
HAL Id: hal-02492253
https://hal.science/hal-02492253

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VRML data sharing in the spin-3D CVE
Stéphane Louis Dit Picard, Samuel Degrande, Christophe Gransart,

Christophe Chaillou, Grégory Saugis

To cite this version:
Stéphane Louis Dit Picard, Samuel Degrande, Christophe Gransart, Christophe Chaillou, Grégory
Saugis. VRML data sharing in the spin-3D CVE. Seventh international conference on 3D Web tech-
nology, Feb 2002, Tempe, United States. pp.165-172, �10.1145/504502.504529�. �hal-02492253�

https://hal.science/hal-02492253
https://hal.archives-ouvertes.fr

VRML Data Sharing in the Spin-3D CVE

Stéphane Louis Dit Picard, Samuel
Degrande, Christophe Gransart, and

Christophe Chaillou
Université des Sciences et Technologies de Lille

LIFL - CNRS UMR 8022
59655 Villeneuve d’Ascq cedex, France

louisdit, degrande, gransart,
chaillou@lifl.fr

Grégory Saugis
France Télécom R&D - DIH/HDM/NEW

2 avenue Pierre-Marzin
22307 Lannion cedex, France

gregory.saugis@rd.francetelecom.com

ABSTRACT
In this paper, we present the design and implementation
of a VRML97 multi-user layer introduced in SPIN-3D, our
Distributed Collaborative Virtual Environment. The main
consideration of our multi-user extension is the ease of design
of multi-user objects from single-user standard VRML97 ob-
jects. Any standard VRML97 browser must at least display
the single-user content without taking account of the multi-
user description. Whereas other approaches use a VRML
node insertion mechanism, such as in Living Worlds, our
approach uses a substitution mechanism. And beneath our
multi-user extension, we use the Common Object Request
Broker Architecture to provide a network communication
layer for supporting the virtual meetings.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: 3D Graphics and Realism—
Virtual Reality ; H.5.3 [Information Interfaces and Pre-

sentation]: Group and Organization Interfaces—collabora-
tive computing, computer-supported cooperative work ; C.2.4
[Computer Communication Networks]: Distributed Sys-
tems—distributed applications

Keywords
Virtual Reality Modeling Language (VRML), Collaborative
Virtual Environment (CVE), Multi-User Technology, Com-
mon Object Request Broker Architecture (CORBA), Mul-
ticast Communication Platform

1. INTRODUCTION
In the past decades, traditional user interface evolved and

many Virtual Environments emerged due to the rapid growth
of the World Wide Web, the availability of powerful 3D
graphics accelerators for PCs and high speed network de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copyotherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
Web3D’02,February 24-28, 2002, Tempe, Arizona, USA.
Copyright 2002 ACM 1-58113-468-1/02/0002 ...$5.00.

vices (ISDN adapters and ADSL modems). At the begin-
ning, users were isolated in these virtual worlds since there
was no support for interaction between them. Nowadays,
Virtual Environments tend to become some kind of social
spaces, where each user can interact with objects as well as
with each other for collaborative activities purposes. This
leads to Collaborative Virtual Environments (CVEs). CVEs
are powerful tools for a wide range of applications: for
instance audio/video conference, co-design meeting or dis-
tance learning (e-learning).
The Virtual Reality Modeling Language version 2.0 [3] (cal-
led also VRML97) established a standard for the descrip-
tion of interactive 3D scenes in the World Wide Web. This
language becomes one of the key components of many Vir-
tual Environments since it allows users to create 3D inter-
active contents without particular programming skills. In-
deed, many authoring tools can produce VRML97 contents.
VRML97 does not currently provide any support for multi-
user virtual worlds. The Living Worlds working group [9]
tried to standardize different propositions (Blaxxun, Sony,
etc) in a unique multi-user extension: it focused on the inte-
gration of support for shared virtual worlds using facilities
within the VRML97 specification. The set of extensions pro-
posed by Living Worlds to support shared virtual worlds is
not easy to use and requires a deep knowledge of VRML97
specification as well as some programming skills. Other ap-
proaches such as VSPLUS [1] enhance the results produced
by Living Worlds by designing a multi-user technology for
non-programmers. In this case simplifications are made in
the creation of multi-user contents starting from single-user
contents.
Concerning the communication between the CVE instances,
a communication platform is defined. We have a communi-
cation platform underneath the VRML97 multi-user exten-
sion. This communication platform is responsible for data
distribution and management [13]: in order to achieve ac-
ceptable video frame rates, each browser has a local copy
of each shared object and the communication platform syn-
chronizes the state of these duplicated objects. Data are
exchanged between the computers that participate in the
collaborative session in order to maintain the overall coher-
ence of the duplicated objects. The platform has to provide
an efficient network communication mechanism in order to
avoid network lag and thus to maintain the interactive feel-
ing in the shared virtual space: in a CVE the feeling of

