψ, leads to the cele-
brated Landau-Levich equation [1, 41]:

d3ψ

dξ3
=
ψ − 1

ψ3
(2)

This equation coincides with the one obtained by
Bretherton, except from the coefficient in the change of
variable x = H (12 Cga)

−1/3
ξ, which is 12 instead of 3 for

a bubble. Hence, we can infer the thickness of the film of
air from the solution obtained by Bretherton by a simple
change of cofficient:

ha
R

= 0.643 (12 Cga)
2/3 (3)

The validity of this analytical expression was verified
through the comparison with numerical simulations of
the dynamics of long drops in capillary tubes resulting
from the rupture of a liquid plug at high liquid capillary
numbers (Fig. 3). The thickness of the film was measured
in the flat part of the drop away from the menisci, once it
reaches a stable shape. The results of the simulation are
represented on Fig. 3 (triangles) and compared with both
the present analytical expression (cyan continuous line)
and the one obtained by Bretherton for bubbles (purple
dashed line). The analytical expression obtained is in ex-
cellent agreement with the simulations in the limit of low
capillary numbers Cga < 3×10−3 and differs, as expected,
from the simulations for larger capillary numbers [15].
Phase diagram: We further investigated experimen-

tally and numerically the regimes leading to the forma-
tion of long anti-Bretherton drops, on a large set of pa-
rameters. Since the 3 effects at stake are viscous, iner-
tial and capillary effects, a phase diagram can be plotted
as a function of two dimensionless numbers: the cap-
illary number Cla = µlU/σ and the Ohnesorge number
Oh = µl/

√
ρlσR (see Fig. 4). The Ohnesorge num-

ber compares viscous effects stabilizing an interface to
the geometric average of desabilizing inertial and capil-
lary effects. In the range of capillary number sufficient
to have an inversion of the front interface curvature, 3
regimes can be observed (see Fig. 4 and movie M2): (i)
A regime named "Standard Break-up" (SB) wherein the
liquid plug becomes thinner and thinner until it breaks
with no droplet production. This regime occurs when the
radius of curvature of the front interface remains larger
than the tube radius. (ii) An intermediate regime named
"Droplet Ejection" (DE) wherein a small drop is ejected
occuring when the front interface radius of curvature is
almost equal to the tube radius. And finally (iii) the
"Anti-Bretherton" large drop production regime leading
to the production of long droplet separated from the tube
walls by a thin air film. This regime (as discussed before)
occurs when the radius of curvature of the front interface
becomes smaller than the tube radius.
Conclusion: In this paper we study experimentally,

theoretically and numerically the dynamics of large drops

AB: Anti-bretherton 

AB (Exp)

AB (Num)

SB (Exp)

SB (Num)

DE (Exp)

DE (Num)

SB: Standard break-up

SB regime

DE regime

AB regime

DE: Droplet ejection

FIG. 4: Phase diagram summarizing the regimes observed
experimentally and numerically for different Capillary and
Ohnesorge numbers. Standard Break-up (SB): the plug
breaks from the center with no plug formation. Droplet ejec-
tion (DE): a spherical drop is ejected at the center of the
channel. Anti-Bretherton (AB) a long levitating drop sepa-
rated from the walls by an air cushion is formed (see Movie
M2).

levitating in a capillary tube, produced by the rupture of
a liquid plug. We show that the production of these large
drops occurs when the radius of curvature of the front in-
terface of the liquid plug becomes smaller than the tube
radius leading to the appearance of a thin air film be-
tween the plug and the walls, propagating downward the
plug. The drops shape are reminiscent from the one of
long bubble propagating in a liquid filled tube and can
be inferred from Bretherton’s model with inverted phases
and adapted boundary conditions. This work opens per-
spective for high speed transport of droplets in tubes with
no wall contamination.
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