N

N

A CORBA based platform as communication support
for synchronous Collaborative Virtual Environment
Stéphane Louis Dit Picard, Samuel Degrande, Christophe Gransart

» To cite this version:

Stéphane Louis Dit Picard, Samuel Degrande, Christophe Gransart. A CORBA based platform as
communication support for synchronous Collaborative Virtual Environment. 2001 international work-
shop on Multimedia middleware, Oct 2001, Ottawa, Canada. pp.56-59, 10.1145/985135.985153 .
hal-02492256

HAL Id: hal-02492256
https://hal.science/hal-02492256
Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02492256
https://hal.archives-ouvertes.fr

A CORBA BASED PLATFORM AS COMMUNICATION
SUPPORT FOR SYNCHRONOUS COLLABORATIVE
VIRTUAL ENVIRONMENT

Stéphane Louis Dit
Picard

Université des Sciences et
Technologies de Lille
Laboratoire d’Informatique
Fondamentale de Lille
59655 Villeneuve d'Ascq
cedex, FRANCE

louisdit @lifl.fr

ABSTRACT

This paper describes the use of CORBA middleware to sup-
port communication in a 3D synchronous Collaborative Vir-
tual Environment called SPIN-3D: users interact simultane-
ously and work together on 3D shared objects. Shared ob-
jects are duplicated: each participant owns a copy of each
shared object and our CORBA based platform allows to
synchronize their state and to manage the session. Our
platform supports two ways of commaunication: one using a
remote method invocation mechanism for “one shoot” com-
munication, and one other using streaming with CORBA
for “flooding” communication.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distribu-
ted Systems—distributed applications; H.5.3 [Information
Interfaces and Presentation]: Group and Organization
Interfaces—collaborative computing, computer-supported co-
operative work; 1.3.7 [Computer Graphics]: Three-Dimen-
sional Graphics and Realism— Virtual Reality

General Terms
Communication Platform Design using CORBA Middleware

Keywords

CVE, multi-user virtual world, CORBA, MIOP, reliable mul-
ticast, multimedia streaming service

1. INTRODUCTION

Taking advantage of the rapid growth of the Internet and of
the Virtual Reality technology, many Collaborative Virtual

Samuel Degrande
Université des Sciences et
Technologies de Lille
Laboratoire d’'Informatique
Fondamentale de Lille
59655 Villeneuve d’Ascq
cedex, FRANCE

degrande @Iifl.fr

Christophe Gransart
Université des Sciences et
Technologies de Lille
Laboratoire d’'Informatique
Fondamentale de Lille
59655 Villeneuve d’Ascq
cedex, FRANCE

gransart @|ifl.fr

Environments (CVEs) emerge. CVEs place several users in
a virtual world where they can interact with objects and
each other. Synchronous CVEs provide users with the il-
lusion that they work simultaneously: it involves the same
notions as in real-life such as collaboration, communication
and interaction. A CVE platform requirements are [9]:

e support for multiple participants: participants should
not only visit the environment but also collaborate,
communicate and interact with each other.

e data distribution and management: to achieve accept-
able video frame rates, client-server data sharing is the
most common approach. Each participant must have
a local copy of each shared object: the CVE platform
must provide a layer to manage and to synchromnize the
state of these duplicated objects.

¢ event notification and network communication: mech-
anisms must be provided to notify clients of events
(these can be object events, such as an object state
modification, or session management events, such as
entering or leaving a session). It must provide efficient
communication protocols to avoid network lag and to
maintain the interactive feeling in the shared virtual
space.

e scalability: multiple users are able to join the collabo-
rative session without seriously degrading the quality
of service.

