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BACKGROUND: The exposome is defined as the totality of environmental exposures from conception onwards. It calls for providing a holistic view of
environmental exposures and their effects on human health by evaluating multiple environmental exposures simultaneously during critical periods of life.
OBJECTIVE:We evaluated the association of the urban exposome with birth weight.

METHODS: We estimated exposure to the urban exposome, including the built environment, air pollution, road traffic noise, meteorology, natural
space, and road traffic (corresponding to 24 environmental indicators and 60 exposures) for nearly 32,000 pregnant women from six European birth
cohorts. To evaluate associations with either continuous birth weight or term low birth weight (TLBW) risk, we primarily relied on the Deletion-
Substitution-Addition (DSA) algorithm, which is an extension of the stepwise variable selection method. Second, we used an exposure-by-
exposure exposome-wide association studies (ExWAS) method accounting for multiple hypotheses testing to report associations not adjusted for
coexposures.
RESULTS: The most consistent statistically significant associations were observed between increasing green space exposure estimated as
Normalized Difference Vegetation Index (NDVI) and increased birth weight and decreased TLBW risk. Furthermore, we observed statistically
significant associations among presence of public bus line, land use Shannon's Evenness Index, and traffic density and birth weight in our DSA
analysis.
CONCLUSION: This investigation is the first large urban exposome study of birth weight that tests many environmental urban exposures. It confirmed pre-
viously reported associations for NDVI and generated new hypotheses for a number of built-environment exposures. https://doi.org/10.1289/EHP3971

Introduction
The exposome is defined as the totality of environmental expo-
sures from conception onwards (Wild 2005, 2012). This defini-

tion aims to provide a holistic view of environmental exposures
and their effects on human health by evaluating multiple expo-
sures simultaneously during critical time periods of life. Over
recent years, there has been considerable discussion on the topic
(Lioy and Rappaport 2011; Siroux et al. 2016; Slama and
Vrijheid 2015; Stingone et al. 2017; Wild 2012), but little actual
work has been conducted to put the exposome concept into prac-
tice. Challenges include capturing the breadth of and variability
in environmental exposures, which entails hundreds or more ex-
posure variables (Robinson et al. 2015), and statistical challenges
such as efficiency of variable selection techniques in the presence
of numerous correlated covariates (Agier et al. 2016).

Until now, exposome studies have been conducted mainly on
routinely collected or cross-sectional datasets, such as those
examining environmental risk factors for type 2 diabetes (Patel
et al. 2010), serum lipids (Tzoulaki et al. 2012), all causes mortal-
ity (Patel et al. 2013b), pre-term birth (Patel et al. 2013a), meta-
bolic syndrome (Lind et al. 2013), and telomere length (Patel
et al. 2016). No studies have been conducted on birth weight.

Previous studies have shown negative associations between
birth weight and environmental exposures such as air pollution,
noise, temperature or lack of green space (Dadvand et al. 2012;
Dzhambov et al. 2014; Hohmann et al. 2013; Nieuwenhuijsen et al.
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2013; Pedersen et al. 2013; Zhang et al. 2017). Recent reviews sug-
gested that there was sufficient evidence for a relationship between
air pollution and impaired fetal growth; limited evidence for a rela-
tionship between green space and fetal growth; and inadequate evi-
dence for a relationship between noise and extreme temperatures
and fetal growth, respectively (Gascon et al. 2016; Vrijheid et al.
2016). Gascon et al. (2016) found no studies on fetal growth and
built environment measures such as connectivity, density, and
walkability. Two recent studies reported an association between
disadvantaged neighborhoods and adverse birth outcomes (Ncube
et al. 2016; Vos et al. 2014). With some exceptions (Dadvand et al.
2014; Hystad et al. 2014), generally these exposures have been
evaluated individually or considering single exposure families
(in the case of atmospheric pollutants), i.e., one exposure or expo-
sure family at a time, thus not accounting for possible confounding
effects of coexposures outside the family.

The Human Early Life Exposome (HELIX) is one of the first
large exposome projects. It aims to characterize early life expo-
sure to multiple environmental factors and associate these with
child health outcomes (Vrijheid et al. 2014). The project uses
harmonized data from six existing birth cohort studies with
∼32,000 mother child pairs in Europe and includes a new follow-
up with in-depth examinations of a subset of children (Maitre
et al. 2018). Novel tools and methods were implemented to char-
acterize environmental exposures, e.g., remote sensing, personal
sensing in a subpopulation, and GIS-based spatial methods
(Robinson et al. 2018).

In this study, we aimed to evaluate the association of the
urban exposome, which includes the built environment, air pollu-
tion, road traffic noise, meteorology, natural space, and road traffic
indicators (60 exposures covering 24 environmental indicators)
with birth weight and term low birth weight (TLBW). For our
main analysis, we used the Deletion-Substitution-Addition (DSA)
algorithm, a variable selection method that partly accounts for
potential confounding by coexposures; we initially showed in a
simulation study that this method provided the best performance
to identify the truly (causally) associated exposures in an expo-
some context. We additionally applied an exposure-by-exposure
exposome-wide association study (ExWAS) to test for and show
possible exposure–health associations, and to screen for additional
coexposure confounding factors.

Method

Study Population
The study population comprises 31,458 singleton pregnancies from
six European birth cohorts based in nine cities; Born in Bradford
(BiB; Bradford, UK) (Wright et al. 2013), �Etude des Déterminants
pré et postnatals du développement et de la santé de l’Enfant
(EDEN; Poitiers and Nancy, France) (Drouillet et al. 2009),
INfancia y Medio Ambiente (INMA; Gipuzkoa, Sabadell, and
Valencia, Spain) (Guxens et al. 2012), Kaunus Cohort (KANC-
Lithuania; Kaunas, Lithuania) (Grazuleviciene et al. 2009),
Norwegian Mother and Child Cohort Study (MoBa; Norway)
(Magnus et al. 2006), and Rhea Study (Mother and Child
Cohort in Crete, Greece) (Chatzi et al. 2017).

Health Outcome and Adjustment Factors
We considered two health outcomes: birth weight (in grams) and
TLBW, defined as weight <2500 grams at birth after 37 wk of ges-
tation. We adjusted all analyses for a (fixed) city effect, for gesta-
tional age (calculated from date of last menstruation, or ultrasound-
based, values not rounded; simple and quadratic terms), sex of the
newborn, parity, maternal height and weight [using a broken stick

model with a knot at 60 kg (Pedersen et al. 2013)] before pregnancy,
mean number of cigarettes smoked per day by the mother during the
second trimester of gestation, maternal education (as themain social
class confounder), and season of conception.

Characterization of the Urban Exposome
An extensive assessment of the urban exposome was conducted
using a geographic information system (GIS)-based environmen-
tal model built for the whole HELIX study area and assigning
exposures to pregnancy home addresses. The detailed description
of the exposure assessment can be found in Robinson et al.
(Robinson et al. 2018). For EDEN, BiB, and KANC, address in-
formation was available at the time of recruitment, whereas for
INMA, Rhea, and MoBa, address information was available at
the time of birth of the child.

For each woman, assessment of exposure at the residential
address during pregnancy was made within PostgreSQL™ (copy-
right © 1996–2017 The PostgreSQL Global Development Group)
and PostGIS platforms for all groups of environmental factors but
road traffic.