Figure 1: A learning situation in the SPIN CVE.

interactivity is very important in order to understand the
work of the other users.
This paper is organized as follows: in a first part, we review
the concepts involved in the SPIN-3D CVE; in a second part,
we review two VRML97 multi-user extensions, the Living
Worlds proposal and the VSPLUS proposal; in a third part,
we describe the VRML97 multi-user extension introduced
in the SPIN-3D CVE; and finally we present our multicast
CORBA based platform used for network communication
between different instances of SPIN-3D.

2. CONTEXT: THE SPIN-3D COLLABORA-
TIVE VIRTUAL ENVIRONMENT

In 1994, the project SPACE, funded by France Télécom
R&D and the Regional Council of Nord-Pas de Calais (Fran-
ce), aimed to define an interface for small group meetings
such as distant learning or co-design situations. A first plat-
form, called SPIN (SPace-INterface), was developed from
scratch. Several proposals have been made [5]: a new spatial
organization taking advantage of the third dimension, a 3D
interaction model using two devices, one for pointing and the
other for manipulating objects, and a three step interaction
mechanism (select, manipulate and deselect). The objects
of the virtual meeting are described with VRML and the
application places them in the interface. To support collab-
oration awareness, users are represented on remote SPINs by
clones, namely a 3D representation of themselves. We adopt
a “conference table” metaphor: users are located around a
table in a single virtual room. Each user organizes the meet-
ing documents inside her/his interface as she/he wants: only
documents are shared, not the whole scene. Figure 1 shows
a screen shot of the interface of SPIN. The project was pre-
sented in the French museum named “La Villette” for one
year [10].
However problems arose due to the fact that SPIN uses pro-
prietary standard protocols for communications, proprietary
formats for the interaction and for the multi-user descrip-
tion (actually these information are placed in different files),
and the system became too complex to program. Then we
decided to reorient the project in developing SPIN-3D. Our
aim is to propose a complete platform for synchronous col-
laborative work with which it would be easier to create any
collaborative application. We use VRML97 for the descrip-
tion (geometry, interaction and sharing) of the objects. We
provide a communication platform for the synchronization
of different instances of SPIN-3D and for the management of

the virtual place. SPIN-3D needs a special VRML97 browser
due to Computer Human Interface requirements (3D pointer
for designation, bounding boxes, shadows, and lightning ef-
fects missing in a standard VRML97 browser). SPIN-3D is
designed for an office usage: as it is impossible to integrate
all classical office applications, our platform provides an Ex-
ternal Application Interface which allows external applica-
tions to access to the objects of the interface. For instance,
a user can produce/modify documents with a specialized ed-
itor (for example, an HTML document with an HTML edi-
tor) and distribute them within the CVE. In a CVE such as
SPIN-3D, the different documents evolve during the meet-
ing: the sharing mode of each object can change, it can be
either private (i.e. the document is presented only in one
interface and the user works on it) or public (i.e. the docu-
ment is presented in all interfaces and several users discuss
about it and manipulate it).

3. OVERVIEW OF VRML97 MULTI-USER
EXTENSIONS

In this section we present two VRML97 multi-user ex-
tension: first, the Living Worlds multi-user extension that
attempts a standardization of a VRML97 multi-user exten-
sion, and second VSPLUS, a simplification of the Living
Worlds proposal. Both use the same paradigm: new nodes,
which have a network behavior described below, are added
into the existing VRML97 scene graph. It is what we call
an “insertion” mechanism. Multi-user worlds, that are de-
signed using these two extensions, are designed to work with
any standard VRML97 browser.

3.1 The Living Worlds Multi-user Extension
The Living Worlds group defined a conceptual framework

and specified a set of interfaces to support creation and evo-
lution of multi-user applications in VRML97 [9]. Since such
a framework only uses scripts and Java applets through the
External Authoring Interface (EAI), it is designed to work
with any standard VRML97 browser. The Living Worlds
proposal supports applications which are both:

• Interpersonal: applications support the virtual pres-
ence of many people in a single place at a same time.

• Interoperable: multi-user virtual worlds can be as-
sembled from components libraries developed indepen-
dently by several suppliers.

This multi-user extension provides functionalities for scene
sharing. As shown in figure 2, the scene sharing is based on
two elements:

• Shared objects: the Living Worlds proposal requires
the description of multi-user objects into a node called
SharedObject. This node contains the shared behaviour
of the object via NetworkStates (for example Network-
SFColor, NetworkSFFloat, etc).