In a multi-user virtual world, objects are duplicated on se-
veral computers. These objects are characterized by fields
such as color, position, etc. An object is shared through the
sharing of its characteristic fields. Previous CVE platforms
such as MASSIVE [5] or DIVE [2] used their own communi-
cation layer for the events notification. The newest Common
Object Request Broker Architecture (CORBA) [11] specifi-
cations provide several capabilities to support the develop-
ment of Virtual Environments. Some approaches [15] use
the event service as a method to deliver changes to sev-
eral clients. The mechanism of observer-observable allows

to keep a client-server architecture, the server manages the
virtual environment and notify the clients of any change.
The main problem of such a solution is scalability: perfor-
mance decreases when the number of clients increases. A
solution to solve this problem is to sub-divide the virtual
space [15]. As a client/server architecture introduces net-
work lag, it i1s a problem for the interactive feeling: in a
CVE, the interaction must be in real-time in order to not
disturb user during collaborative action. Our approach is to
use multicast communication for scalability, and multicast
real-time streaming in order to keep the interactive feeling.
As the communications are made in multicast, our platform
gets rid of a centralized server.

2. THE DESIGN OF OUR PLATFORM

Our platform involves several services, e.g. a lock service
in order to ensure that, at the same time, only one user
has the access to an object, or a dynamic loading service
in order to connect new objects during the session. In this
paper, we present only the multicast CORBA based com-
munication layer. We have duplicated objects onto several
computers: we must synchronize their state. Our platform
provide two ways for updating the remote copies of objects:
the first for a simple update (i.e. one shoot modification),
this is ensured by the use of a remote method invocation
mechanism; the second for several updates in a short time
(i.e. streaming communication): this is ensured by the use
of multicast streams set by a stream management service.

2.1 Multicast ORB Mechanism

The CORBA standard {11] proposed by the Object Man-
agement Group (OMG) specifies a protocol, called General
Inter-ORB Protocol (GIOP), to describe messages. This
high level protocol defines: a Common Data Representation
(CDR) to map IDL types to network representation, an In-
teroperable Object Reference (IOR) to point to an object
and a message format (request, reply, etc). CORBA needs
a transport layer to carry GIOP messages. So the OMG
also specifies a unicast transport layer called IIOP (Inter-
net Inter-ORB Protocol) which uses TCP/IP. In IIOP, each
method invocation request is sent to exactly one server: an
ITOP reference points only one object.

2.1.1 Group Communications

In order to synchronize the state of an object with those
of its remote copies, we must be able to designate each
copy. As it shown in figure 1, to allow group communica-
tion with IIOP, we must know the reference of each remote
copy. However CORBA, through a multicast transport layer
called Multicast Inter-ORB Protocol (MIOP) [4, 12], allows
to call methods on several “identical” objects in one go: with
MIOP, the reference is a group reference, so it means that
several objects have the same reference. Each method call
on a multicast reference is executed on each computer which
has in memory an object with that reference. Currently, as it
uses UDP/IP, the MIOP communication layer (as specified
by the OMG in its RFP [12]) is designed for unreliable com-
munications and supports only oneway operations, i.e. there
is no return value and nor out parameters. As we must keep
the consistency between the CVEs (i.e. the state of each
shared object), we must provide a reliable communication
mechanism within MIOP.

reference 1 object t —» object 1
reference 2 |———>»| _ object 2 relerence » object 2
| | I
reference n }-————p»! objectn | | objecln

Figure 1: The notion of group with IIOP on the left
side, and with MIOP on the right side.

GIOP message
, Jz request /Ns“ge spliting into n packets
FSsage packaging (Giop) packet 1 packet2 |-+ | packein Packets inchuding MIOP 10R
i and GIOP message jragment
Transportpackageg (MIOP) @ o
l ' i Callects packets and
Packets colecior .
Network transport (UoPAP) retniids GIOP messages
GIOP message k——

physical network

Figure 2: On the left the multicast communication
stack, and on the right the GIOP message splitting.

2.1.2 Reliable Communications

At the transport level, a method invocation is one GIOP
message of any size which must be sent to objects using the
multicast reference. As it is shown in figure 2, each GIOP
message is split into several fragments for the transport: we
need to provide a reliable protocol which ensures that all
connected users receive all messages, namely, all packets of
all messages.

