
HAL Id: hal-02492245
https://hal.science/hal-02492245

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VRML97 distributed authoring interface
Stéphane Louis Dit, Samuel Degrande, Christophe Gransart, Christophe

Chaillou, Grégory Saugis

To cite this version:
Stéphane Louis Dit, Samuel Degrande, Christophe Gransart, Christophe Chaillou, Grégory Saugis.
VRML97 distributed authoring interface. Eighth international conference on 3D Web technology, Mar
2003, Saint Malo, France. pp.135, �10.1145/636593.636614�. �hal-02492245�

https://hal.science/hal-02492245
https://hal.archives-ouvertes.fr


VRML97 Distributed Authoring Interface

Stéphane Louis Dit Picard∗ Samuel Degrande∗ Christophe Gransart∗ Christophe Chaillou∗

Grégory Saugis†

∗Université des Sciences et Technologies de Lille †France Télécom R&D - DIH/HDM/NEW
LIFL - CNRS UMR 8022 2 avenue Pierre-Marzin

59655 Villeneuve d’Ascq cedex, France 22307 Lannion cedex, France

Abstract

In this paper, we present the design and implementation of
the VRML97 Distributed Authoring Interface (DAI) intro-
duced in Spin-3D, a distributed Collaborative Virtual Envi-
ronment (CVE). Our proposal is a powerful interface, very
close to the classical VRML97 External Authoring Interface
(EAI). The DAI allows the connection of any external ap-
plication with the Spin-3D CVE platform. With the Spin-
3D CVE platform and the DAI, it will be easy to develop
collaborative applications. We use the Common Object Re-
quest Broker Architecture (CORBA) to support distributed
authoring applications. Complex collaborative applications
and remote interaction introduce new considerations in the
design of the DAI: we enhance the standard VRML97 EAI
with new interfaces in order to easily traverse the VRML97
scene graph and limit the network overhead introduced by
the remote interaction. Moreover, taking advantage of the
CORBA middleware, external applications can be written
with any programming language for which the OMG defined
an IDL mapping.

CR Categories: I.3.7 [Computer Graphics]: 3D Graphics
and Realism—Virtual Reality; C.2.4 [Computer Communi-
cation Networks]: Distributed Systems—Distributed Appli-
cations

Keywords: Virtual Reality Modeling Language (VRML),
External Application Interface (EAI), Common Object Re-
quest Broker Architecture (CORBA), Collaborative Virtual
Environment (CVE)

1 INTRODUCTION

In the past decades, traditional user interfaces evolved
and many Virtual Environments emerged due to the rapid
growth of the World Wide Web, the availability of powerful
3D graphics accelerators for PCs and high speed network
devices. The Virtual Reality Modeling Language version

∗{louisdit, degrande, gransart, chaillou}@lifl.fr
†gregory.saugis@rd.francetelecom.com

2.0 [Carey et al. 1997] (also called VRML97) established
a standard for the description of interactive 3D scenes on
the World Wide Web. This language became one of the
key components of many Virtual Environments since it al-
lows users to create 3D interactive contents without partic-
ular programming skills. Indeed, many authoring tools can
produce VRML97 contents. VRML97 supports basic dy-
namic motion and interactivity, using interpolator or sensor
nodes, and the ROUTE mechanism. More complex actions
can be performed with programs. The first way is to use
Script nodes to embed scripts in the VRML97 scene graph.
The second way is to use the External Authoring Interface
(EAI) [EAI 2002] which is similar to an Application Pro-
gramming Interface (API) allowing programmers to easily
develop custom applications that interact dynamically with
the VRML97 scene graph. The VRML97 EAI specification
represents the interface in terms of provided services and
describes how to access to these services. While the speci-
fication has very general bindings, current implementations
of EAI only allow Java applets to communicate with the
VRML97 browser. Whereas the specification explicitly de-
fines the possibility of remote connections, the Java applet
and the VRML97 browser, embedded in the same HTML
page, are running on the same machine. This paper focuses
on distributed authoring.
Our proposals are widely based on the latest VRML97 EAI
specification. The Distributed Authoring Interface (DAI)
merges the VRML97 EAI standard and Distributed Object
Technology (CORBA [OMG 2001a]). In fact, DAI runs over
CORBA middleware, hiding the object distribution and the
underlying implementation. Developers will not see changes
between the DAI and the classical EAI, except for few pro-
gramming rules specific to the CORBA programming. The
DAI allows external applications to remotely control the
VRML97 browser: for instance, a Personal Digital Assistant
(PDA) acts as a remote controller for a VRML97 browser
running on a PC. The DAI enhances the classical EAI: it al-
lows programmers to retrieve all nodes of a VRML97 scene
graph; we define new interfaces that allow an easier traversal
of the VRML97 scene graph. We design these enhancements
as extensions to the classical EAI thus keeping backward
compatibility with it.
This paper is organized as follows: first, we review our moti-
vations and the concepts involved in the Spin-3D CVE; sec-
ondly, we review the general concepts of the VRML97 EAI;
next, we describe the overall architecture of the DAI, the
EAI enhancements, the DAI implementation and the way
to develop external applications using the DAI; finally, we
describe a technological demonstration of the capabilities of
the DAI and the Spin-3D multi-user platform.



Figure 1: A learning situation in the Spin-3D CVE.

Spin-3D Core

Scene graph

Script Nodes
(ECMAScript, Java, …)

Script interpreters

CORBA/Streaming

Behavior Plug-ins
(dynamically loaded

modules)

ExternProto Nodes

Proto Nodes

Multi-user Nodes

Native VRML97 Nodes

Viewer Plug-ins
(dynamically

loaded modules)

Internal
Applications

ap
p

lic
at

io
n

sp
ec

if
ic

g
en

er
ic

co
lla

b
o

ra
ti

ve
p

la
tf

o
rm

Figure 2: The Spin-3D platform architecture.