Topological maps for built environment were obtained from
local authorities or from Europe-wide sources. Building density
was calculated within 100 m and 300 m buffers by dividing the
area of building cover (m2) by the area of buffer (km2).
Connectivity density was calculated as the number of street
intersections inside 100 m and 300 m buffers, divided by the
area (km2) of each buffer. Land use Shannon's Evenness Index
(SEI) was calculated as the proportional abundance of each
land use type multiplied by that proportion, divided by the loga-
rithm of the number of land use types, in a buffer of 300 m, giv-
ing a score of 0 to 1. Bus public transport (BST) lines and stops
were obtained from local authorities of each study area and
from Open Street Maps (“OpenStreetMap”) where local layers
were not available. The presence of public bus lines was
assessed within 100-m, 300-m, and 500-m buffers. The density
of public bus stops was calculated as the number of BST inside
100-m, 300-m, and 500-m buffers, divided by the buffer area.
Facility density was calculated as the number of facilities pres-
ent divided by the area of the 300-m buffer. Facility richness
index was calculated as the number of different facility types
present divided by the maximum potential number of facility
types specified, in a buffer of 300 m, giving a score of 0 to 1.
Population density was calculated as the number of inhabitants
per square kilometer at the home address (from 100 m×100 m
raster). We developed an indicator of walkability, adapted from
the previous walkability indices (Duncan et al. 2014; Frank
et al. 2006), calculated as the mean of the deciles of population
density, street connectivity, facility richness index, and land
use SEI within 300-m buffers, giving a walkability score rang-
ing from 0 to 1.

For the assessment of air pollutants, including particulate mat-
ter (PM) with an aerodynamic diameter of less than 2:5 lm
(PM2:5) and of less than 10 lm (PM10), absorbance of PM2:5 fil-
ters and nitrogen dioxide (NO2), we used land use regression
(LUR) or dispersion models, temporally adjusted to measure-
ments made in local background monitoring stations. For most
cities, we used site-specific LUR models developed in the context
of the ESCAPE project (Beelen et al. 2013; Eeftens et al. 2012).
In BiB, assessment for PM2:5 and PM10 was made based on the
ESCAPE LUR model developed in the Thames Valley region of
the United Kingdom and adjusted for background PM levels
from monitoring stations in Bradford, UK (Schembari et al.
2015). The ESCAPE European-wide LUR model was applied for
PM2:5 in Nancy and Poitiers (EDEN) and Gipuzkoa and Valencia
(INMA) and corrected for local background monitoring data
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(Wang et al. 2014). In Gipuzkoa and Valencia (INMA), PM10 esti-
mates were made based on local ratios to PM2:5 estimates. In
Nancy and Poitiers (EDEN), dispersion models were used to assess
NO2 and PM10 exposure (Rahmalia et al. 2012). Air pollutants
were averaged over each trimester of pregnancy and over the
whole pregnancy period.

Road traffic noise levels were derived from noise maps pro-
duced in each local municipality under the 2010 European
Environmental Noise Directive (European Environment Agency
2010). To improve comparability between centers, we also con-
sidered a categorized version of the variables.

Regarding meteorology, daily measurements of temperature
and humidity were obtained from a local weather station in each
study area. Daily measurements of ultraviolet (UV) radiation at
0:5× 0:5-degree resolution were obtained from the Global Ozone
Monitoring Experiment on board the European Remote Sensing
(ERS-2) satellite (http://www.temis.nl/uvradiation/archives/).
Values were averaged over each trimester of pregnancy and over
the whole pregnancy period.

For natural space indicators, we followed the PHENOTYPE
protocol (Nieuwenhuijsen et al. 2014) to measure the surrounding
vegetation, i.e., trees, shrubs and parkland, and applied the
Normalized Difference Vegetation Index (NDVI) (Weier and
Herring 2000) derived from the Landsat 4–5 Thematic Mapper
(TM) satellite images at 30 m×30 m resolution. To achieve
maximum exposure contrast, we looked for available cloud-free
Landsat TM images during the period between May and August
for years relevant to our period of study and calculated greenness
within 100-m, 300-m, and 500-m buffers around each address.
We calculated access to major green spaces (parks or country-
side) and blue spaces (bodies of water) as the straight line dis-
tance from the home to nearest blue or green space with an area
greater than 5,000m2 from topographical maps (e.g., Urban Atlas
2006 or local sources).

Road traffic indicators (traffic density on nearest road, traffic
load on all roads, presence of traffic on the major road within
100 m, and inverse distance to nearest major road) were calcu-
lated from traffic road network maps following the ESCAPE pro-
tocol (Beelen et al. 2013).

The exposure assessment methodology is further detailed
elsewhere (Robinson et al. 2018), together with the correlation
structure (defined by computing the pairwise Pearson, polyserial
or polychoric correlation coefficients, as appropriate) and main
characteristics by cohort.

We excluded exposures that did not provide enough informa-
tion, i.e., those that had >70% missing values, whose variability
was mainly due to between-cities variations (i.e., the ratio of the
city-centered data vs. raw data standard deviation was >30%) or
that were correlated at a level >0:99 in absolute value with
another variable (14 exposure variables were excluded; see Table
S1). Sixty exposure variables were retained for a total of 24 envi-
ronmental indicators, covering six fields: the built environment
(15 exposures), air pollution (16 exposures), road traffic noise
(4 exposures), meteorology (12 exposures), natural space
(9 exposures), and road traffic (4 exposures). The exposure levels
are described in Table 1.

Missing Data Imputation
The same procedure for missing data imputation was used for
all HELIX studies (Robinson et al. 2018). All exposures were
transformed to approach normality, using a Box-Cox power
transformation approach that chooses among raising the data to
the power − 2, −1, −0:5, one-third, 0.5, 1, or 2, or log-
transforming. Missing data for all adjustment factors and expo-
sures were imputed using the chained equations method; birth

weight was not imputed as no gain in power is expected from
imputing the explained variable (White et al. 2011). Birth weight
and a city indicator were forced in as predictors in the imputation
models. Other variables (including postnatal exposures) were
used as predictors when they were correlated with the exposure
to be imputed [i.e., absolute correlation value in the (0.4; 0.9)
range] and/or with the probability of the exposure being missing
(i.e., absolute correlation value>0:4), while ensuring their pro-
portion of nonmissing observations among the observations with
missing values in the exposure to be imputed was greater than
40%. We restricted the number of predictors in the imputation
models to fewer than 25 variables (Van Buuren 2018). Because
of the large study population size that limits the potential
impact of the imputation procedure, a single dataset was
imputed. For all the exposures whose imputed and nonimputed
data could be compared, we found that imputed and nonim-
puted values were comparable. If the exposure was continuous,
we computed the average and standard deviation of nonimputed
and imputed values altogether and separately after standardiza-
tion on city averages. We ensured that the absolute difference
between means of the nonimputed and imputed values was
smaller than 2 standard deviations and that the ratio of standard
deviation of the nonimputed values vs. the imputed values was
in the 0.5 to 2 range (Stuart et al. 2009); if the exposure was
categorical, we ensured the p-value of the chi-squared test
between imputed and nonimputed values was >5%.

All continuous exposures were standardized so that an
increase by one unit corresponds to the interquartile range (IQR)
of the transformed to approach normality exposure values.

