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Abstract. The variational multiscale (VMS) approach based on a modal
discontinuous Galerkin (DG) method is used to perform LES of the
sub-critical flow past a circular cylinder at Reynolds numbers 20 000
and 140 000, based on the cylinder diameter. The potential of using p-
adaption in combination with DG-VMS is illustrated for the case at
Re = 140 000 by considering a non-uniform distribution of the polyno-
mial degree based on a recently developed error estimation strategy [15].
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1 Introduction

The study of flows past cylinders is of relevance to many engineering applications,
such as noise prediction in aircraft landing gears. A characteristic feature of bluff
body aerodynamics is the appearance of a large-scale vortex shedding in the near
wake which can lead to flow-induced sound and vibration of the structure. The
ability to accurately predict this phenomenon across a wide range of Reynolds
numbers using numerical methods is especially challenging, in particular because
the location of the separation point on the cylinder wall is very sensitive to small
disturbances in the flow. On the other hand, the geometrical representation of the
cylinder adds an extra level of complexity in the context of high-order methods,
due to the necessity to use large curved elements around the wall when the order
of the polynomial approximation is increased (p-refinement).

In this work, the scale-resolving capabilities of the DG solver Aghora [4,
18] are illustrated by performing LES of the flow past a cylinder in the sub-
critical regime at Re = 20 000 and 140 000. The subgrid-scale (SGS) modelling
approach adopted here is based on the VMS approach developed in [5] in the
context of a modal DG method (DG-VMS). The potential of using p-adaptation
for LES is demonstrated for the case at Re = 140 000 by defining a non-uniform
distribution of local polynomial degrees based on a recently developed error
estimation strategy [15].

A limited number of LES simulations of this configuration have been reported
in the literature for these two Reynolds numbers. We can cite the work presented
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in [19, 14, 13] for Re = 20 000 and in [2, 9] for Re = 140 000 based on second-order
finite-volume methods (FVM) and different SGS models, and grid resolutions.
The outcome of our DG-VMS simulations is compared with the high-resolution
LES results reported by Lysenko et al. [13] for Re = 20 000, and by Breuer [2] for
Re = 140 000 using low-dissipation second-order FVM. The material presented
in these two articles is well documented and, in our view, constitutes a valuable
reference to assess the performance of the present approach.

2 Governing equations

Let Ω ⊂ R3 be a bounded domain. The compressible Navier-Stokes (N-S) equa-
tions, with appropriate boundary conditions in ∂Ω, read

∂u

∂t
+ ∇ · (Fc (u)−Fv (u,∇u)) = 0 , inΩ (1)

where u = (ρ, ρv, ρE)
T

is the vector of conservative variables. The vectors Fc,
and Fv are the convective and viscous fluxes, respectively,

Fc =
(
ρ, ρv ⊗ v + p¯̄I, (ρE + p)v

)T
, Fv = (0, ¯̄τττ , ¯̄τττ · v − q)

T
(2)

In (2), ¯̄τττ represents the shear-stress tensor, given by

¯̄τττ = µ

(
2¯̄S− 2

3
(∇ · v) ¯̄I

)
with ¯̄S =

1

2

(
∇v +∇vT

)
(3)

µ is the dynamic viscosity and ¯̄S the rate-of-strain tensor. The heat-flux vector
is written as q = −k∇T , with T the temperature and k the thermal diffusivity.

3 The DG-VMS formulation

Let Ωh be a shape-regular partition of the domain Ω, into N non-overlapping
and non-empty cells κ of characteristic size h. We also define the sets Ei and Eb
of interior and boundary faces in Ωh, respectively, such that Eh = Ei ∪ Eb. Let
Vph = {φ ∈ L2(Ωh) : φ|κ ∈ Pp(κ), ∀κ ∈ Ωh} be the functional space of piecewise

polynomials of degree at most p, and (φ1κ, . . . , φ
Np
κ ) ∈ Pp(κ) a hierarchical and

orthonormal modal basis of Vph, of dimension Np, confined to κ [1]. The solution
in each element is thus expressed as a linear expansion of basis functions, the
coefficients of which constitute the degrees of freedom (DOFs) of the problem
at hand.