2 MOTIVATIONS

The Spin-3D project aims to propose a complete platform
for Synchronous Collaborative Work making the creation of
any collaborative application easier. It relies on Computer
Human Interface (CHI) proposals [Dumas et al. 1999] (such
as a new spatial organization taking advantage of the third
dimension, a “conference table” metaphor, a 3D interaction
model using two devices, one for pointing and the other for
manipulating objects, and a three step interaction mecha-
nism -select, manipulate and release-). Figure 1 shows a
screen shot of the interface of Spin-3D. We use VRML97
for the description (geometry, interaction and sharing) of
the 3D objects. As shown in figure 2, the Spin-3D core is
built around an extended VRML97 browser developed from
scratch: Spin-3D needs an extended VRML97 browser due
to CHI requirements (3D pointer for designation, bounding
boxes, shadows, and lightning effects missing in a standard
VRML97 browser). The platform provides several mecha-
nisms to easily develop collaborative applications:

• A “visualization plug-in” mechanism. These dynami-
cally loaded modules extend the capability of the Spin-
3D browser in allowing programmers to develop viewers
for objects which can not be described with VRML97.
The viewers are integrated into the Spin-3D browser
using the VRML97 ExternProto mechanism. For in-
stance, an HTML plug-in was developed in order to

Spin-3D
Core

A
P
I

3D CAD
Tool

Spin-3D
Core

A
P
I

3D CAD
Tool

visualization

visualization

Spin-3D interface3D CAD tool interface

DAI DAI

Figure 3: A multi-user 3D CAD tool with the Spin-3D col-
laborative platform.

display HTML pages within the browser.

• A “behavior plug-in” mechanism. Behavior plug-ins act
as interface controllers and are mainly used to imple-
ment the collaborative rules which are specific to each
application. For instance in a multi-user playing card
game, they implement the rules of the game. They are
dynamically libraries loaded by the Spin-3D browser
and integrated as “internal applications”. Internal ap-
plications run within the same memory space as the
Spin-3D core, hence they easily access to objects con-
tained in the scene graph.

• A VRML97 multi-user extension in order to create
multi-user objects [Louis Dit Picard et al. 2002].

• A CORBA-based communication platform for the syn-
chronization of different instances of Spin-3D and for
the management of the virtual place [Louis Dit Picard
et al. 2001].

These mechanisms allow programmers to write “light” col-
laborative applications: this is what we call “native appli-
cations”. However we want to let programmers write more
complex applications. This is what we call “external appli-
cations”: these applications and the Spin-3D core do not
run in the same memory space, moreover they can run on
different computers.
For instance, if we want to develop a multi-user 3D CAD
tool, we do not aim to integrate neither the 3D CAD tool
into Spin-3D, nor the Spin-3D core into the 3D CAD tool.
As users are familiar with the 3D CAD tool, we let them de-
sign objects within it. As shown in figure 3, each 3D CAD
tool is connected to a Spin-3D core: we want to propose
an API that should allow external applications to communi-
cate with the Spin-3D core. Each change performed within
the external tool is propagated to the Spin-3D core using
the proposed API. The Spin-3D collaborative platform is in
charge of:

• Supporting the collaboration: objects designed with the
3D CAD tool are also shown within the Spin-3D inter-
face and so users can collaborate (discuss, manipulate,
etc.) around them.



• Distributing events performed by a user within its 3D
CAD tool to remote 3D CAD tools in order to ensure
coherency. Remote users can in turn modify the objects
using their 3D CAD tool.

The idea behind the external application notion is that third-
party developers should be able to deploy existing applica-
tions in a collaborative way with only minor changes of the
existing code: they only have to implement communication
with the Spin-3D collaborative platform.

3 OVERVIEW OF THE VRML97 EAI

As defined by the VRML97 specifications [Carey et al.
1997][EAI 2002], there are two methods allowing programs
to interact with a VRML97 scene (see figure 4):

• The first one is to use the Browser Script Interface. In-
ternal scripts are embedded within the VRML97 scene
graph using Script nodes. The VRML97 specification
does not recommend any scripting language: it defines
only the behavior of the scripting language. So scripts
may be written in any programming language that the
VRML97 browser supports. The Script node is de-
signed to define behaviors of individual objects con-
tained in a VRML97 file.

• The second one is to use the External Authoring Inter-
face (EAI) mechanism. The EAI offers extended meth-
ods to access nodes and events in the VRML97 scene
graph.

The VRML97 EAI is only a proposed informative appendix
to the VRML97 specification. It means that browser im-
plementations can choose whether or not to implement it.
Nevertheless several standard VRML97 browsers, such as
Blaxxun Contact [Blaxxun Interactive], Cortona [Parallel
Graphics] or Cosmoplayer [Silicon Graphics], integrate the
EAI and support Java as the primary language interface to
program external applications with the EAI. Theorically any
language could be used to program an external application.
Nevertheless, in practice, this API is only used for commu-
nication between a VRML97 scene and a Java applet on
the same HTML page and running on the same machine.
Standard VRML97 browsers implement ActiveX/COM or
LiveConnect interfaces to the EAI in order to allow commu-
nication between the Java applet and the VRML97 browser.

