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Abstract: Non-destructive testing (NDT) of materials and structures is a very important industrial
issue in the fields of transport, aeronautics and space as well as in the medical domain. Active
infrared thermography is an NDT method that consists of providing an external excitation to cause an
elevation of the temperature field in the material, consequently allowing evaluation of the resulting
temperature field at the surface. However, thermal exciters that are used (flash lamps, halogen, lasers)
act only on the surface of the sample. On the other hand, several energy conversion systems can
lead to the generation of volumetric sources; the phenomena of thermo-acoustics, thermo-induction,
thermomechanics or thermochemistry can be cited. For instance, ultrasonic waves can generate
volumetric heat sources if the material is viscoelastic or if there is a defect. The reconstruction of
these sources is the initial process for the quantification of parameters responsible for the heating.
Characterizing a heat source means reconstructing its geometry and the supplied power. Identification
of volumetric heat sources from surface temperature fields is a mathematically ill-posed problem.
The main cause of the issue is the diffusive nature of the temperature. In this work, 3D reconstruction
of the volumetric heat sources from the resulting surface temperature field, measured by infrared
thermography, is studied. An analysis of the physical problem enables specifying the limits of
the reconstruction. In particular, a criterion on the achievable spatial resolution is defined, and a
reconstruction limitation for in-depth sources is highlighted.

Keywords: inverse problem; tomography; infrared thermography; non-destructive testing;
3D reconstruction

1. Introduction

Active infrared thermography is a widely used method in non-destructive testing (NDT).
The process involves exciting the environment studied with the help of an external energy supply,
and then measuring the resulting temperature on the surface. However, one of the disadvantages of
thermal NDT is that the excitation and the measurement are on the surface. Indeed, exciters today
used in thermal NDT are usually flash lamps, halogens or lasers, which act only on the surface of the
material, making access to information in the volume difficult. Several energy conversion systems can,
however, lead to the appearance of volumetric sources in a material: phenomena of thermo-acoustics,
thermo-induction, thermomechanics or thermochemistry can be cited. For example, an excitation by
ultrasonic waves can lead to heat sources in a material if it is viscoelastic or if it contains a defect. Thus,
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to characterize this defect or the parameter responsible for the heating, the first step is to characterize
the volumetric heat source from the surface temperature data provided by the IR camera. This is a
mathematically ill-posed problem, mainly because of the diffusive characteristic of the heat transfer
problem as well as the influence of noise. This subject has first been studied as a 2D problem, where
the objective was to reconstruct the size and the shape of planar subsurface defects from the blurred
temperature measured at the surface [1].

Then, the study has been extended on 3D problems; several pioneering teams have proposed
methods based on thermal and acoustic coupling [2–6] or by introducing the concept of virtual
waves [7,8]. These methods of reconstruction that exist today enable reconstructing volume data
(sources, initial conditions, etc.) from surface data (temperature fields). However, two main limitations
emerge from this work: depth and measurement noise. Indeed, whatever the methods used, the deep
sources are poorly determined; they are blurred and etched, and their intensities are under-estimated.
Finally, measurement noise, unavoidable during experiments is a limiting factor and drawback for the
inverse processing method. To overcome this drawback, regularization methods allow approaching the
solution, but the choice of the regularization parameters is delicate. The temporal shape of excitation
used (modulated, burst, pulse, etc.) does not seem to be a decisive factor for reconstruction: the
methods do indeed lead to similar results. Each of these methods has its advantages and disadvantages:
methods that use pulsed excitation are, among others, fast but very sensitive to noise, unlike modulated
excitation methods that are less sensitive to noise but slower to implement. In this paper, it is proposed
to reconstruct 3D heat sources using a method based on an impulse excitation (Dirac type). The impulse
thermal response has the advantage of being completely determined analytically.The main objective is
to explain, using a physical criterion, the reason for the depth limitation and to propose results on a
complete 3D shape generated by the Joule effect.

2. Methodology of the Inversion

2.1. Direct Problem

From the global point of view, the goal of the proposed method is to be able to reconstruct 3D
volumetric sources Q(x, y, z), as illustrated Figure 1, from the measured temperature fields at the
sample surface opaque to IR radiation. With this constraint, we will assume that any geometry or
shape of sources can be approximated by a sum of variable intensity source points.

Figure 1. Schema of 3D volumetric sources distributed in a material and the associated surface
temperature field.

