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Stability Analysis for a Class of Linear Hyperbolic System of Balance Laws with Sampled-data Control ⋆
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The stability for a class of linear hyperbolic systems with distributed sampled-data controllers is discussed in this paper. The original sampled-data system is firstly transformed into a new equivalent system by modelling the sampling induced error as a reset integrator operator. Then we construct an appropriate Lyapunov function and obtain sufficient conditions for the Rε -stability of the system based on linear matrix inequalities (LMIs). A numerical example illustrates our results: when the sampling interval is within the allowable range, the solution of the system converges from the domain of attraction to a positive invariant set.

INTRODUCTION

Nowadays, control systems are usually implemented on digital platforms. The properties of digital implementations are studied in the domain of sampled-data systems [START_REF] Åström | Computercontrolled systems: theory and design[END_REF]; [START_REF] Chen | Optimal sampled-data control systems[END_REF]). For finite-dimensional systems (linear or nonlinear), the stability and control design problems have been extensively studied (see the references in [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]; [START_REF] Laila | sampleddata control of nonlinear systems[END_REF]; Monaco andNormand-Cyrot (2001, 2007)). Here we are interested in the sampled-data control problem of partial differential equations (PDEs) which involves an infinite dimensional state space. More precisely we focused on sampled-data control of systems governed by hyperbolic PDEs since many typical examples of processes can be described by this kind of system [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF], such as the transmission of electrical energy, the flow of liquid in a pipe, the light propagation in optical fibers, the road traffic, etc. Different from the research method of finite dimensional systems, fewer results are available for hyperbolic PDEs.

For the case of idealized sample-and-hold process, [START_REF] Logemann | Stability of infinite-dimensional sampled-data systems[END_REF][START_REF] Logemann | Generalized sampled-data stabilization of well-posed linear infinite-dimensional systems[END_REF] provided sampled-data control design methods which stabilized an infinite dimensional system for sufficiently small sampling periods. E. Fridman and co-authors have addressed several problems related to the sampled-data control of parabolic PDEs using a time-delay method [START_REF] Kang | Distributed sampleddata control of kuramoto-sivashinsky equation[END_REF]; Selivanov andFridman (2016, 2017)). For hyperbolic PDEs, event-triggered sampled-data control with controller on the boundaries was considered in [START_REF] Espitia | Event-based control of linear hyperbolic systems of conservation laws[END_REF][START_REF] Espitia | Stabilization of boundary controlled hyperbolic pdes via lyapunov-based event triggered sampling and quantization[END_REF]. In [START_REF] Karafyllis | Sampled-data boundary feedback control of 1-d linear transport pdes with non-local terms[END_REF], the application ⋆ This work was partially supported by the French "Rgion Hautsde-France" grant and by the project H2020 UCOCOS.

results of Zero-Order-Hold boundary feedback control in one-dimensional linear hyperbolic systems with non-local terms on bounded domains were given. The boundary feedback control of a 2 × 2 hyperbolic system was implemented by backstepping method in [START_REF] Davó | Stability analysis of a 2 × 2 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals[END_REF], and the global asymptotic stability was realized. As we can see from the literature review, the analysis of sampled-data controller for hyperbolic PDEs is a wide open research field and there is still the place for important contributions.

In this paper, we address the stability problem for sampled-data hyperbolic PDEs. Differently from the existing works where boundary control has been considered, here we study distributed sampled-data controllers. The problem is studied from an Input-Output point of view, extending the approaches for finite dimensional systems [START_REF] Fujioka | Stability analysis of systems with aperiodic sample-and-hold devices[END_REF]; [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF]; [START_REF] Mirkin | Some remarks on the use of timevarying delay to model sample-and-hold circuits[END_REF]; [START_REF] Omran | Stability analysis of bilinear systems under aperiodic sampled-data control[END_REF]). The main idea is to represent the sampling induced error as a perturbation for a continuous time hyperbolic equation. By converting the original sampled-data system into an interconnection of a continuous-time PDEs and a reset-integral operator, constructive local stability results are derived.

The layout of this paper is as follows. Section 2 introduces the systems we will study and the problem we have to deal with. In Section 3, we give the equivalent transformation form of the system including sampling error and the concrete stability analysis process. A numerical example in Section 4 shows that our method is feasible. Finally, the summary and prospect of the paper are presented in Section 5.

