Nicolas Martin
email: nicolas.martin@lifl.fr

Samuel Degrande
email: samuel.degrande@lifl.fr

Christophe Chaillou
email: christophe.chaillou@lifl.fr

Une utilisation du modèle MVC pour une plate-forme de travail virtuel

Keywords: Bureau virtuel 3D, MVC, Architecture logicielle, IHM 3D D.2.11 [Software Engineering]: Software Architectures; H.5.2 [User Interfaces]: User interface management systems (UIMS) 3D Virtual Desktop, MVC, software archi-tecture, 3D CHI

teaching and research institutions in France or abroad, or from public or private research centers.

INTRODUCTION

Les interfaces de travail utilisateurs s'appuient toujours en majorité sur la métaphore du bureau 2D introduite par Xerox Star et popularisée sur Macintosh il y a 20 ans. On voit tout de même apparaître des effets visuels tels que l'ombre et la transparence, introduites par les interfaces 2D 1/2. Mais les gestionnaires d'environnement n'évoluent globalement pas.

Les ordinateurs grand public sont devenus de plus en plus puissants et permettent l'exécution d'applications virtuelles interactives complexes. La troisième dimension est principalement utilisée dans le domaine du jeu vidéo ou de la réalité virtuelle, partageant les mêmes concepts, et dans le cadre d'applications professionnelles, de type CAO, auquel cas le contenu 3D de l'application est visualisé au sein d'une fenêtre 2D.

Cependant quelques projets commencent à proposer des environnements de travail 3D avec une approche inverse : intégrer l'univers 2D dans un environnement 3D. Dans leur majorité, ils utilisent la troisième dimension comme support aux applications WIMP standard et profitent des avantages offerts par la 3D comme l'animation ou l'agencement des applications dans l'environnement virtuel, et les effets spéciaux.

Depuis plusieurs années, notre laboratoire élabore une plate-forme de travail collaboratif 3D. Aujourd'hui, nos travaux sur cette plate-forme nous amène à réfléchir à la définition d'un environnement de travail 3D générique, supportant des applications virtuelles collaboratives. Dans ce contexte, nous avons dû mettre en place une architecture logicielle pour simplifier le développement des composants interactifs qui forment les applications 3D.

Nous avons réalisé un gestionnaire de bureau 3D s'appuyant sur une adaptation du design pattern Modèle-Vue-Contrôleur (MVC). Nous effectuons, dans cet article, un retour d'expérience sur l'utilisation d'un modèle de ce type, dans le cadre des environnements virtuels 3D.

Dans cet article, nous commençons par décrire le concept d'application 3D au sens où nous l'entendons. Dans un second temps, après avoir présenté les travaux existant et définit les besoins d'un gestionnaire d'environnement 3D, nous présentons l'intégration dans la plate-forme du modèle MVC. Nous exposons dans la dernière partie, en nous appuyant sur des applications de tests, les apports et limitations du MVC pour la réalisation d'environnements virtuels interactifs.

NOTION D'APPLICATION 3D

Une application a pour but de permettre à l'utilisateur de réaliser des tâches. L'exécution de ces tâches est commandée par des séquences d'actions que l'utilisateur effectue dans l'interface. Dans le cadre des interfaces WIMP, l'ensemble des éléments qui forment l'application est regroupé à l'intérieur de fenêtres. Le gestionnaire d'environnement a pour rôle de gérer ces fenêtres.

Dans un environnement 3D, basé sur une représentation réaliste, une application est complètement intégrée à l'interface 3D et les éléments de l'application sont dispersés dans l'ensemble du monde virtuel.

Dans ce type d'environnement, on perd le contexte clos apporté par les fenêtres, qui encapsulent les éléments des applications. Un gestionnaire d'environnement 3D ne doit alors plus uniquement gérer chaque application globalement, mais chaque élément d'une application.

Dans la suite de ce papier, nous prendrons Spin|3D comme exemple de gestionnaire d'environnement 3D, mais les concepts abordés sont généralisables. • le système récupère les informations provenant des différents périphériques, et effectue la détection de collisions avec la scène, • les vues remplissent le contexte d'interaction en spécifiant dans quelles zones se trouve l'outil courant, le document désigné, etc…,

Spin|3D

• les informations contenues dans le contexte d'interaction sont utilisées par l'outil d'interaction pour agir sur l'environnement. Le gestionnaire d'interaction peut éventuellement modifier l'action par défaut de l'outil, en invoquant les contrôleurs des zones concernées,

• les vues associées aux modèles modifiés sont alors mises à jour.