The impulse thermal response θDirac at each point r = (x, y, z) at time t from a heat source located
at r′ = (x′, y′, z′) delivering, at a previous time t′, a pulse of heat quantity of Q(r′) (J·m−3) in an infinite
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homogeneous medium, possibly anisotropic, but of non-thermo-dependent thermophysical properties,
is expressed analytically by Equation (1) [9]:

θDirac =
Q(r′)
ρCp

G3D
(
r, t/r′, t′

)
, (1)

where ρ (kg·m−3) and Cp (J·K−1·kg−1) are, respectively, density and specific heat of the material, while
G3D (m−3) is the 3D-Green function of the material. This function can be written as:

G3D
(
r, t/r′, t′

)
= Gx

(
r, t/r′, t′

)
· Gy

(
r, t/r′, t′

)
· Gz

(
r, t/r′, t′

)
. (2)

where Gx, Gy and Gz are the 1D-Green functions along the three directions of space [9].
If the domain is infinite in all three directions, each 1D-Green function expresses itself

explicitly in the same way, here, with spatio-temporal Gaussian functions, and the thermal impulse
response becomes:

θDirac =
Q(x′, y′, z′)

ρCp

exp
(
− (x− x′)2

4ax(t− t′)

)
√

4πax(t− t′)

exp
(
− (y− y′)2

4ay(t− t′)

)
√

4πay(t− t′)

exp
(
− (z− z′)2

4az(t− t′)

)
√

4πaz(t− t′)
(3)

where ax, ay and az (m2·s−1) are the diffusivities along each of the x, y or z directions of
space, respectively.

If the domain is not infinite in all three directions, but only along the directions x and y, and is
only semi-infinite in the third direction (z), the 1D-Green function functions Gx and Gy are the same as
in Equation (3), but Gz is different and can be written as [9] :

Gz(z, t/z′, t′) =
1

4
√

πaz(t− t′)

[
exp

(
− (z− z′)2

4az(t− t′)

)
+ exp

(
− (z + z′)2

4az(t− t′)

)]
. (4)

Now, if the domain is infinite along the directions x and y and finite along the direction z,
the domain is therefore a plane sample of thickness Lz. In this case, the 1D-Green functions Gx and Gy

are the same as in Equation (3), but Gz is different and can be written as [9] :

Gz(z, t/z′, t′) =
1
Lz

[
1 + 2

+∞

∑
m=1

exp
(
−azm2π2(t− t′)/L2

z

)
cos (mπz/Lz) cos

(
mπz′/Lz

)]
. (5)

For this example of a sample finite along the z direction, the quadripole method is another
technique that allows the access to the temperature response [10]. It enables calculating the analytical
solution Gz of Gz in the Laplace domain:

Gz(z, p) =
cosh

(
z
√

p/a
)

cosh
(
(L− z′)

√
p/a

)
λ
√

p/a sinh
(

L
√

p/a
) (6)

The previous Equation (6) can be inverted numerically to find its original in temporal space.
The numerical algorithms, such as Gaver-Stehfest, or a return of Laplace by Fourier [10] or using
De Hoog’s Invlap algorithm, can indeed be used.

For the inversion, several models, including those defined by Equations (3), (4), (5) or (6), can be
used. To compare the influence of each model along the z direction, three different configurations of
heat sources are tested. As the x and y direction are considered infinite, the heat sources considered
on the examples are an infinite plane along these dimensions, located at a given depth in the sample,
as illustrated by Figure 2a.
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Figure 2. Scheme of the sample along the z direction (a). Temperature response at the surface depending
on the used model for three configurations: a heat source located at z = Lz/4 (b), z = Lz/2 (c) or
z = 3Lz/4 (d).

The first example is computed considering this heat source at z = Lz/4 (near the measuring
surface). On the second example, the source is located at z = Lz/2 and for the last one, it is located
at z = 3Lz/4 (deep source). The resulting temperatures θ(z = 0, t), are calculated by three different
models (finite, semi-infinite and infinite along z), measured at the surface, and given by (b), (c) and
(d), respectively, in Figure 2. For the three examples, Q0 = 0.01 J·m−3, a = 2.5× 10−7 m2·s−1 and
ρCp = 106 J·K−1·m−3. The study is made between t0 = 0 and t f = L2

z/a.
Whatever the depth of the heat sources, it can be seen that for short times, the temperature

responses calculated by the three different models are exactly the same. The differences occur only for
the long times.

In this paper, all the works were done at short times. Therefore, the model used is the infinite
model, given by Equation (3), because it is more convenient (analytically). However, the choice of
the model is not decisive: the methodology that leads to the results is the same, and any models or
numerical simulations can be used for the inversion.