Notations: N is the set of nonnegative integers from 0 to infinity, R + is the set of nonnegative reals, R n is used to denote the set of n-dimensional Euclidean space with the norm | • |. L 2 (0, L) stands for the Hilbert space of square integrable scalar functions on (0, L) with the corresponding norm

• L 2 (0,L) , defined by e L 2 (0,L) = L 0 |e (x)| 2 dx. The associated norm to Sobolev space H 1 (0, L) is defined as e H 1 (0,L) = L 0 |e (x)| 2 + |e x (x)| 2 dx. The set of functions ϕ : [0, L] → R n such that L 0 |ϕ (x)| 2 dx < ∞ is denoted by L 2 ([0, L]; R n ) and given a functional V : H 1 ([0, L]; R n ) → R + such that L V ≤C = y ∈ H 1 ([0, L]; R n ) : V (y) ≤ C .
The notation M ≤ 0 denotes that M is symmetric and negative semidefinite. The symmetric elements are denoted by * in the symmetric matrix. The identity matrix is denoted by I and λ min (Q) and λ max (Q) are the minimum and maximum eigenvalues of the matrix Q. C 0 is the continuous function and C 1 is the continuously differentiable function.

SYSTEM DESCRIPTION AND PROBLEM FORMULATION

System Description

We consider the sampled-data controlled hyperbolic system (1) given below

       ∂ t y (t, x) + Λ∂ x y (t, x) + Υy (t, x) + u (t, x) = 0, u (t, x) = Ky (t k , x) , ∀t ∈ [t k , t k+1 ), k ∈ N, y(t, 0) = 0, ∀t ≥ 0, y(0, x) =y 0 (x), ∀x ∈ [0, L] , (1a) (1b) 
(1c) (1d) where y : [0, +∞) × [0, L] → R n , Λ = diag {λ 1 , λ 2 , ..., λ n } with λ 1 , λ 2 , .
.., λ n > 0, K and Υ are real n × n constants matrices. The sequence is defined as {t k } k∈N where t 0 = 0, t k+1 -t k ∈ (0, h],

(2) and h > 0.

To deal with the problem under consideration, we need the following compatibility condition:

Condition 1. The initial condition y 0 (x) for ∀x ∈ [0, L], satisfies y 0 (0) = 0. ( 3 
)
Remark 1. Let us discuss the notion of solution used in the present work. The system (1)-( 2) can be rewritten as a first order system

dy(t) dt = Ay (t) + f (y (t k )) , t ∈ [t k , t k+1 ) , k ∈ N, y (0) = y 0 , where f (y(t k )) = -ky(t k ), and the operator A is defined by Ay = -Λ∂ x y (t, x) -Υy (t, x) , (4) with domain D(A) = y ∈ H 1 (0, L; R n ) | y(0) = 0.
(5) The operator A generates a stable C 0 semigroup (see the proof of theorem A.1. in [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]). Moreover, we note that

f k : H 1 (0, L) → H 1 (0, L) is continuously differentiable for t ∈ [t k , t k+1 ). If y 0 ∈ D(A),
then according to Theorem 6.1.5 of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], there exists a classical solution for each t ∈ [t k , t k+1 ), k ∈ N. Therefore, we can construct a solution by choosing the last value of the previous sampling interval as the initial condition of the following sampling interval such that it is continuous at each sampling instant.

Problem Formulation

In our work, we prove Rε-stability, which is defined in Definition 1 below.

Definition 1. Rε-stability [START_REF] Polyakov | Practical stabilization via relay delayed control[END_REF] Consider positive scalars R and ε, such that 0 < ε < R, and a candidate Lyapunov function V :

H 1 ([0, L]; R n ) → R + .
If for all solutions of system (1) with y 0 (x) ∈ L V ≤R , the trajectory of the state y(t, x) converges to L V ≤ε as t goes to infinity and the set L V ≤ε is positive invariant, then, system (1) is said to be Rε-stable from L V ≤R to L V ≤ε .

In this work, our main goal is to guarantee the Rε-stability of the closed loop system (1)-( 2) based on an Input-Output approach.

