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Sorbonne Université, CNRS, Inria, LIP6 UMR 7606, France

John M. Robson
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Abstract

We investigate a special case of hereditary property in graphs, referred to as robust-
ness. A property (or structure) is called robust in a graph G if it is inherited by all the
connected spanning subgraphs of G. We motivate this definition using two different
settings of dynamic networks. The first corresponds to networks of low dynamicity,
where some links may be permanently removed so long as the network remains con-
nected. The second corresponds to highly-dynamic networks, where communication
links appear and disappear arbitrarily often, subject only to the requirement that the en-
tities are temporally connected in a recurrent fashion (i.e. they can always reach each
other through temporal paths). Each context induces a different interpretation of the
notion of robustness.

We start by motivating the definition and discussing the two interpretations, after
what we consider the notion independently from its interpretation, taking as our focus
the robustness of maximal independent sets (MIS). A graph may or may not admit a
robust MIS. We characterize the set of graphs RMIS∀ in which all MISs are robust.
Then, we turn our attention to the graphs that admit a robust MIS (RMIS∃). This
class has a more complex structure; we give a partial characterization in terms of ele-
mentary graph properties, then a complete characterization by means of a (polynomial
time) decision algorithm that accepts if and only if a robust MIS exists. This algorithm
can be adapted to construct such a solution if one exists.
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1. Introduction

The area of dynamic networks covers a variety of contexts, ranging from nearly-
static networks where the network topology changes only occasionally, to highly-
dynamic settings where the entities interact in a volatile way, through communication
links which appear and disappear arbitrarily often and unexpectedly. In the second
case, the immediate structure of the communication graph at given time (i.e., its struc-
tural snapshot) does not capture much information, the main features being rather of
a temporal nature. For example, the snapshots may never be connected, and yet offer
a form of connectivity over time and space, called temporal connectivity. A number
of formalisms were proposed recently to capture the temporality of these contexts,
such as evolving graphs, time-varying graphs, link streams, and temporal graphs (see
e.g. [12, 8, 20, 18], among many others). In this article, we introduce a graph con-
cept which is strongly motivated by the highly-dynamic setting; however, the notion
itself can be formulated and studied in terms of standard graphs, independently from
its temporal interpretation.

Given a (standard) graph G, a given property (or structure) in G is said to be robust
if and only if it is inherited by every connected spanning subgraph of G. Hered-
itary properties based on the removal of edges are generally called monotone (see
for instance [3, 4, 19]). Robustness is therefore a particular case of monotonicity,
in which the subgraph is additionally constrained to remain spanning and connected.
(This concept is different from other uses of the term “robustness” in the literature, see
e.g. [6, 10, 14].)

As explained, robustness can be interpreted in several different ways. (1) Static net-
works with permanent link crashes: Here, the network is essentially static; however, it
deteriorates over time and some of the links may definitively stop working (or equiva-
lently, be removed). The network is to be used so long as it still connects all the nodes.
It is easy to see, that if a property is robust in such a network, then it will remain valid
so long as the network is used, despite the uncertainty regarding which of the links
will crash. (2) Recurrent temporal connectivity in highly-dynamic networks: Here, the
immediate structure of the network does not matter as much as its temporal properties.
In particular, a basic assumption is that temporal paths exist recurrently between all the
entities, corresponding to Class T CR in [7] and Class 5 in [8]. Dubois et al. observed
in [11] that this assumption is equivalent to the guarantee that a subset of the edges
always reappears, although in general such as subset is not known in advance. Thus,
robustness can be interpreted in T CR as the fact that a property is satified with respect
to the subset of recurrent edges, whichever these edges are. The choice for a given
interpretation is not mandatory, as robustness can be studied independently. However,
the second interpretation being the original motivation here, we develop it further in a
dedicated (but optional) section in the end of the paper.

In this paper, we illustrate the concept of robustness through a classical covering
problem called maximal independent set (MIS), which consists of selecting a subset
of vertices none of which are neighbors (independence) and which is maximal for
inclusion. Let us first observe that robust MISs may or may not exist depending on the
considered graph. For example, if the graph is a triangle, then only one such structure
exists up to isomorphism, consisting of a single vertex (refer to Figure 1a). If an edge
next to the selected vertex is removed, then this set is no longer maximal. Therefore, the
triangle graph admits no robust MIS. Some graphs admit both robust and non-robust
MISs, as exemplified by the bull graphs on Figures 1b (non-robust) and 1c (robust).
Finally, some graphs like the square graph (Figure 1d) are such that all MISs are robust.
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(a) (b) (c) (d)

Figure 1: Four examples of MISs in various graphs.

1.1. Contributions

In addition to the concept itself and the related discussions, we characterize exactly
the setRMIS∀ of the graphs in which all MISs are robust. To this end, we first define
a class of graphs called sputniks (for reasons that will become clear later). Sputniks
include, among others, all the trees, for which every property is trivially robust (since
none of the edges are removable). We show thatRMIS∀ consists exactly of the union
of sputniks and complete bipartite graphs. The interest of this universal class is that
finding a robust MIS in it amounts to finding a standard MIS.

The existential versions of this class, namely the set RMIS∃ of those graphs
which admit a robust solution seem to have a more complex structure. We first give a
sufficient condition and we show that this condition is necessary in the particular case
of biconnected graphs (meaning here 2-vertex-connected). The more general case is
addressed by means of an algorithm that decides if a given graph belongs toRMIS∃.
The trivial strategy for such an algorithm would amount to enumerating all MISs until
a robust one is found. However, exponentially many MISs may exist in general graphs
(see Moon and Moser [22], and [13, 15] in the particular case of connected graphs)
and the validity of each one may have to be satisfied in exponentially many connected
spanning subgraphs. Motivated by this observation, we present a polynomial time
decision algorithm, which can be adapted into a constructive algorithm (without sig-
nificant overhead). Our algorithm relies on a particular decomposition of the graph into
a tree of 2-vertex-connected (biconnected) components called an ABC-tree (a variant
of block-cut trees [16]), along which constraints are propagated as to the MIS status
of intermediate vertices. The inner constraints of non-trivial components are solved
by a reduction to the 2-SAT problem. The yes-instances of this algorithm characterize
RMIS∃, albeit indirectly. Whether RMIS∃ admits a more elementary characteri-
zation in terms of graph properties is left open.

1.2. Organization of the paper

Section 2 presents the main definitions and concepts. Next, Section 3 presents the
characterization of class RMIS∀. In Section 4.1, we show that if the graph is bi-
connected, then being bipartite is both necessary and sufficient to belong to RMIS∃.
Then, we present the decision algorithm in Sections 4.2 through 4.6, its complexity
in Section 4.7 and its adaptation into a constructive algorithm in Section 4.8. In Sec-
tion 5, we develop the discussion regarding the temporal interpretation of robustness,
motivated by highly-dynamic networks. We conclude in Section 6 by observing some
additional features of robustness in general and a few open questions.

2. Main Concepts and Basic Results

Let G = (V,E) be a simple connected undirected graph on a finite set V of n
vertices (or nodes). We denote by N(v) the neighbors of vertex v, i.e., the set {w |
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{v, w} ∈ E}. The degree of a vertex v is |N(v)|. A vertex is pendant if it has degree 1.
An articulation point (or cut vertex) is a vertex whose removal disconnects the graph.
A bridge (or cut edge) is an edge whose removal disconnects the graph. We say that an
edge is removable in a graph G if it is not a bridge of G. Given V ′ ⊆ V , the induced
subgraph G[V ′] is the graph whose vertex set is V ′ and whose edge set consists of all
of the edges in E that have both endpoints in V ′. In the context of this paper, a graph is
said to be biconnected if it has at least three vertices, and it remains connected after the
removal of any single vertex (i.e., 2-vertex-connectivity). A biconnected component is
a maximal biconnected subgraph. Finally, a spanning connected subgraph of a graph
G = (V,EG) is a graph H = (V,EH) such that EH ⊆ EG, and H is connected. We
define the concept of robustness as follows.

