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Abstract—Internet and its evolutions are fundamentally based
on the unique TCP/IP model, whose primary protocol of the
Transport layer (L4) is the TCP (and somewhat UDP). Despite
its well-known limitations, TCP is still widely deployed and
used on the Internet. Nearly all the literature’s propositions to
overcome TCP’s limitations are not deployed in the mainstream
operating systems (OS) and/or face limited use by the Internet’s
applications. This situation leads to the ossification or sclerosis
of the Transport layer that is a significant barrier to the
introduction of innovations in this layer of the Internet’s TCP/IP
architecture. Thus, this paper proposes to address this issue
and focuses on two main contributions. First, we design and
implement a Virtual Transport Layer (VTL) system able to
dynamically deploy Transport protocols within the end-systems’
OS. Second, to facilitate the use and stimulate the adoption of
the proposed architecture (and the L4 protocols it deploys), we
provide the approach and mechanisms necessary to allow TCP-
based applications to use transparently any Transport protocol
other than TCP. Experiments show the correctness of VIL and
its ability to quickly deploy protocols. Further, we show that the
deployed protocols achieve significant performances under VTL.

Index Terms—Communication Protocols, Dynamic Deploy-
ment, TCP/IP, eBPF/XDP, Prototype/Testbed Experimentation.

I. INTRODUCTION

With the Internet’s growth, several Transport protocols have
been proposed to continually improve QoS to satisfy the
increasing requirements of applications and adapt to various
emerging networks. However, the defacto L4 protocol for end-
to-end data transfer between applications within the Internet
remains TCP (almost 90% of Internet traffic is based on
TCP [1]). Indeed, a review of the literature and an analysis
of Internet traffic under analyzers such as Wireshark show
that despite their convenient conceptual approach and better
performances against TCP/UDP in several cases, any new L4
protocol solutions other than TCP and UDP are (i) faintly
deployed (in worst cases not deployed) and (ii) suffer from
limited adoption by applications on the Internet. This situation
prompts the sclerosis or ossification of the Transport layer that
hampers the introduction of innovations in this Internet’s layer.
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Therefore, this paper proposes to address Transport layer
sclerosis at the end-systems by providing practical answers to
two major questions: (1) How to (effectively) deploy a specific
protocol mechanism at the end-system? (2) And, assuming the
availability of protocols on the end-system, how to ensure its
seamless usage by (legacy and aware)' applications? Apart
from the extensive evaluations performed during our journey,
the main contributions of this paper are the following:

e (i) We introduce the concept of dynamic deployment of
protocol grafts. Dynamic grafting of protocols consists of
on-the-fly integration of protocols within the end-system.

o (ii) To prevent a limited use of the proposed architecture
(and the protocols it deploys), we introduce an approach
that permits to replace at runtime TCP by another L4
protocol. We achieve it transparently to legacy applications,
i.e., there is no need to rewrite the latter applications’ code.

We realize the above contributions within VTL (for Virtual
Transport Layer) system that we fully designed and imple-
mented. VTL follows three main design principles: (1) the
seamless support of legacy applications, i.e., legacy applica-
tions might consume Transport services without the need to
rewrite their code; (2) the separation of protocol from aware-
application, i.e., in line with the service-oriented approach [2],
aware-application should request Transport services instead of
invoking a specific protocol as it is the case in the standard
socket API; and (3) the protocol modularization, i.e., the
Transport layer data plane is organized in such a way to allow
the implementation of reconfigurable protocols whose compo-
nents might be dynamically instantiated and parameterized.