• Multi-User technology (MUTech): this component im-
plements the behavior of shared objects with the use of
scripts and Java applets. It provides all network func-
tionalities needed for multi-user interaction. Since it
was not in the goals of the Living Worlds framework
to define a wire protocol, there is no interoperability
among MUTechs.

EAIScripts

User Interface

Objects

SharedObjects

VRML97 World

Network

Multi-User
Technology

VRML97 Browser

Figure 2: The Living Worlds components diagram.

#VRML V2.0 utf8

Some external definitions
EXTERNPROTO …

DEF SO SharedObject {
 private PrivateSharedObject {
 state [DEF R NetworkSFRotation {}]
 visibleDefinition DEF T Transform {
 children [
 DEF CS CylinderSensor {},
 Shape {
 appearance Appearance {material Material {diffuseColor 1 0 0 }}
 geometry Box { size 1 1 1 }
 }

]
} } }
removed: ROUTE CS.rotation_changed TO T.rotation
ROUTE CS.rotation_changed TO R.set_value
ROUTE R.value_changed TO T.rotation

Figure 3: An example of multi-user content using

the Living Worlds syntax (in bold, parts coming from
the single-user content).

Figure 3 shows an example of the sharing of the orientation
of a box using the Living Worlds framework: the description
of the red box is placed within the SharedObject description.
Despite the complexity of the multi user description, the
world designer adds new nodes into the existing VRML97
scene graph and modifies routes in order to take into ac-
count the insertion of the shared state (see figure 4).
The Living Worlds proposal offers interesting concepts, such
as the design of a virtual world supported by different MU-
Techs or Zone and Pilot/Drone concepts used in virtual
communities.

ROUTE CS.rotation_changed TO T.rotation

CS T

ROUTE CS.rotation_changed TO R.set_value
ROUTE R.value_changed TO T.rotation

CS TR

Figure 4: Insertion of NetworkStates in Living

Worlds.

Browser BEventout

Browser AEventoutEventinNode
1

Net-
Node

Node
2

Net-
Node

Node
2

Figure 5: The behaviour of NetNodes.

ROUTE CS.rotation_changed TO T.rotation

CS T

ROUTE CS.rotation_changed TO R.request_operate
ROUTE R.value_caught TO T.rotation

CS TR

Figure 6: Insertion of NetNodes in a VRML97 scene

graph.

3.2 The VSPLUS proposal
The VSPLUS proposal [1] is a simplification of the Liv-

ing Worlds results. Therefore it does not offer the range of
functionalities proposed by the Living Worlds framework.
It is designed for non-programmers and novice people in
VRML97, because it offers a simpler description of a multi-
user VRML97 content. New nodes, called NetNodes, are
added within a single-user VRML97 scene graph. As shown
in figure 5, when a NetNode receives an event, it transmits
this event to its remote copies by using a centralized mecha-
nism, so that all browsers generate the same event-out. For
each basic VRML97 type (SFBool, SFColor, etc), a NetN-
ode embedding the network behavior is defined.
As shown in figure 6, the NetNodes are introduced directly
in the existing VRML97 scene graph. Existing routes are
broken in order to take into account the insertion of NetN-
odes. Figure 7 shows how to share the orientation of a box
using the VSPLUS syntax. Clearly, it allows to describe
a multi-user content in a more suitable way than with the
Living Worlds framework.
Note that the VSPLUS approach introduces also the no-
tion of event sampling for infinite shared event (for exam-
ple, events out generated by a TimeSensor node) in order to
reduce network traffic.

4. THE VRML97 MULTI-USER EXTENSION
OF SPIN-3D

In this section, we present the VRML97 multi-user exten-
sion introduced for our CVE called SPIN-3D. Our approach
is inspired by the work of Living World group and VS-
PLUS: it allows to describe multi-user contents from single-
user contents. Whereas the Living Worlds specification is
complex, VSPLUS is an interesting approach except that
it works only in predefined multi-user virtual world. In a
CVE such as SPIN-3D, the shared virtual world is not pre-
defined: users organize their interfaces as they want and are
able to add new objects during the virtual meeting. The
new objects can be designed for a single-user usage, and

#VRML V2.0 utf8

Some external definitions
EXTERNPROTO …

DEF T Transform {
 children [
 DEF CS CylinderSensor {},
 Shape {
 appearance Appearance {material Material {dif fuseColor 1 0 0 }}
 geometry Box { size 1 1 1 }
}] }

DEF R NetSFRotation {}
removed: ROUTE CS.rotation_changed TO T.rotation
ROUTE CS.rotation_changed TO R.request_operate
ROUTE R.value_caught TO T.rotation

Figure 7: An example of a multi-user content using

the VSPLUS syntax (in bold, the parts coming from
the single-user content).