A first approach for reliable multicast is “the sender re-
emits pertodically each packet until receiving acknowledge-
ment messages from all receivers”. this is an ACK (Ac-
knowledgement) based protocol [8]. Such protocols can be a
solution to our problem but they create significant network
traffic.

A second approach is “the sender numbers each sent packet
with a unique number (incremental number), receivers de-
tect packets lost using the current received packet number
and the last recetved packet number, and a message is sent
to the sender in order to re-emit missing packets”: this is
a NACK (Non Acknowledgement) based protocol [7]. Such
protocols need an infinite flow of packets which is not our
case: we have a finished number of packets for each GIOP
message. We must receive all packets in order to reconstruct
all GIOP messages, and there is no way to detect the lost of
the last packet.

As we prefer NACK based protocols to ACK based proto-
cols for network traffic reasons, we adjust a NACK protocol
to support a limited number of packets. Each connected
computer must know the number of packets of each mes-
sage: this number is sent in the last packet, and this special
packet uses an ACK policy in order to ensure its reception.
The other remaining packets are sent using a NACK pol-
icy. Of course as it uses ACK policy for the last packet, we
need to know all connected users, using a group service and
a distributed algorithm. This work is not presented in this
paper. As we are in a small group context, we do not need
optimizations such as hierarchy trees [8].

2.1.3 Performances

To benchmark our Reliable MIOP (RMIOP) communication
layer, we have made some experiments:

e a file transfer between two computers using different
network bandwidths. It emphasizes that our multicast

transport layer over UDP/IP is as fast as TCP/IP for
one server and one client. When the number of clients
is multiplied by n, the global receipt time (from the
sender point of view) of the TCP/IP transport layer
is multiplied by n whereas the global receipt time of
reliable multicast transport layer is approximately the
same.

e asimple application where users can interactively chan-
ge the orientation of a 3D object over network. It
emphasizes the limitations of CORBA for animation:
each orientation modification corresponds to one re-
mote me-thod call, so it creates a great network traf-
fic. The number of layers between network layer (ob-
ject skeleton) and application layer (object implemen-
tation) creates problems for real-time interaction.

2.2 TheMultimedia Streams Management Ser-

vice over a Multicast ORB

As it is emphasized by our experiments, CORBA is unsuit-
able for flooding communication such as remote real-time
animations. A solution is to set multicast real-time streams
between duplicated objects: CORBA is a way to establish
these streams. Qur proposal is based on the Audio/Video
Streaming service [10, 13]: this OMG standard defines a
framework for the development of interoperable distributed
multimedia streaming applications. The key components are
the stream control protocol and the interface of the stream
control objects. A flow is considered as a continuous me-
dia transfer between multimedia devices. These flows can
be grouped together to form a stream. These streams are
terminated by stream endpoints that contain the flow end-
points. Virtual devices (VDev) consume or produce stream
data: they are a high level abstraction of multimedia de-
vices. The stream controller (StreamCtrl) is the key compo-
nent in the stream establishment protocol: it allows to bind
the VDev together. The standard provides flexible support
for differents kinds of multimedia services by offering a Light
and Full Profile specification: this offers to application de-
velopers two levels of streams management. For the Light
profile only the StreamEndpoint and StreamCtrl interfaces
are exposed, whereas for the Full profile, a greater degree of
control is provided as each flow interface within a stream is
exposed.

We adjust the standard to our distributed and multicast
architecture: we use the RMIOP communication layer in
order to set the streams in one go. As we are in a multicast
context, only oneway operations are supported: so the ne-
gotiation phase, as proposed by the standard, between the
virtual devices disappears. We are in the case of the Light
Profile: only the stream endpoints and the stream controller
expose their interface. Kach copy of a shared object is as-
sociated to a stream endpoint: a shared object implements
the VDev interface, and each stream endpoint can be as-
sociated with several shared objects. Stream endpoints are
duplicated, they represent a unique logical stream endpoint:
they are implemented with a multicast CORBA object. As
it is shown in figure 3, when a shared object estimates that
updates need to be done through a stream, the requester ob-
ject asks the stream controller to set a stream: it means that
each object copy must be connected to its associated stream
endpoint; this is made by the stream controller through a
multicast remote method invocation on the group of stream