Estimating the Exposome–Health Association
In an exposome context in which a large number of exposures are
investigated, variable selection is the first challenge to face when
testing association with a health outcome before other targets,
such as point estimates or prediction, can be further optimized.
Here, we adapted a simulation study (Agier et al. 2016) that com-
pared several statistical methods to assess exposome–health asso-
ciations, with the aim to identify the most efficient method in
terms of differentiating exposures that were or were not associ-
ated with the outcome. We tested six agnostic methods: ExWAS,
ExWAS followed by multiple linear regression model including
all exposures that were selected in ExWAS, or ExWAS-multiple
linear regression (ExWAS-MLR), elastic net (ENET), sparse par-
tial least squares (sPLS), graphical unit evolutionary stochastic
search (GUESS), and DSA. The initial simulation was performed
considering a set of 237 exposures measured in a population of
1,200 individuals (Agier et al. 2016). Here, we generated 57 expo-
sures based on the HELIX urban exposome correlation structure
for a total of 32,000 subjects, to estimate the models’ performan-
ces that could be expected with our study design. We generated a
fictitious health outcome that was linearly related to 1 to 25 of
these 57 exposures. We applied the statistical methods (except for
GUESS which could not be run due to limitation of the R function
implementation) and compared their performances by computing
the averaged sensitivity and false discovery proportion (FDP) over
100 simulation runs.

As Agier et al. (2016) observed, we found that, in a context
similar to our study design, DSA best accomodates our data struc-
ture when performing variable selection, in comparison with other
multivariate methods. DSA had an average sensitivity of 99.7%
and an average FDP of 5.7% (Figure 1, Figure S1 for additional
details). DSA is a multivariate regression-based variable selection
method that relies on an iterative model search algorithm (Sinisi
and van der Laan 2004). It can be seen as an extended and more
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Table 1. Description of factors included in the HELIX prenatal urban exposome study and ExWAS associations of each variable with birth weight and term
low birth weight, adjusted for potential confounders.

Exposure Missing N (%)
Mean±SD or

N (%)a IQRb

ExWAS for birth weight
ExWAS for term low birth

weight

Estimate (95% CI)c p-Valued OR (95% CI)c p-Valued

Built Environment
Building density (m2 built=km2)e

100-m buffer 2719 (9) 214316± 112156 144.9 −12:3 (−18:4, −6:3) <0:001 1.2 (1.1, 1.4) 0.001
300-m buffer 1949 (6) 182330± 96502 138.7 −11:9 (−17:7, −6) <0:001 1.2 (1.1, 1.4) <0:001

Connectivity density (Intersections=km2)e

100-m buffer 3775 (12) 246± 185 8.1 −11 (−18:5, −3:6) 0.004 1 (0.8, 1.1) 0.6
300-m buffer 1138 (4) 202± 134 6.2 −13:9 (−21:4, −6:4) <0:001 1.2 (1, 1.3) 0.05

Land use Shannon's Evenness Index
300-m buffer 1337 (4) 0:4± 0:1 0.2 −9:1 (−14:7, −3:5) 0.001 1.1 (1, 1.2) 0.2

Presence of public bus line
100-m buffer 14016 (45)
None 12757 (73) NA (ref) NA (ref) NA
≥1 4686 (27) NA 11.6 (0.6, 22.7) 0.04 0.9 (0.7, 1.1) 0.2

300-m buffer 14010 (45)
None 7031 (40) NA (ref) NA (ref) NA
≥1 10418 (60) NA 19.6 (10.2, 29.1) <0:001 1 (0.8, 1.2) 1.0

500-m buffer 14001 (45)
None 4751 (27) NA (ref) NA (ref) NA
≥1 12707 (73) NA 27.4 (17.4, 37.3) <0:001 0.8 (0.7, 1) 0.02

Density of public bus stops (stops=km2)f

100-m buffer 10029 (32) 23:8± 47:6 0.7 −5:8 (−12:7, 1.1) 0.1 1.1 (0.9, 1.2) 0.3
300-m buffer 2744 (9) 16:9± 20:3 0.8 −7:8 (−14:5, −1) 0.02 1.1 (1, 1.3) 0.02
500-m buffer 1915 (6) 15:1± 14:2 1.1 −12:7 (−21:7, −3:7) 0.006 1.2 (1, 1.5) 0.01

Facilities
Facilities density (facilities=km2),f

300-m buffer
2066 (7) 43:7± 57:2 5.1 −13:4 (−19:9, −6:9) <0:001 1.1 (1, 1.3) 0.06

Facility richness (facility types=km2),
300-m buffer

2066 (7) 0:1± 0:1 0.2 −13:5 (−19:6, −7:3) <0:001 1.1 (1, 1.3) 0.03

Population density (inhabitants=km2)e

Point in 100 m×100 m raster 545 (2) 7340± 6578 30.9 −5:4 (−9:6, −1:1) 0.01 1.1 (1, 1.2) 0.1
Walkability index
300-m buffer 3189 (10) 0:3± 0:1 0.4 −16:7 (−23:2, −10:2) <0:001 1.2 (1, 1.3) 0.03

Air Pollution
NO2 (lg=m3)f

Pregnancy 1242 (4) 21:4± 7:6 0.4 −8:7 (−14:9, −2:4) 0.006 1.2 (1, 1.4) 0.008
T1 2249 (7) 21:6± 8:8 0.5 −6:4 (−14:1, 1.2) 0.1 1.2 (1, 1.4) 0.01
T2 2240 (7) 21:4± 8:8 0.5 −11:3 (−18:8, −3:8) 0.003 1.2 (1, 1.4) 0.01
T3 2804 (9) 21± 8:9 0.5 −12:1 (−19:7, −4:5) 0.002 1.2 (1, 1.3) 0.08

PM2:5 absorbance (10−5=m)f

Pregnancy 3789 (12) 1:4± 0:5 0.4 −10:3 (−18:9, −1:6) 0.02 1.2 (1, 1.4) 0.08
T1 4849 (15) 1:4± 0:6 0.5 0.1 (−9, 9.3) 1.0 1.1 (0.9, 1.3) 0.3
T2 4781 (15) 1:4± 0:6 0.6 −12:1 (−21:1, −3) 0.009 1.3 (1.1, 1.5) 0.009
T3 5030 (16) 1:4± 0:6 0.6 −17:9 (−27:2, −8:6) <0:001 1.1 (1, 1.4) 0.1

PM10 (lg=m3)
Pregnancy 2590 (8) 18:8± 6:3 0.4 −1:1 (−12:1, 9.8) 0.8 1.2 (1, 1.5) 0.09
T1 3070 (10) 18:6± 6 0.5 3.8 (−6:2, 13.8) 0.5 1.1 (0.9, 1.3) 0.4
T2 2699 (9) 18:6± 6:4 0.5 2.2 (−8:3, 12.6) 0.7 1.1 (0.9, 1.3) 0.6
T3 2941 (9) 18:1± 6:3 0.4 −7:7 (−17:6, 2.2) 0.1 1.3 (1.1, 1.5) 0.01

PM2:5 (lg=m3)
Pregnancy 512 (2) 13:4± 3:6 0.3 −15 (−24:4, −5:6) 0.002 1.2 (1, 1.5) 0.02
T1 1013 (3) 13:5± 4:3 0.4 −10:9 (−19:5, −2:3) 0.01 1.2 (1, 1.4) 0.07
T2 634 (2) 13:4± 4:5 0.4 −9 (−17:4, −0:5) 0.04 1.2 (1, 1.4) 0.04
T3 866 (3) 13:1± 4:4 0.4 −11:9 (−20:1, −3:7) 0.004 1.2 (1, 1.3) 0.06