ROUTE CS.rotation_changed TO T.rotation

Step 1: the rotation is private Step 2: the rotation is changed
from private to shared

CS TRCS T

Java Applet Java Applet

ROUTE CS.rotation_changed TO R.set_value
ROUTE R.value_changed TO T.rotation

Figure 8: Dynamic field sharing using the insertion

mechanism and external application.

users may want to share such objects. The approach of
VSPLUS that consists of the addition of new nodes into
the VRML97 scene graph, is difficult to adopt in SPIN-3D.
First, when an object is switched from private to public state
and vice versa, it requires routes to be modified on the fly.
Second, let us consider the situation presented in figure 8:
we keep the example of the box introduced before, and we
allow a Java applet to modify the orientation of the box.
The applet obtains a reference on the rotation field before
the sharing. With the insertion mechanism, after the NetN-
ode insertion, modifications made by the user through the
applet are only done locally, while we would like them to be
propagated to remote interfaces. As shown in figure 9, our
approach correctly handles this situation: instead of using
a node insertion mechanism (i.e. adding new node in the
existing VRML97 scene graph), we propose a field substitu-
tion mechanism. The idea is to substitute the object fields
that need to be shared by new fields in which a network
behaviour is embedded. This notion of substitution is not
possible with a standard VRML97 browser. Therefore we
defined our own VRML97 browser in which the multi-user
technology is included. Our multi-user extension does not
offer the complete range of functionalities proposed by the
Living Worlds working group. Indeed we discard notions like
Zones, which are used for space partionning in Virtual Envi-
ronments with several rooms, in order to limit the bandwith
used (the VRML97 browser receives only update messages
for shared objects which are in the current user Zone). Nev-
ertheless such a functionality is not required in SPIN-3D as
it is designed for small group meetings held in a single room.
Our VRML97 multi-user extension is based on the following
requirements:

• The respect of the VRML97 syntax, so that standard

Java Applet

ROUTE node1.field TO node2.field

Browser ANode1

field
Node2

field

Browser B

Node2

field

Figure 9: The substitution of fields contained in a

node.

browsers, such as Cosmoplayer [19] or Blaxxun Con-
tact [2] are able to parse and display correctly a VRML97
single-user part of a multi-user object (without any
multi-user support).

• The easiness of creation of multi-user objects from
standard VRML97 objects.

• A hierarchical structure of shared data independent of
the geometrical description.

• The support of several ways of notification between a
local object and its remote copies.

4.1 Sharing Description
For each single-user VRML97 object we introduce a shar-

ing description in order to create a multi-user object. Where-
as the proposal of both Living Worlds and VSPLUS is to in-
troduce shared nodes (called SharedObjects in Living Worlds
and NetNodes in VSPLUS) directly into an existing VRML97
scene graph, our approach is to let the existing VRML97
scene graph unchanged and to use a sharing description for
the declaration of the shared nodes (called SharedNodes).
The SharedNodes thus create a sharing tree.

4.1.1 Speci£cation of SharedNodes
SharedNode is the generic name for nodes that are dupli-

cated. Their states must be the same in all instances of the
Virtual Environment. In figure 10, we present the generic
syntax of a SharedNode. The SharedNode points to a field
of the existing VRML97 scene graph whose name is given by
the field “alias”. The value of “alias” can be any field of a
node named with the DEF mechanism. Then the SPIN-3D
VRML97 browser substitutes the field defined by the “alias”
field by a SharedNode. The SharedNode is shared according
to the “mode” field. Sharing modes can be “public” (seen
and used by everybody) or “private” (only available locally).
The “how” field gives information on how the updates must
be sent. We identified three possible values:

• “action” that indicates an update that must be reli-
ably transported. It corresponds to a discrete action;

• “flow” that is used for infinite, real-time, continuous
data flows such as video, voice, etc;

• “animation” that is used for a flow followed by a re-
liable state information. Typically, it is useful when
an object is moved but only its final position is really
important.

EXTERNPROTO SharedXXX [
 exposedField SFString alias ""
 exposedField SFString mode "public"
 exposedField SFString how "action"
] ["urn:inet:lifl.fr:proto/SharedXXX"]

Figure 10: Generic syntax of a shared node.

EXTERNPROTO SharedSFBool [
 exposedField SFString alias ""
 exposedField SFString mode "public"
 exposedField SFString how "action"
] ["urn:inet:lifl.fr:proto/SharedSFBool"]

Figure 11: The syntax of the SharedSFBool node.