Diagramme de classes

La figure 3 reprend le diagramme de classes du composant MVC utilisé pour définir une zone d'interaction : le modèle entretient avec la vue une relation observeur/observable, le contrôleur agit sur le modèle, et un modèle définit la hiérarchie de l'environnement 3D en contenant plusieurs documents et sous-composants MVC.

TEST ET VALIDATION DU MODELE

Dans cette section, nous présentons trois applications ayant servi à valider notre utilisation du modèle MVC pour la réalisation d'applications configurables

Modification dynamique de la modalité d'interaction

Le premier exemple décrit une application s'appuyant sur la métaphore de la table de réunion (figure 1). Elle permet de mettre en évidence l'adaptation de l'interaction en fonction des zones. Cette application est composée de 4 zones:

• une table représentant l'espace de manipulation (de travail), • un bandeau entourant la La seconde application (figure 4), qui met en oeuvre une métaphore de prise de point de vue est plus représentative du potentiel du système en terme de modularité. La métaphore de prise de point de vue permet de naviguer dans un document et de pouvoir acquérir le point de vue des utilisateurs distant sur ce document. Les documents supportés sont soit des objets 3D (auquel cas la naviga-tion est assimilée à l'orientation de l'objet), soit des documents 2D comme des diaporama ou des documents texte multi-pages (auquel cas la navigation correspond à un changement de page). La manipulation du document se fait par interaction indirecte (via une trackball virtuelle pour les objets 3D, via une molette de défilement pour les documents 2D : figure 4.d).

Réutilisabilité des composants

La métaphore a été découpée en trois parties :

Dynamicité de la représentation

Figure 1 :

 1 Figure 1 : Exemple d'application Spin|3D, et décomposition en ses différents éléments.

 Le contrôleurLe contrôleur a pour rôle la définition de la modalité d'interaction spécifique d'une zone et la modification de l'état du modèle en conséquence. La particularité de notre implémentation du modèle MVC vient de la manière avec laquelle le contrôleur invoqué : les contrôleurs sont liés aux outils d'interaction par un gestionnaire d'interactions dont la description sort du cadre de cet article ; on retiendra uniquement qu'un contrôleur de zone spécifie une action déclenchée pour interdire, étendre ou substituer la modalité d'interaction par défaut d'un outil. Dans notre approche, le contrôleur pourra être invoqué pour modifier le comportement défini par l'outil d'interaction. Le type d'adaptation est régi à l'aide de règles d'interaction décrites en xml spécifiant si le contrôleur doit se substituer à l'outil, l'augmenter ou l'interdire.

Figure 2 :

 2 Figure 2 : Diagramme d'activité pour une boucle d'affichage. Mise en relation des modules La figure 2 reprend le diagramme d'activité simplifié du déroulement d'une boucle d'affichage :

Figure 3 :

 3 Figure 3 : Diagramme UML du composant MVC.

Figure 4 :

 4 Figure 4 : La métaphore de prise de point de vue: à gauche, la version pour les documents 3D, à droite pour les documents 2D (ici, une liste d'images). a) outil complet. b) outil de prise de vue distant et retour. c) les documents. d) contrôle du point de vue local et représentation des points de vues distants.

Figure 5 :

 5 Figure 5 : à gauche l'application en mode standard, à droite, les vues de chaque zone ont été remplacées par une vue conetree. Dans le cadre de l'évolution d'une activité, il peut être nécessaire de modifier la représentation de l'environnement pour l'adapter à la tâche sans changer la sémantique de l'application. Ce dernier exemple met en évidence l'intérêt de la définition d'une classe Model de base, dont hérite tout modèle des composants MVC. Nous avons implémenté une vue visualisant le contenu d'une zone sous forme de cone-tree. Cette vue utilise directement l'interface de la classe Model de base, et peut donc être attachée à n'importe quelle zone. La figure 5 montre le résultat de l'affichage : la même scène est affichée avec des vues différentes. Les modalités d'interaction restent les mêmes entre les deux représentations : la sélection qui n'était pas autorisée dans le bandeau dans le mode standard, reste proscrite pour le sous-arbre correspondant à la zone du bandeau dans le mode cone-tree.