When developing a Java applet, the first operation to per-
form is to get a reference to the Browser object in order to
access to the VRML97 scene. In fact, the Browser class is
the starting point for external manipulations of the VRML97
scene: it is the only way to add new nodes, retrieve and
modify existing nodes, etc. As shown in the following code,
the access to the Browser object is performed using the get-
Browser() method:

// some modules import

import vrml.eai.*;

import vrml.eai.field.*;

public class VRMLApplet extends Applet {

Browser browser;

public void start () {

...

browser = (Browser) Browser.getBrowser(this);

}

}

External Authoring Interface

External
Application

ActiveX/COM LiveConnect

VRML97 Browser
Scene graph

Script Nodes
(ECMAScript, Java, …)

ExternProto Nodes

Proto Nodes

Script interpreters

Native VRML97 Nodes

Figure 4: The architecture of a VRML97 Browser.

The Browser class offers a set of methods to the applica-
tion programmers in order to manipulate the VRML97 scene
graph:

• Methods to access nodes of the VRML97 scene graph.

• Methods to handle events to and from nodes.

• Methods to handle the VRML97 scene graph. (create
new nodes, load new VRML97 scenes, etc).

The modification of a node is done by first getting its refer-
ence, using the getNode() method of the Browser class. The
following code shows how to retrieve a DEF’d node:

Node transform;

try {

transform = (Node) browser.getNode("TheTransform");

} catch (InvalidNodeException e) { ... }

The DEF name of a node contained in the VRML97 scene
graph is passed as parameter to the getNode() method. Only
DEF’d nodes contained in the scene loaded from the HTML
page can be accessed from the EAI. Note that on-the-fly
created nodes can also be manipulated if the external ap-
plication has kept references returned at the creation step.
Once we have a reference to a node, we can send events to
its EventIns, get the current value of its EventOuts, or regis-
ter observers on its EventIns/EventOuts. The following code
changes the rotation value of a Transform node:

EventInSFRotation rotation;

float[] r = {0, 1, 0, 3.14};

try {

rotation = (EventInSFRotation)

transform.getEventIn("rotation");

rotation.setValue(r);

} catch (InvalidEventInException e) { ... }

Observers allow programmers to monitor changes on fields:
once an observer is registered to a field, it will be noti-
fied using a callback mechanism every time the field’s value
changes.



4 VRML97 DISTRIBUTED AUTHORING

Current EAI implementations do not offer all the possibili-
ties of the VRML97 EAI specification: they only allow pro-
grammers to develop external applications with Java and
they do not support remote connections. The Spin-3D plat-
form has to provide a multi-language support: external ap-
plications should be written in any programming language.
The proposed API also has to support remote connections.
One approach is to use an ad hoc solution as in [Isakovic
et al. 2002]: the X-Rooms system integrates an external API
for remote simulation, authoring and interaction.
The Distributed Authoring Interface (DAI) proposes a more
standardized solution: our API is very close to the classical
VRML97 EAI and extends the classical EAI to networked
environments by allowing external code running on a differ-
ent machine to interact with a VRML97 browser. The DAI
merges the standard VRML97 EAI with the CORBA Dis-
tributed Object Technology. The CORBA middleware of-
fers us the distributed infrastructure: applications can access
and interact with remote objects transparently. We choose
the CORBA middleware as it is a non proprietary solution
unlike the Microsoft’s DCOM technology [Microsoft]. More-
over, unlike the Sun’s Java RMI [Sun Microsystems], the
CORBA technology is a cross-language and cross-platform
distributed middleware. However the DAI could also be im-
plementable using other distributed middlewares. Note that
the DAI does not provide a byte level protocol description:
network encoding relies on the CORBA specification.

4.1 Overview of the CORBA Mechanism

The Common Object Request Broker Architecture [OMG
2001a] (CORBA) is an open distributed object comput-
ing infrastructure standardized by the Object Management
Group (OMG). Based on the distributed object paradigm,
CORBA focuses on providing software components that may
be transparently used across network by any application on
any platform. CORBA automates many common network
programming tasks such as object registration, location, and
activation; request demultiplexing; parameter marshalling
and demarshalling; and operation dispatching. In order to
perform these operations, the OMG defines several parts in
the CORBA specification (see figure 5):

• The Object Request Broker (ORB) acts as a central
object between the data and the application layer.
Each CORBA object interacts transparently with other
CORBA objects, located either locally or remotely,
through the ORB. The ORB is responsible for find-
ing a CORBA object’s implementation, preparing it to
receive requests, communicating requests to it and, if
necessary, sending back a reply to the requester.

• The Interface Definition Language (OMG-IDL) enables
the definition of methods that can be invoked on each
CORBA object. A CORBA object relies on two stubs
generated from its IDL interface to a given language
(C, C++, Java, etc). The first one, called client stub,
is designed for the client side, and provides the illusion
that the object is local. The other one, called the server
skeleton, is designed for the server side (i.e. the object
implementation).

• A high level protocol called General Inter-ORB Proto-
col (GIOP) and its implementation over TCP/IP, In-
ternet Inter-ORB Protocol (IIOP) for the definition of

ORB
stub skeleton

IDL fileClient Object
implementation

IDL compiler

CORBA
client side

CORBA
server side

Figure 5: The CORBA specification.

External
Application

Spin-3D
VRML97 Browser

Scene graph

DAI

node

ORBs
t
u
b

s
k
e
l
e
t
o
n

generates

eai.idl

generates IDL compiler

CORBA
client side

network CORBA
server side

field

node ior

field ior

relays created
on-the-fly

Figure 6: The DAI architecture.

messages (invocation request, result message, etc), con-
tains the Common Data Representation (CDR) to map
the IDL types to their network representations and the
Interoperable Object Reference (IOR) to point at an
object.

The CORBA middleware is a cross-platform and a cross-
language standard: it provides interoperability between ob-
jects implemented with ORB implementations from different
compagnies and in different languages across network and
operating systems.
Relying on the previous specifications, a distributed applica-
tion works as follows: to invoke a remote method, the client
makes a call to the client side stub. The client stub packs
the call parameters into a request message using the IIOP
wire protocol. The ORB carries the message and delivers
it to the server side stub using the IOR contained in the
message. The skeleton unpacks the message and calls the
method on the implementation object.