After this introduction, in Section 2, we provide an in-
sightful analysis of the Transport layer ossification causes
and then revisit the limitations of previous works that address
this issue. This analysis allows us to derive and motivate the
conceptual and technical choices made during VTL design

IThroughout this paper, a legacy application designates a TCP-based
application that uses the standard socket API to consume Transport services.
We will use interchangeably the terms “legacy application” and “TCP ap-
plication”. We define aware-application as an application that uses the API
provided by VTL to consume Transport services.



and implementation. In Section 3, we first introduce VTL’s
key concepts. Then, we present the functional architecture of
VTL. In Section 4, we evaluate VTL. Apart from showing
the correctness of VTL, this evaluation shows the deployment
delay and the performances (under VTL) of the deployed
protocols by taking as reference TCP performances in the same
conditions. Finally, Section 5 and Section 6 conclude the paper
with a discussion on the limitations and future work of VTL
and a summary of learned lessons.

II. BACKGROUND
A. Vicious Circle

The deployment and wide adoption of any L4 protocol on
the Internet rise up several challenges and require taking into
account three main stakeholders: (/) the run-time environment
of the protocols principally managed by OS developers, (2) the
consumers of the services provided by the protocols, namely
application programmers, (3) the middleboxes vendors who
maintain the network infrastructure over which data packets
handled by the protocols are transmitted.

Deployment Barriers. The OS vendors’ historical choice
to implement L4 protocols in the kernel-space of OS is not
without consequence. To provide support for a new protocol,
OS developers must integrate it into the kernel which requires
an upgrading of their system. OS upgrade is not only time-
consuming and very tedious, but it also poses significant
software and hardware compatibility issues. Any modification
of the kernel code requires the utmost attention to detail. Those
modifications are therefore left to the experienced developers
of OS vendors. Even for open systems like Linux, it takes
benevolent dictators to ensure the stability and reliability of
the OS. As a result, OS upgrade frequency is slow and for OS
developers, only a high demand from application programmers
can motivate the integration of any new protocol solution.

Limited Use Root Cause. Programmers must modify their
applications’ code to adopt any new protocol solution due to
the standard socket API caveats [3]. This latter corollary might
be a factor of increasing complexity and a potential source of
instability since it is necessary to rewrite the application each
time a new protocol solution is released and best matches the
application’s needs. Our analysis is that to prevent the issues
associated with frequent modifications, most of the application
programmers prefer to rely on standard protocols such as TCP
or UDP, which are recognized as stable and available on the
mainstream OSes and supported throughout the Internet, rather
than using a new protocol whose reliability and acceptability
are not guaranteed, even if this latter is more appropriate to
meet their applications’ requirements.

Other Factors Out of End-systems. While the logic that
prevailed at the birth of the Internet is based on the end-
to-end principle [4] where the network, composed mainly of
routers, had no visibility over what happens beyond the L3
level, the massive introduction of middleboxes (such as NATS,
or firewalls) has “violated” this principle. Those middleboxes
can read and modify packets up to level L4 and reject any
unrecognized protocol. To meet certain requirements (e.g.,

TABLE I
SELECTED TRANSPORT LAYER PROTOCOLS AND ARCHITECTURES.
MPTCP QUIC PQUIC UTCP NEAT
Deployment Space Kernel User User User User
Protocol-agnostic APl X X X X v
Legacy Appli Support v X X X X

security, fast network troubleshooting, etc.), middleboxes ven-
dors (and somewhat network operators) are often unwilling to
configure their devices to whitelist any new protocol until the
most popular OSes support this latter protocol.

All in all, this global context leads to the well-known vicious
circle: application programmers are unwilling to use a new
protocol that is unlikely to work end-to-end; OS developers
will not implement a new protocol if application programmers
do not express a need for it; middleboxes vendors (somewhat
network operators), will not add support if the protocol is not
in mainstream operating systems; the new protocol will not
work end-to-end because of lack of support in middleboxes.

Note 1. Through extensive measurements in [5], Honda
et al. come to the conclusion that “the blame for the slow
evolution of protocols (with extensions taking many years
to become widely used) should be placed on end-systems”.
Therefore, we argue that a handy approach should focus on
the end-systems. We preconize systematic fallback to TCP or
UDP to prevent complete failure in case of rejection during
middlebox traversal.