SharedNode can be extended in many ways. For example, it
may have another value that limits the network bandwidth
used. Each new node type, defined as an EXTERNPROTO,
corresponds to each field type existing in VRML97. For in-
stance, as shown in figure 11, the SharedNode for sharing a
SFBool field is a SharedSFBool. As we use the external pro-
totype mechanism provided in the VRML97 specification for
the description of SharedNodes and as the sharing descrip-
tion is placed out of the VRML97 scene graph, browsers
which do not support our proposal parse and display the
multi-user object using only the single-user object informa-
tion. Thus we respect our requirements.

4.1.2 Speci£cation of SharedSet: a Sharing Hierar-
chy

A new SharedSet node will contain a list of shared nodes
such as SharedSFBool. This list can also contain other
SharedSet nodes to create a hierarchy. In figure 12, we
present the syntax of the SharedSet node. The “mode” field
is useful to disable the sharing of all children of a SharedSet
node at once. Actually if the “mode” field of a SharedSet
node is set to private, it overrides the “mode” field of its
children.

EXTERNPROTO SharedSet [
 exposedField SFString mode "public"
 exposedField MFNode children []
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
] ["urn:inet:lifl.fr:proto/SharedSet"]

Figure 12: The syntax of the SharedSet node.

4.2 Example
In figure 13, we present an example of a multi-user ob-

ject described with our multi-user extension: it is the same
example as before, a box with a shared orientation.

5. COMMUNICATION BETWEEN SHARED
NODES

In this section, we explain how shared nodes communicate
over the network, i.e. how each SharedNode sends changes
to its remote copies. As mentioned in the previous section,
a VRML97 multi-user object is defined by the share of its
characteristic fields. This means that when an update occurs
on one of its fields, the communication platform notifies its

#VRML V2.0 utf8

Some external definitions
EXTERNPROTO …

Sharing description
SharedSet {
 children [SharedSFRotation { alias "T.rotation" }]
}

VRML97 scene graph
DEF T Transform {
 children [
 DEF CS CylinderSensor {},
 Shape {
 appearance Appearance {material Material {dif fuseColor 1 0 0 }}
 geometry Box {size 1 1 1}
}] }
ROUTE CS.rotation_changed TO T.rotation

Figure 13: A multi-user content with the SPIN-3D

multi-user framework (in bold, parts coming from the
single-user content).

remote copies of the update. Concerning the architecture of
the platform [12], we have different options:

• A centralized architecture (client/server communica-
tions) like in Blaxxun Community Server [2] or in Com-
munity Place [8]. This kind of architecture requires a
powerful machine for the server process. A client/server
architecture introduces latency, which is a problem for
interactive feeling: interactions must be done in real-
time in order not to disturb users during synchronous
collaborative activities. Another problem of such a
system is scalability: the performance of the system
decreases with a large number of participants.

• A distributed architecture (peer to peer communica-
tions) like in DIVE [4] or MASSIVE [7]. Communi-
cations are made by using multicast networking. The
central server process disappears and each computer is
connected to each other. The management of a virtual
session is then distributed.

As we want real-time interactions on local computer for lo-
cal manipulations, the architecture of the SPIN-3D commu-
nication platform is distributed. Previous CVE platforms,
such as DIVE, developed their own communication plat-
form from scratch (involving sockets programming, mes-
sages transport, etc). For example, DIVE system uses a
shared memory mechanism for state sharing. Our approach
is to use a distributed object computing paradigm to sup-
port communications between duplicated objects. In an ob-
ject oriented context, such a mechanism allows objects to
be distributed across an heterogeneous network. These ob-
jects may be distributed on different computers through-
out a network, living in their own address space outside of
an application. However they appear as local objects for
the applications which use them. Our idea is to consider a
SharedNode as a group of several identical objects (in the
meaning of distributed object computing). These identical
objects are distributed on the network, leading to a multi-
user world composed of several groups. In order to maintain
the coherence of the virtual world, we must maintain the co-
herence of each group of objects. When a change occurs in

one of the group copies, the other copies are notified of a
state change by using a remote method call.

The three most popular distributed object paradigms are
the Microsoft’s Distributed Component Object Model [14]
(DCOM), the Java Remote Method Invocation [20] (Java
RMI), and the Common Object Request Broker Architec-
ture [18] (CORBA). All of them offer approximately the
same fonctionnalities. However, DCOM is a prioritary tech-
nology of the Microsoft corporation and works only under
Windows platforms, and Java RMI is not enough efficient
due to the speed of the Java Virtual Machine (JVM). There-
fore we chose the CORBA middleware, an open standard
that can be used on diverse operating systems as long as
there is a CORBA implementation for those platforms.