Definition 1 (Robustness). A property P is robust in G if and only if it is satisfied in
every connected spanning subgraph of G (including G itself).

In other words, a robust property holds even after an arbitrary number of edges are
removed without disconnecting the graph. Robustness is a special case of a hereditary
property, and more precisely a special case of a decreasing monotone property (see for
instance [19]). The term “property” includes both basic graph properties and solutions
to combinatorial problems. Our focus in this initial work is on the latter; however,
looking at the robustness of basic graph properties might help understand this notion
further, for instance, connectivity itself is a trivial robust property. Bipartiteness is also
a robust that is discussed at several occasions in this paper.

In the present work, we focus on the maximal independent sets (MIS) problem,
which consists of selecting a subset of vertices none of which are neighbors (indepen-
dence) and to which no further vertex can be added (maximality). Following Defi-
nition 1, a robust MIS (RMIS, for short) in a graph G is a subset of vertices which
remains maximal and independent in every connected spanning subgraph of G.

Observation 1. The notion of independence is stable under the removal of edges.
Therefore, it is sufficient that an MIS remains maximal in order to be an RMIS.

Let us define the following two classes of graphs.

Definition 2 (RMIS∀). The set of graphs in which all MISs are robust.

Definition 3 (RMIS∃). The set of graphs that admit at least one robust MIS.

Trivially, RMIS∀ ⊆ RMIS∃. Finally, we define two classes of graphs which
play a central role in this work, namely complete bipartite graphs and sputnik graphs,
the latter being new.

Definition 4 (Complete bipartite graph). A complete bipartite graph is a graph G =
(V1 ∪ V2, E) such that V1 ∩ V2 = ∅ and E = {{v1, v2}, v1 ∈ V1 and v2 ∈ V2}.

In other words, the vertices can be partitioned into two sets V1 and V2 such that
every vertex in V1 shares an edge with every vertex in V2 (completeness), and these are
the only edges (bipartiteness).

Definition 5 (Sputnik). A graph is a sputnik if and only if every vertex v belonging to
a cycle has at least one pendant neighbor.

An example of a sputnik is shown on Figure 2. This name was chosen by analogy
with the well-known satellite. By the same analogy, we say that a vertex has an antenna
if it has at least one pendant neighbor.
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Figure 2: Example of a sputnik graph (whose planarity is accidental).

3. Characterization ofRMIS∀

In this section, we show that the class of graphs in which all MISs are robust,
RMIS∀, corresponds exactly to the union of complete bipartite graphs and sputnik
graphs. We first show that all the MISs in a complete bipartite graph are robust, and so
are all MISs in a sputnik graph (sufficient conditions). Next, we show that these graphs
are the only ones (necessary condition). The necessary side is more complex because
two classes of graphs are involved. The proof proceeds by showing that if all MISs are
robust in a graph which is not a sputnik, then that graph must be a complete bipartite
graph.

Lemma 1. All MISs in a complete bipartite graph are robust.

Proof: From Observation 1, we only need to show that maximality is preserved. There
are two ways of chosing an MIS in a complete bipartite graph G = (V1∪V2, E), namely
V1 or V2. Without loss of generality, let V1 be chosen. Then, in all connected spanning
subgraphs of G, every vertex in V2 still has at least one neighbor in V1 (otherwise the
graph is disconnected), which preserves maximality. �

Lemma 2. All MISs in a sputnik graph are robust.

Proof: Again, by Observation 1, we only need to show that maximality is preserved.
By definition of a sputnik graph (Definition 5), if an edge {u, v} is removable (i.e., it
belongs to a cycle), then both of its endpoints have an antenna. Maximality implies that
either u or the tip of its antenna are in the set. (The same holds for v.) As antennas are
bridges, they cannot be removed and thus maximality is preserved when edges from a
cycle are removed. �

Lemma 3. If G is not a sputnik, and every MIS in G is robust, then G must be a
complete bipartite graph.

Proof: If G is not a sputnik, then some vertex u belonging to a cycle C ⊆ G has
no antenna. Consider the graph G \ {u} and call X1, X2, . . . , Xk the components
that would result, except that a copy of u is added back to each (see Figure 3 for an
illustration). Without loss of generality, let X1 be the one containing C. The other
components (if any) are such that every neighbor of u has another neighbor than u
(otherwise u would have a pendant neighbor).
Claim. If all MISs in G are robust, then all neighbors of u in X1 have the same set of
neighbors.
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We prove this claim by contradiction. Let two neighbors v1, v2 of u be such that
N(v1) 6= N(v2). We will show that at least one MIS is not robust (see Figure 3 for an
illustration). Without loss of generality, let x be a vertex in N(v1) \ N(v2). Then an
MIS can be built which contains both v2 and x (as a special case, x may be the same
vertex as v2, which is not a problem). For each of the components Xi≥2, choose an
edge {u,wi} ∈ Xi and add another neighbor of wi to the MIS (such a neighbor exists,
as we have already seen). One can see that u, v1 and all wi can no longer enter the MIS
because they all have neighbors in it. Now, choose the remaining elements of the MIS
arbitrarily. Now, consider the following removals: in all components Xi≥2 all edges
incident to u except {u,wi} are removed; and in X1, all edges incident to u except
{u, v1} are removed. The resulting graph is connected since all of the Xi \ {u} are
connected, but the set is no longer maximal because u could now be added in it. (End
of Claim)

u

w2 w3

v1 v2

X1

X2 X3

x

×

×

Figure 3: Contradictory example for proving the claim, where x ∈ N(v1) \ N(v2). The dashed line
represents the rest of component X1.

Since u’s neighbors in X1 have the same neighbors, this means in particular that
none of these vertices has an antenna. As a result, the arguments that applied to u
because of its absence of antenna, apply in turn to u’s neighbors in X1. In particular,
the neighbors of these vertices (including u) must have the same set of neighbors. This
implies that (1) u can no longer be an articulation point, thus G = X1 and (2) all
neighbors of u have the same set of neighbors, and these neighbors also have the same
set of neighbors, which finally implies that the graph is complete bipartite. �

Lemmas 1, 2, and 3 allow us to conclude with Theorem 1 :

Theorem 1. All MISs are robust in a graph G if and only if G is complete bipartite or
sputnik.

4. Characterization ofRMIS∃

In this section, we turn our attention to the characterization of graphs which admit
a robust MIS (RMIS∃). Unfortunately, this class does not seem to admit a simple
characterization in terms of elementary graph properties. We start by discussing some
such properties that give a partial characterization, namely we show that bipartiteness
is a necessary and sufficient condition for biconnected graphs to be inRMIS∃. Then,
we turn our attention to the general case and present an algorithm that decides if a given
graph admits a robust MIS (in polynomial time, and constructively). The yes-instances
of this algorithm are an indirect characterization ofRMIS∃.
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4.1. Bipartiteness versus Biconnectivity
Let us first observe that bipartiteness is a sufficient condition for any graph to admit

a robust MIS.

Lemma 4. All bipartite graphs admit a robust MIS.

Proof: The argument generalizes that of Lemma 1 for complete bipartite graphs. Let
an MIS be composed of all the vertices of the first part. As long as the graph remains
connected, every vertex in the second part has a neighbor in the first part, and thus in the
MIS, which preserves maximality. (Independence is not impacted—Observation 1.) �

In fact, bipartiteness happens to be also a necessary condition in the particular case
of biconnected graphs.