utilisateur

 La figure1présente l'interface d'une application 3D développée avec la plate-forme Spin|3D. L'environnement est constitué d'une table centrale sur laquelle des documents 3D peuvent être placés pour être manipulés. Autour de cette table, un bandeau permet de disposer les autres documents nécessaires à l'activité. Les documents dans le bandeau ne sont pas directement manipulables ; ils doivent pour cela être auparavant placés sur la table. Microsoft PowerPoint, par exemple) sont mieux intégrées dans ces environnements : les utilisateurs, par navigation semi-automatique, se placent face au mur supportant le document 2D lorsqu'ils désirent interagir avec celui-ci. Le passage de ce document en mode 2D se fait alors naturellement, sans couture, • les récents travaux de Sun Microsystems sur le projet Looking Glass [Erreur ! Source du renvoi introuvable. 9], ou la plate-forme XYZ [6], partent eux aussi du principe d'intégration d'applications 2D existantes dans l'environnement. Ici, les applications 2D sont également plaquées sur des boites 3D, mais les documents 2D sont de plus directement manipulables en 3D. D'autre part, Looking Glass, via une API en Java, et XYZ via l'API XYZ, offrent la possibilité de créer des applications entièrement 3D.

	• toute interaction de l'utilisateur dans l'environnement 3D se fait au travers d'outils d'interaction. Le modèle MVC, issu de Smalltalk [7], décrit un système d'agents à trois facettes : le Modèle contenant le noyau fonctionnel de l'agent, la Vue chargée de la représenta-• un Modèle, offrant les fonctionnalités associées à la zone, • des Contrôleurs, responsables des modalités d'inte-	l'utilisateur. L'utilisateur agit sur l'environnement à l'aide d'outils d'interaction, • outil d'interaction : objet 3D de l'environnement pi-<Workspace> <zone id=SystemArea> <zone id=Bandeau> <object name=document.wrl />
	TRAVAUX EXISTANTS Environnements 3D tion du Modèle, et le Contrôleur gérant ce qui a trait à l'interaction avec l'utilisateur. Ce design pattern est le raction associées à la zone, • des Vues, responsables de la visualisation de la On peut distinguer plusieurs catégories d'environnements plus connu, largement utilisé, et l'on en trouve beaucoup zone.	loté par l'utilisateur au travers des périphériques. Les outils ont pour rôle d'agir sur les documents présents </zone> <zone id=Table> <object name=object.wrl /> dans l'interface. Un outil possède un comportement </zone>
	3D : • ceux basés sur des technologies de langage de des-d'adaptations : dans Swing, par exemple, où Vue et Contrôleur ont été fusionnés. Les agents peuvent égale-Pour permettre un maximum de ré-utilisabilité, les modè-cription de graphes de scène comme X3D ou VRML97. Ces langages permettent de décrire des scènes 3D interactives. La partie dynamique de ces ment être organisés de manière hiérarchique, afin de mieux s'adapter au système interactif. Le principal in-convénient du paradigme MVC reste la grande multipli-les, vues et contrôleurs sont implémentés sous forme de modules dynamiques (dll/dso) indépendants, codés en C++ ou Javascript. Ces modules sont chargés dynami-	L'interaction entre l'utilisateur et l'interface se fait à l'aide d'outils qui sont activables au travers d'une barre d'outils. L'utilisateur pilote les outils à l'aide de deux périphéri-<zone id=ToolBar> par défaut, indépendant du contexte courant. • Zone d'interaction : une zone est un volume de l'es-<zone id=ExchangeTool /> <zone id=SelectTool /> pace virtuel possédant une représentation et suppor-tant une modalité d'interaction spécifique. Par exemple, dans l'application de la Figure 1, le ban-</zone> </zone> </Workspace>
	scènes est gérée par des langages de script. Les gra-phes de scène répondent assez bien au problème du cité de classes à implémenter. quement à l'exécution et la manière de les associer pour définir les zones d'interactions est décrite dans un fichier placement géométrique des objets 3D, mais s'adap-tent plus difficilement à du contenu réellement dy-namique (i.e., nécessitant une modification de la structure du graphe de scène) et aux nouvelles tech-niques de rendu multi-passes nécessaire à la réalisa-VERS UN GESTIONNAIRE D'ENVIRONNEMENT 3D La 3D apporte des avantages en terme de représenta-tions, en offrant la possibilité d'afficher un plus grand nombre d'informations [3]. Dans le cadre d'une activité de travail, nous pensons que la navigation est à éviter, de configuration