The LES technique used in this research is based on the projection of the N-S
equations onto a the functional space Vph. This projection operation implicitly
defines a partitioning of the solution such that a turbulent field u is decomposed
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into its resolved, uh, and unresolved components, u− uh. The variational form
of the LES equations thus reads: find uh in Vph such that ∀ φh ∈ Vph we have

∂

∂t

ˆ
Ωh

φhuhdV + Lc(uh, φh) + Lv(uh, φh) = Lsgs(u,uh, φh) , (4)

where we have used the definition of the L2-projection, i.e.
´
Ωh

(u − uh)φh =

0 ,∀φh ∈ Vph. In Eqn. (4) Lc and Lv represent the weak form of the convective and
viscous terms, respectively. The term Lsgs on the right-hand-side of Eqn. (4), is
the variational form of the SGS residual representing the effect of the unresolved
scales u− uh on the resolved field uh.

We now introduce the following notation: for a given interface in Ei we define
the average operator {u} = (u+ +u−)/2 and the jump operator [[u]] = u+⊗n−
u−⊗n, where u+ and u− are the traces of the variable vector u at the interface
between elements κ+ and κ−, and n denotes the unit outward normal vector to
an element κ+. The DG discretization of the convective terms reads

Lc(uh, φh) ∼= −
ˆ
Ωh

Fc(uh) · ∇hφhdV

+

ˆ
Ei

[[φh]]hc(u
+
h ,u

−
h ,n)dS +

ˆ
Eb
φ+hFc

(
ub
)
· ndS (5)

where the boundary values ub = ub
(
u+
h ,uext,n

)
, with uext a reference external

state, are computed so that the boundary conditions are satisfied on Eb. In this
paper, a modified version of the local Lax-Friedrichs (LLF) flux and the Roe
scheme have been employed for the simulations at the lower and higher Reynolds
numbers, respectively,

hc
(
u+
h ,u

−
h ,n

)
=

1

2

(
Fc
(
u+
h

)
· n + Fc

(
u−h
)
· n + αD

(
u+
h ,u

−
h ,n

))
(6)

where D
(
u+
h ,u

−
h ,n

)
is the upwinding dissipation function associated with the

selected numerical flux. This is scaled by a coefficient α to calibrate the amount
of numerical dissipation introduced. Based on numerical experiments, α = 0.1 in
this study. Indeed, for this value the simulation remains stable while minimizing
the numerical dissipation introduced via the numerical flux.

The discretization of the viscous terms is performed using the symmetric
interior penalty (SIP) method proposed by Hartmann and Houston [8],

Lv(uh, φh) ∼=
ˆ
Ωh

Fv(uh,∇huh) · ∇hφh dV

−
ˆ
Ei

[[φh]]
{
Fv
(
uh,∇huh

)}
· n dS −

ˆ
Eb
φ+hFv

(
ub,∇ub

)
· n dS

−
ˆ
Ei

[[uh]]
{
GT
(
uh
)
∇hφh

}
· n dS −

ˆ
Eb

(u+
h − ub)

{
GT
(
ub
)
∇hφ+h

)}
· n dS

+

ˆ
Ei

[[φh]]δδδ (uh) · n dS +

ˆ
Eb
φ+h δδδb

(
u+
h ,ub

)
· n dS (7)
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where G (uh) = ∂Fv(uh,∇huh)/∂
(
∇huh

)
is the so-called homogeneity tensor.

The viscous fluxes may thus be written as Fv(uh,∇huh) = G (uh)∇huh. The
penalty function is defined following the approach proposed in [8] as

δδδ (uh) = ηIP
p2

h
G (uh) [[uh]] (8)

with ηIP the penalty parameter, which must be chosen sufficiently large.
The integrals in Eqns. (5) and (7) are computed by means of the Gauss-

Legendre quadrature with q = p + 1 + m points in each space direction, where
m depends on the test case considered.

As regards the SGS term, the effect of the subgrid scales can be approximated
by a closure term that depends only on the resolved field, Lsgs(u,uh, φh) ≈
Lm(uh, φh). The compressible LES formalism of [11] is used here, which consists
in introducing a SGS flux vector of the form,

Fm = (0, ¯̄τ sgs,−q sgs)
T

(9)

Using the eddy-viscosity assumption, the SGS stress tensor ¯̄τττ sgs is written as

τ sgsij = ρhνt

(
2Sij −

2

3
Skkδij

)
(10)

where ρh is the resolved density, Sij are the components of the resolved rate-of-

strain tensor ¯̄S, and νt the turbulent eddy viscosity. The SGS heat-flux vector
is given by

q sgsi = −ρhCp
νt
Prt

∂Th
∂xi

(11)

where Th denotes the resolved temperature and Prt is the turbulent Prandtl
number, assumed to be constant and equal to 0.6.