Lemma 5. If a biconnected graph G is not bipartite, then it admits no robust MIS.

Proof: By contradiction, suppose that G admits a robust MIS. As G is not bipartite,
it is not 2-colorable, thus either two neighbor vertices exist which are both included
in the set, or two neighbor vertices exist which are both excluded from the set. In the
first case, independence is contradicted. In the second case, let u and v be two such
vertices. Because the graph is biconnected, it is possible to remove all the incident
edges to u except {u, v} without disconnecting G, resulting in a non-maximal set, thus
contradicting robustness. �

The argument in the proof of Lemma 5 will be used several times in the rest of the
paper. We refer to it through the concept of a weak vertex.

Definition 6 (Weak vertex). Let u be a vertex that is not included in an MIS. If u has
another neighbor v not being included in the MIS and such that all edges incident to u
except {u, v} can be simultaneously removed without disconnecting the graph, then u
is called a weak vertex.

Lemmas 4 and 5 imply that the intersection of RMIS∃ with biconnected graphs
is exactly the set of bipartite biconnected graphs (see Table 1). An immediate corol-

Bipartite ¬ Bipartite
Biconnected yes no
¬ Biconnected yes possibly

Table 1: Existence of a robust MIS with respect to bipartiteness and biconnectedness.

lary is the existence of an infinite family of graphs which do not admit a robust MIS,
namely all biconnected non-bipartite graphs (including, for example, the triangle graph
in Figure 1 and more generally all the odd cycles).

4.2. Overview of the algorithm
The problem of computing a standard MIS in a graph G = (VG, EG) can be solved

by a one-sentence greedy algorithm as follows: for all vertices v ∈ VG in arbitrary or-
der, include v in the MIS if none of its neighbors already is. The problem of computing
a robust MIS (or RMIS) is fundamentally different in two respects: (1) Solutions may
or may not exist, and (2) Even if a solution exists, a decision made in some part of the
graph can restrict (or invalidate) the feasible choices in remote parts. For example, in
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u v. . . . . .

Figure 4: Non-locality of finding a robust MIS.

the graph of Figure 4, if vertex v is included in the set, then an RMIS exists if and only
if node u is not included in the set. (Any other choice would produce a weak vertex.)

More generally, deciding whether a graph admits an RMIS requires the identifica-
tion and propagation of constraints within the graph. To do so, our algorithm relies on
a particular type of decomposition of the input graph as a tree of biconnected compo-
nents (i.e.,, biconnected subgraph that are maximal) called ABC-tree. The constraints
are first determined at the leaves of this tree, then they are propagated and modified up-
ward, until the root component is itself analysed. At an intermediate node of this tree,
either the corresponding subtree admits an RMIS or it does not. If it does, a condition
may apply regarding the status of the topmost vertex in the subtree, e.g. the subtree
may admit an RMIS at the condition that this vertex is (or is not) in the MIS.

In the following, we always refer to the vertices of the input graph as vertices, and
to those of the decomposition tree as nodes to avoid confusion. Note that if G is a
tree, then none of its edges can be removed (thus all MISs are robust). As a result, we
restrict our attention to the cases that G has at least one biconnected component. We
also assume that G is connected, as otherwise each part can be solved separately.

4.3. The ABC-tree decomposition

An ABC-tree, denoted by T = (VT , ET ), is neither a block-cut tree, nor a bridge
tree (see [16] for background), it is a mixture of both. Precisely, an ABC-tree is made
of four types of nodes A,B, C and P defined with respect to the input graph G =
(VG, EG) as follows:

• P is the set of pendant vertices,

• A is the set of articulation points,

• B is the set of bridges,

• C is the set of biconnected component.

Thus, every node in P and A corresponds to an original vertex in VG (the converse
is not true), every node in B corresponds to an edge in EG (same remark), and ev-
ery node in C corresponds to an entire subgraph of G (same remark again). Con-
sidering the graph in Figure 5, one would obtain P = {4, 5, 7, 12, 20, 24}, A =
{2, 3, 6, 8, 10, 11, 14, 15, 16, 17, 18, 21, 22, 28}, C = {A,B,C,D,E}, and B contains
bridges such as {2, 3}, {3, 4}, {3, 5}, {6, 7}, {8, 14}, etc.

Observe that the same vertex of VG can simultaneously be a node inA, the endpoint
of one or several bridges in B, and a node belonging to one or several biconnected
components in C. Vertices 2, 6, 8, and 10 are examples of such vertices. Also observe
that the endpoints of a bridge are always articulation points or pendant vertices. All
these relations are materialized by the set of edges ET of the ABC-tree, defined as

ET = {{a,X} ∈ A × C | a ∈ X} ∪ {{v, Y } ∈ (A ∪ P)× B | v ∈ Y }.
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In words, articulation points (seen as nodes) share an edge with the biconnected
components they belong to (if any), and articulation points or pendant nodes (seen
as nodes) share an edge with the bridges they belong to (if any). Observe that the
resulting graph (theABC-tree) is indeed acyclic, as otherwise two distinct paths would
exist between distinct biconnected components, which contradicts the fact that these
components are maximal. The ABC-tree corresponding to the graph of Figure 5 is
shown in Figure 6. The reader is encouraged to spend a few minutes getting acquainted
with this construction, which is used frequently in the following.
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Figure 5: Example of input graph, seen as a tree of biconnected components.

4.4. RMIS constraints in a rooted ABC-tree

The algorithm proceeds by propagating constraints from the leaves of the ABC-
tree to a root R chosen arbitrarily among the biconnected components. Given a node
in x ∈ VT \R, we denote by parent(x) the neighbor of x ∈ VT that is one-hop closer
to R, and by children(x) the set of nodes {y ∈ VT \ R | parent(y) = x}. We
extend these definitions to descendants() in the natural way. Because some nodes in
T correspond to real vertices (namely, the nodes in A and P) and others do not (the
nodes in B and C), we define a notion of attachment vertex v(x) of a node x as being
either the underlying vertex itself (if x ∈ A∪P) or the underlying vertex of the parent
(if x ∈ B ∪ C). Indeed, the parent of a node in B ∪ C is always a node in A, thus it
corresponds to a real vertex in VG. Intuitively, the attachment vertex of a node is the
highest vertex in this node towards the root R. For instance, in Figure 6, assuming
that R is component D, then we have for instance v(4) = 4, v({3, 4}) = 3, v(3) = 3,
v({8, 14}) = v({8, 21}) = v(8) = 8, and v({10, 28}) = v(B) = v(10) = 10, and
indeed, 10 is the highest underlying vertex in all these nodes (with respect to the root).

Attachment vertices play a important role in the management of constraints, be-
cause the constraints induced by x are ultimately aggregated as a membership status
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Figure 6: ABC-tree corresponding to the input graph on Figure 5.

for v(x) in the MIS. The more formal definition relies on induced subgraphs as follows.
Every node x induces a subgraph Gx ⊆ G which is exactly G[x] when x ∈ A∪B ∪P
(see definitions in Section 2), or x itself when x ∈ C. By extension, for any x ∈ VT ,
the subtree Tx = (VTx , ETx) ⊆ T whose highest node with respect to R is x induces
a subgraph G[Tx] ⊆ G defined as ∪Gy over all y ∈ (descendants(x) ∪ x). In other
words, G[Tx] is the subgraph of G which corresponds to the subtree of x. We define
the concept of aerial version of G[Tx], noted Ga[Tx] as G[Tx] ∪ G[{v(x), a}] with a
an artificial neighbor of v(x) that does not belong to G[Tx]. For any x, the constraints
applying to v(x) are encoded using the three following labels (also called tags):

• PI (Possibly In): G[Tx] admits an RMIS that includes v(x);

• PO (Possibly Out): G[Tx] admits an RMIS that does not include v(x);

• PE (Possibly External): Ga[Tx] admits an RMIS that does not include v(x).