au format XML. L'exemple suivant dé-crit la configuration de la zone associée à la table (figure 1). On y retrouve la définition du modèle, les différentes vues de la zone, et les contrôleurs (ici, chargés d'acti-ver/désactiver le mode de transparence des documents	ques, un périphérique servant à la désignation, un autre étant dédié à la manipulation. L'aspect collaboratif de l'application est géré par le partage d'attributs d'objets VRML97, ici l'appareil photo et ses bagues de réglages. Parmi les outils qui sont proposés à l'utilisateur, certains vont permettre d'agir sur les documents (exemple : l'outil deau est une zone d'interaction où la manipulation d'objet n'est pas autorisée, Code 2 : Exemple de fichier de configuration du graphe de zo-nes de l'application. • modalité d'interaction d'une zone : possibilité de modifier dynamiquement le comportement par dé-faut d'un outil, pour interdire, augmenter ou substi-tuer l'action de cet outil, • contexte d'interaction : définit l'état interactif du sys-Le modèle Le modèle correspond au code métier de la zone, tout modèle hérite d'une classe C++ Model, offrant un mini-mum de fonctionnalités :
	tion L'interaction dans les environnements utilisant des d'effets spéciaux sur la scène. graphes de scène se limite souvent à la manipulation d'attributs de ce graphe, comme c'est le cas pour les mondes virtuels, tels que Dive [4]. Des travaux comme [11] génèrent des applications sous forme de scènes X3D, mais leur approche consiste à effectuer sur la table en fonction de la position du pointeur 3D). La syntaxe reste suffisamment ouverte pour pouvoir spéci-fier les paramètres nécessaires aux différents modules.	tème et relate l'activité de l'utilisateur sur le système à un moment donné. Il contient comme information : l'outil que l'utilisateur manipule, la zone dans la-• la gestion d'attributs dynamiques : un modèle va pouvoir posséder des attributs typés accessibles par les autres modules. Ils peuvent être créés par défini-quelle se trouve l'outil, l'action que l'outil est en train tion dans le fichier de configuration, ou dynamique-d'effectuer, le document manipulé, l'état des périphé-ment par programmation. Le modèle sert dans ce riques... dernier cas uniquement de mémoire de stockage par-
	un mapping des composants d'interface WIMP 2D	tagée, sans connaissance de l'utilité de ces attributs.
	classiques (bouton, slider...) sur une représentation	La déclaration d'attributs sert, par exemple, à pou-
	3D,	voir faire communiquer des vues et des contrôleurs
	• d'autres approches, plus logicielles, utilisent l'envi-ronnement 3D comme support à l'agencement des fenêtres des applications 2D, dans un univers 3D plus ou moins interactif. Les terminaux de base, de type poste bureautique, ne possédant pas de périphé-riques adaptés à la navigation, des applications comme 3DNA ou Win3D offrent des déplacements virtuel 3D doit permettre de définir des nouvelles modalités d'interaction et introduire de nouveaux contrôles 3D, au travers de nouvelles métaphores, n'ayant pas leur équiva-lent 2D. Les approches logicielles offrent une plus grande liberté), • les applications 3D doivent être facilement configu-rables pour pouvoir les adapter, éventuellement dy-namiquement, à l'environnement (dispositifs physi-ques d'entrées/sorties, contexte de l'activité, spécifi-cités de l'utilisateur...), sans avoir à implémenter un modèle dédié, • la gestion de la sous-hiérarchie : c'est le modèle qui contient les sous-zones et les objets contenus dans la zone. En mettant cette gestion à ce niveau, nous permettons au modèle d'avoir la main mise sur la à quel modification du contenu de la zone, puisque tout point ce modèle s'adapte à la réalisation d'interfaces 3D interactives configurables, en l'utilisant pour implémen-passe par lui.