B. Related Work

Many research propositions have emerged (see Table I) to
enrich the Transport layer with additional services and bring
to it more flexibility and extensibility. Those works take two
research directions: (/) proposing a single/specific protocol
and (2) rethinking the whole Transport layer architecture.

1) Single protocol propositions:

Extending standard protocols such as TCP and implementing
those extensions as a set of kernel patches is a very common
approach to add new services to the Transport layer. The main
protocol that follows this approach is MPTCP [6] that adds a
multipath capability to the regular TCP. However, OS kernel
modification is tricky. To overcome the associated constraints
(development difficulty, slow updates, etc.), a second approach
consists of implementing part of the protocol in the user-space
above UDP. The modular ETP [7] and the emerging QUIC [8]
protocols follow such an approach.

Deploying a protocol in the user-space above UDP facili-
tates the protocol extension and increases its update/upgrade
frequency. However, performances often take a hit. To speed
up the user-space protocol, a third approach is, instead of using
UDP as substrate, to implement the whole protocol in user-
space on top of kernel bypass tools such as DPDK [9] or
NetMap [10]. UTCP [5] is one of such protocols that rely
on NetMap to implement a full high-performance user-space
Transport protocol. However, despite their efficiency, such an
approach still poses some security and efficiency concerns.
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Fig. 1. Conceptual illustrations of Transport function (TF) and protocol graft.

Some works in the literature rely on the dynamic deploy-
ment of code to extend the Transport layer and make it more
flexible. The seminal work that relies on this approach is the
STP proposition [11]. STP is a framework that allows the
deployment of TCP extensions. Its primary goal is to speed up
the upgrading of TCP protocol within the end-system by the
use of mobile codes that are exchanged remotely between end-
systems. More recently, PQUIC [12] introduced a prototype
of a framework able to dynamically extend QUIC protocol by
loading at runtime new Transport protocol plugins that contain
the code of the mechanisms. PQUIC relies on a user-space
version of eBPF VM [13].

In summary, each of the above approaches demonstrates
how to “force” the deployment of new protocol mechanisms
and services within the end-system OS. Besides the specific
drawbacks related to each approach discussed above, they
have one more additional common limit: they are specific
and limited to a single protocol, i.e., they lack a protocol-
independent API and then force applications to bind to a
unique protocol at their design-time and may, therefore, lead
to a slow/limited adoption as explained in Section 2.A.

2) Rethinking the whole layer architecture:

Instead of proposing a single protocol, other works propose to
rethink the whole architecture of the Transport layer in a way
to eliminate the regular socket API limitations. Their main idea
consists of replacing the socket API with a common Transport
services interface (a.k.a. service-oriented API). Contrary to the
socket API, the application that uses the service-oriented API
will no longer have to choose a unique L4 protocol at its
design-time but should instead specify the Transport services
it wants. Such an approach aims to ease the adoption of
all protocols available on the end-system by non-legacy (i.e.
aware) applications. In 2014, an IETF working group named
TAPS [2] was chartered to promote and lead this approach’s
standardization efforts. As of the writing of this paper, NEAT
[14] is the single official implementation of the TAPS standard.

Despite its potential to simplify the way applications con-
sume Transport services and to break the dependency of the
application to a single protocol, the service-oriented approach
presents two major drawbacks. First, it relies on the assump-
tion that the Transport protocol to use is already available on
the end-system OS. Therefore, it lacks a method to dynam-
ically deploy a new protocol mechanism where appropriate:
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Fig. 2. Tllustration of protocol graft providing an ARQ-based reliable service.

the protocol’s choice depends on the end-system OS network
stack. Second, it does not provide any transparent support
for legacy applications; these applications should be rewritten
directly on top of the service-oriented API beforehand to
leverage the new architecture. This last limit could be a barrier
to the adoption of this approach (see Section 2.A).