Observe that a node may have several labels at the same time. For example PI and
PO , or PI and PE . On the other hand, we use PO and PE in a mutually exclusive way
based on the following remark.

Remark 1. If a node x has label PO, then G[Tx] admits an RMIS in which v(x) is not
included but one of its neighbor in G[Tx] is (due to maximality). Thus, no inclusion
constraint applies regarding the external neighbor of v(x). As a result, whenever the
constraints from different children induce both PO and PE, PO is chosen.

4.5. Constraint identification and propagation
In this subsection, we present the rules used for identifying and propagating con-

straints within theABC-tree. The purpose of the rules is to determine what labels L(x)
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a node x should take based on the labels of its children in the ABC-tree. The validity
of the rules is established gradually along their descriptions, based on the following
definition of a correct labeling.

Definition 7 (Correct labeling). A node x (in the underlying rooted ABC-tree T ) is
correctly labeled if

• PI ∈ L(x) if and only if G[Tx] admits an RMIS that includes v(x);

• PO ∈ L(x) if and only if G[Tx] admits an RMIS that does not include v(x); and

• PE ∈ L(x) if and only if PO /∈ L(x) and Ga[Tx] admits an RMIS that does not
include v(x).

The rules are presented below based on the type of x (namely, A,B, C, and P).
They are illustrated in reference to the input graph G = (VG, EG) in Figure 5 and the
corresponding ABC-tree T = (VT , ET ) in Figure 6, with root D ∈ C. For simplicity,
when discussing about the construction of an MIS, if a vertex v is not included in
the MIS and none of its neighbors is included, we say that v is not covered. The
other vertices are covered. (This terminology is standard in the literature on covering
problems.)

4.5.1. Pendant nodes (x ∈ P)
This case is the easiest, because nodes in P have no children and their labels are

always the same.

Labeling rule 1. L(x) is set to {PI,PE}.

Labeling rule 1 is given by Lines 03 to 04 in Algorithm 1. In words, v(x) may or
may not be included to the MIS, but if it is not, then v(y) should be, where y is the
bridge node such that parent(x) = y.

Lemma 6. If x ∈ P , then Labeling rule 1 produces a correct labeling of x.

Proof: If v(x) is included in the solution set, then this set (made of v(x) alone) is
clearly maximal and independent in G[Tx] (which is also v(x) alone), thus x can be
labeled PI . If it is not included, but v(parent(x)) is included, then the resulting set is
maximal and independent in Ga[Tx] (i.e., the graph made of a single edge between x
and parent(x)), thus x can be labeled PE . In both cases, the considered subgraph of
G is itself a tree, thus any valid MIS in it is robust, thus labels PI and PE are both valid.
On the other hand, x cannot be labeled PO because if v(x) is not in the MIS, then the
corresponding set is not maximal in G[Tx] (which is reduced to the single vertex v(x)).
�

4.5.2. Articulation points (x ∈ A)
By construction of theABC-tree, if x ∈ A, then all the children of x are in B or in C

and their attachment vertex is nothing but v(x) itself. Thus, the constraints of each set
of children already relates to v(x), albeit individually. The rule consists of aggregating
these constraints as follows.

11



Labeling rule 2. If PI belongs to the labels of all the children of x, then PI is added to
L(x); if all the children of x contain a label PE or PO, then two subcases arise: either
none of them contains PO, in which case PE is added to L(x), or at least one contains
PO, in which case PO is added to L(x).

The formal description of Labeling rule 2 is given by Lines 6 to 13 in Algorithm 1
on page 14 (the algorithm itself is discussed in a subsequent section). In our example,
nodes 3, 11, and 18 are all labeled PI and PO .

Lemma 7. If x ∈ A and all the nodes in children(x) are correctly labeled, then
Labeling rule 2 produces a correct labeling of x.

Proof: Let us assume that all the nodes in children(x) are correctly labeled. The
proof follows the same cases as the labeling rule. We first prove that the assigned
labels are valid, then we prove that they cannot be assigned otherwise.

• If all the nodes in children(x) contain label PI , then for all y ∈ children(x),
G[Ty] admits a robust MIS that includes v(y). But since x ∈ A, we have v(y) =
v(x), thus G[Tx] admits a robust MIS that includes v(x).

• If all the nodes in children(x) contain label PE or PO , then two possible sub-
cases arise:

1. None of them contains PO . In this case, all of them contain label PE , mean-
ing that for all y ∈ children(x), G[Ty] does not admit a robust MIS that
excludes v(y), but Ga[Ty] does. Since v(x) = v(y), we have that G[Tx]
does not admit a robust MIS that excludes v(x) (a single child with label
PE would actually be enough here), but Ga[Tx] does (here, we need that
all the children have label PE ).

2. At least one contains PO . In this case, at least one child y is such that G[Ty]
admits an RMIS that excludes v(y). Since v(y) = v(x), at least one of the
neighbors of v(x) in G[Ty] can be included in such an MIS, which satisfies
the aerial constraints of the Ga[Ty′ ] for all other children y′ labeled PE (if
any). Thus G[Tx] admits an RMIS that excludes v(x) without requiring
further aerial constraints above x.

We focus now on the negative direction. If G[Tx] does not admit a robust MIS that
includes v(x), then because v(x) = v(y), there exists at least one y ∈ children(x)
such that G[Ty] does not admit a robust MIS that includes v(y). As the labeling of y is
correct, y is not labeled PI and hence v(x) is not labeled PI by the rule. Similarly, if
G[Tx] does not admit a robust MIS that excludes v(x), then because v(x) = v(y), the
two cases above are possible. (i) There exists at least one y ∈ children(x) such that
neither G[Ty] nor Ga[Ty] admit a robust MIS that excludes v(y). As the labeling of y
is correct, y is not labeled PO or PE . (ii) For any y ∈ children(x), G[Ty] does not
admit a robust MIS that excludes v(y). As the labeling of y is correct, y is not labeled
PO . In both cases, v(x) cannot be labeled PO by the rule. Finally, if Ga[Tx] does not
admit a robust MIS that excludes v(x), then because v(x) = v(y), there exists at least
one y ∈ children(x) such that Ga[Ty] does not admit a robust MIS that excludes
v(y). As the labeling of y is correct, y is not labeled PE and hence v(x) is not labeled
PE by the rule. �

12



4.5.3. Bridge nodes (x ∈ B)
If x is a bridge node, then it has exactly one child y whose attachment vertex v(y)

is a neighbor of v(x). The rule consists of transforming the existing constraints on v(y)
into constraints on v(x) as follows.

Labeling rule 3. If L(y) contains label PI, then label PO is added to L(x); if L(y)
contains label PE, then PI is added to L(x); if L(y) contains label PO, then PI and PE
are added to L(x). Finally (cleaning), if both PE and PO have been added to L(x),
then PE is removed from L(x) (see Remark 1).

The formal description of Labeling rule 3 is given by Lines 15 to 23 in Algorithm 1.
In our example, the nodes {3, 4}, {3, 5}, and {18, 20} are all tagged PI and PO .

Lemma 8. If x ∈ B and y is correctly labeled, then Labeling rule 3 produces a correct
labeling of x.

Proof: Let x ∈ B and children(x) = {y}.