4.2 Architecture

We use the model from figure 5 to design the DAI. As shown
in figure 6, the Spin-3D VRML97 browser acts as the server
whereas external applications act as clients. The latest EAI
standard [EAI 2002] specifies the OMG-IDL interface for
each service (Browser, Node, Field, etc). So we use it as
starting point of the DAI: the compilation of the EAI OMG-
IDL description generates the stubs for both sides (client and
server). The server side (i.e. the Spin-3D VRML97 browser)
uses the skeletons to implement methods of each interface.
The client side (i.e. external applications) uses the stubs to
hide the distribution of manipulated objects.



4.3 Mechanisms

The first approach is to connect all objects (nodes and fields)
contained in the VRML97 scene graph to the ORB. Such
an approach is not suitable because too many connected
objects will reduce the ORB performance. A more suitable
solution is to connect, on-the-fly, nodes and fields to the
ORB, depending on requests from external applications: as
shown in figure 6, the Spin-3D VRML97 browser creates
objects which act as relays between the external application
and the VRML97 scene graph. External applications get
references (IOR) of these relays and can then invoke methods
on them.

5 VRML97 EAI ENHANCEMENTS

First, let us define the operations that a complex collabora-
tive application should have to do:

• External applications should be able to traverse the en-
tire VRML97 scene graph and retrieve the reference of
each node contained in the VRML97 scene graph.

• External applications should be able to perform oper-
ations on each node contained in the VRML97 scene
graph.

For instance in order to change the color of an object, an
external application should retrieve all Material node con-
tained in the hierarchy and change their color attributes.
Another instance, an external application should traverse
the entire hierarchy in order to dump an object into an ascii
file.
We enhance the services supplied by the standard VRML97
EAI in order to answer to these requirements. All enhance-
ments are performed with the idea to keep backward com-
patibility with the existing EAI OMG-IDL specification. We
do not modify existing interfaces of the IDL definition: we
only extend existing interfaces using the OMG-IDL inheri-
tance property.

5.1 NodePath

To access a node contained in a VRML97 scene graph with
the standard EAI, the node has to be DEF’d in the VRML97
file. Once a node is DEF’d in the VRML97 file, it is available
to the external application through the getNode() method of
the Browser interface. But complex applications should be
able to access to all nodes contained in the VRML97 scene
graph, not only DEF’d nodes.
Therefore the DAI proposes a mechanism called NodePath,
inspired by XPath [W3C]. A NodePath is a path-like which
contains all intermediary nodes that lead to a given node in
the VRML97 scene graph. Each node involved in the path
is present in the NodePath either by its standard node type
name or its DEF name:

• If the node type name is used, it appears like “!Node-
TypeName” in the NodePath: this is the default ap-
pearance of a node in the NodePath, an exclamation
mark followed by its node type name. For example,
a Tranform node will appear as “!Transform” in the
NodePath.

• If the node is DEF’d, the DEF name can also be used,
and appears as “DefName” in the NodePath.

Transform

TransformShape

DEF S1
Shape

Shape

!Transform.!Transform.S1

!Transform.!Shape

Figure 7: Examples of NodePath.

Transform

TransformShape

DEF S1
Shape

Shape

!Transform.*.!Shape

Figure 8: Wildcards used in NodePath.

The dot character (“.”) is used as node separator. Figure 7
shows examples of NodePath. We also allow to use wildcards
in the NodePath in order to replace unknown nodes in the
VRML97 scene tree:

• The wildcard question mark (“?”) replaces one node.

• The wildcard asterisk (“*”) replaces any sequence of
nodes.

Note that the same NodePath can designate more than one
node in the VRML97 scene tree (see figure 8). As with
XPath, it is possible to specify the index of node to reference.
As shown in figure 9, the index of node is placed in square
brackets just after the node type name (or the DEF name).

Transform

TransformShape

DEF S1
Shape

Shape

!Transform.!Transform.!Shape[0]

!Transform.!Transform.!Shape[1]
!Transform.!Transform.!Shape

Figure 9: Indexes specified in NodePath.

5.2 The NodeSearcher Interface

As we saw before, the standard VRML97 EAI only allows
to find DEF’d nodes. Such a limitation disappears when ap-
plication programmers use the notion of NodePath defined



Searcher

cursor

Node 1 Node 2 Node n

previous next
jump(n-1)

Figure 10: The NodeSearcher cursor used to handle naviga-
tion within the result list. On the figure, the cursor points
at “Node 2” and can be moved on the left or right in order
to point at another node.

module vrml {

module eai {

interface NodeSearcher {

void searchNode(in string npath);

Node getNode()

raises (InvalidNodeException);

Node getNodeFromIndex(in long index)

raises (InvalidNodeException,

ArrayIndexOutOfBoundsException);

string getType()

raises (InvalidNodeException);

string getName()

raises (InvalidNodeException);

string getNodePath()

raises (InvalidNodeException);

long getSize();

void previous()

raises (InvalidNodeException);

void next()

raises (InvalidNodeException);

void jump(in long index)

raises (ArrayIndexOutOfBoundsException);

void dispose();

}; // End of interface NodeSearcher

}; // End of module eai

}; // End of module vrml

Figure 11: IDL definition of the NodeSearcher interface.