In this work, the Smagorinsky model is used, for which νt is expressed as

νt = (Cs∆)2|¯̄S| ; |¯̄S| =
√

2SijSij (12)

In (12), Cs is the model constant which usually takes a value between 0.1 and
0.2, and ∆ is the filter size associated with a given element, defined here as
∆ = h

p+1 , with h the characteristic size of the element.

Based on the formalism laid out above, the model term Lm(uh, φh) is dis-
cretized using the same scheme employed to discretize the viscous fluxes. This
amounts to replacing Fv by Fm in Eqn. (7). For more details on the DG-LES
formalism implemented in Aghora the reader is referred to [5, 6].

In VMS we assume that the effect of the unresolved scales on the largest
resolved scales is negligible and thus the effect of the SGS model is confined
to a range of small resolved scales. This is obtained in the DG-VMS frame-
work by splitting the polynomial solution space Vph into a low-order component
V l ≡ VpLh ⊆ V

p
h, associated with the large scales, and a high-order component

Vs ≡ Vph \ V l presenting the small scales, where pL is called the scale-partition
parameter. In this work, the SGS term is computed from the full resolved field,
as proposed in [5], and the effect of the SGS model is removed from all scales
belonging to V l by enforcing Lm(uh, φh) = 0,∀φh ∈ V l.
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4 DG-VMS of the flow past a circular cylinder

The sections that follow report the results from the DG-VMS simulations of the
cylinder flow at Re = 20 000 and 140 000. At these sub-critical Reynolds numbers
the boundary layer separates laminarly from the cylinder surface and transition
to turbulence takes place in the free-shear layer. It is worth noting that in the
version of the VMS algorithm used in this work, the scale-partition parameter pL
that sets the limit between large and small scales is constant across the domain.
This implies that the SGS model will also be active in the cells covering the
(laminar) boundary layer region. This is, however, not an issue in VMS, as, by
definition, only the small scales are affected by the SGS dissipation, while the
mean flow is let free of SGS dissipation. In the DG-VMS simulations presented
in this paper a partition number pL = 1 has been used (see Sec. 3 and [5]).

In both simulations a curved O-type mesh is considered in a computational
domain with radial and spanwise extension of 25D and πD, respectively. The
number of elements in the azimuthal and radial directions is 36, and in the
spanwise direction 16 elements are used. This amounts to a total number of
elements equal to 20 736. In the case of the higher Reynolds number, a higher
stretching factor is used in a region closer to the cylinder, which leads to a more
pronounced clustering of the elements in the vicinity of the wall, with respect
to the lower-Reynolds-number case. As will be shown below, this is consistent
with the shorter length of the recirculation bubble expected and the resolution
requirements of the boundary layer at this higher Reynolds number. The focus in
this work is therefore on capturing the flow dynamics in the near-wake behind
the cylinder, by putting most of the computational effort in this region. The
region beyond the recirculation area can thus be considered as under-resolved.

Periodicity of the flow is assumed in the spanwise direction, and an isothermal
no-slip boundary condition is imposed on the cylinder wall. A laminar free-
stream flow at M = 0.2 is imposed via a far-field condition on the outer boundary
of the computational domain. Finally, the time integration is performed using
an explicit third-order accurate Runge-Kutta method.

4.1 Simulation results at Re = 20 000

For this lower-Reynolds-number case, the polynomial degree is set to p = 4,
which leads to fifth-order accuracy in space and a number of DOFs of 2.59
million (Mdofs). The effective resolution at the wall is ∆r/(p+ 1) = 0.01D.

Over-integration is used to reduce aliasing errors and increase the accuracy
of the solution. A horizontal uniform flow at M=0.2 is used as initial condition.
After a transient period, a statistically steady (periodic) state is reached, from
which the flow statistics are gathered for approximately 95 vortex-shedding cy-
cles. Table 1 compares our DG-VMS results with those obtained by Lysenko et
al. [13] using a second-order low-dissipative FV compressible solver at the same
Mach number M = 0.2 and for the same dimension of the computational do-
main as in the present simulation.The main integral flow quantities are shown
in this table. The range of values shown for the reference simulation correspond
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Table 1. Cylinder flow at Re = 20 000: integral flow quantities.