• If L(y) contains label PI , then G[Ty] admits a robust MIS including v(y). Be-
cause v(y) is included, the MIS is also valid in G[Tx] = G[Ty] ∪ G[{x, y}],
and because this edge is a bridge (i.e., it is not removable), it remains robust in
G[Tx], thus x can be labeled PO .

• If L(y) contains label PE , then Ga[Ty] = G[Tx] admits a robust MIS including
v(x), thus x can be labeled PI .

• If L(y) contains label PO, then G[Ty] admits a robust MIS that excludes v(y).
- As v(y) is the only neighbor of v(x) in G[Tx], adding v(x) to such an MIS
would produce a valid MIS in G[Tx] = G[Ty] ∪ G[{x, y}], and because {x, y}
is a bridge, the resulting MIS would remain robust. Thus x can be labeled PI .
- As v(y) already has a neighbor included in the MIS in G[Ty], not including
v(x) in the MIS means that v(x) is the only uncovered vertex in G[Tx], which
can be remedied by including to the MIS an aerial neighbor in Ga[Tx]. Thus, x
can be labeled PE .

We focus now on the negative direction. If G[Tx] does not admit a robust MIS that
includes v(x), then because {x, y} is not a removable edge, G[Ty] does not admit a
robust MIS that excludes v(y) and Ga[Ty] = G[Tx] does not admit a robust MIS that
excludes v(y) (and includes a). As the labeling of y is correct, y is not labeled PI or
PE and hence v(x) is not labeled PI by the rule. Similarly, if G[Tx] does not admit
a robust MIS that excludes v(x), then because {x, y} is not a removable edge, G[Ty]
does not admit a robust MIS that includes v(y). As the labeling of y is correct, y is
not labeled PI and hence v(x) cannot be labeled PO . Finally, if Ga[Tx] does not admit
a robust MIS that excludes v(x), then because {x, y} is not a removable edge, G[Ty]
does not admit a robust MIS that excludes v(y). As the labeling of y is correct, y is not
labeled PO and hence v(x) is not labeled PE by the rule. �

4.5.4. Biconnected components (x ∈ C)
As discussed in Section 4.1, when G itself is a biconnected component, an RMIS

exists if and only if G is bipartite (Lemmas 4 and 5). When a biconnected component
x is a node in the ABC-tree T , the situation is more complex due to the existence of
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Algorithm 1 LabelNode(x)
Parameters: A node x whose children in T are already labeled
Return: A correct labeling of x

01: L(x)← ∅
02:
03: case x ∈ P:
04: L(x)← {PI, PE}
05:
06: case x ∈ A:
07: if ∀c ∈ children(x), PI ∈ L(c) then
08: L(x)← L(x) ∪ PI
09: if ∀c ∈ children(x), PO ∈ L(c) or PE ∈ L(c) then
10: if ∃c ∈ children(x), PO ∈ L(c) then
11: L(x)← L(x) ∪ PO
12: else
13: L(x)← L(x) ∪ PE
14:
15: case x ∈ B: (with child side c)
16: if PI ∈ L(c) then
17: L(x)← L(x) ∪ PO
18: if PE ∈ L(c) then
19: L(x)← L(x) ∪ PI
20: if PO ∈ L(c) then
21: L(x)← L(x) ∪ {PI, PE}
22: if PO ∈ L(x) and PE ∈ L(x) then
23: L(x)← L(x) \ PE
24:
25: case x ∈ C:
26: if isSatisfiable(x, in) then
27: L(x)← L(x) ∪ PI
28: if isSatisfiable(x, out) then
29: L(x)← L(x) ∪ PO
30: else
31: L(parent(x))← PO
32: if isSatisfiable(x, out) then
33: L(x)← L(x) ∪ PE
34: L(parent(x))← ∅
35:
36: return L(x)
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constraints from neighbors in T . In particular, an RMIS satisfying these constraints
may or may not exist.

Let Gx be the subgraph of G induced by node x (in fact, coinciding with x). By
construction of the ABC-tree, every neighbor of x in T (whether children or parent)
corresponds to an articulation point y in A such that v(y) ∈ Gx. Thus, potential
constraints on these nodes can be seen as applying to vertices inside Gx. This nice
feature allows us to focus on finding an RMIS in Gx without worrying about the entire
subtree G[Tx]. Indeed, if an RMIS M satisfying the constraints exists in Gx and if
every child y is correctly labelled, then an RMIS My must exist in every G[Ty] such
that v(y) has the same status (included or excluded) in My and in M . As every y is an
articulation point, the union of all these RMISs forms a robust MIS in G[Tx].

Based on the above observation, we now focus on the simpler problem of finding
an RMIS in Gx that satisfies potential constraints on its articulation points. In addi-
tion, we add an input parameter to the problem that forces the status of the attachment
vertex v(x) in the RMIS, so that (for instance) x receives label PI if an RMIS is found
that includes v(x). (The exact labeling rules used by our algorithm is described in
Subsection 4.5.4.2.)

4.5.4.1 Solving Gx.
Here, we consider the following problem. Let Gx be a biconnected component in

which some vertices are articulation points in G (corresponding to nodes in A). Let L
be the labeling function that gives constraints on these articulations point. Let p be a
parameter in, out, or none. The goal is to determine if there exists a robust MIS in
Gx that satisfies the two following constraints:

1. v(x) is included in the RMIS if the parameter is in, v(x) is not included if the
parameter is out, and v(x) is unconstrained if the parameter is none;

2. the inclusion status of every constrained articulation point y matches at least one
of its labels.

Namely, if L(y) 6= ∅ (i.e., y is constrained), then v(y) can be included to the RMIS
only if L(y) contains PI ; and it can be excluded from the RMIS only if L(y) contains
PO or PE .

Bipartiteness vs. PO labels. As already explained, if a biconnected graph is not bi-
partite, then weak vertices must exist (see Lemma 5 and Definition 6). Bipartiteness
still plays a central role in the case of biconnected components, but the existence of PO
labels makes it more subtle, as explained in the following remark.

Remark 2. Let y be an articulation point such that v(y) ∈ Gx and y contains label
PO, then there exists an RMIS in G[Ty] that does not include v(y) itself but includes one
(or possibly several) neighbors in G[Ty] that prevent v(y) from being a weak vertex.

As a result, the vertices admitting a label PO are not subject to the same bipartite-
ness constraint as the others vertices.

The procedure. The procedure is formally described in Algorithm 2, to which the
reader is referred for details, and its correctness is proved subsequently. Let EPO be
the set of edges in Gx such that both endpoints contain label PO , and let X be the
subgraph Gx \EPO, possibly resulting into several connected components X1, ..., Xk.
If X is not bipartite, then the algorithm rejects, because this means that at least one
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Algorithm 2 isSatisfiable(x, flag)
Parameters: A node x ∈ C and a flag ∈ {in, out, none} that forces the status of v(x)
Return: true if a suitable set of x exists, false otherwise

01: Let EPO be the set of edges {u, v} of Gx such that PO ∈ L(u) and PO ∈ L(v)
02: Let X = Gx \ EPO