Note: All buffer areas and distances are relative to the pregnancy residence unless otherwise indicated. Missing exposure and covariate data were imputed using chained equations. CI, con-
fidence interval; ExWAS, exposome-wide association study; DNA, deoxyribonucleic acid; IQR, interquartile range; NA, not applicable; NDVI, normalized difference vegetation index;
NO2, nitrogen dioxide; OR, odds ratio; PM2:5, particulate matter (PM) with an aerodynamic diameter of less than 2:5 lm; PM10, PM with an aerodynamic diameter of less than 10 lm;
ref, reference category for binary and categorical exposures; SD, standard deviation; T1, first trimester of pregnancy; T2, second trimester of pregnancy; T3, third trimester of pregnancy.
aDistribution is displayed over nonimputed values.
bThe IQR is computed over continuous exposures only, after imputing missing values and transforming data to approach normality.
cDifference in mean birth weight or odds ratio (OR) for term low birth weight in association with an IQR increase in (imputed and transformed to approach normality) exposure (con-
tinuous variables), or relative to the reference category (binary and categorical variables), adjusted for a city effect, gestational age (simple and quadratic terms), sex of the newborn,
parity, maternal height and weight before pregnancy, maternal smoking, maternal education and season of conception.
dUncorrected p-values testing the global significance of the variable, obtained using a Wald test (continuous or binary variables) or a likelihood ratio test (categorical noise variables).
Multiple hypothesis testing corrected 5% threshold for p-values (Li et al. 2012) = 0:002. For categorical noise variables, p-values are additionally given for individual categories in
comparison to the reference category (Wald test p-values); these are not used when computing the multiple hypothesis testing corrected 5% threshold for p-values.
eSquare root-transformed.
fln-transformed.
gSquared.
hCubic root-transformed.
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flexible version of the stepwise variable selection procedure, that,
on top of testing at each step adding or removing a term to the
model, also tests replacing a term by another. The method investi-
gates a set of linear regression models and identifies an optimal
model for each model possible size. The model that is finally

selected is the one that minimizes the value of the root mean
squared prediction error (RMSE) using 5-fold cross-validated data
(i.e., the study population is randomly partitioned into five subsets;
for each of these subsets, the model was trained on the other four
partitions and fitted on the given left-out subset over which the

Table 1. (Continued.)

Exposure Missing N (%)
Mean±SD or

N (%)a IQRb

ExWAS for birth weight
ExWAS for term low birth

weight

Estimate (95% CI)c p-Valued OR (95% CI)c p-Valued

Road Traffic Noise (A-weighted dB)
24-h noise
Categorical 3535 (11) 0.02 0.03
≤55 14796 (53) NA (ref) NA (ref) NA
>55− 60 6797 (24) NA −20:2 (−32, −8:4) 0.001 1.3 (1, 1.6) 0.02
>60− 65 3952 (14) NA −12:3 (−25:4, 0.7) 0.06 1.2 (1, 1.6) 0.1
>65− 70 1632 (6) NA −8:1 (−25, 8.9) 0.3 1.2 (1, 1.5) 0.1
>70− 75 127 (0) NA −11:6 (−34:8, 11.6) 0.3 1.2 (0.9, 1.7) 0.002
>75 620 (2) NA 25.4 (−31:9, 82.7) 0.4 1.7 (1.2, 2.5) 0.6

Continuous 14115 (45) 54:4± 7:2 10 −5:3 (−11:9, 1.3) 0.1 0.7 (0.2, 2.4) 0.2
Night noise
Categorical 8647 (27) 0.06 0.4
≤50 9136 (40) NA (ref) NA (ref) NA
>50− 55 11086 (49) NA −18:4 (−43:9, 7.1) 0.2 1.2 (0.7, 1.8) 0.5
>55− 60 1642 (7) NA −34:8 (−32:3, −7:2) 0.01 1.4 (0.8, 2.2) 0.2
>60− 65 739 (3) NA −26:6 (−57:9, 4.7) 0.09 1.4 (0.8, 2.4) 0.2
>65 209 (1) NA −0:8 (−43:6, 41.9) 1.0 0.9 (0.4, 2) 0.9

Continuousg 19171 (61) 51± 5:3 0 −0:2 (−1:1, 0.6) 0.6 1 (1, 1) 0.7
Meteorology
Humidity (%)
Pregnancy 1122 (4) 78:6± 8:7 2315 −26:5 (−56:9, 3.9) 0.09 1.4 (0.8, 2.4) 0.2
T1 1146 (4) 78:7± 10:5 2595 −6:9 (−24:5, 10.7) 0.4 0.9 (0.6, 1.2) 0.4
T2 1202 (4) 78:6± 10:6 2610 −16:2 (−34, 1.5) 0.07 1.4 (1, 2) 0.03
T3 1283 (4) 78:6± 10:8 2696 −3 (−19:7, 13.7) 0.7 1.1 (0.8, 1.6) 0.4

Ultraviolet DNA damage (kJ=m2)
Pregnancy 937 (3) 0:7± 0:3 0.2 10.2 (−6:1, 26.6) 0.2 0.8 (0.6, 1) 0.1
T1 929 (3) 0:7± 0:7 0.8 −1 (−20:8, 18.8) 0.9 1.1 (0.8, 1.5) 0.7
T2 740 (2) 0:7± 0:6 0.7 7 (−11:4, 25.4) 0.5 0.9 (0.6, 1.2) 0.3
T3 610 (2) 0:7± 0:6 0.7 5.1 (−13:4, 23.6) 0.6 1 (0.7, 1.3) 0.8

Temperature (°C)
Pregnancy 1122 (4) 9± 3:6 3.6 −3:5 (−16:6, 9.5) 0.6 1 (0.8, 1.3) 0.9
T1 1122 (4) 8:9± 6:2 9.3 −4:8 (−18:3, 8.7) 0.5 1.1 (0.9, 1.5) 0.3
T2 1122 (4) 8:9± 6:3 9.5 1.6 (−13, 16.1) 0.8 1 (0.7, 1.3) 0.8
T3 1198 (4) 9:1± 6:4 10 2 (−12:6, 16.6) 0.8 0.9 (0.7, 1.1) 0.3

Natural Space
NDVI
100-m buffer 564 (2) 0:4± 0:1 0.2 30.2 (21.7, 38.7) <0:001 0.8 (0.7, 0.9) 0.001
300-m buffer 564 (2) 0:5± 0:1 0.2 30.7 (22.5, 38.9) <0:001 0.8 (0.7, 0.9) <0:001
500-m buffer 564 (2) 0:5± 0:1 0.2 29.6 (21.6, 37.5) <0:001 0.7 (0.7, 0.9) <0:001

Green space>5,000 m2

Presence of green space within 300 m 1347 (4)
Absent 27583 (92) NA (ref) NA (ref) NA
Present 2529 (8) NA 20.1 (9.8, 30.4) <0:001 0.8 (0.6, 0.9) 0.004

Distance to nearest green space (m)f 1347 (4) 221± 200 9.3 −12:8 (−19:2, −6:3) <0:001 1.1 (1, 1.3) 0.06
Size of nearest green space (m2)f 1347 (4) 6280888± 29105465 0 −16:3 (−23:6, −8:9) <0:001 1.1 (0.9, 1.2) 0.2
Blue space>5000m2