5.1 Overview of the Common Object Request
Broker Architecture

The Common Object Request Broker Architecture (COR-
BA) is an emerging open distributed object computing in-
frastructure standardized by the Object Management Group1

(OMG). Based on the distributed object paradigm, CORBA
focuses on providing software components that may be trans-
parently used across network by any application on any plat-
form. CORBA automates many common network program-
ming tasks such as object registration, location, and acti-
vation; request demultiplexing; parameter marshalling and
demarshalling; and operation dispatching. In order to per-
form these operations, the OMG defines several parts in the
CORBA specification (see figure 14):

• The Object Request Broker (ORB) acts as a central
object between the data and the application layer.
Each CORBA object interacts transparently with other
CORBA objects, located either locally or remotely,
through the ORB. The ORB is responsible for find-
ing a CORBA object’s implementation, preparing it
to receive requests, communicating request to it and,
if necessary, sending back a reply to the client.

• The Interface Definition Language (IDL) enables the
definition of methods that can be invoked for each
CORBA object. A CORBA object relies on two stubs
generated from its IDL interface to a given language
(C, C++, Java, etc). The first one, called stub, is de-
signed for the client side, and provides the illusion that
the object is local. The other one, called the skeleton,
is designed for the server side (i.e. the object imple-
mentation).

• A high level protocol called General Inter-ORB pro-
tocol (GIOP) and its implementation over TCP/IP,
Internet Inter-ORB Protocol (IIOP) for the definition
of messages (invocation request, result message, etc),
contains the Common Data Representation (CDR) to
map the IDL types to their network representations
and the Interoperable Object Reference (IOR) to point
to an object.

The CORBA specification provides interoperability between
objects implemented with ORB implementations from dif-
ferent compagnies and in different languages across network
and operating systems.

1The OMG is a consortium including more than 800 mem-
bers (Sun Microsystems, Microsoft, etc).

ORB
stub skeleton

IDL fileClient Object
implementation

IDL compiler

Figure 14: The CORBA specification.

Relying on the previous specification, a distributed applica-
tion works as follows: to invoke a remote method, the client
makes a call to the client side stub. The client stub packs
the call parameters into a request message using the IIOP
wire protocol. The ORB transport the message and delivers
it to the server side stub using the IOR contained in the
message. The skeleton unpacks the message and calls the
method on the implementation object.

5.2 The SPIN-3D Communication Platform
Because the CORBA specification is an open standard,

the specifications evolve. Currently, efficient communica-
tion layers are offered for the development of distributed
collaborative virtual environments [11] - efficiency both in
terms of performance of the system and in terms of software
development -:

• A multicast communication layer: as IIOP relies on
the TCP/IP protocol, it is impossible to use multicast
IP. The OMG thus defines a new implementation of
GIOP over UDP/IP called Multicast Inter-ORB Pro-
tocol (MIOP) [6, 16]. It provides a group commu-
nication by using multicast network communication.
Whereas the IOR points to only one object with IIOP,
the IOR is a group reference with MIOP. This means
that several objects have the same IOR, enabling the
invocation of a method on several identical objects in
one go (at once). When an object is connected to the
multicast ORB, the programmer specifies its group ref-
erence (i.e. the group name to which it belongs). Each
method call on a multicast reference is executed on
each computer which has an object with that refer-
ence in memory. Currently, as specified by the OMG,
the MIOP communication layer is designed for unre-
liable communications. However we must keep the
consistency between the CVE (i.e. the state of each
shared node). Thus, we provide a reliable communi-
cation mechanism within MIOP that we call Reliable
MIOP (RMIOP) [11].

• A multimedia streaming service [15, 17]: this OMG’s
standard defines a framework for the development of
interoperable distributed multimedia streaming appli-
cations. Such a service creates dynamically streams
between producers and consumers. For example a mi-
crophone can be connected to speakers. The OMG
defines the different objects for the management of
streams (creation, configuration, destruction, etc) and
defines the protocol to set the streams. As in the stan-
dard the management of streams is centralized, we ad-
just the standard to a distributed management using
the multicast remote method invocation [11].

The SPIN-3D platform is based on a peer-to-peer system,
it thus does not require a server for the management of a

Multicast Remote Method Invocation

Multicast Multimedia streams

SPIN-3D SPIN-3D

Figure 15: The SPIN-3D communication ways.