	semi-automatisés (des raccourcis de navigation). SphereXP limite l'espace navigable à une sphère, évitant à l'directement avec les applications 2D dans l'environnement 3D : elles repassent toutes en mode 2D classique pour l'interaction. Enfin, elles restent très proches des concepts d'IHM 2D, • Muse et le Workspace3D [10] proposent des envi-ronnements 3D pour le travail collaboratif. L'univers en terme de contrôle et de performance que l'utilisation de format de description standard comme X3D (qui dis-posent d'outils auteur adaptés), mais au détriment d'un temps de développement plus élevé des applications. L'idéal est donc de pouvoir hybrider les deux approches, en offrant la possibilité de décrire une partie de l'applica-tion par un langage de description, mais également de permettre la définition de composants programmés dans des langages évolués utilisant directement une API du système. Définitions Dans cette section nous explicitons les concepts et le vo-cabulaire correspondant à notre définition d'un Bureau 3D. Certaines définitions sont spécifiques aux environ-nements 3D, d'autres sont des extensions de leur équiva-Une zone peut posséder plusieurs vues, mais une seule vue est active à un instant donné. La vue active peut être choisie dynamiquement durant l'exécution. Les vues sont connectées au modèle et entretiennent avec lui une rela-tion observable/observeur. Cette relation va permettre la notification automatique de la vue de tout changement d'état du modèle. L'environnement 3D complet est constitué d'un ensemble de zones organisées de manière hiérarchique. Cette hié-rarchie permet de donner à une zone la possibilité de lent 2D : contrôler sa sous-hiérarchie. Une zone particulière cor-respondant à la racine de la hiérarchie (SystemArea, dans • bureau et application 3D : un bureau 3D est un envi-applications 3D. Une application 3D est composée face. ronnement de travail 3D non immersif gérant des l'exemple ci-dessous) représente l'intégralité de l'inter-	• nous devons supporter le changement de représenta-tions dynamique des éléments de l'interface. Le be-soin de changement de représentation se situe à deux niveaux : soit pour permettre une représentation dif-férente sur les terminaux de chaque utilisateur (pour s'adapter au capacité du terminal ou de l'utilisateur du terminal), soit pour permettre, pendant le dérou-lement de l'activité, une représentation s'adaptant au mieux à la tâche en cours de réalisation (par exem-ple en repassant dans un mode d'affichage de type 2D, lorsque l'activité ou les modes d'interactions le nécessitent), • les modalités d'interactions doivent être gérées dy-namiquement. Les représentations visuelles pouvant changer en fonction du contexte matériel, il est né-cessaire de pouvoir également adapter les interac-tions. Le besoin de changement peut également être nécessaire au cours l'activité pour s'adapter à la tâ-che (exemple : interdire temporairement les manipu-lations, ou forcer l'utilisateur à sélectionner un objet parmi un ensemble), Le modèle DPI [2] est une architecture composant cen-trée autour de la métaphore du document. Le Document décrit par l'ensemble de ses propriétés, la Présentation est chargée de la représentation et l'interaction s'effectue au travers d'Instruments.L'utilisation de la métaphore tation d'une application 3D. L'étude porte également sur La vue comment étendre ce modèle pour qu'il puisse répondre La vue est responsable de l'affichage de la zone, et du aux deux principales contraintes que nous nous sommes déclenchement de l'affichage des sous-zones et des objets fixées : avoir une configurabilité totale de l'application et contenus dans le modèle. Pour afficher l'environnement un mécanisme d'interaction adaptable au contexte 3D complet, le noyau de la plate-forme demande uni-quement à la zone racine de s'afficher. Le rendu de la Le MVC ne force pas l'utilisation d'un noyau regroupant hiérarchie complète se fait alors de proche en proche, toute l'application, et permet la répartition du code métier chaque noeud affiché initiant l'affichage des noeuds sui-dans tous les objets contenus dans l'environnement. vants. Une vue a ainsi la maîtrise totale de l'affichage de Contrairement à l'approche d'Okada [12] nous conser-la zone qu'elle représente et peut contrôler l'affichage des vons un découpage fort des composants MVC qui permet sous-zones. de dégager des comportements d'interaction réutilisables sur différentes vues. L'interaction quant à elle s'effectue La vue fournit les mécanismes de détection de collisions en partie via des outils d'interaction (assimilable au entre un rayon ou un point de l'espace et ce qu'elle affi-concept d'instrument) et n'est pas uniquement gérée par che. En effet, comme c'est la seule à connaître le place-le Contrôleur. ment des objets dans l'espace 3D, elle est la seule à pou-voir renseigner ce type d'informations. Ces informations d'instruments permet de pouvoir utiliser des instruments lui sont demandées par la plate-forme pour déterminer le contexte d'interaction.
	d'objets 3D réagissant aux actions déclenchées par	