MAIN RESULT

This section is divided into two parts. First, we represent the sampled-data system as an equivalent continuous hyperbolic PDE where the sampling induced error appears in the input, as a disturbance. Secondly, based on the provided model, constructive Rε-stability criteria are provided.

System Remodeling

System (1) can be equivalently re-expressed as

       ∂ t y (t, x) + Λ∂ x y (t, x) + (Υ + K)y (t, x) + Kω (t, x) = 0, ∀t ∈ [t k , t k+1 ), k ∈ N, y(t, 0) = 0, ∀t ≥ 0, y(0, x) = y 0 (x), ∀x ∈ [0, L] . (6a) (6b) (6c)
with the sampling induced error ω (t, x) = y (t k , x) -y (t, x) .

(7) Define the function ϕ as

ϕ (t, x) = ∂y (t, x) ∂t , ∀t ≥ 0, x ∈ [0, L] . (8) 
Note that

ω (t, x) = - t t k ∂y (θ, x) ∂θ dθ = - t t k ϕ (θ, x) dθ, ∀t ∈ [t k , t k+1 ) , k ∈ N, x ∈ [0, L] . (9) 
As a result, the closed-loop system can be regarded as the interconnection of two systems G and Ψ shown in Figure 1, where the operator G : L 2 (0, L) → L 2 (0, L) is defined by

G :      ∂ty (t, x) = -Λ∂xy (t, x) -(K + Υ) y (t, x) -Kω (t, x), y(t, 0) = 0, ∀t ≥ 0, y(0, x) =y0(x), ∀x ∈ [0, L] , ϕ (t, x) = -Λ∂xy (t, x) -(K + Υ) y (t, x) -Kω (t, x) = ∂ty (t, x) ,
(10) and the operator Ψ : L 2 (0, L) → L 2 (0, L) is defined by 

Ψ : ω (t, x) = (Ψy)(t, x) = - t t k ϕ (θ, x) dθ, ∀t ∈ [t k , t k+1 ) , k ∈ N, x ∈ [0, L] . (11 

Stability Analysis

In the following, we introduce our main result. Theorem 1. Consider systems ( 10)-( 11) with (2)(or equivalently (1) with ( 2)) and the initial condition satisfying (3):

(i) Let λ = min i∈{1,...,n} λ i . Assume that there exist µ 1 , γ 1 , µ 2 , γ 2 > 0, and symmetric positive matrices

Q 1 ∈ R n×n , Q 2 ∈ R n×n satisfying M (0) ≤ 0, M (L) ≤ 0, ( 12 
) with M (x) defined for all x ∈ [0, L] as M (x) =    Ω -e -2µ1x Q 1 K 0 0 * -γ 1 I 0 0 * * E -e -2µ2x Q 2 K * * * -γ 2 I    , (13) where 
Ω = -e -2µ1x (K + Υ) T Q 1 + Q 1 (K + Υ) , E = -e -2µ2x Υ T Q 2 + Q 2 Υ + βQ 2 . ( 14 
) (ii) If ∃ε ∈ R + ; R ∈ R + s.t. 0 < ε < R and γ 1 3 h |Λ| 2 Φ + |Υ| 2 + |K| 2 Ψ + γ 2 Φ < min(2ν 1 , 2ν 2 -β)ε, (15) with Φ 
= R λ min (Q 2 ) e -2µ2L , Ψ = R λ min (Q 1 ) e -2µ1L , where ν 1 = µ 1 λ, ν 2 = µ 2 λ, 0 < β < 2ν 2 .
Then the considered system (1) is Rε-stable from L V ≤R to L V ≤ε for any sampling sequence satisfying (2). Moreover, a Lyapunov function is defined as

V (y) = V 1 (y) + V 2 (y), (16) with V 1 (y) = L 0 y T e -2µ1x Q 1 ydx, ( 17 
) V 2 (y) = L 0 y T x e -2µ2x Q 2 y x dx. ( 18 
)
Proof. Consider the Lyapunov function ( 16)-( 18). It can be bounded as follows: Θ y (t, •)

2

H 1 ( [0,L] ; R n ) ≤ V (y (t, •)) ≤ Ξ y (t, •) 2 H 1 ( [0,L] ; R n ) , (19) where Θ = min(λ min (Q 1 ) , λ min (Q 2 ))e -2µL , µ = max(µ 1 , µ 2 ), Ξ = max(λ max (Q 1 ) , λ max (Q 2 )).
Step 1: In this step we study the continuity of the function V defined in ( 16).