Network

Session
services

Network components

S
tream

s

R
M

IO
P

SharedNodes

GroupManager

LockManager

Audio/Video
Flows

V
R

M
L97

B
row

ser

StreamController

O
R

B

Figure 16: The SPIN-3D core components.

collaborative session. Indeed, multicast networking avoids a
centralized management process, and the state of the virtual
world is distributed among the different computers which
participate to the virtual meeting. Each update made lo-
cally on a SharedNode is also made on the remote copies of
this SharedNode to maintain the consistency of the world.
As shown in figure 15, the communication platform is built
over the newest CORBA standards, the Reliable MIOP com-
munication layer and the multicast multimedia streaming
service. The SPIN-3D platform distinguishes two types of
communication on shared data:

• Discrete actions, for interface control (e.g. button
click, etc) and kernel management (e.g. lock manager,
session manager, etc). The multicast remote object
invocation ensures such a type of communication,

• Continuous actions, for object animations, streaming
data such as audio or video, etc. The streaming service
allows the creation of streams between an object and
its remote copies: the updates pass via the streams.

As shown in figure 16, the SPIN-3D kernel is a compound of
several components used for both data sharing and manage-
ment of a collaborative session (note that in the figure 16, we
discard some components of the SPIN-3D kernel: the user
interface and the interaction devices management [5] are not
represented as this is beyond the scope of this paper):

• The Group Manager manages the session, i.e. the en-
try or the leaving of participants. We use a reliable
multicast protocol defined in [11], we need to know
who is connected. A distributed algorithm is used to
maintain a list of participants. This is a service which
is within each SPIN-3D kernel and is implemented as a
CORBA object connected to the ORB, using multicast
remote invocations through the RMIOP communica-
tion layer.

• The Stream Controller manages the streams estab-
lished between an object and its remote copies. Like

for the Group Manager, the management of the streams
is distributed: the stream controller is within each
SPIN-3D kernel and is implemented as a CORBA ob-
ject which is connected to the ORB, and uses multicast
remote object invocations.

• The Lock Manager is responsible for the access to
shared data. It uses a token mechanism like in DIVE [4],
and it ensures that only one SPIN-3D accesses to a
SharedNode at a given time. There is one token per
SharedNode. When a SPIN-3D wants to manipulate a
shared data, it must ask for the token associated with
this shared data. The token is requested when the user
selects the object; the manipulation starts only if the
token is obtained, otherwise the user is notified of the
denial. Like for the Group Manager and the Stream
Controller, the Lock Manager uses a distributed al-
gorithm for the management of tokens and is imple-
mented as a CORBA object connected to the ORB.
The distributed algorithm uses the multicast remote
method invocation.

• The VRML97 Sharing Technology: it corresponds to
the implementation of the SharedNodes described above.
Each SharedNode, such as SharedSFBool, is imple-
mented as a CORBA object and is connected to the
ORB. For communication with its remote copies, a
SharedNode can use either multicast remote method
invocations or multicast streams set on the fly by the
stream controller.

5.3 Keeping State Coherence of Shared Data
We saw that each SharedNode is implemented as a CORBA

object. For each of them, we describe with an IDL file the
methods which can be invoked. The communication plat-
form maintains the state of each SharedNode, i.e. a group
of several instances of the same CORBA object.The syn-
chronization of the state of the SharedNode is transparently
made by our communication platform. When a change oc-
curs on a SharedNode, the communication platform notifies
its remote copies using one shoot update (i.e. using remote
method invocation mechanism) or multiple updates (i.e. us-
ing the streaming service mechanism). The platform chooses
the way of notification by using information contained in the
VRML97 description of the SharedNode, namely the infor-
mation described with the “how” field (see the syntax of a
SharedNode). This notification is transparent for the SPIN-
3D programmers: they only specify this information in the
VRML97 description. Moreover they can dynamically mod-
ify the notification type by changing this attribute with the
mechanisms provided by VRML97 (scripting, routes, etc)
and without any call to the communication platform. This
is useful for the animations of objects: an object is remotely
animated using streaming. Control operations on streams
(such as creation, destruction, etc) and data transport are
made transparently by the communication platform.

6. CONCLUSION AND FUTURE WORKS
This paper presents the data sharing technology intro-

duced in the SPIN-3D CVE. The VRML97 multi-user ex-
tension presented in this paper introduces a new concept.
Whereas previous approaches introduce new nodes into the
existing scene graph and modify the existing routes in order