) |
local core memote core
1. request_ connection{..} !2.1 conhect{...)
stream controlier
shared object Eireacn sndncie 2.2 copnect|(...) [siream endooint shared object
4 irk 0‘ 2.2 connect(..() .. link()
. I .
Relisble
poin ——”l i

fiow encpos! }‘ 3. ¢reatef...) MIOP 3, created...) flow endpoint]

Figure 3: The multicast stream setting protocol.

1. update

local “remote cora
2. local updatzﬁ ek 6. update m 5
shared objact shared obi . consume
bje '—1 3. produce data abject }‘_ data
flow endpoint fiow endpoint

A

4. sand data 4, recaive datal
4
< Multicast streams >

Figure 4: The multicast stream communication.

endpoints. The connection of the shared object to its res-
pective stream endpoint creates a flow endpoint: as it is
shown in figure 4, data are consumed or produced by the
shared object through this flow endpoint.

So the stream is set and data transmission can start. The
streams management is made by the stream controller: as
the stream endpoints are multicast CORBA objects, all op-
erations (creation, destruction, etc) are made in one go. The
stream controller can be implemented as a centralized ser-
vice running on a a server, to respect the architecture pro-
vided by the standard. Compared to the issues in multipoint
streams provided by the standard, the MIOP communica-
tion layer enables us to control all the stream endpoints in
only one go. As our platform is fully distributed (i.e. there
is no centralized server), we are studying the distribution of
the stream controller.

2.3 Implementation

We use the Orbacus ORB middleware [14] from Object Ori-
ented Concept (OOC) to implement our communication plat-
form. This middleware offers to developers a notion of com-
munication plug-in through a framework called Open Com-
munication Interface (OCI). Using this framework we can
develop new protocols such as a MIOP communication layer.
The reliable multicast protocol is implemented using C++
language over UDP/IP and is integrated into the MIOP
plug-in as an extension which we call RMIOP (Reliable-
MIOQOP): it is possible to switch dynamically between transfer
policies, reliable (RMIOP) or not (MIOP). With our imple-
mentation, it is also possible to use IIOP in order to point
a unique object.

The Audio/Video Streams service is also implemented in
C++ and uses the RMIOP communication layer for streams
management. The implementation provides a framework to
easily develop multimedia applications.

3. THE SPIN-3D CVE

SPIN-3D [3] is a 3D user interface for synchronous collabo-
rative work. Our interface is designed for small group meet-
ings such as distant learning or co-design situations. As it
is shown in figure 5, we propose a new spatial organization
taking advantage of the third dimension and a 3D interac-
tion model using two devices, one for designation and the
other for manipulation of objects. To support collaboration

B o i e I e e s v g e e h e s e e - N S SRR < . TSR . . s e) : : : A 227

Figure 5: A learning situation in SPIN-3D.

awareness, each user 1s represented on remote SPIN-3D by a
clone, a 3D representation of her/himself. We adopt a “con-
ference table” metaphor: users are located around a table
in a single virtual room. SPIN-3D uses the CORBA based
platform described above. It uses the Virtual Reality Model-
ing Language (VRML) to describe 3D objects [1}: a VRML
object is represented by several fields, and each field charac-
terizes the object, for example a light is characterized by its
color and its position. We improve the VRML with a multi-
user extension inspired by the work of the Living Worlds
group [6]. Of the implementation point of view, for a shared
VRML object, each of its fields is represented by a CORBA
object. The synchronization of the value of these fields is
made by our communication platform: when a change oc-
curs on a shared field (i.e. a CORBA object), the commu-
nication platform notifies its remote copies using one shoot
update (i.e. using remote method invocation mechanism)
or multiple updates (i.e. using the streaming service mecha-
nism). The platform chooses the way of notification by using
information contained in the VRML sharing description: for
each shared field, there is an attribute in order to specify how
the remote updates are made, the value of such an attribute
can be “action” or “animation”. So this is transparent for
the SPIN-3D programmers: they only specify this informa-
tion in the VRML sharing description; moreover they can
modify the notification type dynamically by changing this
attribute without any call to the communication platform.
This is useful for objects animations: an object is remotely
animated using streaming. Control operations on streams
(such as creation, destruction, etc) and data transport are
made transparently by the communication platform.