(1) Since y(t, x) is continuous with respect to t for all t ∈ [t k , t k+1 ), k ∈ N, and continuous at sampling instants by construction (see Remark 1) , then V 1 is continuous for all t ≥ 0. (2) From system (1), we can get

y x (t, x) = Λ -1 (-y t (t, x) -Υy (t, x) -Ky (t k , x)) , (20) 
for all t ∈ [t k , t k+1 ), k ∈ N. Since all the terms on the right of the equation ( 20) are continuous in t on (t k , t k+1 ), ∀k ∈ N, then y x (t, x) and thus V 2 are also continuous in t for all (t k , t k+1 ), k ∈ N. Now we consider the time interval [t k , t k+1 ), for some k ∈ N and an initial condition y k (x). The solution of ( 1) is defined as y(t, x) on the time interval [t k , t k+1 ), and is such that y and y x are both C 0 in t ∈ [t k , t k+1 ).

Next, we prolong the solution to C 1 in t on [t k , t k+1 ]. We denote z(t, x) the solution on [t k , t k+1 ] with initial condition y k (x). z(t, x) and z x (t, x) are C 0 in t on [t k , t k+1 ]. We got the following properties on [t k , t k+1 )

y(t, x) = z(t, x), y x (t, x) = z x (t, x).
(21)

Then the left limit can be calculated as lim

t→t - k+1 y x (t, x) = lim t→t - k+1 z x (t, x) = z x (t k+1 , x) . ( 22 
)
For the next time interval [t k+1 , t k+2 ), we set the initial condition y k+1 (x) = z(t k+1 , x). Then the solution y(t, x) of system (1) on [t k+1 , t k+2 ) satisfies y x (t, x) is C 0 in t on [t k+1 , t k+2 ). Therefore, we have the right limit property

lim t→t + k+1 y x (t, x) = y x (t k+1 , x) = z x (t k+1 , x) . ( 23 
)
According to ( 22) and ( 23), we can see that by construction, y x (t, x) is continuous in t at time instant t k+1 . Similarly, we can show that the function y x (t, x) is continuous at all sampling instants, which shows both the continuity of y x (t, x) with respect to time for all t ≥ 0 and the continuity of V 2 .

Remark 2. Here V 1 is used in order to bound y, and V 2 is used to deal with the term y x that appears in the derivative of V 1 .

Step 2: In this step we study the time derivative of the function of V (y) defined in ( 16). Thanks to commutativity condition: ΛQ 1 = Q 1 Λ, we first compute the time derivative of V 1 (y) along the solutions to ( 10)-( 11),∀t

∈ [t k , t k+1 ) , k ∈ N, V1 (y) = L 0 ∂ t y T e -2µ1x Q 1 y + y T e -2µ1x Q 1 ∂ t y dx = L 0 (-Λ∂ x y -(K + Υ)y -Kω) T e -2µ1x Q 1 y +y T e -2µ1x Q 1 (-Λ∂ x y -(K + Υ)y -Kω) dx = L 0 -∂ x y T Λe -2µ1x Q 1 y dx + L 0 -y T (K + Υ) T e -2µ1x Q 1 y -y T e -2µ1x Q 1 (K + Υ)y -y T e -2µ1x Q 1 Kω -2µ 1 y T Λe -2µ1x Q 1 y -ω T K T e -2µ1x Q 1 y dx = -y T Λe -2µ1x Q 1 y L 0 + L 0 -y T (K + Υ) T e -2µ1x Q 1 +e -2µ1x Q 1 (K + Υ) y -ω T K T e -2µ1x Q 1 y -y T e -2µ1x Q 1 Kω dx -2µ 1 L 0 y T Λe -2µ1x Q 1 ydx. (24) 
In order to get the time derivative of y x in V 2 , we refer to the original system (1). Since y

: [0, +∞) × [0, L] → R n has consecutive partial derivatives in [0, +∞) × [0, L],
according to Schwartz's theorem [START_REF] James | Advanced calculus belmont[END_REF]) we can obtain