03: if X is not bipartite then
04: return false
05: Let X1, . . . , Xk be the (bipartite) connected components in X
06: Let F be an empty 2-SAT expression on a set {x1, . . . , xk} of boolean variables
07: foreach i in 1..k do
08: Assign to each vertex v in Xi a label `(v) ∈ {xi,¬xi} such that neighbors have different labels
09: foreach a ∈ A|v(a) ∈ Gx do
10: if L(a) = {PI} then
11: F ← F ∧ (`(v(a)))
12: if L(a) = {PO} or L(a) = {PE} then
13: F ← F ∧ (¬`(v(a)))
14: foreach {u, v} ∈ EPO do
15: F ← F ∧ (¬`(u) ∨ ¬`(v))
16: if flag = in then
17: F ← F ∧ (`(v(x)))
18: else if flag = out then
19: F ← F ∧ (¬`(v(x)))
20: return whether F is satisfiable (using an external 2-SAT solver)

non-PO vertex must be weak. Otherwise, the component may possibly admit an RMIS
if the combination of constraints induced by all the vertices is satisfiable. The rest of
the procedure consists of encoding these constraints into a 2-SAT formula such that Gx

admits an RMIS (with given status for v(x), the attachment vertex), if and only if the
formula is satisfiable. The formula is built as follows. For each connected component
Xi, a SAT variable xi is created. As Xi is bipartite, every vertex v of one part receives
label `(v) ← xi and every vertex v of the other part receives a label `(v) ← ¬xi.
(Intuitively, if the eventual formula is satisfiable with xi = true, then the vertices in
the first part are included in the RMIS; if it is satisfiable with xi = false, then the
vertices of the second part are included.) Then, the existing constraints of articulation
points are incorporated; namely, if an articulation point y ∈ A contains only label PI ,
then `(v(y)) is set to true; if it contains only PO or only PE , then `(v(y)) is set to
false; if it contains both options (i.e., PI PO or PI PE ), then no constraint is added.
Finally, although the edges of EPO induce no constraints for bipartiteness, we must still
make sure that their endpoints are not both included to the RMIS (for independence),
thus if {u, v} ∈ EPO, then the clause ¬`(u) ∨ ¬`(v) is added.

Correctness. To formalize the properties of the procedure isSatisfiable, we need
to introduce some definitions. Let G+

x be the graph built from Gx by adding a small
gadget to every v(y) ∈ Gx when y is constrained (i.e., L(y) is non-empty). The gadget
consists of a path of length 2 incident to v(y) through virtual vertices v′(y) and v′′(y)
(see Figure 7 for an intuition). This construction is not used in the procedure itself,
only in the proof. We say that a set of vertices S is a suitable RMIS of G+

x if and only
if S is an RMIS of G+

x such that, for every y ∈ Gx with at least one label in L(y), we
have:
- v(y) in S only if PI ∈ L(y);
- v(y) not in S only if PO or PE appears in L(y); and
- v(y) not in S, v′(y) in S, and v′′(y) not in S only if PO appears in L(y).
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Figure 7: Example of component Gx (left)–x corresponds to the component B in Figure 5. With v(x) =
10, a chain of two virtual nodes is added to each constrained node v(y) ∈ {2, 6, 8, 11} that gives the
corresponding G+

x (right). The MIS shown on G+
x corresponds to the set S used in the proof of Lemma 9

with v(x) included.

The idea is that, for every y, the graph induced by the path {v(y), v′(y), v′′(y)}
replaces G[Ty] in the management of constraints so that a suitable RMIS of G+

x exists
if and only if an RMIS of G[Tx] exists. We now prove the main lemma.

Lemma 9. Given a biconnected component x ∈ C with constraints on some articula-
tion points, isSatisfiable(x, in) returns true if and only if a suitable RMIS of G+

x

including v(x) exist; isSatisfiable(x, out) returns true if and only if a suitable
RMIS of G+

x excluding v(x) exist; isSatisfiable(x, none) returns true if and only
if a suitable RMIS of G+

x exists, irrespective of v(x).

Proof: Let x be the considered node in the ABC-tree and Gx the corresponding com-
ponent. Let G+

x be the augmented version of Gx as described above. First observe
that, if Gx \ EPO is bipartite, then so is G+

x \ EPO, because the adjunction of such
paths cannot affect bipartiteness. In the following, we first prove the direction that (1)
if the procedure returns true, then the corresponding type of suitable RMIS exists; then
(2) if the given type of suitable RMIS exists, then the procedure with corresponding
parameters must return true.

(1) If F is satisfiable, define S as the set of vertices induced by a positive assignment,
i.e., {v ∈ Gx|`(v) = true}. Now, add to S some of the virtual vertices as follows:
if v(y) is in S, add only v′′(y); if v(y) is not in S and is weak in Gx, add only v′(y);
if v(y) is not in S and is not weak in Gx, add only v′′(y). Lines 16 to 19 ensure
that v(x) is included in the MIS if flag = in and that it is excluded if flag = out

(if flag = none, no constraint applies). We now prove that S is independent,
maximal, robust, and suitable in G+.

Independence: Let e = {u, v} be an edge of G+
x . If e is an edge from one of the

extra paths, u and v cannot be both in S by construction. Otherwise (i.e., e is in
Gx), either e belongs to EPO, or it does not. If it does, then the clause introduced
on Line 15 ensures that u and v cannot be both in the MIS. If it does not, then it
belongs to G+

x \ EPO, which is bipartite, then Line 08 (and the greedy process for
extra paths) ensures that u and v cannot be both in the MIS.

Maximality and robustness: Recall that independence is not affected by the removal
of edges (Observation 1), thus robustness means preserving maximality. Let u be
a vertex of G+

x that does not belong to S. Either u belongs to an edge in EPO or it
does not. If it does, then by Remark 2 it has a neighbor in the MIS (maximality) and
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it cannot be a weak vertex (robustness). If it does not, then all of its neighbors in
G+

x are in the set because Gx \EPO is bipartite (and the extension of S in the extra
paths keep alternating the inclusion status), thus so long as G+

x remains connected,
u cannot be added to S (maximality and robustness).

Suitability: For every v(y) ∈ Gx such that L(y) 6= ∅. Lines 12 and 13 ensure that
v(y) ∈ S only if PI appears in L(y). Lines 10 and 11 ensure that v(y) /∈ S only
if PO or PE appear in L(y). If v′(y) ∈ S and v′′(y) /∈ S, then by construction
v(y) /∈ S and it is weak in Gx. Line 08 implies that at least one adjacent edge to
v(y) in Gx is in EPO and then PE does not appear in L(y), implying that PO does.

(2) Let M be a suitable RMIS of G+
x in which the status of v(x) is in (resp out).

Let X = Gx \ EPO. If X is not bipartite, then it contains a weak vertex, which
contradicts the robustness of M . Thus, X must be bipartite. In general, X may be
made of several connected components X1, ..., Xk. A satisfying assignment can
then be constructed from M as follows. For all i ranging from 1 to k, chose the
value of xi so that ∀v ∈ Gx, `(v) = true ⇔ v ∈ M . This assignment satisfies
the mutual exclusivity constraint in Line 15 (with respect to edges in EPO), as
otherwise M would not be independent, and it also satisfies the constraint added
with respect to L(y) (Lines 09 to 13), by suitability of M . Finally, due to Lines 17
and 19, the assignment must include (respectively exclude) v(x) if the input flag is
in (resp. out). Thus a satisfiable assignment corresponding to M must exists. �

4.5.4.2 The Labeling Rule.

Let us now return to the labeling of node x ∈ C in the ABC-tree, assuming that
all y in children(x) are correctly labeled. The goal here is to label x as per the
possibilities, namely to assign label PI if an RMIS exists in G[Tx] that includes v(x);
to assign label PO if an RMIS exists in G[Tx] that excludes v(x); and, in case the latter
does not, to assign PE if an RMIS exists that excludes v(x) provided that an external
neighbor of it is subsequently included.

We need to distinguish here between the case that x is the root component R of
the ABC-tree, or just an internal node. If x is the root, then it has no attachment point
and the only thing that matters is whether an RMIS exists or not. As such, x does not
receive a labeling, and is instead treated directly from the main algorithm (described in
the next section). Thus, we focus on how the above procedure can be used to label x
when x is an internal node of the ABC-tree.