qui sert à manipuler les bagues de l'appareil photo) et d'autres vont servir à la modification de l'environnement (exemple : l'agencement des documents dans l'interface).

Buts et contraintes

Nous nous fixons, pour la réalisation d'une plate-forme de support d'applications 3D, différents objectifs et contraintes relatifs aux comportements de l'interface : • la plate-forme doit être suffisamment ouverte et générique pour pouvoir accueillir de nouvelles métaphores d'interaction et de représentation (par exemple bandeau ou barre d'outils...de se perdre dans des tâches de navigation non essentielles. Ces environnements ont l'avantage d'offrir à l'utilisateur la vision simultanée d'un plus grand nombre d'informations. Rooms3D autorise les déplacements à la manière d'un jeu vidéo, répartissant les différentes activités au sein de pièces différentes. Ce genre d'environnement n'est pas adapté au travail car beaucoup trop de temps est passé dans la phase de navigation. Les applications présentées ne permettent pas d'interagir 3D contient des applications qui vont pouvoir être utilisées à plusieurs. L'avantage apporté par la troisième dimension, dans ce cadre, est la possibilité de visualiser les actions effectuées par les autres acteurs. Les applications 2D (navigateur Internet, ou Cette approche semble la plus prometteuse, au sens où elle permet l'utilisation d'applications 2D existantes, mais s'ouvre également au développement de nouvelles applications entièrement 3D. Ce type d'environnement permet une migration plus douce entre les mondes 2D et 3D. Architectures de systèmes interactifs Les architectures Seeheim et ARCH [1] sont des modèles conceptuels qui permettent de découper l'application en plusieurs couches allant du noyau fonctionnel à la présentation. Elles offrent l'avantage de séparer l'interface du noyau fonctionnel de l'application d'avec les mécanismes de représentation et d'interaction du système. Ces architectures nécessitent d'avoir un noyau central regroupant l'ensemble des fonctionnalités, et, de ce fait, s'adaptent assez mal au cadre d'une plate-forme générique. L'architecture PAC [5] est composée d'agents interactifs, chaque agent étant formé de 3 parties : la Présentation qui gère la représentation visuelle et l'interaction de l'agent, l'Abstraction qui contient le code métier de l'agent, et le Contrôle qui définit la voie de communication entre la présentation et l'abstraction. Dans le paradigme PAC, les agents sont organisés de manière hiérarchique, permettant ainsi de décrire le système interactif de manière progressive. PAC-Amodeus [8] est une architecture hybride, où le Contrôleur de dialogues de Arch est composé d'une hiérarchie d'agent PAC. PAC-Amodeus apporte une meilleure portabilité. réalisant des actions génériques sur des documents différents. Néanmoins, le résultat de la consommation d'une action par un document est figé au niveau du document. qu'il faille utiliser les atouts de la 3D pour l'agencement des documents, mais surtout, qu'il faut introduire de nouveaux concepts pour les IHM 3D. Pour certaines applications provenant du monde 2D, le passage à la troisième dimension ne se justifie que pour l'agencement des fenêtres dans l'espace. Par contre, traduire tous les composants interactifs 2D (boutons, barre de défilement) par leurs homologues 3D n'apporte que très peu d'intérêts, mis à part esthétique. L'effort demandé à l'utilisateur pour interagir avec ces composants devient plus important. Par contre, un gestionnaire d'environnement Etude de l'utilisation du modèle MVC Dans le contexte d'environnement 3D tel que nous le définissons, nous avons retenu le paradigme MVC comme modèle de conception. Il nous a semblé le plus adapté car chaque composant interactif ou fonctionnel de l'environnement peut se décrire sous la forme d'une triade MVC, l'ensemble de ces composants formant l'application fonctionnelle. Notre but est de voire jusqu'IMPLEMENTATION Description du modèle MVC pour les zones Une zone d'interaction est implémentée à l'aide d'une triade MVC. A une zone, nous associons : Code 1 : Exemple de fichier de configuration d'une zone.

 table et contenant les documents disponibles pour l'activité en cours, • une zone contenant une barre d'outils, et permettant de masquer/afficher cette barre d'outils. • une barre horizontale contenant des objets 3D représentant les différents outils disponibles. La barre d'outil est également réalisée à l'aide d'un composant MVC, et d'un Contrôleur déclenchant le changement d'outil courant. Il n'est ainsi pas besoin, contrairement au cas des environnements 2D, d'un mécanisme spécifique de déclaration d'une barre d'outils ou de menus déroulant.