III. VIRTUAL TRANSPORT LAYER SYSTEM
A. VTL Core Concepts

1) Transport Function (TF):
A Transport function (TF) is the most atomic entity of the
VTL data plane that executes a single protocol processing
logic such as a checksum calculation or packet numbering.
It implements a single local function that could roughly be
grouped as follows (see Fig. 1): reliability functions, flow
control functions, etc. Conceptually, the group to which a
TF belongs indicates the Transport service (e.g. a congestion
control service) the TF participates in implementing. Indeed,
a TF as alone cannot provide any Transport service; it must be
composed with other TFs. Each TF must be made pluggable
thanks to its wrapping in a software container (e.g., eBPF
programs, in the current implementation of VTL). The pack-
aging in a software component of a TF will provide it with
two essential interfaces: (1) the input interfaces from which it
should receive any data packet or control information; (2) the
output interfaces to which it should push any data packet.
2) Protocol Graft:

As illustrated in Fig. 1, a protocol graft is a list of pluggable
TFs with their interaction pattern that defines the way the TFs
are connected, i.e., the sequence in which data are processed
by the different TF composing the graft. A protocol graft
might provide one or more services such as reliability service,
ordering service, and so on. Contrary to a TF which is located
on a single side of the Transport session, a protocol graft
is conceptually distributed between the sender end-system
and receiver one and provides comprehensive Transport ser-
vice(s)/feature(s). The sender side maintains the egress graft,
whereas the receiver side maintains the ingress graft. Finally,



at each side of a session, a protocol graft should create and
maintain a memory buffer shared between TFs serving to
ensure data persistence. Fig. 2 illustrates a protocol graft
distribution for a typical ARQ-based reliable service; note that
this is only for illustration purposes; a more comprehensive
reliable service should have many other functions such as
duplication control.

3) VTL Services and Features:

VTL core functionality is to deploy the appropriate protocol
graft on behalf of the application in order to ensure that data
are moved according to the application requirements. From an
internal point of view, VTL: (i) ensures the Transport session
establishment following a classical client (connect) / server
(accept) model; (ii) ensures the selection, negotiation, and
deployment of the protocol graft; and (iii) monitors both the
network and application states in order to adapt the protocol
graft at runtime to the change of environment. VTL provides
by default a message-stream-oriented service that should be
replaced if the underlying deployed protocol graft provides
a byte-stream-oriented one. VTL expects to provide protocol
developers with the facilities to write, test, and publish new
protocols within the end-systems.

VTL allows applications to express their requirements by
firstly characterizing the desired Transport services and then
associating those Transport services with a set of desirable
QoS parameters. For instance, a requested Transport fea-
ture/service might be expressed in terms of reliability, order,
congestion control, security, etc. In addition to these Transport
features, associated QoS parameters can be expressed in terms
of maximum acceptable delay (ms), minimum throughput
(Mb/s), and allowable loss rate (percentage).

B. VTL Architecture

VTL components (see Fig. 3) are separated between two
planes: a control plane and a data plane constituted mainly
by the runtime environment of Transport functions (TFs), i.e.
the eBPF VM. Both planes share information (ACK, KTF
negotiation state, packets, ...) thanks to a set of shared MAPS.
VTL defines two workflows: KTF deployment workflow and
data delivery workflow that we further described latter.

Control Broker is responsible for ensuring the protocol graft
negotiation at the end of which the appropriate TFs should
be deployed at the sender side as well as the receiver side of
the Transport session. Launcher component, driven by Control
Broker, is in charge of the configuration and the instantiation
of the requested TFs inside the eBPF Kernel VM. To observe
the network and measure its key quality parameters (delay, loss
rate, and throughput), VTL provides NetMonitor component.
This component captures the network parameters mentioned
earlier and reports them to the Control Broker component on-
request for further analysis.

VTL socket is a data plane structure manipulated through
the protocol-agnostic API by aware-applications to send and
receive data. It is a virtual socket that emulates either a RAW
socket for data transmission and/or an XSK socket for data
receipt. VIL socket is created, maintained, and exposed to
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Fig. 3. VTL system architecture overview. Blue arrows represent the legacy
application datapath, green arrows the aware-application datapath, and black
arrows the KTFs deployment path.

applications by Data Broker that ensures data moving and
dispatching between the application buffers and the deployed
TFs running inside the eBPF VM component.