before. The NodeSearcher interface helps application pro-
grammers to find nodes in the VRML97 scene graph. A
NodeSearcher object will search all nodes matching a given
NodePath: it is an alternative method to the standard getN-
ode() method of the Browser interface.
As we said before, the same NodePath can designate more
than one node in the VRML97 scene graph, therefore a Node-
Searcher object manages a list of nodes, each of them match-
ing the requested NodePath. The search is performed using
a deep-first algorithm. It is not suitable to directly con-
nect each of those nodes to the ORB: only few nodes will be
used by the application and too many connected objects will
reduce the ORB performance. For example, we can imag-
ine that an application performs a search with the NodePath
“*”, and in such a situation the result of the search will be all
nodes contained in the VRML97 scene graph. So as shown
on figure 10, the NodeSearcher contains a cursor that points
at one of the nodes contained in the list. The NodeSearcher
interface provides a set of methods allowing external appli-
cations to move the cursor within the list. The application
can then request the NodeSearcher object to connect nodes
to the ORB.
Figure 11 shows the IDL definition of the NodeSearcher in-
terface. It contains the following methods:

• The previous(), next() and jump(i) methods are used

module vrml {

module eai {

interface Browser {

/* Classical methods to access services provided */

/* by the browser: such as name, version, nodes, etc */

Node getNode(in string name) raises (...);

/* (...) */

}

interface BrowserExt : Browser {

NodeSearcher getNodeSearcher()

raises (ConnectionException);

}; // End of interface BrowserExt

}; // End of module eai

}; // End of module vrml

Figure 12: Extension of the Browser interface in order to
support the NodeSearcher interface.

to move the cursor. Note that after a successful search,
the cursor points at the first node contained in the list
(the cursor position is equal to zero).

• The getSize() method is used to get the size of the result
list.

• The getNode() method is used to retrieve the reference
of the node currently pointed at by the cursor. After a
call to the getNode() method, the node is connected to
the ORB and so the application gets its reference. Note
that the application is in charge of releasing interest in
the node by calling the dispose() method of the Node
interface.

• The getNodeFromIndex(i) method is used to retrieve

the ith node contained in the list. Note that in this
case, the cursor does not move.

• The getName() and getType() methods respectively re-
turn the name and the type of the node pointed at by
the cursor. They have the same behavior as the get-
Name() and getType() methods of the Node interface
defined in the VRML97 EAI specification. It avoids
connecting the node pointed by the cursor when it is
not necessary.

• The getNodePath() method returns the NodePath of
the node pointed at by the cursor.

• The searchNode() method allows programmers to per-
form a new search: the same NodeSearcher object can
be used several times thus avoiding to create a new
NodeSearcher object for each search. The current list
contained in the NodeSearcher is erased, but references
of nodes obtained by the application stay valid.

• The dispose() method notifies the browser that the ap-
plication is no longer interested in this NodeSearcher
instance, and so the browser is free to destroy it.

In order to support the NodeSearcher interface defined
below, we extend the Browser interface defined by the
VRML97 EAI specification. As shown in figure 12, the
BrowserExt interface extends the Browser interface and
adds the support of the NodeSearcher interface and the no-
tion of NodePath defined before. The BrowserExt interface



Grouping node

down
up

Node Proxy

Node Proxy

left right

Figure 13: Node Proxy navigation.

contains the getNodeSearcher() method: such a method re-
turns a NodeSearcher object which could be used to perform
searches using a NodePath.

5.3 The Node Proxy Interface

We want to allow external applications to traverse an ob-
ject VRML97 hierarchy. Services supplied by the standard
VRML97 EAI do not make the traverse of the entire scene
graph easier. In fact, with the standard VRML97 EAI, the
only solution is to use the getNode() method to request each
node, but it requires that all nodes of the VRML97 scene
graph have a DEF name. This way will not be efficient
with the DAI. In fact, as we work in a distributed environ-
ment, the external application response time depends on the
ORB: the creation and connection of a Node object can take
several milli-seconds, and thus degrading the external appli-
cation interactivity.
A first approach is to use the NodeSearcher presented above:
external applications perform a search with the NodePath
“*”, and the returned NodeSearcher will contain all nodes
of the VRML97 scene graph. This solution has two draw-
backs:

• All the hierarchic structure is lost.

• It requires the external application to explicitly request
the NodeSearcher to connect each node using the getN-
ode() method. As we have just explained, it degrades
the external application interactivity.

A more efficient solution is to reuse an already created Node
object, and to modify its internal state in order to point
at another node of the VRML97 scene graph thus allowing
navigation within scene graph. A Node object with such
a property is what we call a Node Proxy. Such a mecha-
nism is inspired by the Traversable 1 design pattern [Gamma
et al. 1995]. A Node Proxy object points, at a given time, at
one node of the VRML97 scene graph, and contrary to the
standard EAI specification where a Node object statically
references one node of the VRML97 scene graph, program-
mers can dynamically change the node pointed at by a Node
Proxy object. As shown in figure 13, the Node Proxy can
move up or down in the VRML97 scene graph, and left or
right among children of a “grouping node”.
As shown in figure 14, the Node Proxy interface inherits
the Node interface in order to provide the same services
as the Node interface (such as getEventIn(), getEventOut(),
etc). It also provides methods to handle the traversal of the
VRML97 scene-graph. Using the inheritance, any method

1Also known as the Visitor design pattern.