Simulation ∆rmin
D

Mdofs Nvs Cd Clrms St
Lr
D

FV −O(2) [13] 5.6 10−4 12.4 75 1.33-1.36 0.61-0.70 0.18-0.19 0.57-0.69
DG−O(5) 10−2 2.59 95 1.39 0.64 0.19 0.67

Fig. 1. Flow past a circular cylinder at Re = 20 000. Left: iso-surfaces of the Q-criterion
coloured by the Mach number. Right: streamlines of mean flow.

to the use of different numerical schemes and SGS modelling approaches. More
details about the FV simulations by Lysenko et al. can be found in their original
paper [13].

We can see from this table that the results yielded by the DG-VMS fifth-order
simulation are in fairly good agreement with the reference LES results. Only the
value of the drag coefficient Cd is slightly above the upper-most value of the
reference range, by about 2.2%. This is despite the fact that the DG simulation
involves nearly five times fewer DOFs than the FV simulation. It is worth noting
the much smaller effective size of the grid cells at the wall, which in the DG
simulation is about 18 times smaller with respect to the reference value. The
good prediction achieved with our DG approach is partly a consequence of the
excellent approximation properties of polynomial expansions in representing thin
boundary layers, as pointed out by Gottlieb and Orszag [7]. This coarseness of the
mesh in the vicinity of the wall does not seem to impact the accuracy with which
the integral quantities, and in particular the size of the recirculation bubble Lr,
are captured. In fact, the value of Lr is well within the range of values reported
in [13]. Figure 1 shows a snapshot of the iso-surfaces of Q-criterion coloured
by the Mach number (left) as well as the streamlines of the time-averaged flow
field (right). We can see that the mean flow is characterised by the presence of
a main recirculation bubble, and the appearance of two symmetrical secondary
bubbles near the separation point in accordance with the literature. The value
of the primal separation angle is estimated from the profile of the wall-shear
stress, which leads to θsep = 88o. This estimated value is in good agreement
with the results of Lysenko et al. who predicted from their LES a value in the
range θsep = 86o − 88o. As pointed out by the author, these values are about
13% above the value predicted in the experiments of Son and Hanratty [20] and
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Fig. 2. Cylinder flow at Re = 20 000: streamwise velocity statistics on wake centreline.
Left: mean streamwise velocity; solid line: DG − p4, dashed line: incompressible FV
simulation (TKE-I in [13]). Right: rms of streamwise velocity; red solid line: DG− p4,
black solid line: compressible FV simulation (SMAG−γ in [13]), symbols: experimental
data of Lim and Lee [12] at Re = 16 000 (dots) and Re = 24 000 (circles).

Norberg [16]. The cause for these discrepancies might be an insufficient resolution
of the boundary layer, or else possible differences between the simulation and
the experimental conditions.

To further assess the quality of our results, the statistics in the near-wake
region are also analysed. Figure 2 therefore shows the mean streamwise veloc-
ity along the wake centreline (left), as well as the profile of root-mean-square
(rms) of the axial velocity fluctuations (right). The present results are compared
with the available data from [13]. For the first, the only data available is that
from an incompressible FV simulation using the dynamic k-equation SGS model
(see [13] for more details). Despite the different equation models used, the two
mean streamwise velocity profiles are in relatively good agreement. As regards
the profiles of rms of the axial velocity, our results are compared with the com-
pressible CFD results from [13] on the fine mesh and the experimental data of
Son and Hanratty [20] for Reynolds numbers Re = 16 000 and 24 000. We can see
that, overall, our results are in rather good agreement with the reference numer-
ical data, and well within the range of the values predicted by the experiment.
However, the departure from the experiment beyond approximately x/D = 4
is obvious from this plot, and equally visible in the reference CFD data. This
is partly a consequence of the lack of resolution in this region. It is interesting
to note that this under-resolution does not seem to have a strong effect on the
quality of the prediction in the wall region and near-wake dynamics.

4.2 Static p-adapted simulation results at Re = 140 000

The use of p-adaptation, involving refinement as well as coarsening, allows for an
important reduction of the number of DOFs with respect to uniform refinement,
as well as an increased level of accuracy.