4. CONCLUSIONS

This paper presents the design of a CORBA based commu-
nication platform for synchronous CVE, It allows to share
data among several computers: the synchronization is made
by using multicast remote method invocation and multicast
real-time streams. CORBA and its newest specifications
such as MIOP and Audio/Streaming service provide a flex-
ible and efficient solution to many of the technical issues
in Virtual Environment platform. The aim of SPIN-3D is
to provide a platform with which it will be easy to develop
synchronous collaborative applications.

5. ACKNOWLEDGEMENTS

The research project reported here is supported by France
Télécom R&D (FT R&D) and the regional council of Nord-
Pas de Calais (FRANCE).

6. ADDITIONAL AUTHORS

Christophe Chaillou (USTL-LIFL) and Grégory Saugis
(FT R&D, email: gregory.saugis@francetelecom.fr)

7. REFERENCES
[1}] R. Carey, G. Bell, and C. Marrin. Iso/iec 14772-1:1997
virtual reality modeling language (vrml97).

www.vrml.org/Specifications/VRML97/.

[2] O. Carlsson and O. Hagsand. Dive - a platform for
multi-user virtual environments. Computer and
Graphics, 17(6):663-669, 1993.

3] C. Dumas, S. Degrande, G. Saugis, C. Chaillou, M.-L.
Viaud, and P. Plénacoste. Spin: a 3d interface for

cooperative work. Virtual Reality Society Journal,
1999.

[4] C. Gransart and J. M. Geib. Using an orb with
multicast ip. In PCS5’99 Parallel Computing Systems

Conference Proceedings, Ensenada, Mexico, August
1999.

[6] C. Greenhalgh and S. Benford. Massive, a
collaborative virtual environment for
tele-conferencing. ACM Transaction on Computer

Human Interaction, 2(3):239-261, September 1995.

(6] Living World Working Group. Making vrml 97
applications interpersonal and interoperable.
www.vrml.org/workinggroups/living-worlds/.

[7] T. Liao. Light-weight reliable multicast protocol
specification. Internet-Draft, draft-liao-lrmp-00.txt,
webcanal.inria.fr /lrmp/index.html, October 1998.

[8] J. C. Lin and S. Paul. Rmtp: a reliable multicast
transport protocol. In IJEEE INFOCOM’96
Conference Proceedings, pages 14141424, March 1996.

[9] B. MacIntyre and S. Feiner. A distributed 3d graphics
library. In SIGGRAPH’98 Conference Proceedings,
pages 361-370, Orlando, Florida, July 1998.

[10] S. Mungee, N. Surendran, and D. Schmidt. The design
and specification of a corba audio/video streaming
service. In HICSS-82 Hawaii International Conference
on System Sciences Conference Proceedings, Hawaii,
January 1999.

[11] OMG. The common object request broker:
Architecture and specification revision 2.3. OMG
Document formal/98-12-01, June 1999.

[12] OMG. Unreliable multicast inter-orb protocol request
for proposal. OMG Document orbos/99-11-14,
November 1999.

[13] OMG. Control and management of audio/video
streams specification. OMG Document

formal/2000-01-03, January 2000.

[14] OOC. The orbacus home page. www.ooc.com/ob/.

15]) S. Wilson, H. Sayers, and M. McNeill. Using corba
middleware to support the development of distributed
virtual environment applications. In WSCG’2001
Conference Proceedings, Plzen, Czech Republic,

February 2001.