Table 1: Behavior of traversal methods of the Node Proxy
interface.
Method name Internal state Internal state

(before) (after)
parent() node N parent of node N

child(i) node N ith of node N
next() node N right brother of node N

previous() node N left brother of node N

module vrml {

module eai {

interface Node {

/* Classical methods to access node members */

/* (type, name, fields), and release interest. */

eai::field::EventIn getEventIn(in string name)

raises (...);

eai::field::Eventout getEventOut(in string name)

raises (...);

/* (...) */

}

interface NodeProxy : Node {

void parent()

raises (InvalidNodeException);

Node getParent()

raises (InvalidNodeException);

void child(in long index)

raises (InvalidNodeException,

ArrayIndexOutOfBoundsException);

Node getChild(in long index)

raises (InvalidNodeException,

ArrayIndexOutOfBoundsException);

void next()

raises (InvalidNodeException);

Node getNext()

raises (InvalidNodeException);

void previous()

raises (InvalidNodeException);

Node getPrevious()

raises (InvalidNodeException);

}; // End of interface NodeProxy

}; // End of module eai

}; // End of module vrml

Figure 14: IDL definition of the NodeProxy interface.

which already returns a Node object could be used to get
a Node Proxy object: it only depends upon the implemen-
tation. So we do not have to extend the Browser interface
in order to support the Node Proxy interface: the getNode()
method of the Browser interface could return a Node Proxy
object. The same is true for the getNode() and getNodeFro-
mIndex() methods of the NodeSearcher interface.
Table 1 shows effects of each method on the node referenced
by the Node Proxy. Note that the getParent(), getChild(),
getNext() and getPrevious() methods keep unchanged the
node referenced by the current Node Proxy object (later
called NP ). In fact, each of these methods returns a new
Node Proxy object which respectively references the parent
of node N (we suppose that NP references node N), the ith

child of node N, the “right brother” of node N and the “left
brother” of node N.



6 IMPLEMENTATION

The Spin-3D VRML97 browser is implemented in C++.
On the server side (i.e. the Spin-3D VRML97 browser),
the Distributed Authoring Interface and its enhancements
are implemented in C++. The ORB that we use is Orba-
cus [IONA.b] from IONA. We are currently using the version
4.0.5 of Orbacus.

6.1 Establishing a connection with the Spin-3D
VRML97 Browser

When the Spin-3D VRML97 browser starts, a BrowserExt
object2 is created and connected to the ORB. As we saw in
section 3, an external application needs first to retrieve the
Browser object. As specified by the standard EAI specifica-
tion [EAI 2002], the DAI uses the getBrowser() method to
locate the Browser object thus keeping compatibility with
the standard VRML97 EAI. Note that using the inheritance,
the getBrowser() method can return either a Browser object
or a BrowserExt object: it only depends upon the implemen-
tation. Using CORBA facilities, different ways are available
in order to implement the getBrowser() method:

• The first way is to use “stringified IOR” of the Browser
object. The VRML97 browser makes the “stringified”
reference of the Browser object available to external
applications. For example, the browser IOR can be
placed in a file on a http or ftp server. An application
obtains the “stringified” IOR and converts it back into
a Browser object reference, and then invokes methods
on the browser.

• The second way is to use the Interoperable Naming Ser-
vice (INS) [OMG 2001d]. It is a more readable format
for object references that uses a URL-like syntax. The
URL contains information that allow clients to rebuild
the object reference (the protocol, the hostname of the
server, the port on which server is listening, the unique
object-key, etc.). An external application converts the
URL into a Browser object reference, and then invokes
methods on the browser. Note that, with this method,
we have to identify the Browser object with a unique
object-key. The Browser object-key is specified when
the Browser object is created and connected to the
ORB. So this unique object-key has to be standardized
in order to allow interoperability between any external
application and any VRML97 browser.

• The third way is to use the Naming Service [OMG
2001d]. The Naming Service is a standardized CORBA
service that allows applications to locate objects con-
nected on the ORB: it acts as an “object reference di-
rectory”. Each object registered with the Naming Ser-
vice has a unique symbolic ID, and the Naming Service
maps a symbolic ID with an object reference. Note
that, with this method, we have to identify the Browser
object with a unique symbolic ID. The Browser sym-
bolic ID is specified when the VRML97 browser regis-
ters the Browser object with the Naming Service. So
this unique symbolic ID has to be standardized in order
to allow interoperability between any external applica-
tion and any VRML97 browser.

2The BrowserExt object can be replaced with a Browser ob-
ject if the VRML97 browser does not support extensions such as
NodePath or NodeSearcher objects.

Table 2: Parameters used with the getBrowser() method.
Method used Parameters Signification
using IOR string Browser IOR
using INS string, integer hostname, port

using Naming Service none none

Table 2 defines arguments that the getBrowser() method
takes in each case described above.

6.2 Security Issues

With a standard ORB, all communications between the
external applications and the Spin-3D VRML97 browser
are performed by using IIOP which runs on the top of
TCP/IP. Nevertheless such a solution does not offer secu-
rity for communications: the IIOP protocol relies on raw
TCP/IP, thereby it is not a secure protocol and does not
provide authentification. Any external application can re-
trieve the Browser object and performed harmful activi-
ties to VRML97 scene graph. Therefore we have to pro-
tect the access and communication between external appli-
cations and the Spin-3D VRML97 browser. Only authorized
applications should have access to the VRML97 scene graph
contained in the browser. Note that, for the moment, we do
not handle security at the VRML97 scene graph: authorized
applications should have access to the whole VRML97 scene
graph.
The idea is to replace the unsecure standard IIOP proto-
col by a secure protocol. The Orbacus ORB allows us to
use other protocols than IIOP and proposes the Orbacus
FreeSSL plug-in [IONA.a] to enable secure communications.
The Orbacus FreeSSL plug-in runs on top of the Secure
Socket Layer protocol (SSL) [SSL]. It provides the FreeSSL
Inter-ORB Protocol (FSSLIOP) which replaces the standard
IIOP. The FSSLIOP is a non-standard solution and runs
only with the Orbacus ORB. The OMG is currently speci-
fying a Secure Inter-ORB protocol [OMG 2001b].
A trustworthy authority (later called the Certification Au-
thority) delivers an associated public and private key to each
party (the external application and the Spin-3D VRML97
browser). The public key is contained into a certificate
signed by the Certification Authority. A certificate has an
associated private key and password. The password pro-
tects the private key and is used to decrypt the private key
at runtime. Data encrypted with the private key can only be
decrypted with the public key. Certificates are used to verify
that they are delivered by the same Certification Authority:
only certificates signed by the same Certification Authority
can work together. When the external application connects
to the Spin-3D VRML97 browser, the following steps are
performed: first, they exchange their certificates (i.e. an
exchange of public keys); next, each party (the external ap-
plication and the Spin-3D browser) checks if the received
certificate is trusty, i.e. it is signed by the same Certifica-
tion Authority as its own certificate; finally, if the certificate
check is successful, then communications between the exter-
nal application and the Spin-3D VRML97 browser can start
and are secured.