	Nous avons également pu définir deux catégories de
	Contrôleurs : ceux spécifiques à une représentation, c'est
	à dire étroitement liés à une Vue, et ceux définissant un
	comportement d'interaction propre aux documents conte-
	nus dans la zone. Dans notre application d'exemple, la
	zone du bandeau interdit toute manipulation des docu-
	ments qu'elle contient. Un Contrôleur attaché à cette
	zone aura donc pour rôle d'empêcher les actions de sélec-
	tion effectuées par l'utilisateur et d'afficher un feedback
	visuel servant à informer de cet échec (halo rouge cligno-
	tant autour du document qui était sur le point d'être sélec-
	tionné). Ce Contrôleur est propre au comportement d'in-
	teraction spécifique du bandeau, mais n'est en aucun cas
	lié à la représentation de ce dernier. A l'inverse, un
	Contrôleur permettant d'orienter le bandeau sous l'action
	du périphérique de manipulation est lui lié à la Vue : il
	modifie un attribut d'orientation ajouté par configuration
	au Modèle, attribut qui sera ensuite utilisé par la Vue
	pour son affichage.
	Hormis les icônes des outils, tous les éléments de l'inter-
	face utilisent le même Modèle générique, à savoir un
	conteneur de documents possédant une interface d'attri-
	buts modifiables dynamiquement. Ce constat nous amène
	à penser que peu de zones ont besoin d'un code fonction-
	nel propre. Dans la majorité des cas, il s'agit uniquement
	de partage d'attributs simples entre Vues et Contrôleurs.

 Amodeus tente de régler en partie, grâce à l'utilisation de différentes heuristiques de conception. Ce type d'heuristiques ne peut cependant être défini qu'en effectuant une analyse sur les choix d'implémentation de plusieurs applications suffisamment complexes. 'utilisation du modèle MVC tel qu'il a été présenté dans cet article a révélé de nombreux avantages. Le développement d'une zone d'interaction est assez simple et permet de prototyper/tester assez rapidement de nouveaux concepts. La structure hiérarchique de l'application s'adapte bien au rendu 3D en analogie avec les graphes de scènes classiques. Des zones d'agencements peuvent être imaginées pour structurer la représentation de l'application. Le fait que les applications soient entièrement décrites dans un fichier de configuration de manière modulaire permet de construire les applications progressivement et d'isoler rapidement les sources de bogues.Les changements dynamiques des Vues, permettant de modifier, en cours d'exécution, la représentation d'une application tout en conservant les modalités d'interaction, sont un des apports majeurs de l'architecture. Cependant, l'application conserve la même structure de composition hiérarchique des zones. Il faudrait en plus des changement de Vues pouvoir remanier le graphe de composants MVC pour pouvoir obtenir, le cas échéant, une application sémantiquement différente. Cette fonctionnalité est pour l'instant réalisable par programmation et n'est pas configurable.Les résultats que nous avons obtenu sont plutôt positifs et nous font nous pencher sur l'extension du modèle MVC aux documents même de l'application. Ces documents sont, pour l'instant, soit des objets 3D au format VRML97, soit des composants applicatifs de type boites noires. L'utilisation du modèle MVC sur les documents permettrait d'uniformiser la plate-forme et d'apporter les avantages de l'architecture au niveau de la description des documents dont l'adaptation des modalités d'interactions. été menés dans le cadre du projet Alcove et sont soutenus par l'Ircica (Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée) et FranceTélécom R&D.

	RESULTATS APPORTS ET LIMITATIONS
	L'utilisation du modèle MVC a permis de répondre aux
	besoins émis par les applications 3D. L'approche modu-
	laire apportée et la définition de composants MVC par
	configuration XML permet de faciliter le prototypage au
	niveau des représentations et de l'interaction.
	Par contre, les modules ont besoin d'être finement docu-
	mentés et exempts de bogues, c'est une condition néces-
	saire à la réutilisation. Le nombre de modules peut éga-
	lement rapidement augmenter dans le cadre d'une appli-
	cation complexe, et le choix du découpage en modules
	peut ne pas être évident. C'est ce que le modèle PAC-
	CONCLUSIONS ET TRAVAUX FUTURS

L

REMERCIEMENTS

Ces travaux ont