Presence of blue space within 300 m 1347 (4)
Absent 8064 (27) NA (ref) NA (ref) NA
Present 22048 (73) NA 1.2 (−16:3, 18.6) 0.9 0.7 (0.5, 1.1) 0.1
Distance to nearest blue space (m)f 1347 (4) 1381± 1189 16.8 −4:2 (−10:4, 2) 0.2 1.0 (0.9, 1.2) 0.4
Size of nearest blue space (m2) 1347 (4) 2198131± 8281592 0 −5:4 (−11:2, 0.4) 0.06 1.0 (0.9, 1.2) 0.6

Road Traffic
Inverse distance to nearest road (m−1)f 416 (1) 0:1± 6:6 1.2 0.2 (−4:5, 4.9) 0.9 1 (0.9, 1) 0.2
Traffic density on nearest road (vehicles
day)h

384 (1) 3372± 6498 1.7 2.7 (−0:3, 5.7) 0.07 1 (1, 1.1) 0.8

Traffic load on all roads within 100 m
(vehicles × length of road
segments ðmÞ=day a)h

100-m buffer 11826 (38) 1221503± 2016053 2.6 −2:7 (−4:9, −0:4) 0.02 1 (1, 1.1) 0.4
Presence of traffic on the major road
within 100 m

450 (1)

None 10199 (33) NA (ref) NA (ref) NA
≥1 20810 (67) NA 4.7 (−5, 14.4) 0.3 0.9 (0.8, 1.1) 0.4
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RMSE was estimated). Because DSA relies on cross-validation,
results can differ across calculation runs. To obtain more stable
results, we adopted an ad hoc strategy. We ran each DSA model
100 times and fitted a regression model including all exposures
selected in at least five runs. We removed them one by one, start-
ing from the exposure least frequently selected in the 100 DSA
runs, until the parameters of all exposures in the model were sig-
nificant at a 5% level. Our final “DSA” results correspond to the
estimates of this last multiple regression model.

The DSA procedure was fitted relying on linear models for
birth weight, and logistic models for TLBW.Models were adjusted
for the potential confounders indicated above. As suggested in the
standard procedure, we did not allow polynomial or interaction
terms between exposures. Some of the urban exposome variables
were redundant and displayed high correlations that were likely to
hinder any multiexposures regression model, such as a given envi-
ronmental indicator being averaged over several exposure win-
dows. Hence, in DSA, we selected one exposure with high a priori
plausibility per exposure indicator and ensured that no pair of
exposures displayed an absolute correlation coefficient above 90%
(when this happened, we selected the exposure variable with the
smallest proportion of imputed values and removed the other). In
total, 21 exposures were included in DSA.

In the light of systematically analyzing and reporting all associ-
ations and reducing reporting bias, we initially performed a holistic
and unadjusted-for-coexposure ExWAS analysis (Table 1). By
allowing to evaluate all exposures’ associations with birth weight
across critical periods of time, ExWAS for example may enlighten
associations that were hidden in DSA because of exposures’

collinearity. It also provides relevant information for future meta-
analyses, which should not be restricted to associations found sig-
nificant in a given study.

The ExWAS approach (Patel et al. 2010) consists of a
exposure-by-exposure estimation of the association of each expo-
sure variable with the outcome using regression models adjusted
for potential confounders. Linear regression was applied for birth
weight analysis, and Fisher test p-values were used; logistic
regression was applied for TLBW analysis, and deviance test
p-values were used. To account for multiple hypothesis testing,
p-values were compared to 5% divided by the effective number
of independent tests as defined by Li et al. (2012), which is an
estimate of the number of truly independent tests that are per-
formed, given the correlation structure of association test
p-values (here, 25). In a second step, we included in a multivari-
able linear regression model all the exposure variables that were
significant in ExWAS at a 5% level after multiple hypothesis test-
ing correction and after removing the redundant and highly corre-
lated exposures (ExWAS-MLR) to check the stability of the
exposure–health associations when accounting for confounding
by coexposures (Mickey and Greenland 1989).

All analyses were performed with the R statistical software
(version 3.4; R Development Core Team), using the rexposome
package for drawing plots (https://rdrr.io/bioc/rexposome/),
mice for multiple imputation, and DSA for the DSA algorithm.
The simulation computations were performed using the CIMENT
infrastructure (https://ciment.ujf-grenoble.fr), which is supported
by the Rhône-Alpes region (GRANT CPER07_13 CIRA; http://
www.ci-ra.org).

Figure 1. Sensitivity and false discovery proportion (FDP) values obtained by simulation when identifying associations between a set of 57 exposures (gener-
ated based on a realistic urban exposome correlation structure) and a continuous health outcome (generated such that it was linearly related to p=1, 2, 3, 5, 10
or 25 of these exposures), in a population of 32,000 subjects. For each statistical method that was tested, the sensitivity and FDP were averaged over 100 simu-
lation runs and over all six scenarios (i.e., with p=1, 2, 3, 5, 10 and 25 exposures influencing the outcome). More detailed results are given in Figure S1.
Note: DSA, deletion/substitution/addition; ENET, elastic net; ExWAS, Environment-wide association study; ExWAS-MLR, ExWAS-multiple linear regres-
sion; FDP, false discovery proportion; sPLS, sparse partial least-squares.
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Results

Study Population
At the time of pregnancy, mothers were on average ( ± standard
deviation, SD) 29:6± 5:1 years old, with a prepregnancy weight
of 68:3± 14:1 kg and a height of 165±7 cm (Table 2). Most had
tertiary education (51%); 9% of women smoked during the sec-
ond trimester of pregnancy (with an average of 3:2±3:8 ciga-
rettes smoked per day for smokers). There was a balanced
distribution of pregnancies across seasons (between 24% and
27% over the four seasons). Children were born after 39:7±
1:8weeks of gestation, with a 1.05 male-to-female sex ratio.
These characteristics were overall similar across cities, except for
maternal education and smoking.

Birth weight data was available for 31,326 (96.0%) children
and was on average 3,372± 547 grams, with a minimum of 465
and a maximum of 5,800 grams (Figure 2). Out of the 29,658
(94.2%) term births, 699 (2.4%) had a low birth weight.

The Urban Exposome and Birth Weight
In the exposure-by-exposure ExWAS analysis, 18 exposures cov-
ering 11 environmental indicators were statistically significant af-
ter p-value correction for multiple hypothesis testing (Table 3,
Figure 3). The most significant exposures indicators were, by
increasing p-value: NDVI [birth weight change in grams for an
IQR change in exposure levels: 30:2 g; 95% confidence interval
(CI): 21.7, 38.7 for the 100-m buffer], walkability index (−16:7 g;
95% CI: −23:2, −10:2), presence of public bus line (19:6 g; 95%
CI: 10.2, 29.1 for presence within 300 m), facilities density
(−13:4 g; 95% CI: −19:9, −6:9 for the 300-m buffer, log-
transformed exposure values), building density (−11:9 g; 95% CI:
−17:7, −6:0 for the 300-m buffer, cubic root-transformed expo-
sure values), green space (20:1 g; 95% CI: 9.8, 30.4 for presence
within 300 m), PM2:5 absorbance (−17:9g; 95% CI: −27:2, −8:6
for trimester 3 of pregnancy average, log-transformed exposure
values), connectivity density (−13:9 g; 95% CI: −21:4, −6:4 for
the 300-m buffer, cubic root-transformed exposure values), land
use SEI (−9:1 g; 95% CI: −14:7, −3:5 for the 300-m buffer),

PM2:5 (−15:0 g; 95% CI: −24:4, −5:6 for the whole pregnancy
average), and NO2 (−12:1 g; 95% CI: −19:7, −4:5 for trimester
3 of pregnancy average, log-transformed exposure values). Other
measures of the same environmental indicator were significant for
NDVI, green space, presence of public bus line, facilities and
building density, with consistent coefficients estimates.