7 DEVELOPING AN EXTERNAL APPLI-
CATION

Taking advantages of the CORBA specification, external ap-
plications can be written with any programming language
(at least, the mapping of IDL to the chosen programming
language must be defined). Currently, the OMG has defined
IDL mapping for several common programming languages
such as Ada, C, C++, Java, scripting language, Smalltalk,
Lisp, etc. Considering the following VRML97 scene graph,
we will present a sample application written in C++, Java
and CorbaScript that interacts with the VRML97 browser
in order to rotate the Box object.

DEF THEBOX Transform {

children [

Shape {

appearance Appearance {

material Material { diffuseColor 1 0 0 }

}

geometry Box {}

}

]}

The following code samples show that the DAI completely
hides the distributed interaction between external applica-
tions and the VRML97 browser.

7.1 Using C++

The following code is the C++ implementation of the exter-
nal application which performs the animation of the box ob-
ject. The syntax could be obscure to non-familiar CORBA
C++ developers. Garbage collector is missing in C++ spec-
ification. The CORBA specification defines “smart pointer”
variables: types having var extension are smart pointers.
Programmers have to take care of variable declarations.

vrml::eai::Browser_var browser;

vrml::eai::Node_var transform;

vrml::eai::Field::EventIn_var event;

vrml::eai::Field::SFRotation_var rotation;

float v[4], angle;

// Initialize the ORB, FreeSSL plug-in somehow

browser = vrml::eai::Browser::getBrowser();

transform = browser->getNode("THEBOX");

event = transform->getEventIn("rotation");

rotation =

vrml::eai::Field::SFRotation::_narrow(event);

v[0] = 0.0; v[1] = 1.0; v[2] = 0.0;

angle = 0.0;

while(true) {

v[3] = angle;

rotation->setValue(v);

angle = angle + 1.0;

}

7.2 Using Java

The following code is the Java implementation of the same
external application as presented before. Note that the syn-
tax is easier than with C++: as Java includes a garbage
collector, programmers do not have to use special type to
simulate garbage collector.

vrml.eai.Browser browser;

vrml.eai.Node transform;

vrml.eai.Field.EventIn event;

vrml.eai.Field.SFRotation rotation;

float v[4], angle;

// Initialize the ORB, FreeSSL plug-in somehow

browser = vrml.eai.Browser.getBrowser();

transform = browser.getNode("THEBOX");

event = transform.getEventIn("rotation");

rotation =

vrml.eai.Field.SFRotationHelper.narrow(event);

v[0] = 0.0; v[1] = 1.0; v[2] = 0.0;

angle = 0.0;

while(true) {

v[3] = angle;

rotation.setValue(v);

angle = angle + 1.0;

}

7.3 Using CorbaScript

Using the IDLScript [OMG 2001c] language specification
and its implementation CorbaScript [LIFL], external ap-
plications can be written faster and easier than with Java
or C++. In fact, as CorbaScript is an interpreted object-
oriented scripting language, it does not require any compi-
lation process and the syntax is less difficult than C++ or
Java. All complex operations (such as ORB initialization or
casting operations) are performed by the CorbaScript inter-
preter. CorbaScript is dedicated to CORBA environments,
and scripts (later called CORBA scripts) can invoke any op-
eration, get and set any attribute of any CORBA object.
As shown in the following code sample, we can easily write
small external applications in CORBA scripts form interact-
ing with the VRML97 browser.

browser = vrml.eai.Browser.getBrowser()

node = browser.getNode("THEBOX")

rotation = transform.getEventIn("rotation")

angle = 0.0

while(true) {

rotation.setValue([0.0 1.0 0.0 angle])

angle = angle + 1.0

}

8 RESULTS

We developed an external application which controls a parti-
cle system. It demonstrates the capabilities of the DAI used
with the Spin-3D collaborative platform. Figure 15 presents
the overall architecture and the components involved in such
an application. The particle system is implememented us-
ing the “visualization” and “behavior” plug-in mechanisms
presented in section 2:

• On each computer, the Particle Display visualization
plug-in is in charge of displaying particles using a vec-
tor containing positions of all particles. This vector is
shared. Figure 16 shows the VRML97 file describing
the particle visualization plug-in. For further informa-
tions on sharing description, the reader needs to refer
to [Louis Dit Picard et al. 2002].

• On one computer, the Particle Animator behavior
plug-in is in charge of computing the position of each
particle. This plug-in updates the particle positions
contained in the vector. As the vector is shared, modi-
fications are sent to the others Spin-3D. This behavior
plug-in is dynamically loaded by the Spin-3D core us-
ing informations placed into a configuration file: routes



are dynamically created between the Particle Animator
behavior plug-in and the Particle Display visualization
plug-in.

The external application is connected to the Spin-3D which
computes the animation. We can control parameters of the
particle system, such the gravity, the number of particles,
etc. The controller application runs on a PDA and was
written in Java. The network link between the PDA and the
Spin-3D computer is achieved by a wireless network (IEEE
802.11b).