The first two tests are realized by fixing the status of v(x) as a parameter when
calling isSatisfiable(). A first call is made, setting this parameter to in, then a
second call is made, setting this parameter to out. If the second call fails (no such
RMIS exist), then a third call is made with a different strategy. This strategy relies on
a trick using label PO . Remark 2 implies that whenever a child y of x is labeled PO ,
then v(y) (itself in x) does not need to have a neighbor within x that is included in the
RMIS. As a result, testing whether G[Tx] admits an RMIS if an external neighbor of
v(x) is subsequently added (i.e., label PE ) can be done by pretending that the parent z
of x, whose attachment vertex v(z) = v(x) is in x, itself has an external neighbor in the
MIS. Thus, just like the other children labeled PO , an artificial PO label is assigned to
parent(x), resulting in the forced non-selection of v(x) to the MIS and the adjunction
of an extra path to v(x) (whose neighbor in the path will be included). The existence of
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an RMIS satisfying this configuration implies that x can be labeled PE . The resulting
labeling rule is as follows.

Labeling rule 4. If isSatisfiable() returns true with parameter in, then PI is
added to L(x). Next, if isSatisfiable() returns true with parameter out, then
PO is added to L(x). Next, if PO /∈ L(x) and isSatisfiable() returns true with
parameter out with an artificial PO label in L(parent(x)), then PE is added to L(x).

The corresponding instructions are formally given in Lines 25 to 34 of Algorithm 1.
In our example (Figure 6), component E is labeled both PI (with the suitable set
{28, 30}) and PO (with the suitable set {29, 31}) while B is labeled PI (with the suit-
able set {2, 8, 10, 13}) and PE (with the suitable set {1, 8, 11}).

Lemma 10. If x ∈ C \ {R} and all nodes of children(x) are correctly labeled, then
Labeling rule 4 produces a correct labeling of x.

Proof: Follows from Lemma 9 and definition of a suitable RMIS of G+
x . �

4.6. The actual algorithm
Now that the ABC-tree decomposition and the labeling rules are described, the

main algorithm is relatively easy to present. We start by giving an informal descrip-
tion of the algorithm, along with the corresponding code, assuming that the ABC-tree
decomposition is given. Then, we give an example of execution in which the graph of
Figure 5 and 6 is entirely labeled. The time complexity of the algorithm is discussed
in a subsequent section, in which we also discuss the cost of computing the ABC-tree.
Then, in Section 4.8, we discuss how to turn this decision algorithm into a constructive
algorithm that returns an RMIS (if one exists).

4.6.1. Description
Given the ABC-tree T , the algorithm starts by chosing an arbitrary biconnected

component R ∈ C to be the root node of T and setting it as the current node. (As
already explained, if G has no biconnected component, then it is itself a tree and any
property is trivially robust.) The main component of the algorithm consists of a DFS
recursion within T starting from R. For every node x in T , the actual labeling of x
occurs after the last child of x has been visited by the DFS, i.e., after the labels of
all the children are known. At any point of the execution, if the set of labels of a
node is empty after executing the labeling rules, this means that the current subtree
(and a fortiori G itself) does not admit a robust MIS, thus the algorithm rejects (and
terminates). If the execution survives until the recursion returns at the root R, then
a special call to isSatisfiable is performed without constraints on the attachment
vertex (which does not exists at R). If this call returns true, then G admits an RMIS,
otherwise it does not. The code of the main algorithm is given in Algorithm 3.

The recursion of the DFS is given by the procedure in Algorithm 4, which consists
of exploring the children first, then calling the labeling procedure described in Algo-
rithm 1 on page 14, and finally reject if none of the labels were possible for the current
node.

The correctness of the whole mainly follows from the correctness of the relabeling
rules. Indeed, the notion of correct labeling (see Definition 7) specifies that the label
of a node encodes the existence of RMIS in the current subtree (parametrized by the
status of the highest vertex). On the other hand, Lemmas 6 to 10 guarantee that if
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Algorithm 3 Main algorithm
Input: AnABC-tree T whose nodes areA ∪ B ∪ C ∪ P , rooted in some R ∈ C
Output: A labeling L of T

01: foreach x ∈ children(R) do
02: LabelSubTree(x)
03: if isSatisfiable(R, none) then
04: accept
05: else
04: reject

Algorithm 4 Function LabelSubTree(x)
Parameters: A node x ∈ VT

01: foreach c ∈ children(x) do
02: LabelSubTree(c)
03: L(x)← LabelNode(x)
04: if L(x) = ∅ then
05: reject

all the children of a node x are correctly labeled, then the appropriate labeling rule
will produce a correct labeling of x (unless the algorithm rejects). It thus follows, by
induction on the tree defined by the DFS, that if the execution survives the recursion
started at Lines 01 and 02 of Algorithm 3, then all the children of the root node R are
correctly labeled. Lemma 9 allows us to conclude based on the call of isSatisfiable
with parameter none.

4.6.2. Example
The outcome of the labeling is shown in Figure 8, corresponding to the input graph

of Figure 5 and its ABC-tree shown in Figure 6.

4.7. Time complexity
In this paragraph, we analyse the running time of the algorithm. In the following,

n denotes the number of vertices in G, which is related to the number of vertices in T
by a constant factor (thus the same O notation is used for both interchangeably). The
purpose is not to present a fine-grained analysis. Instead, we favor simple arguments
over optimal ones, the resulting running time being in any case dominated by O(n3)
time steps.

Lemma 11. The ABC-tree decomposition can be computed in O(n2) time steps.

Proof: The biconnected components of G can be computed using a classical algorithm
by Hopcroft and Tarjan [17], which has the same complexity as a DFS in G, thus
in time O(n2) in the worst case that G is dense. After this process, the components
of size 1 and degree 1 correspond to the nodes in P , the edges between components
correspond to bridges isB, and the endpoints of these bridges correspond to articulation
points inA. All of these can be determined either through looping over the components
themselves (at most O(n)), or looping over the edges of G (at most O(n2)) in order
to compare the membership of their endpoints to the components (this latter test takes
constant time after Hopcroft and Tarjan’s algorithm). Once the four types of nodes are
identified, the relations between nodes in A and nodes in C can be found by looping
over all the vertices of the components (O(n) vertices overall, with constant time test
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Figure 8: Outcome of the algorithm corresponding to the input graph of Figure 5.

for each) and the relations between nodes in B on the one hand, and nodes in P orA in
the other hand, can be found by looping over all the edges of G (O(n2) edges overall,
with constant time tests for each). �

Lemma 12. Procedure isSatisfiable() takes O(n2) time steps.

Proof: Building the set EPO can be done by looping over all the edges of Gx and
looking at the labels of its endpoints (in constant time), thus in O(n2) time steps.
Building X without these edges is also linear in the number of edges, thus costs O(n2)
time steps. Then, testing if a graph is bipartite can be done by performing a 2-coloring
of it along a BFS as follows: give color 1 to an arbitrary first vertex v, then as the BFS
progresses, give color 2 to all the vertices at distance 1 from v, then color 1 again to
all the vertices at distance 2 from v, etc. Possibly restart the BFS algorithm if X is not
connected. As the BFS algorithm runs in time linear in the number of edges (whether
or not X is connected), the 2-coloring algorithm will take up to O(n2) time steps, and
the detection of whether the coloring is proper can also be done in O(n2) time steps
(checking the two endpoints of every edge). If the procedure is still running (X is
bipartite), the obtained 2-coloring can be reused directly over lines 07 and 08 to assign
to every vertex its SAT constraint xi or ¬xi, depending on its color and connected
component (the latter being possibly determined during the BFS). Then, Lines 09 to
13 consist of a loop over (part of) the vertices with constant time processing time for
each. Lines 14 and 15 consist of a loop over the edges of EPO and constant processing
time for each, thus at most O(n2). Lines 16 to 19 take constant time. Finally, the
resulting formula is made of O(n2) constraints over O(n) clauses, and it is known that
2-SAT is solvable in time linear in the number of constraints. In conclusion, the overall
procedure takes O(n2) time steps. �
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Lemma 13. The decision algorithm presented in Section 4.2 takes O(n3) time steps.