Over the 11 exposures that were jointly included in the ExWAS-
MLR regression model (maximal absolute pairwise correlation
value: 0.71), only NDVI, land use SEI, PM2:5 absorbance and pres-
ence of public bus line exposures remained statistically significant
at a 5% level; their coefficients were consistent with the ExWAS
exposure-by-exposure models. The seven remaining exposure indi-
cators significantly associated with birth weight did not survive
adjustment by coexposure confounding, and their parameters dif-
fered substantially from those obtained in the ExWAS models
(Table 3).

In the multiexposures DSA analysis, four exposures were
identified for being jointly associated with birth weight (Table 4):
NDVI in a 100-m buffer (birth weight change in grams for an
IQR change in exposure levels: 28:0 g; 95% CI: 19.3, 36.6), pres-
ence of bus line within 300 m (14:3 g; 95% CI: 4.7, 23.9), land
use SEI in a 300-m buffer (−7:8 g; 95% CI: −13:4, −2:2) and
traffic density on the nearest road from pregnancy home address
(birth weight change in grams for an IQR change in cubic root-
transformed exposure levels: 3:7 g; 95% CI: 0.6, 6.7).

The Urban Exposome and TLBW
In ExWAS, the exposure indicators associated with TLBW risk
(Table 5, Figure 4) were, by increasing p-value, building density
[odds ratio (OR) = 1.2; 95% CI: 1.1, 1.4 for the 300-m buffer,
cubic root–transformed exposure values] and NDVI (OR = 0.8;
95% CI: 0.7, 0.9 for the 100-m buffer). For both environmental
indicators, averaged measures over other buffers were statistically
significant, with consistent OR estimates. No exposure was sig-
nificant at a 5% level in the ExWAS-MLR model that aimed to
adjust for potential confounding by coexposures.

In the DSA analysis, the only exposure that was identified for
being associated with TLBW was NDVI in a 100-m buffer, with
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Figure 2. Birth weight distribution over all cohorts and box plot per city. In the box plots, the line within the boxes represents the median, the upper and lower
edges represent the first and third quartiles of the distribution, respectively. The whiskers represent the minimal and maximal, except for outliers (values outside
1.5 times the IQR above the upper quartile and bellow the lower quartile) that are individually displayed on the figure as dots. Note: IQR, interquartile range.
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an OR of low birth weight associated with an IQR change in ex-
posure of 0.9 (95% CI: 0.7, 0.9).

Discussion
To the best of our knowledge, we have conducted here the largest
analysis of the association between the urban exposome and birth
weight. We accounted for the multiplicity of exposures that were
tested, and we reported statistically significant exposure associa-
tions with fetal growth, as well as nonsignificant associations to
be used for future meta-analyses. The most statistically signifi-
cant and consistent associations were for green space estimated
as NDVI with birth weight and TLBW (with an increased fetal
growth with increasing NDVI exposure). When we accounted for
potential confounding by coexposures, NDVI, presence of public
bus line, and traffic density displayed a significant positive asso-
ciation with birth weight, whereas land use SEI and PM2:5 ab-
sorbance displayed a significant negative association with birth
weight. Furthermore, we observed statistically significant (unad-
justed for coexposures) positive associations with birth weight
for presence of green space; negative associations with birth
weight for walkability index, facilities density, building density,
connectivity density, PM2:5 and NO2, some of which may war-
rant further investigation.

Our results on NDVI and fetal growth are consistent with pre-
vious studies that showed an increase in birth weight with

increasing levels of NDVI (Cusack et al. 2017; Dzhambov et al.
2014; Hystad et al. 2014). Green space has been associated with
many beneficial health effects, including reduced premature mor-
tality, better mental health, and better cognitive functioning
(Nieuwenhuijsen et al. 2017).

We found that increasing levels of PM2:5 were associated with
a decreased birth weight; however, we could not replicate the asso-
ciations of this air pollutant with TLBW that were reported before
in a larger study in Europe overlapping this study population
(Pedersen et al. 2013). The level of evidence regarding negative
effects of air pollution on birthweight is strong, and a number of
meta-analyses have reported negative effects of air pollution, par-
ticularly PM, on birth weight (Lamichhane et al. 2015; Stieb et al.
2012). The DSA analysis did not identify PM2:5, but traffic den-
sity was identified, which could be viewed as a proxy of the
same exposure to road pollution; however, the association was
in the opposite direction to what was expected. We do not have
an explanation for why this association occurred. As in various
other studies, we did not observe an association between road
traffic noise and (low) birth weight (Nieuwenhuijsen et al.
2017). Although a few studies found an association between
temperature and (term) low birth weight, we did not, which most
likely reflects the inconsistent nature of the relationship, the use of
different exposure periods (days vs. months), and the focus of pre-
vious studies on extreme temperatures, whereas we did not.
Furthermore, we did not consider nonlinear relationships.

Table 3. Results of ExWAS (i.e., exposure by exposure linear regression models) and ExWAS-MLR (i.e., multiple linear regression model simultaneously
including all exposures selected in ExWAS after excluding redundant variables) testing the association between the urban exposome and continuous birth
weight, adjusted for potential confounders. Only parameters associated with exposures with a multiple hypothesis testing-corrected p-value in ExWAS below
5% are reported.

Exposure Unit IQRa

ExWAS ExWAS-MLR

Estimate (95% CI)b p-Valuec Estimate (95% CI)b p-Value

Built Environment
Building density in a 100-m bufferd m2 built=km2 144.9 −12:3 (−18:4, −6:3) <0:001 NAe

Building density in a 300-m bufferd m2 built=km2 138.7 −11:9 (−17:7, −6:0) <0:001 6.3 (−3:1, 15.6) 0.2
Connectivity density in a 300-m bufferd Intersections=km2 6.179 −13:9 (−21:4, −6:4) <0:001 0.8 (−9:8, 11.5) 0.9
Land use Shannon's Evenness Index Index 0.177 −9:1 (−14:7, −3:5) 0.001 −8:6 (−16:2, −1:1) 0.02
Presence of public bus line within 300 m Binary NA 19.6 (10.2, 29.1) <0:001 13.6 (3.6, 23.5) 0.007
Presence of public bus line within 500 m Binary NA 27.4 (17.4, 37.3) <0:001 NAe

Facilities densityf Facilities=km2 5.094 −13:4 (−19:9, −6:9) <0:001 2.2 (−8:5, 13.0) 0.7
Facility richness Facility types/km² 0.187 −13:5 (−19:6, −7:3) <0:001 NAe

Walkability index Index 0.368 −16:7 (−23:2, −10:2) <0:001 0.5 (−13:4, 14.3) 0.9
Air pollution
NO2 in trimester 3 of pregnancyf lg=m3 0.543 −12:1 (−19:7, −4:5) 0.002 4.8 (−5:3, 14.8) 0.3
PM2:5 absorbance in trimester 3 of pregnancyf 10−5=m 0.551 −17:9 (−27:2, −8:6) <0:001 −12:1 (−23:8, −0:5) 0.04
PM2:5 pregnancy average lg=m3 0.339 −15:0 (−24:4, −5:6) 0.002 −2:6 (−13:1, 7.9) 0.6
Natural Space
NDVI in a 100-m buffer Index 0.203 30.2 (21.7, 38.7) <0:001 32.1 (18.7, 45.6) <0:001
NDVI in a 300-m buffer Index 0.175 30.7 (22.5, 38.9) <0:001 NAe