PDA

network

controls simulation
parameters

particle positions

computes
particle positionsdisplays

particles

Spin-3D core Particle
animator

Spin-3D core
Particle
display

particle positions

displays
particles

Spin-3D core
Particle
display

particle positions

displays
particles

Particle
display

wireless network

Figure 15: The “particle system” demonstration architec-
ture.

#VRML V2.0 utf8

EXTERNPROTO ParticleDisplay [

exposedField MFVec3f position

exposedField SFColor color

exposedField SFString texture

exposedField SFFloat size

]["urn:file:ParticleDisplay.dll"]

SharedSet {

mode "public"

children [

DEF SharedParticulePos SharedMFVec3f {

alias "ParticleDisp.position"

mode "public"

how "flow"

}

]

}

Transform {

children [

DEF ParticleDisp ParticleDisplay {

color 0.9 0.2 0.9

size 0.05

texture "particle.tga"

}

]

}

Figure 16: VRML97 file for particle visualization plug-in.

9 CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of the
Distributed Authoring Interface used in the Spin-3D plat-
form. With such an API, we allow third-party developers to
write easily their own collaborative applications. The DAI
merges the standard VRML97 EAI and the CORBA Dis-
tributed Object Technology. Current EAI implementations
do not support all the possibilities provided by the VRML97
EAI specification: theorically any language could be used
to program an application using the EAI, but in practice,
the current implementations only support communication
between a VRML97 scene and a Java applet embedded in
the same HTML page. Whereas the standard mentions the
possibility of remote connections, in practice, Java applets
and the VRML97 browser are running on the same machine.
Taking advantage of the CORBA middleware, the DAI sup-
ports remote connections and allows developers to program
external applications with any programming language. The
DAI also introduces new interfaces to the classical VRML97
EAI: using the latest EAI specification and the OMG-IDL
inheritance property, they are integrated as extensions. The
Node Proxy interface handles the traversal of the VRML97
scene graph. The NodePath allows programmers to point at
any node of the VRML97 scene graph, and the NodeSearcher
interface is used to search and get nodes using a NodePath.
This paper also presents a solution to ensure security be-
tween external application and the VRML97 browser thus
protecting the browser from harmful activities. The CORBA
technology allows us to replace traditional unsecure trans-
port layer (over TCP/IP) with a secure one (using the SSL
protocol). Therefore only authorized external applications
could manipulate the VRML97 browser.
Currently, the DAI does not handle buffered updates to the
VRML97 scene graph: the beginUpdate() and endUpdate()
methods, as specified by the VRML97 standard EAI, are
not yet supported. All remote method invocation are syn-
chronous and the implementation of methods immediately
modifies nodes and fields. Spin-3D is a CVE where several
users can interact with each other. Spin-3D owns a lock man-
ager which is responsible for the access to shared data. In
order to write external collaborative applications, program-
mers should have access to the Spin-3D’s lock manager. We
have to extend the DAI in order to propose such a service.

Acknowledgments

The research project reported here is supported by France
Télécom R&D and the regional council of Nord-Pas de Calais
(France).

References

Blaxxun Interactive. See http://www.blaxxun.com.

Carey, R., Bell, G., and Marrin, C. 1997. ISO/IEC
14772-1:1997 Virtual Reality Modeling Language
(VRML97). See http://www.web3d.org/technicalinfo/-
specifications/vrml97/.

Dumas, C., Degrande, S., Saugis, G., Chaillou, C.,

Viaud, M.-L., and Plénacoste, P. 1999. Spin: a
3D interface for cooperative work. Virtual Reality Society
Journal .



Gamma, E., Helm, R., Johnson, R., and Vlissides,

J. 1995. Design Pattern, Elements of Reusable Object-
Oriented Software. ISBN 0-201-63361-2. Addison-Wesley.

The EAI Working Group. 2002. ISO/IEC FDIS 14772-
2:2002 Virtual Reality Modeling Language (VRML97).
See http://www.web3d.org/technicalinfo/specifications/-
eai/.

IONA. See http://www.ooc.nf.ca/fssl/.

IONA. See http://www.orbacus.com.

Isakovic, K., Dudziak, T., and Köchy, K. 2002. X-
Rooms: A PC-based immersive visualization environ-
ment. In Web3D 2002.

LIFL. See http://corbaweb.lifl.fr/corbascript/.

Louis Dit Picard, S., Degrande, S., Gransart, C.,

Saugis, G., and Chaillou, C. 2001. A CORBA-based
Platform as Communication Support for Synchronous
Collaborative Virtual Environment. In ACM Multimedia
2001, International Multimedia Middleware Workshop.

Louis Dit Picard, S., Degrande, S., Gransart, C.,

Saugis, G., and Chaillou, C. 2002. VRML Data Shar-
ing in the Spin-3D CVE. In Web3D 2002.

Microsoft Corporation. See
http://www.microsoft.com/com/tech/dcom.asp.

OMG. 2001. The Common Object Request Broker: Archi-
tecture and Specification revision 2.5. OMG Document
formal/01-09-01.

OMG. 2001. Common Secure Interoperability (CSIv2).
OMG Document ptc/01-06-17.

OMG. 2001. CORBA Scripting Language Specification.
OMG Document formal/01-06-05.

OMG. 2001. Naming Service Specification. OMG Document
formal/2001-02-65.

Parallel Graphics. See
http://www.parallelgraphics.com/cortona.

Silicon Graphics Corporation. See http://vrml.sgi.com.

Sun Microsystems. See
http://java.sun.com/products/jdk/rmi/.

The Transport Layer Security Working Group. The
SSL Protocol version 3.0.

World Wide Web Consortium (W3C). XML
Path Language (XPath) version 1.0. See
http://www.w3.org/TR/xpath.

View publication statsView publication stats

https://www.researchgate.net/publication/2570953