By introducing the following dimensionless data t∗ = t
t f

, i∗ = i′
Li

(i = x, y or z), as well as the

Fourier number Foi =
ait f
Li

, where t f corresponds to the time of the experiment and Li to the considered
length of the material, Equation (3) can be rewritten in dimensionless form as follows:

θ3D(x∗, y∗, z∗, t∗) =
Q(x′∗, y′∗, z′∗)
8ρCpLxLyLz

exp
(
(x∗ − x′∗)2

4Foxt∗

)
√

πFoxt∗

exp
(
(y∗ − y′∗)2

4Foyt∗

)
√

πFoyt∗

exp
(
(z∗ − z′∗)2

4Fozt∗

)
√

πFozt∗
. (7)

Then for a given shape of a source the resulting temperature will be obtained by:

θ(r∗, t∗) =
∫

sample
Q(r′∗)θ3D(r∗ − r′∗, t∗)dr′. (8)

In the case of the 3D problem, the whole material is discretized and each point of discretization is
the representation of a voxel considered as a potential source, with a level of energy Q(x0, y0, z0) =

Q0Ω(x0, y0, z0), which corresponds to the mean of the source energy on the defined voxel. The size of
the voxels depends on the number of discretizations along each direction. The problem is then written
in matrix form, given by Equation (9). The resulting surface temperature at z = 0 is a 2D field as a
function of time. For the writing of the problem, each θ(i) is a vector containing the 2D temperature
reshaped into a 1D transient temperature:
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(
I(1)3D I(2)3D · · · I(n)3D

)
[Ω] =


θ(1)
θ(2)

...
θ(m)

⇔ I Ω = θ, (9)

where I is an m by n operator matrix and θ is a vector of size m, and m and n are, respectively, the
number of time steps and the depth discretization of the sample. n can then be seen as the number of
point heat sources present in the material.

For the 1D problem, each point of the operator matrix I described above must be calculated
using formula (8) since each of its values is independent of the other. However, for the 3D problem,
calculation of matrix I can be optimized as it is composed of several sub-matrices that are repeated (see
Figure 3). Thus, it is not necessary to calculate each value of I.x To illustrate this phenomenon, Figure 3
gives the profile of the matrix I, obtained for the case where nx = 3, ny = 4, nz = 5 and nt = 10.

Figure 3. Typical profile of the operator matrix I in 3D: test case for nx = 3, ny = 4, nz = 5 and nt = 10.

In the case of the 3D problem, the operator matrix can indeed be written in the form of a block
symmetric Toeplitz matrix [11]:

I3D =


A1 A2 · · · Anx

A2 A1
. . . Anx−1

...
. . .

. . .
...

Anx Anx−1 · · · A1

 , (10)

where each element Ai is a matrix of size ntny by nzny, nz and ny corresponding to the number of
discretization points in z and y, and nt to the number of time steps. All the matrices Ai are themselves
symmetrical in blocks, defined by:

Ai =


Ai1 Ai2 · · · Ainy

Ai2 Ai1
. . . Ainy−1

...
. . .

. . .
...

Ainy · · · · · · Ai1

 , (11)

where each block Aij is of size nt by nz. The global matrix I is therefore nxnynt by nznynx. Thus,
instead of calculating all the points separately, just calculate the first row (by block) of each matrix Ai
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using the formula (7) to reconstruct the entire matrix. The time savings by doing so are considerable.
Indeed, for the 3D problem, the number of computations is (nxny)2nz.

2.2. Inverse Problem

The inverse problem given by Equation (9) is written as follows:

I Ω = θ. (12)

In practice, I is not square. Its number of lines is much greater than its number of columns.
Therefore, I is not invertible. The algorithm used for the studied problem is therefore based on the
Moore-Penrose pseudo-inversion method [12,13]. The pseudo-inverse I is obtained by using singular
value decomposition (SVD) method [14–17]. The principle of SVD is to decompose the matrix I of size
m by n into a product of three matrices where U is an orthogonal matrix of size m by m, orthogonal V
of size n by n and S a “diagonal” matrix of size m by n. The diagonal elements of S are called singular
values. They are positive and ranked from the largest to the smallest.

If only the first p singular values are different from zero (p < n), the SVD can then be further
reduced. Thus, the pseudo-inversion of Equation (12) gives:

Ω =
p

∑
k=1

UT
·,kθ

sk
V·,k. (13)

The reconstruction problem studied here responds well to the existence and uniqueness
requirements of a well-posed inverse problem (cf. Hadamard [18]). Unfortunately, the condition
of stability is not respected. One of the methods to study this stability is to observe singular values of
operator matrix I: the closer they are to zero, the more the problem is ill-posed. If, in addition, their
decay follows a power law such that if si ≈ i−n, with n strictly positive, the problem is described as
ill-posed. On the other hand, if their decay follows an exponential law such as si ≈ e−i (which is the
case here), then it is strongly ill-posed. Then to overcome such problems, it becomes necessary to use
regularization methods.