C. VIL Implementation

1) Background:
VTL implementation relies on the eBPF [13], recently intro-
duced in the Linux OS. eBPF is an extended version of BPF
[15] and it allows injecting bytecode at runtime within the OS
kernel. Its usage scenarios cover filtering, networking, sys-
tems’ security, etc. eBPF infrastructure is constructed around
three major elements: maps, tail calls, and helper functions.

Maps are data structures storing a set of {key, value} pairs
used to exchange data either between user-space programs and
in-kernel eBPF programs or between eBPF programs running
at different points of the kernel. Maps, often attached/pinned to
the root file system (i.e. /sys), are also useful to ensure data
persistence between successive invocations of eBPF programs.
In its early versions, eBPF limits each program to a maximum
size of 4096 BPF instructions. In order to overcome this
size limitation, eBPF integrates the concept of fail calls that
could be used to chain up to 32 different eBPF programs; tail
calls feature is an enabler of modularization’s implementation.
Nevertheless, it is worth noting that since Linux version 5.2.0,
released in 2020, an eBPF program can contain up to 1M
(one million) instructions. Basically, helper functions define a
list of functions that an eBPF program can call during its
execution. Thanks to helper functions (and eBPF verifier),
access to kernel by eBPF programs is strictly controlled to
prevent OS damage. In other words, helper functions allow
eBPF programs to interact directly with the kernel safely.

Each eBPF program that is deployed inside the OS kernel
has a specific type and must be attached to a hook point, also
known as a kernel event (incoming packet, system calls, socket



TABLE II
MAIN ADDED HELPER FUNCTIONS WITHIN THE VTL SYSTEM.

Helper functions Description

Set timer i to n ms
Stop the timer i
An exogenous wrapper of tail _call ()

vtl_start_timer (i, n)
vtl_stop_timer (i)
vtl_build_graft ()

operations, etc.). Then, each time the event occurs, the eBPF
program attached to it is executed.

Note 2. To deploy Transport functions in the OS, we first
considered the use of LKM approach [16]. As eBPF, LKM
allows hot plugging of modules in the OS kernel thanks
to tools such as modprobe. Unfortunately, during our first
prototyping, we face the most common issue of kernel module
utilization: the whole system frequently crashes at the slightest
mistake. Indeed, there is no verifier to guarantee the safety of
the OS. This is a major difference with eBPF programs; kernel
modules are entirely part of the kernel. As such, they have the
same rights as the kernel itself and can perform without any
control, any operations (call any kernel functions, access any
memory buffer and register, etc.). Furthermore, there is a lack
of kernel debug tools and it takes time to troubleshoot the
code and repair the bug.

2) Implementation Overview:

VTL combines two kernel subsystems: XDP and TC [17], part
of eBPF. This association permits (i) to grasp the outgoing
packets as late as possible just before they reach the network
interface card (NIC) and (ii) to pick up the incoming packets
as early as possible before they reach the OS network stack.

KTF: an eBPF instantiation of TF. In the current imple-
mentation of VTL, a Transport function (TF) is instantiated
in the form of eBPF programs and called KTF for Kernel
Function Transport. KTF inherits common properties of an
eBPF program, i.e.: (1) Input interface: a hook point serving
as an entry point of the function (TC to get all egress
packets, and XDP to pick all ingress packets); (2) Shared
Memory: MAPS, serving as data buffers to store packets for
eventual retransmission, or to share control information with
the user-space programs such as a list of already acknowledged
packet or KTFs negotiation state; (3) Output interfaces:
helper functions used to implement the core algorithms of the
protocols and serving as output points towards the next KTF,
the application, or the network.