NDVI in a 500-m buffer Index 0.162 29.6 (21.6, 37.5) <0:001 NAe

Presence of green space within 300-m Binary NA 20.1 (9.8, 30.4) <0:001 10.3 (−1:1, 21.7) 0.07
Distance to nearest green spacef m 9.319 −12:8 (−19:2, −6:3) <0:001 NAe

Size of nearest green spacef m2 0.006 −16:3 (−23:6, −8:9) <0:001 NAe

Note: All buffer areas and distances are relative to the pregnancy residence unless otherwise indicated. Missing exposure and covariate data were imputed using chained equations. CI,
confidence interval of the coefficient estimate; ExWAS, exposome-wide association study; ExWAS-MLR, multiple linear regression model simultaneously including all exposures
selected in ExWAS after excluding redundant variables; IQR, interquartile range; NA, not applicable; NDVI, normalized difference vegetation index; NO2, nitrogen dioxide; PM2:5,
particulate matter in the (ambient) air with an aerodynamical diameter below 2:5micrometers.
aThe IQR is computed over continuous exposures only, after imputing missing values and transforming data to approach normality.
bDifference in mean birth weight in association with an IQR increase in (imputed and transformed to approach normality) exposure (continuous variables), or relative to the reference
category (binary and categorical variables), adjusted for a city effect, gestational age (simple and quadratic terms), sex of the newborn, parity, maternal height and weight before preg-
nancy, maternal smoking, maternal education, and season of conception.
cUncorrected p-values testing the global significance of the variable, obtained using a Wald test (continuous or binary variables) or a likelihood ratio test (categorical noise variables).
Multiple hypothesis testing corrected 5% threshold for p-values (Li et al. 2012) = 0:002.
dSquare root-transformed.
eThe exposure was removed from the multivariate ExWAS-MLR model for it was redundant with another exposure selected in ExWAS, i.e. either the same environmental indicator
was measured over several exposure windows or with various methods; or it displayed an absolute correlation >0:9 with another exposure. NDVI in a 100-m buffer was selected to
the detriment of NDVI in a 300-m or 500-m buffer; the presence of green space within 300 m was selected to the detriment of size and distance to nearest green space; the presence of
public bus line within 300 m was selected to the detriment of presence of public bus line within 500 m; building density in a 300-m buffer was selected to the detriment of building
density in a 100-m buffer; and facilities densitywas selected to the detriment of facility richness.
fln-transformed.
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Associations between built environment exposures such as
building density, walkability index, presence of public bus line,
facilities density, connectivity density, and land use SEI with
birth weight are novel, as very few studies have been conducted

on the topic (Gascon et al. 2016). The presence of bus line associ-
ation with birth weight needs to be interpreted with caution, given
that 45% of the data was imputed (whereas for the other hits, no
more than 15% of the data was imputed).
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Figure 3. Volcano plot giving the fold change coefficient estimate vs. the p-value obtained with the ExWAS analysis of the association of all exposures of the
urban exposome with birth weight. The grey dotted-dashed line represents the multiple hypothesis testing corrected 5% threshold obtained with the Li et al.
method (Li et al. 2012). Exposures with a p-value lower than this threshold have their names on the graph (see Table 3 for more results). Other exposures are
displayed in faded colors; see Table 2 for all ExWAS results. Note: All buffer areas and distances are relative to the pregnancy residence unless otherwise indi-
cated. Missing exposure and covariate data were imputed using chained equations. BuildingDensity 100 m, building density in a 100-m buffer;
BuildingDensity 300 m, building density in a 300-m buffer; BusLine 300 m, presence of bus line within 300-m; BusLine 500 m, presence of bus line within
500-m; Connectivity 300 m, connectivity density in a 300-m buffer; FacilitiesDensity, facilities density in a 300-m buffer; FacilityRichness, facility richness in
a 300-m buffer; GreenSpace_Distance, distance to nearest green space; GreenSpace_Size, size of nearest green space; GreenSpace 300 m, presence of green
space within 300 m; LandUseSEI, land use Shannon's Evenness Index in a 300-m buffer; NDVI 100 m, normalized difference vegetation index in a 100-m
buffer; NDVI 300 m, normalized difference vegetation index in a 300-m buffer; NDVI 500 m, normalized difference vegetation index in a 500-m buffer;
NO2 Tr3, nitrogen dioxide averaged over the third trimester of pregnancy; PM2:5, particulate in the (ambient) air 2:5micrometers or less in aerodynamical di-
ameter averaged over the whole pregnancy; PMAbsorbance_Tr3, particulate in the (ambient) air 2:5micrometers or less in aerodynamical diameter absorbance
averaged over the third trimester of pregnancy; Walkability, walkability index in a 300-m buffer.

Table 4. Results of DSA testing the association of the urban exposome and continuous birth weight, adjusted for potential confounders.

Exposure Unit IQRa Estimate (95% CI)b p-Value

Built Environment
Land use Shannon's Evenness Index Index 0.177 −7:8 (−13:4, −2:2) 0.006
Presence of public bus line within 300 m Binary NA 14.3 (4.7, 23.9) 0.004
Natural Space
NDVI in a 100-m buffer Index 0.203 28.0 (19.3, 36.6) <0:001
Road Traffic
Traffic density in the nearest roadc Vehicles/day 1.652 3.7 (0.6, 6.7) 0.02

Note: All buffer areas and distances are relative to the pregnancy residence unless otherwise indicated. Missing exposure and covariate data were imputed using chained equations. CI, con-
fidence interval of the coefficient estimate; DSA, deletion/substitution/addition algorithm; IQR, interquartile range; NA, not applicable; NDVI, normalized difference vegetation index.
aThe IQR is computed over continuous exposures only, after imputing missing values and transforming data to approach normality.
bDifference in mean birth weight in association with an IQR increase in (imputed and transformed to approach normality) exposure (continuous variables), or relative to the reference
category (binary and categorical variables), adjusted for a city effect, gestational age (simple and quadratic terms), sex of the newborn, parity, maternal height and weight before preg-
nancy, maternal smoking, maternal education, and season of conception. Only one exposure per environment indicator entered the DSA procedure to avoid redundancy. The 300-m
buffer was selected for the built environment indicators; the pregnancy window was selected for the air pollution and meteorology indicators; categorical exposures were retained for
the road traffic noise indicators; the 100-m buffer was selected for NDVI; presence of green/blue space within 300 m was selected to the detriment of size and distance to nearest
green/blue space; and traffic load on all roads within 100 m was selected to the detriment of presence of traffic on the major road within 100 m. Finally, facility richness and tempera-
ture were excluded for they displayed absolute correlation >0:90 with facilities density and UV DNA damage, respectively.
cCubic root-transformed.
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Only one study so far examined the association of a built
environment measure of walkability and birth weight and also
found that an increase in walkability score was associated with
a decreased birth weight (Hystad et al. 2014). In our study,
the associations with built environment exposures were not

consistent across our statistical analyses, and most effects were
not statistically significant in our analyses after adjusting for
other exposures.