Proof: The main loop of the algorithm performs a depth first search in theABC-tree T ,
whose running time is O(n). Every node x is labeled once, after the DFS has finished
the exploration of its subtree. At that moment, four cases apply depending on whether
x is of type A,B, C, or P . If x is of type P , the labeling takes constant time (see
Algorithm 1 Lines 03 to 04, and 17 to 25, respectively). If x is of type B, the labeling
also takes constant time because x has only one child (Lines 17 to 25). If x is of typeA,
then the labeling rule performs two loops over the children of x, thus the labeling takes
O(n) time steps (the nested existential quantifier can be tested upon the same loop). If
x is in C, then two or three calls are made to isSatisfiable(), whose running time
is O(n2) by Lemma 12. As a result, the overall running time is dominated by the latter
being applied to possibly O(n) nodes, for a total of O(n3) time steps. �

4.8. Constructivity
The algorithm presented over the previous subsections is a decision algorithm that

returns yes or no, or equivalently, accepts or rejects the given instance. However, the
algorithm is fairly easy to adapt in order to obtain an actual RMIS if one exists. There
are essentially two options: either the RMIS is constructed in parallel of the decision
algorithm, or a dedicated algorithm traverses again the tree after the algorithm has
completed. Here, we briefly sketch both solutions.

1. Construction in parallel. In this version, the main difficulty is that the algorithm
cannot decide which of the current labels will eventually be compatible with
later (higher) constraints in the tree. For example, a node x may admit an RMIS
in its subtree whether or not its attachment vertex v(x) is included (label PI
and PO ), but it might later become mandatory that v(x) is included. Thus, the
idea is to build several RMIS simultaneously, one for each possible label of the
current attachment vertex. These RMIS can be built by extending the ones of
the children (with compatible status), starting from the leaves, thus at most two
RMIS need to be memorized for the current subtree. In the particular case that
x is a biconnected component, it is needed that the satisfying assignment found
by the 2-SAT solver be known and transposed into a membership status for each
vertex (similarly to the set S in the proof of Lemma 9).

2. Construction afterwards. In this version, we are given an already labeled tree
whose root component has been solved (successfully). The algorithm consists of
traversing again the labeled tree, by making arbitrary choices whenever the con-
sidered attachment vertex has several labels. Indeed, the existence of an RMIS
corresponding to each such label is guaranteed by the labelling. The cases that
x is of type A,B, or P are trivial (just pick one of the labels of the child and
translate it as a membership status for its attachment vertex). The only difficulty
is when x is a biconnected components. In this case, a label is chosen arbitrarily
among the labels of its attachment vertex, and the 2-SAT reduction procedure is
called again with the configuration corresponding to this constraint in order to
obtain the satisfying assignement that specifies which inner vertex must be in-
cluded to the MIS. (Alternatively, the satisfying assignments might be recorded
while in the decision algorithm.)

A possible outcome of the constructive algorithm, obtained by manually following
the first method is shown in Figure 9.
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Figure 9: A possible RMIS of G that includes 16 vertices.

5. Further discussion on the temporal interpretation of robustness

As discussed in the introduction, the original motivation behind the concept of
robustness comes from highly-dynamic networks. Here, we review some of the back-
ground that led to its definition. As the content pertains to the temporal interpretation,
the reader interested in the notion of robustness per se can safely omit reading this
section. In [9], three canonical ways of redefining combinatorial problems in highly-
dynamic networks were explored, in particular covering problems such as dominating
set, vertex cover, or independent set. The main focus in [9] was on dominating sets,
which are subsets of nodes S ⊆ V such that each node in the network is either in S, or
has a neighbor in S. Three natural adaptations of these problems were formulated:

• Temporal version: the covering property of the problem is achieved over time –
E.g., for domination, every node outside the set must share an edge at least once
over the lifetime with a node in the set.

• Evolving version: the covering property must be satisfied at any given instant,
relative to the current structural snapshot of the network; however, the solution
can be updated as the structure of the network changes. This version is closer to
the traditional “dynamic graph algorithms” (also referred to as “reoptimization”).

• Permanent version: the covering property must be satisfied in every snapshot (as
for the evolving version), but here the solution cannot be updated.

The three versions are related. For example, in the case of dominating sets, the
temporal version consists of computing a dominating set in the footprint of the network.
The footprint, sometime denoted ∪G, is the union of all snapshots, i.e., it contains
every edge that is present in at least one snapshot. By contrast, the permanent version
consists of computing a solution in ∩G (the intersection of the snapshot sequence) [9].
Furthermore, solutions to the permanent and the temporal versions form upper and
lower bounds for the evolving version, respectively.
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In [11], the temporal definition above is extended to infinite lifetime networks, by
requiring that the covering relation (domination or else) be satisfied infinitely often.
The authors observe that whenever the network is temporally connected in a recurrent
way, which corresponds to Class T CR in [7] (and Class 5 in [8]), one has the guarantee
that among all the edges that appear at some point, at least a connected spanning subset
of them must reappear forever [5]. In other words, an equivalent characterization of
T CR is that the eventual footprint of the network (i.e., the union of those edges which
always reappear) is a connected spanning subgraph of the footprint.

In summary, if the network is assumed to be in T CR, then one has the guarantee
that at least a connected spanning subset of the edges are recurrent, but this subset is not
known (even if the footprint is known). The very concept of robustness is to overcome
this uncertainty by ensuring that the computed solution is valid for every possible such
subsets of a given footprint, i.e. every possible eventual footprint, provided that the
network is in T CR.

For completeness, let us cite a few recent works that considered the problem of
computing temporal covering structures in highly-dynamic networks (or graphs), al-
though not related to robustness. Mandal et al. [21] study approximation algorithms
for the permanent version of dominating sets. Bamberger et al. [2] also consider a tem-
poral variant of vertex coloring and MIS. Finally, Akrida et al. [1] define a variant of
the temporal version in the case of vertex cover, in which a solution is not just a set of
nodes (as it was in [9]) but a set of pairs (nodes, times), allowing different nodes to
cover the edges at different times (and within a sliding time window).

6. Concluding remarks

This paper introduced a new form of heredity called robustness, motivated by var-
ious kinds of dynamic networks. In particular, we believe that robustness is a key
property of highly dynamic systems for achieving stable structures in unstable envi-
ronments.

Focusing on the classical covering problem MIS, we characterized the set of graphs
in which all MISs are robust. We gave partial characterizations of the existential ana-
logues of this class, namely graphs that admit a robust solution. We characterized the
class entirely by means of a polynomial time algorithm which finds a robust MIS in an
arbitrary graph is one exists (and rejects otherwise). Whether a characterization of the
existential classes exists in terms of elementary graph properties is an open question. It
would also be interesting to investigate the robustness of other types of structures (e.g.
minimal dominating sets) and of basic graph properties, with the aim to understand ro-
bustness at a deeper level. For example, bipartiteness or “sputnikness” are themselves
robust properties of a graph.
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