∂ xt y (t, x) = ∂ tx y (t, x) = -Λ∂ xx y (t, x) -Υ∂ x y (t, x) -K∂ x y (t k , x) , ∀t ∈ (t k , t k+1 ), k ∈ N. (25) 
For the next calculation of the time derivative of V 2 , we use Lemma 1 in the appendix. According to (25) and Lemma 1, we have

∂ x y(t, 0) = 0, ∀t ∈ [t k , t k+1 ), k ∈ N, y 0 (0) = 0, ∂ x y 0 (0) = 0. (26a) (26b) 
Similarly to the computation of V1 , by using the commutativity condition: ΛQ 2 = Q 2 Λ, the time derivative of V 2 (y) along the solutions to ( 25)

-(26), ∀t ∈ (t k , t k+1 ) , k ∈ N is shown as follows V2 (y) = -∂ x y T Λe -2µ2x Q 2 ∂ x y L 0 + L 0 -∂ x y T Υ T e -2µ2x Q 2 + e -2µ2x Q 2 Υ ∂ x y -∂ x y T (t k , •) K T e -2µ2x Q 2 ∂ x y -∂ x y T e -2µ2x Q 2 K∂ x y T (t k , •) dx -2µ 2 L 0 ∂ x y T Λe -2µ2x Q 2 ∂ x ydx. (27) 
Adding 27) for some γ 1 > 0, γ 2 > 0, β > 0, and using boundary condition (6b) and (26b) we have V (y) = V1 (y) + V2 (y)

γ 1 ω (s, •) 2 L 2 ( [0,L] ; R n ) -γ 1 ω (s, •) 2 L 2 ( [0,L] ; R n ) to (24) and γ 2 ∂ x y (t k , •) 2 L 2 ( [0,L] ; R n ) -γ 2 ∂ x y (t k , •) 2 L 2 ( [0,L] ; R n ) , β L 0 y T x e -2µ2x Q 2 y x dx -β L 0 y T x e -2µ2x Q 2 y x dx to (
≤ -2ν 1 V 1 (y) -(2ν 2 -β)V 2 (y) + L 0 η T M (x)ηdx + γ 1 ω (s, •) 2 L 2 ( [0,L] ; R n ) + γ 2 ∂ x y (t k , •) 2 L 2 ( [0,L] ; R n ) . (28) 
with

ν 1 = µ 1 λ, ν 2 = µ 2 λ, η = [y T ω T (∂ x y) T (∂ x y) T (t k , •)] T ( 
29) and M (x) defined in (13).

Since M (x) satisfies LMIs (12), by convexity we have η T M (x)η ≤ 0, ∀x ∈ [0, L] and thus

L 0 η T M (x)ηdx ≤ 0, (30) 
we deduce from ( 28)

V (y) ≤ -2ν 1 V 1 (y) -(2ν 2 -β)V 2 (y) + γ 1 ω (s, •) 2 L 2 ( [0,L] ; R n ) + γ 2 ∂ x y (t k , •) 2 L 2 ( [0,L] ; R n ) . (31) 
Step 3: The negative properties of function V (y) for t ∈ [t k , t k+1 ), k ∈ N will be discussed in this step. Consider some k ∈ N and let us first assume that y (t,

•) ∈ L V ≤R \ L V ≤ε and ∀θ ∈ [t k , t], y (θ, •) ∈ L V ≤R . L 0 y T e -2µ1x Q 1 ydx ≤ R, ∀y(θ, •) ∈ L V ≤R , L 0 ∂ x y T e -2µ2x Q 2 ∂ x ydx ≤ R, ∀∂ x y(θ, •) ∈ L V ≤R . ( 32 
)
Then the following inequalities are further derived