2.3. Regularization Methods

Mathematically, in the presence of noise, Equation (12) is no longer valid: strict equality
becomes an approximation and inversion can be seen as a minimization problem by the least squares.
The unknown Ω is sought in such a way as to minimize the residual R by the introduction of a term
of penalization:

R2 = ‖I Ω− θmes‖2
2 + αJ(Ω), (14)

where α is a scalar called the “coefficient of regularization” and J(Ω) is an independent function of
the unknown Ω. The higher the coefficient of regularization is, the more stable the inversion will be.
However, in return, the term “penalization” adds a bias to the initial problem. Thus, the greater the
term of regularization is, the farther the final solution is from the good one. The difficulty therefore
lies in the choice of the adjustment parameters in order to have the best compromise between stability
and speed of the solution. Different methods enable choosing the α parameter, for example, the UPRE
(unbiased predictive risk estimator), GCV (generalized cross validation), L-Curve and discrepancy
principle or Picard methods [17,19–23]. Then, several types of regularization are possible depending
on the choice of J. In this paper, the following types will be studied: (i), regularization by the L2

standard (Tikhonov regularization [24]), and (ii), regularization by the L1 standard (Lasso method [25]).
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In the Tikhonov case, Equation (13) will take the following form:

Ω =
p

∑
k=1

s2
k

s2
k + α

UT
·,kθmes

sk
V·,k. (15)

The comparison between the theoretical solution, given by Equation (13), and the solution of the
Tikhonov regularization, given by Equation (15), shows that Tikhonov regularization has the effect of
weighting each mode k of the SVD by a coefficient. In the L1 regularization, Equation (13) will take the
following form: (

VSTSVT + α
(

J(i)
)2
)

Ω(i) = VSUTθmes, (16)

where for each iteration i, J(i) is a diagonal matrix that contains the L1-norm of the solution of the
previous iteration Ω(i−1). As can be seen in the definition of this matrix, each iteration uses the results
from the source Ω(i) from the previous iteration. For the first iteration, it is therefore necessary to
define the matrix J(1). The choice of this initialization does not matter, since from the first iteration,
there will be correction according to the data of the inversion. However, it is unadvisable to take the
null matrix since that would mean that the first iteration is not regularized. In this study, we take
J(1) = Id, the identity matrix.

The problem given by Equation (16) is a simple linear equation, given by:

IL1 Ω = VSUTθmes. (17)

The matrix IL1 is entirely determined since it involves only the data of SVD of the matrix of the
basic problem, as well as the solution Ω(i−1) of the previous iteration (so known). Moreover, by its
construction, this matrix is square and invertible. The resolution of the problem (17) can therefore be
done via any inversion algorithm. Unlike Tikhonov’s regularization and truncation of the spectrum
of SVD, the regularization by the L1-norm allows penalizing each position of the source (node of
discretization) with a different parameter. As it is defined, regularization by the L1-norm strongly
penalizes the “zero” zones (no source), and conversely, it lowly weights non-zero areas (source).
This approach favours a solution containing a maximum of null values, which results in strong
intensity contrasts on the source reconstruction in contrast to the Tikhonov regularization, which tends
to smooth the solution.

3. Highlighting an Optimal Criterion Based on Fourier Number

3.1. Analysis of the Criterion

To introduce the optimal criterion an example of the 1D problem shown in Figure 4, the following
equation to calculate the temperature response is presented here:

θ(z∗, t∗) =
∫

sample
Q(z′∗)θ1D(z∗ − z′∗, t∗)dz′, (18)

with θ1D defined by:

θ1D(z∗, t∗) =
1

Lz
√

πFozt∗
exp

(
(z∗ − z′∗)2

4Fozt∗

)
. (19)

The heat source repartition Ω consists of three “source points” located at three different depths.
In Figure 4, the intensity (normalized) of the nearest source of the surface is 0.5, that of the source of
the medium is 1 and the last is 0.75. Here, Lz = 0.01 m and Foz = 0.1. Moreover, no noise will be taken
in this part.
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Figure 4. Representation of the 1D problem with 3 heat sources of intensity 0.5, 1 and 0.75 (a) and
calculated temperature response at z = 0 (b).

In this part, the data are synthetic and computed as a consequence of the direct problem defined
previously. Therefore, two steps are computed for the algorithm. The direct problem supposes the heat
sources are known (location, intensity) and enables acquiring the resulting temperature at the surface
(these data are produced by the IR-camera in a real experiment). The second step of the algorithm is
the inversion process.

As presented in the previous part, inversion is based on the SVD of the operator matrix I.
This matrix is defined for a discretization of every possible source excited by a Dirac excitation at
time t = 0. It is actually independent of the real distribution of sources for this given discretization.
In this work, it appears that the study of S (singular values matrix) is of prime importance for the
performance of the inversion method.