Description of the p-adapted algorithm

The p-adaptive algorithm employed here is that developed in [15]. The algo-
rithm is initialised by specifying a uniform polynomial degree distribution. A first
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Fig. 3. p-adapted DG-VMS of cylinder flow at Re = 140 000: distribution of p.

simulation is then carried out based on the prescribed polynomial degree that
will serve as initial solution for the next iteration of the p-adaptive algorithm.
At each iteration of the algorithm, a new distribution of polynomial degrees is
defined based on local error estimates and a new numerical solution is computed.
The error estimator used in this work is the small-scale energy density (SSED)
estimator proposed in [15], which can also be interpreted as a measure of the
kinetic energy associated with the highest-order modes representing the solution
within the element.

For the simulations presented here, an initial uniform distribution of poly-
nomial degree p = 4 is used. The DG simulation is then run until the flow is
fully developed and reaches a statistically periodic state. From this point, the
element-wise values of the SSED estimator are computed over approximately
five vortex-shedding cycles.

Based on the p-adaptation strategy just described, a new distribution of
polynomial degrees is obtained. A new iteration of the p-adaptation algorithm
is then applied. In this work, two iterations of the adaptive algorithm have been
performed leading to the p-pattern shown in Fig. 3, with p varying from 2 to 6. In
the spanwise direction p is kept constant. This is consistent with the statistically
2D character of the flow. The polynomial degree in the first element layer around
the cylinder is p = 6. This yields an effective size of the first element at the wall
of ∆r/(p+1) = 4 ·10−3. This value is about 2.5 smaller than that corresponding
to Re = 20 000, in accordance with the fact that the boundary layer thickness is
inversely proportional to

√
Re as predicted by the theory.

DG-VMS results at Re = 140 000

The p-adapted DG solution at this higher Re is compared with the numerical
data reported by Breuer [2], as well as the experimental data from Cantwell and
Coles [3]. In [2], the author performed a number of simulations using different
levels of resolution and spanwise extensions of the computational domain. Here
we consider for comparison the simulations C3 and D3 from [2] corresponding to
a spanwise length of the cylindrical domain of πD and a radial extension of 15D.
The number of DOFs was 1.74 and 6.76 DOFs, respectively, for simulations C3
and D3. They are both based on the Smagorinsky model for SGS modelling.

Table 2 compiles the values of the integral quantities obtained from the
present simulation and for the reference data used for comparison. As regards the
values of drag, Cd, and base pressure, −Cp,b, coefficients, our results are in good
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Table 2. Circular cylinder flow at Re = 140 000: comparison of integral flow quantities
with the simulation results of Breuer [2] and Cantwell and Coles [3].

Data Lz/D Mdofs ∆rmin
D

Nvs Cd −Cp,b St
Lr
D

Experiment [3] - - - - 1.24 1.21 0.18 0.50
Breuer-C3[2] π 1.74 4 10−4 13-34 1.28 1.51 0.22 0.46
Breuer-D3[2] π 6.76 4 10−4 13-34 1.37 1.60 0.21 0.42
DG-O(3− 7) π 4.98 4 10−3 71 1.43 1.59 0.19 0.50

Fig. 4. Cylinder at Re = 140 000. Left: iso-surfaces of the Q-criterion coloured by the
Mach number. Right: streamlines of mean flow.

agreement with the CFD data from Breuer, though substantially larger than the
experimental value. The Strouhal number, St, is in between the experimental
and the numerical reference values. The St measured by Cantwell and Coles [3]
appears, however, very low with respect to what has been found in other experi-
mental works. In particular, Son and Hanratty [20] report a value slightly above
0.19 which is consistent with the value found in the present work. Finally, the
recirculation length, Lr, predicted by the DG simulation is in perfect agreement
with the experimental value and slightly higher than the numerical reference. We
have however observed, that the value of this quantity is very sensitive to the
averaging period, in agreement with the observations made in [17]. This might
explain the differences found between our value and that reported by Breuer,
who considered an averaging time considerably lower. As pointed out in [17],
and from our own observations, this quantity is actually a very reliable indicator
of the level of accuracy in the simulation. It is indeed very sensitive to the mesh
resolution in the near-wake region, as well as to the amount of numerical and
SGS dissipation in the simulation.