to take into account the insertion of these new nodes, our
proposal allows to keep the existing VRML97 scene graph
unchanged, even concerning the routes, by using the notion
of alias. Taking advantage of the external prototype mech-
anism, our multi-user proposal respects the VRML97 syn-
tax. The notion of node alias is provided by the VRML97
browser of SPIN-3D. Furthermore, we propose a distributed
communication platform in order to maintain the coherence
of the shared virtual world. CORBA provides a flexible and
efficient solution to support the development of the SPIN-
3D platform. The SPIN-3D platform is designed to easily
develop collaborative applications.
The SPIN-3D platform is still in development. As SPIN-
3D uses a bi-manual interaction model (a 3-DOF pointing
device and 6-DOF manipulation device), we are currently
working on the definition of new sensors, which allow to use
new 3D input devices. We are also working on the concept of
plug-in: the kernel capabilities can be extended with the ad-
dition of visualization plug-ins. A plug-in is able to display a
specific type of information (for example, an HTML format-
ted document). Another work concerns the visual feedback
in the lock mechanism. Indeed, the visual feedback is very
important for the understanding of what happens in the in-
terface (when a user obtains or not the access to a shared
data).

7. ACKNOWLEDGMENTS
The research project reported here is supported by France

Télécom R&D and the regional council of Nord-Pas de
Calais (France). We would like to thank Laure France and
Laurent Grisoni for proof-reading and improving this paper.

8. REFERENCES
[1] Y. Araki. VSPLUS: A High-Level Multi-User

Extension Library for Interactive VRML Worlds. In
VRML’98, pages 39–47, Monterey, California USA,
February 1998.

[2] Blaxxun Interactive. See at http://www.blaxxun.com.

[3] R. Carey, G. Bell, and C. Marrin. ISO/IEC
14772-1:1997 Virtual Reality Modeling Language
(VRML97). See at
http://www.vrml.org/Specifications/VRML97/.

[4] O. Carlsson and O. Hagsand. DIVE - a Multi-User
Virtual Reality System. In IEEE VRAIS’93 Virtual
Reality Annual International Symposium Proceedings,
pages 394–400, Seattle, Washington USA, September
1993.

[5] C. Dumas, S. Degrande, G. Saugis, C. Chaillou, M.-L.
Viaud, and P. Plénacoste. SpIn: a 3D Interface for
Cooperative Work. Virtual Reality Society Journal,
1999.

[6] C. Gransart and J. M. Geib. Using an ORB with
Multicast IP. In PCS’99 Parallel Computing Systems
Conference Proceedings, Ensenada, Mexico, August
1999.

[7] C. Greenhalgh and S. Benford. MASSIVE, a
Collaborative Virtual Environment for
Tele-Conferencing. ACM Transaction on Computer
Human Interaction, 2(3):239–261, September 1995.

[8] R. Lea, Y. Honda, K. Matsuda, and S. Matsuda.
Community place: Architecture and Performance. In
VRML’97, pages 41–49, Monterey, California USA,
February 1997.

[9] Living Worlds Working Group. Making VRML97
Applications Interpersonal and Interoperable. See at
http://www.vrml.org/workinggroups/living-worlds/.

[10] S. Louis Dit Picard, S. Degrande, and C. Chaillou.
Spin: a 3D CSCW Platform Presented in La Villette.
In First French-British International Workshop on
Virtual Reality, Brest, France, July 2000.

[11] S. Louis Dit Picard, S. Degrande, C. Gransart,
G. Saugis, and C. Chaillou. A CORBA Based
Platform as Communication Support for Synchronous
Collaborative Virtual Environment. In ACM
Multimedia 2001, International Multimedia
Middleware Workshop, Ottawa, Ontario Canada,
October 2001.

[12] M. R. Macedonia and M. J. Zyda. A Taxonomy for
Networked Virtual Environments. IEEE Multimedia,
4(1):48–56, 1997.

[13] B. MacIntyre and S. Feiner. A Distributed 3D
Graphics Library. In SIGGRAPH’98 Conference
Proceedings, pages 361–370, Orlando, Florida USA,
July 1998.

[14] Microsoft Corporation. See at
http://www.microsoft.com/com/tech/dcom.asp.

[15] S. Mungee, N. Surendran, and D. Schmidt. The
Design and Specification of a CORBA Audio/Video
Streaming Service. In HICSS-32 Hawaii International
Conference on System Sciences Conference
Proceedings, Hawaii, January 1999.

[16] OMG. Unreliable Multicast Inter-ORB Protocol
Request For Proposal. OMG Document
orbos/99-11-14, November 1999.

[17] OMG. Control and Management of Audio/Video
Streams Specification. OMG Document
formal/2000-01-03, January 2000.

[18] OMG. The Common Object Request Broker:
Architecture and Specification revision 2.5. OMG
Document formal/01-09-01, September 2001.

[19] Silicon Graphics Corporation. See at
http://vrml.sgi.com.

[20] Sun Microsystems. See at
http://java.sun.com/products/jdk/rmi/.

View publication statsView publication stats

https://www.researchgate.net/publication/221011129