I and S have the same size (m by n), where m is the number of time steps (between t0 and t f ) and
n the number of point of discretizations of the sample. For the computation of the algorithm, these two
parameters must be defined. As this inverse problem can be seen as a linear least squares minimization,
we must have m > n. Technically, the number of time steps is limited by the acquisition frequency
of the IR camera (ac): it cannot exceed M = t f ∗ ac. Therefore, m can be chosen between 1 and M.
The discretization of the depth n is not submitted to the same limitations. Two cases of inversion for
the problem illustrated by Figure 5 have been tested for two different discretizations of the material:
the first inversion has been made with n = 20 (a), the second with n = 50 (b). The number of time
steps was taken as m = nt = 300.

For the chosen parameters, if n = 20, the three heat sources are perfectly reconstructed, even the
deepest source. However, if n = 50, all sources are poorly found. These results imply that there is a
maximal number n of sources (which corresponds to an optimal resolution for the voxel) that we can
reconstruct. To determine this limit, the inversion algorithm was carried out one hundred times for
n, varying from 1 to 100. For each discretization, the error made between the reconstruction and the
real source is calculated, and the obtained results are given in Figure 5d. For n < 30, the errors are
negligible, meaning that the reconstructions are faithful to the real sources. However, from n = 30,
the error increases rapidly with the number of disctretizations, which means that the reconstructions are
erroneous. Thus, for a given problem, there is a maximum number of discretizations nφ to reconstruct
the sources with accuracy. This number nφ can be determined by the study of the singular values of
the operator matrix I. The SVD of the operator matrix I with a high spatial discretization n = 100 is
computed and illustrated in Figure 5c. As can be seen, from a certain value nφ, the singular values
are constant and very low in comparison to the first values. As each mode value provides particular
information, it means that all modes after nφ do not contribute to the solution of the problem and are
therefore non-significant for the reconstruction of heat sources. The comparison between Figure 5c,d
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enable observing that there is a direct correlation between the significant number of singular values
and the optimal number of discretizations along the in-depth direction.

Figure 5. Estimated source profile for a discretization of n = 20 (a). Estimated source profile for
n = 50 (b). Logarithm representation of the singular values for a discretization of n = 100 (c) and error
on the reconstructed sources as function of the number of singular values (d).

This optimal number nφ depends on the parameters of the model, such as the temporal
discretization, linked to nt and the Fourier number Foz. A parametric study has been computed
to determine nφ according to these parameters. The obtained results are illustrated in Figure 6a.

Figure 6. Abacus of the number of singular values (i.e., z discretization number of nodes) as a function
of the Fourier number and temperature response time step: for Dirac excitation (a) and for Heaviside
excitation (b): representation in log-log scale.

It appears that the parameter nφ depends strongly on the Fourier number. The higher nφ is,
the thinner the size is of the voxel in the depth. Therefore, for Fourier numbers below 0.01, as well
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as high Fourier numbers, it will be very difficult to reconstruct the sources with a high resolution.
At most, it will be possible to reconstruct 10 sources. For a given Fourier number, increasing the
number of time steps nt enables increasing the in-depth resolution (with the nφ parameter). However,
this increase is made with a logarithmic rate, which means that a large number of temporal data will
be necessary in order to gain a few numbers of discretization in depth. This abacus enables defining
the optimal parameters (nt, nz, t f ...) in order to correctly reconstruct the heat sources. It is important
to note that the criterion given in Figure 6a depends neither on the material nor on the thickness of
sample. This criterion depends only on the Fourier number, which is universal, and on the number of
time steps, which is numerical, for a Dirac thermal impulse response.

To see the influence of temporal excitation, the same study has been performed with a continuous
temporal heat source. The resulting thermal response is simply the temporal integral of the one
resulting from Dirac given by Equation (7):

θHvs(x, y, z, t) =
∫ t

t0

Q(x′∗, y′∗, z′∗)
8ρCpLxLyLz

exp
(
(x∗ − x′∗)2

4Foxt∗

)
√

πFoxt∗

exp
(
(y∗ − y′∗)2

4Foyt∗

)
√

πFoyt∗

exp
(
(z∗ − z′∗)2

4Fozt∗

)
√

πFozt∗
dτ (20)

The methodology used for the direct and inverse problem of the algorithm is the same as that for
the Dirac excitation. However, the operator matrix I is different. The results of the parametric study
for Heaviside excitation are presented in Figure 6b. These results have the same tendency as those
obtained with a Dirac response.