Figure 4 shows a snapshot of the iso-surfaces of Q-criterion coloured by the
Mach number (left) and the streamlines of the time-averaged flow field (right).
We can observe the laminar separation that takes place on the cylinder surface
and the significantly larger-scale vortex shedding originating from this separa-
tion, as compared to the case at Re = 20 000. The separation angle is estimated
to be about 94o in agreement with the value reported by Breuer for simulation
C3 on the coarser mesh, and slightly higher than the value 92o obtained by the
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Fig. 5. Flow past a circular cylinder at Re = 140 000. Wake centreline statistics. • :
Experiments [3], red solid line: p-adapted DG-VMS.

Fig. 6. Flow past a circular cylinder at Re = 140 000. Wake statistics at x=1. • :
Experiments [3], red solid line: p-adapted DG-VMS.

author on the finer grid (simulation D3). On the right, we can see the plots
of the streamlines of the mean flow. The most salient feature is the length of
the recirculation bubble that shrinks as the Re number is increased. It is also
worth noting the two small secondary bubbles showing up in our simulation, not
observed in the experiments, nor in the simulation by Breuer. These two small
secondary bubbles have also been found, however, in the simulation performed
by Karabelas [10]. No clear explanation for this discrepancy with the experi-
ments can be given today, and further research will be necessary to clarify this
point. As regards the rms of the drag and lift coefficients we obtain the following
values, C ′d = 0.094 and C ′l = 0.64. For this particular Reynolds no values for
these quantities have been reported in the literature.

In Fig. 5, the wake centreline statistics are also compared with those obtained
from the experiment. As regards the mean velocity profile, we can see that the
length of the recirculation region matches very well the experimental value (see
also Table 2). It is apparent from these results, however, that as we move further
downstream from the recirculation region, the streamwise velocity levels are
significantly under-predicted. This is partly due to the very coarse mesh used in
the wake beyond the recirculation region. This is in contrast with the profiles
of rms of the streamwise velocity 〈u′

u
′〉, better predicted over a longer distance

beyond the recirculation zone. This might be a consequence of the higher levels,
with respect to the reference, found in the region closer to the cylinder base. As
regards the cross-stream Reynolds stresses 〈v′

v
′〉, their magnitude is significantly

higher than the experimental value, although in fairly agreement with the values
predicted by Breuer on his fine-grid simulations (see [2], not shown here). We
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have also inspected the wake statistics at a location x = 1 and compared to the
experimental data of Cantwell and Coles [3]. The outcome from this comparison
can be seen in Fig. 6. We can observe the overall good agreement found with
the experiment for these quantities. The most significant discrepancies appear in
the profile of the shear stresses 〈u′

v
′〉, although their magnitude is in line with

the differences found by Breuer on his fine-grid simulations. These discrepancies
might be linked to the different conditions between the experiment and the
simulations (e.g. zero turbulence level at the inlet in the simulation). In fact,
regarding the study carried out in [2], the author mentioned that grid refinement
did not appear to provide convergence towards the experimental values.

5 Conclusions

The scale-resolving capabilities of the DG solver Aghora [4, 18] have been illus-
trated by performing high-order LES of the flow past a circular cylinder in the
sub-critical regime. The SGS modelling approach adopted here is based on the
DG-VMS formalism described in [5]. The static p-adaptive algorithm recently
proposed in [15] has been successfully applied to cylinder flow at Re = 140 000.
The maximum order of accuracy used in these simulations amounts to fifth and
seventh-order for Re = 20 000 and 140 000, respectively.

The outcome of our simulations has been compared with the high-resolution
LES results reported by Lysenko et al. [13] for Re = 20 000, and by Breuer [2]
for Re = 140 000, using low-dissipation second-order FVM, as well as with the
available experimental data. An overall good agreement with the reference CFD
data is found in terms of integral flow quantities and near-wake statistics. This
is despite the fact that the DG-VMS simulations involve much fewer DOFs than
the FV LES. For the higher Re, some discrepancies with the experimental data
have been found. These differences are, however, in line with those found in the
work of Breuer [2] and, based on published research, might be explained by the
different flow conditions between the simulations and the experiment.

It is noteworthy that the effective height of the first grid cell off the wall in
the DG simulations is one order of magnitude larger than in the reference LES.
This highlights the excellent approximation properties of DG approximations in
representing boundary layers on coarse grids.
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