y (θ, •) 2 L 2 ([0,L];R n ) ≤ R λ min (Q 1 ) e -2µ1L , ∀θ ∈ [t k , t], (33) ∂ x y (θ, •) 2 L 2 ([0,L];R n ) ≤ R λ min (Q 2 ) e -2µ2L , ∀θ ∈ [t k , t]. (34) Recalling y (t, •) ∈ L V ≤R \ L V ≤ε and ∀θ ∈ [t k , t], y (θ, •) ∈ L V ≤R , for t ∈ [t k , t k+1 ), k ∈ N. The bound of ω (s, •) 2 L 2 ([0,L]; R n ) can be calculated by (9) ω (s, •) 2 L 2 ([0,L]; R n ) = L 0 |ω (s, x)| 2 dx = L 0 t t k ∂y (θ, x) ∂θ dθ 2 dx ≤ 3 h |Λ| 2 R λ min (Q 2 ) e -2µ2L + |Υ| 2 + |K| 2 R λ min (Q 1 ) e -2µ1L = ̟. (35) In addition, since y (t, •) , ∂ x y (t, •) / ∈ L V ≤ε , we have -2ν 1 V 1 (y) -(2ν 2 -β)V 2 (y) ≤ -min(2ν 1 , 2ν 2 -β)(V 1 (y) + V 2 (y)) < -min(2ν 1 , 2ν 2 -β)ε.
(36) Therefore, instituting (35) and ( 36) into (31), we have that for all

t ∈ [t k , t k+1 ), k ∈ N, V (y) < -min(2ν 1 , 2ν 2 -β)ε + γ 1 ̟ + γ 2 R λ min (Q 2 ) e -2µ2L , (37) 
and thus from assumption (15), we have shown that if which means that since V is continuous, that y will remain in L V ≤R during the whole sampling interval [t k , t k+1 ],

y (t, •) ∈ L V ≤R \ L V ≤ε and ∀θ ∈ [t k , t], y (θ, •) ∈ L V ≤R for ∀t ∈ [t k , t k+1 ), k ∈ N V (y) < 0, (38) 
and by recursion, we can see that it will always remains there. As a consequence, L V ≤R is positively invariant. Furthermore, since V < 0 wherever y / ∈ L V ≤ε , that means that L V ≤ε is attractive, which ends the proof of Rε-stability.

NUMERICAL SIMULATION

In this section, we present a numerical example to illustrate the stability we proposed in section 3. Consider system (1) One can see that the Lyapunov function V deceases when ε < V (y) < R.

     ∂ t y (t, x) + Λ∂ x y (t, x) + Υy (t, x) + u (t, x) = 0, u (t, x) = Ky (t k , x) , ∀t ∈ [t k , t k+1 ), k ∈ N, y(t, 0) = 0, ∀t ≥ 0, y ( 

CONCLUSION

The main work of this paper is to construct a sampling controller for distributed control of linear hyperbolic balance laws. The closed-loop system is reformulated from an Input-Output point of view. In addition, we prove the local stability of the system by means of the Lyapunov method. This is somewhat conservative because the sampling interval needs to be small enough. In the future, we will expand the sampling interval by virtue of dissipativity theory, and sample the controller in space not only in time, so as to propose a more general stability theory. 
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  0, x) =y 0 (x), ∀x ∈ [0, , y 0 (x) = (1 -cos x) sin 2x 3(1 -cos x) sin x .The parameters in Theorem 1 are selected as: h = 0.0001, β = 0.01, µ 1 = 0.1, µ 2 = 0.08,γ 1 = γ 2 = 0.01, R = 10, ε = 3.063, conditions (12), (13), and (15). The results of numerical simulations are presented in Figs.2-4. Figs.2-3show the states converge to the vicinity of the origin with the controller. The initial conditions satisfying the compatibility condition (3) are given in Figs.4-5. The time-evolution of Lyapunov function V is shown in Fig.6.
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 6 Fig. 6. Time-evolution of function V.
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Appendix A. PROOF OF LEMMA 1 Lemma 1. Consider the system (1)-( 2) with initial condition y 0 satisfying Condition 1. Then ∀t ∈ [t k , t k+1 ), k ∈ N, ∂ x y(t, 0) = 0.

Proof. We recall system (1)

The time derivative of the boundary condition leads to

2) Combining (A.1a) with (A.2), we obtain 0 = ∂ t y (t, 0) = -Λ∂ x y (t, 0) -Υy (t, 0) -Ky (t k , 0) . (A.3) Since y(t, 0) = 0, ∀t ≥ 0, we have ∂ x y(t, 0) = 0, ∀t ∈ [t k , t k+1 ), k ∈ N.

(A.4)