Analysis of the Influence of Each Mode

The criterion given in Figure 6 enables choosing the optimal discretization in depth (nz = nφ).
Once this parameter is defined, the operator matrix I, given by Equation (10), can be computed. There
are therefore nφ modes for the inversion algorithm, where the heat sources can be reconstructed as:

Ω(nr) =
nr

∑
k=1

UT
·,kθ

sk
V·,k. (21)

with 1 ≤ nr ≤ nφ. If nr = nφ, all the modes of the operator matrix are used and the solution is
determined using the sum of each of its modes. The first mode gives a result to which is added the
information given by the second mode and so on until the last mode nφ. One can then study the
evolution of the reconstruction according to the number of modes nr used for the reconstruction.

Figure 7 shows in (a) the global standard error obtained between the reconstruction obtained
Ω(nr) and the real source distribution Ω according to the number of used modes for the example of the
3 sources illustrated by Figure 4. On the same graph, the standard error at the localization of each one
of the three sources is also detailed. The sources are numbered from 1 to 3, the first being the source
closest to the surface and the third being the deepest one. On the same figure, the reconstructions
obtained at different stages of the algorithm are illustrated, corresponding to an increasing number of
used modes nr: on (b) nr = 15, (c) nr = 27 and (d) nr = 28 = nφ.

The analysis of the global error enables obtaining an overview of the relevance of the
reconstruction. At the beginning of the algorithm, (i.e., with very few modes), the global error
is high, reflecting a poor reconstruction of the heat source: the used modes do not provide enough
information. The more the number of modes used increases, the more the error decreases, representing
a convergence of the algorithm towards a single solution. In addition, the latest mode nφ appears very
important because the global error decreases much faster with the addition of the latest modes than
with the first modes.
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Figure 7. Standard error calculated between the reconstructed source and the actual source depending
on the number of modes used for reconstruction (a). Illustration of the reconstructions obtained by
taking the first 15 modes (b), first 27 modes (c) and the optimal number of modes 28 in this case (d).

The errors calculated for each source, illustrated in red (source 1), yellow (source 2) and violet
(source 3), enable visualizing the influence of the modes of the SVD depending on the depth. It appears
that the algorithm starts to estimate the sources closest to the surface and finishes with the deepest
sources. The error obtained on the source closest to the surface decreases much more rapidly than
those of the deepest ones: for nr = 15, the error on source 1 is approximately 10−2, approximately one
hundred times less than the errors on sources 2 and 3. The reconstruction obtained with nr = 15, given
in (b) proves this assessment: source 1 is well reconstructed, which is not the case for the others.

The analysis of graph (a) allows estimating that the source 2, moderately deep, will be fairly well
reconstructed with the first 23 modes since the obtained error decreases sharply from nr = 23. Source
3 requires all the modes of the SVD to be reconstructed. Graphs (c) and (d) illustrate the fact that the
deepest source requires all modes to be perfectly estimated.

3.2. 3D Generalisation

For the 3D problem, all Fourier numbers (Fox, Foy and Foz) have to be considered. Since the x
and y directions are symmetrical, the analysis of the problem represented by Figure 8 is sufficient to
have access to the 3D criterion. In this study, the heat sources Ω are distributed on the plane π(x = 0),
perpendicular to the surface (a). This plane is meshed along the y and z directions, with ny and nz

discretization points, respectively (b).
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Figure 8. Schema of problem in 3D with a plane perpendicular to the measured surface (a) and
parameters of the plane discretization (b).

As explained in Section 3.1, nz is limited and can be determined via the analysis of the SVD of
the matrix operator. In (a) is illustrated the singular values obtained for Foz = 0.1, Foy = 1× 10−3

and Ly = 2Lz. Other parameters remain unchanged. The disposition of singular values is peculiar:
they are disposed in decreasing steps. Each step contains exactly ny singular values. As in the 1D
problem, the last singular values reach a plateau and are then non-significant, and the number of steps
corresponds to the maximal number nz of discretizations. This distribution of singular values can be
explained by the block repetitiveness in the operator matrix I. The limitation therefore does not come
from ny but from nz.

Two principal observations can be made. First, the evolution of the criterion in the function of Foz

is exactly the same as in the 1D problem. Second, contrary to what we could have expected due to
separability of Equation (7), the evolution of the criterion with Foy is not the same as that with Foz.
This evolution is represented in Figure 9b, for Foz chosen at 0.1. In Figure 9c, the same criterion is
represented, but for a number of time steps set at nt = 300, with varying Foy and Foz.

Figure 9. Singular values of the 3D matrix I of Equation (12) (a), abacus along the y direction for the
Fourier number equal to 0.1 in the z direction (b) and abacus between Fourier numbers along the y and
z directions for a number of time steps of the temperature response equal to 300 (c).
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The 3D reconstruction is optimal for the smallest Foy and a reasonable number of time steps.
The more Foy increases, the less the discretization can be thin. Physically, a high Foy means a fast
diffusion along the y direction. Therefore, the temperature at the surface due to a buried point source
will be largely spread for high Foy. It can be compared to blurred information: the sources can be
estimated with a low discretization. In contrast, for a small Foy, the surface temperature will be more
focused because diffusion along the y direction is almost non-existent. In this case, heat sources can be
estimated with a thin discretization.