Only a couple of studies so far have examined the relationship
between multiple environmental exposures and birth weight.
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Figure 4. Volcano plot giving the fold change coefficient estimate vs. the p-value obtained with the ExWAS analysis of the association of all exposures of the
urban exposome with term low birth weight. The grey dotted-dashed line represents the multiple hypothesis testing corrected 5% threshold obtained with the Li
et al. method (Li et al. 2012). Exposures with a p-value lower than this threshold have their names on the graph (see Table 5 for more results). Other exposures
are displayed in faded colors; see Table 2 for all ExWAS results. Note: All buffer areas and distances are relative to the pregnancy residence unless otherwise
indicated. Missing exposure and covariate data were imputed using chained equations. BuildingDensity 100 m, building density in a 100-m buffer;
BuildingDensity 300 m, building density in a 300-m buffer; NDVI 100 m, normalized difference vegetation index in a 100-m buffer; NDVI 300 m, normalized
difference vegetation index in a 300-m buffer; NDVI 500 m, normalized difference vegetation index in a 500-m buffer.

Table 5. Results of ExWAS (i.e., exposure by exposure logistic regression models) and ExWAS-MLR (i.e., multiple logistic regression model simultaneously
including all exposures selected in ExWAS after excluding redundant variables) testing the association between the urban exposome and term low birth weight,
adjusted for potential confounders. Only results associated with exposures with a multiple hypothesis testing-corrected p-value in ExWAS below 5% are
reported.

Exposure Unit IQRa

ExWAS ExWAS-MLR

OR (95% CI)b p-Valuec OR (95% CI)b p-Value

Built Environment
Building density in a 100-m bufferd m2 built=km2 144.9 1.2 (1.1, 1.4) 0.001 NAe

Building density in a 300-m bufferd m2 built=km2 138.7 1.2 (1.1, 1.4) <0:001 1.2 (1.0, 1.3) 0.07
Natural Space
NDVI in a 100-m buffer Index 0.203 0.8 (0.7, 0.9) 0.001 0.9 (0.7, 1.1) 0.2
NDVI in a 300-m buffer Index 0.175 0.8 (0.7, 0.9) <0:001 NAe

NDVI in a 500-m buffer Index 0.162 0.7 (0.7, 0.9) <0:001 NAe

Note: All buffer areas and distances are relative to the pregnancy residence unless otherwise indicated. Missing exposure and covariate data were imputed using chained equations. CI,
confidence interval of the coefficient estimate; ExWAS, exposome-wide association study; ExWAS-MLR, multiple linear regression model simultaneously including all exposures
selected in ExWAS after excluding redundant variables; IQR, interquartile range; NA, not applicable; NDVI, normalized difference vegetation index; OR, odds ratio.
aThe IQR is computed over continuous exposures only, after imputing missing values and transforming data to approach normality.
bOdds ratio (OR) for term low birth weight in association with an IQR increase in (imputed and transformed to approach normality) exposure (continuous variables), or relative to the
reference category (binary and categorical variables), adjusted for a city effect, gestational age (simple and quadratic terms), sex of the newborn, parity, maternal height and weight
before pregnancy, maternal smoking, maternal education, and season of conception.
cUncorrected p-values testing the global significance of the variable, obtained using a Wald test (continuous or binary variables) or a deviance test (categorical noise variables).
Multiple hypothesis testing corrected 5% threshold for p-values (Li et al. 2012) = 0:002.
dSquare root-transformed.
eThe exposure was removed from the multivariate ExWAS-MLR model for it was redundant with another variable selected in ExWAS, i.e. either the same environmental indicator
was measured over several exposure windows or with various methods; or it displayed an absolute correlation >0:9 with another exposure. NDVI in a 100-m buffer was selected to
the detriment of NDVI in a 300-m or a 500-m buffer; building density in a 300-m buffer was selected to the detriment of building density in a 100-m buffer.
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Hystad et al. (2014) examined the relationship between green
space, noise, air pollution and walkability. They found that in
general, in their fully adjusted models, the association between
air pollution, neighborhood walkability, and park distance with
birth weight largely disappeared with the inclusion of greenness
exposures, as we found in our analyses, and the effects of noise
exposures were reduced by approximately 50% (in our study, no
association was found even when not adjusting for greenness).
Birth weight increased with increasing NDVI, as in our analyses.
Dadvand et al. examined simultaneously the effects of distance to
roads, air pollution, heat, noise, and green space on TLBW and
found that air pollution (PM2:5) and heat exposures increased the
risk for TLBW and together explained about one-third of the
association between residential proximity to major roads and
TLBW (Dadvand et al. 2014).

The urban environment is complex, with multiple exposures
and determinants of exposure (Nieuwenhuijsen 2016) that are not
always easy to disentangle in these types of analyses (Agier et al.
2016). Further in-depth hierarchical or analyses of other types
than regression may provide a better insight in the underlying
determinants and pathways, but these analyses fall outside the
scope of this paper.

Our main goal was to identify exposures that have an effect
on our outcome of interest and to estimate their effects in an
exposome context when considering simultaneously a large num-
ber of exposures. Confounding by coexposures is one of the main
challenges in such settings, especially when exposures are highly
correlated. In addition, a covariate can be a confounder for one
exposure–outcome relation but a mediator or collider for another.
We chose to rely on agnostic methods for variable selection in
order to cope with the fact that not all exposures can be included
in the same model, and no specific assumption on coexposure
confounders could be made for all the exposures of the urban
exposome.

As part of the study, we examined in a simulation study the
expected performance of several variable selection methods in an
exposome context and selected DSA because it provided the best
performance in the sense of identifying the truly associated expo-
sures. Although in smaller-size exposome studies (e.g., in 1,200
subjects), false discoveries is an issue that no statistical method
can easily overcome (Agier et al. 2016), in larger studies such as
this one where we considered 32,000 mother–child pairs and a
smaller number of covariates than in Agier et al., the risk of
false-positive findings was expected to be low with DSA (5% in
the simulation analyses). The efficiency of a method in real set-
tings is usually lower, typically because of a lower explanatory
power of exposures and because of the exposure-outcome rela-
tionship that may not be linear. Power may be even lower when
considering binary outcomes with low prevalence such as
TLBW. Yet, given the performance of the DSA approach in our
simulation, we have a good confidence in its higher perform-
ance in comparison with ExWAS. ExWAS was used to allow
reporting of associations using an approach comparable to for-
mer exposure-by-exposure studies and thus enable future meta-
analysis.

The strengths of the study include the design, the availability
of many important adjustment factors and of many individual-
level exposures, the detailed and standardized exposure ass-
essment, and the robust statistical methods applied after investi-
gating their efficiency in a typical urban exposome context. In
addition, we reported results for all exposures from the ExWAS
exposure–birth weight and TLBW association analyses, such that
they can be used in future meta-analyses and fully contribute to
the weight of the evidence for any exposure investigated here.
Several weaknesses need to be mentioned, such as not

investigating statistical interactions or nonlinear association of
exposures, not taking into account daily mobility, any mediation
effects, and not accounting for measurement error in the expo-
sures. Despite the wide range of exposures investigated in this
study, the list is not exhaustive, and we may have missed some
important urban environmental factors or adjustment factors for
fetal growth.

Our analyses provided further insight into the challenges faced
by exposome research, including those related to statistical analy-
ses and interpretation of the results. The work has confirmed some
of the previous associations that have been reported on the positive
effects of green space on birth weight but could not confirm some
of the previous findings on air pollution and birth weight, poten-
tially highlighting a confounding effect of green space on the air
pollution association with birth weight. Our results on road traffic
noise and temperature add to the inconsistent evidence on the
topic, and the novel aspects of this study are possible associations
between built environment exposures and birth weight, such as
land use SEI and presence of public bus line.
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