Thus, optimal reconstruction of 3D buried heat sources is obtained for small Fourier numbers
along the x and y directions and a Fourier number between 0.01 and 1 along the z direction.

3.3. Application of the Criterion on a 3D Example

To visualize the impact of the criterion, an example is illustrated by Figure 10. A representation of
the π-plane vertical to the measuring surface that contains the theoretical heat sources is given in (a)
and the resulting temperature at the surface in (b) at a certain time. In this example, all the sources
have the same intensity, normalized to 1. The considered dimensions of the sample Lx, Ly and Lz are
all normalized in order to have x and y varying between [−0.5, 0.5] and z on the interval [0, 1]. Others
parameters are defined such as nx = ny = 20, nz = 25 and nt = 300.

Figure 10. Simulated field of heat sources (a), resulting temperature field at the surface at t/t f = 0.1
(b), reconstructed source field for Fox = Foy = 0.1 and Foz = 0.1 (c) and reconstructed source field for
Fox = Foy = 0.01 and Foz = 0.1 (d).

According to previous criteria, Fourier numbers are key parameters for the estimation of heat
sources. Two cases are tested for this example in order to illustrate this criterion: the first one with
Fox = Foy = Foz = 0.1 and the second with Fox = Foy = 0.01 and Foz = 0.1.

The criterion given in Figure 9 enables comparing and verifying the results obtained for both
cases. The first of the simulations is tested with Fourier numbers that, according to the criterion
illustrated in Figure 9c, do not allow estimating the sources with a discretization higher than 20 in
depth. The reconstruction obtained, illustrated by Figure 10d confirms this assertion: even if the
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sources closest to the surface are reconstructed, it is not the case for the deeper sources. Likewise,
still according to this criterion, the Fourier numbers of the second simulation enable estimating the
sources with thirty points of discretization in depth, which is confirmed by Figure 10c: all the sources
are perfectly reconstructed.

3.4. Coupling the Fourier Criterion and the Regularization Parameter

In the previous section, data were synthetic and without noise. In the presence of noise, even with
optimized parameters, regularization is necessary. According to Section 2.3, different types of
regularization can be made. Figure 11 illustrates the estimation made by the inversion algorithm
without regularization (a), with Tikhonov regularization (b) and with L1 regularization for the same
example as depicted in previous section, but with synthetic noised data (SNR = 100).

Figure 11. The results of the heat source estimation with a SNR = 100. The estimated source fields
are for the following: without any regularization (a), with Tikhonov regularization (b) and with L1

regularization (c).

As expected, the solution obtained without regularization (Figure 11a) is completely wrong, while
those with the regularization approach the real solution. For each type of regularization, the upper
part (the eyes of the smiley) is reconstructed. However, the difference is clear for the deep sources:
the mouth of the smiley is completely blurred (smoothed intensities) on the solution obtained with
Tikhonov’s regularization, while it is much more distinct with the regularization by the L1-norm.
Regularization by the L1 norm thus seems to be the favoured in this example, as the heat sources are
highly contrasted.

4. Experimental Results

As depicted in Figure 12, the experiment in this part uses the Joule effect: a Chromel wire
(nickel-chrome), traversed by a current transmitted by a generator, constitutes the heat source (a).
The principle of the method is to insert this Chromel thread into PVC (polyvinyl chloride) material
to form a particular geometrical figure. In this experiment, the diameter of the Chromel wire was
200µm, and its geometric shape was similar to an “M”, placed on the rear face of a PVC sample of
1 mm thickness. To avoid thermal losses on the side of the sample where the wire is located, a thickness
of mousse has been bonded, thereby fixing the heating wire (b). The Chromel wire lies on a small area
of the PVC sample, as illustrated in (c); therefore it can be considered semi-infinite along the x and
y directions.
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Figure 12. Picture of the experimental setup (a), schema of the home-made reference sample (b) and
picture of the sample during the experiment (c).

The Chromel wire is bonded to the back of the PVC sample. To estimate the whole 3D effect,
the method of the images is used: the sample is then considered to be 2 mm thick with the wire located
not on its backside but on the middle of the plane. Thus, at the time of reconstruction, one should find
the Chromel wire centred on the middle plane of the sample along the z direction.

The PVC is supposed to be isotropic, with a density of ρ = 1180 kg·m−3, a heat capacity of
Cp = 1000 J·kg−1·K−1, and diffusivity a = 1.2 × 10−7 m2·s−1. The voltage of the generator was
U = 3.5 V with an intensity I = 1.13 A. The measures were carried out by an IR camera, with an
acquisition frequency of 200 Hz, and the size of the pixel at the surface was 290µm × 290µm. In this
experiment, the wire is traversed by the electric current for a duration of approximately 7 s. The area of
study on which the temperature is measured as a function of time (with the IR camera) is a rectangle of
dimensions 3.65× 2 cm2, divided into 126× 72 pixels. The resulting field (Digital Level) at the surface
is presented in Figure 13 at t = 0 s when the power supply is turned on (a), after 2 s (b), after 7.2 s,
where the maximum of the temperature is measured (c), and after 70 s (d).

Figure 13. Measured temperature fields at the surface of the sample (PVC side): at t = 0 s when the
power supply is turned on (a), after 2 s (b), after 7.2 s (c) and after 70 s (d).
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As explained in Section 3.1, the choice of the time interval (of which the Fourier number depends)
is very important in order to be able to reconstruct the thermal sources as well as possible. In this
experiment, we choose t f = 2 s, allowing to have 400 time steps and a corresponding Fourier number
Foz = 0.2. Since the excitation time of the generator is of the order of 7 s, the temperature response
between t = 0 s and t = 2 s is not a Dirac response but a Heaviside response. According to the criterion
depicted in Figure 9 the maximum number of discretizations along z for the selected Fourier number
is approximately 20. The number of discretization points taken in z (depth direction) is here set to
16 in order to have a number of points close to this limit while remaining low enough to limit the
computation time of the inverse problem.

The parameters of the model are then nt = 400, ny = 72, nx = 126 and nz = 16. The size of the
operator matrix I to be inverted would therefore be ntnynx × nznynx ≈ 107 × 105. To avoid excessive
computation time, the domain is divided into 18 equal parts (region of interest) of size 21× 24× 16,
as illustrated in Figure 14.

Figure 14. Schema of the ROI selection for the inverse processing.

In each of the eighteen domains, the operator matrix is thus of size 201, 600× 8064. Each of these
domains is treated in a completely independent way. This division is possible because the heat sources
are small and the time interval is short (2 s), thus limiting the distribution in the plane. The only
problematic case in this division is when the thermal sources are at the boundary between two zones.
Edge effects could possibly appear.

In each of the eighteen domains, the solution computed by the program is a cube (3D matrix) of
values close to zero at points that do not contain sources and high values (which correspond to the
intensity of the source) whenever there is a heat source. The juxtaposition of all the domains enables
estimating the totality of the studied volume. For this experiment, the inversion with a regularization
L1 was computed on a dual processor with RAM = 128 GB: the duration of the algorithm was 5 h
45 min. Figure 15 illustrates the obtained results: view along the thickness (a) and along the x and y
plane (b).

It can be seen that shape of the heat sources are well estimated: being positioned and centred in
the middle of the sample, on a plane situated on the middle plane along the z direction. Then, in a
predictable manner, “nodes” can be located at the intersections of each ROI domain. These nodes are
artefacts due to the division of the work space and because each domain is treated independently of
the others.
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Figure 15. 3D estimated heat sources (i.e., electrical wire) with SVD applied on the measured
temperature field number of node of nz = 16 in the z direction and the Fourier number of 0.2 and an L1

regularization method: view along the thickness (a) and along the x and y plane (b).

5. Conclusions

The subject of this work is to characterize 3D heat sources buried in a material from the
temperature field measured at the surface. An inverse method has been presented in this paper
that allows estimating the geometry and the intensity of several volumetric sources. A theoretical
analysis of the reconstruction method, based on the thermal response to an impulse excitation, allowed
the estimation of a criterion depending on the Fourier number. The resultant abacus of this criterion
enables anticipating the quality of the reconstruction of the sources and explaining the limitation
related to the depth.

Measurement noise is an important problem for the reconstruction of heat sources because the
problem is mathematically ill-posed. The commonly used solution in order to bypass this problem is
to add terms of regularization in the method. Two types of regularization were presented in this paper.
The abacus depending on the Fourier number remains valid, but the deepest sources will remain
strongly impacted by the noise.

An experimental application has been performed to validate the results. The reconstruction
method with the help of the abacus and the regularization allows estimating the sources. However, as
the problem is three-dimensional, the number of data to inverse is very high, which requires reduction
of the study domain. Nevertheless, the execution time of the program is particularly long: several
hours are necessary to rebuild sources in a volume of a few cubic centimetres with a resolution of a
few hundred microns. To overcome this problem, it is possible to consider other estimation methods,
such as probabilistic approach methods.
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