VTL extends helper functions provided by the native eBPF
VM in order to address some specificity related to L4 protocols
functioning. For instance, a “simple” stop-and-wait protocol
needs a timer to trigger packet retransmission in case of loss.
Nevertheless, there is currently no timing control helpers. VTL
then adds and exposes to KTFs a set of helper functions
necessary to start and stop a timer. Table II summarizes the
set of helper functions added by VTL.

3) Aware-application Session Initiation:

Obtaining VTL Socket. Prior to all, the aware-application must
obtain a VTL socket. The application indicates its transfer
mode in one of the following modes: sender, receiver, or
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Fig. 4. Data moving between application and VTL socket and its buffers.

both. Based on the transfer mode specified by the applica-
tion, Control Broker configures a new VTL socket and its
associated buffers (see Fig. 4) and triggers the deployment of
the canonical graft (see Section 4). Finally, Control Broker
associates the deployed canonical graft’s file descriptor to the
VTL socket and gets back the resulting VTL socket structure
to the application. At this stage, the application gets a ready
VTL socket that it could use to send and receive its data.

Protocol Grafts Negotiation and Deployment. Protocol
grafts negotiation process between a sender and receiver is
shown in Fig. 5. Each side of the connection maintains
its own map named gos_nego_MAP. Each index of the
gos_nego_MAP associates the file descriptor value of the
VTL socket and the associated graft negotiation outcome:
N_ACCEPT or N_REFUSE. At the sender side, the canon-
ical graft named egress_cano_graft runs two KTFs: one
TC section named egress_tf_sec and one XDP section
named listener_ tf_ sec. The receiver side canonical
graft, named ingress_cano_graft, executes a single XDP pro-
gram section named ingress_tf_sec.

Sender: the client of the negotiation. Aware-application
that has specific requirements defines them by invoking the
protocol-agnostic API D. Based on predefined matching rules,
Control Broker selects in the KTFs pool the most appropriate
egress and ingress grafts to meet application needs. Then, it
pre-builds a negotiation packet and transmits it to the IP layer
(2. It then waits for a while before looking up the negotiation
state in the gos_nego_MAP which must be updated by
listener_tf_sec at the receipt of the receiver reply. The
packet is finally transmitted to the network device (3. The
negotiation acknowledgment packet, sent by the receiver @
in reply to the negotiation request, is intercepted and processed
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by listener_tf_sec which updates the gos_nego_MAP
to signal to Control Broker the receiver response (8. In the
case of acceptance (value set to N_ACCEPT in the map),
Control Broker triggers the deployment of the selected egress
graft to replace the canonical one (9.

Receiver: the server of the negotiation. After the applica-
tion has finished obtaining a VTL socket, it issues a blocking
request () to expect and retrieve the outcome of the negotia-
tion handled by Control Broker. At the receipt of a negotiation
packet from the sender (4, ingress_tf_sec delivers it
to Control Broker (5. Then, it consults the KTFs pool to
confirm the availability of the ingress graft requested by the
sender and updates the gos_nego_MAP to N_ACCEPT; if the
availability of the requested KTF is not confirmed, the map is
updated at N_REFUSE . In the case of availability of the
requested graft, after updating the map, Control Broker trig-
gers the requested ingress graft deployment . Each time it
receives and passes a negotiation packet, ingress_tf_sec
waits for a while, then reads gos_nego_MAP to check
the decision taken by Control Broker and ends up by
sending acknowledgment packet to the sender @ This ac-
knowledgment packet should take one of the two following
values: NEGO_ACK in case Control Broker validates the graft
negotiation request or NEGO_NACK if not.

4) KTFs Deployment Workflow:

When Control Broker requests the deployment of a specific
KTF stored as an object file, Launcher picks it from the
KTFs pool and starts its loading. KTFs pool is a repository
of a set of precompiled and ready to be deployed KTFs. The
precompilation of KTF in the form of an object file eliminates
overheads of the Clang/LLVM compiler during the deployment

of TFs (see Section 4). Before its effective loading, a KTF is
checked by the verifier via a series of verifications® to ensure
that the deployed KTF will not crash the OS. Once the verifier
finishes its checking, the KTF is compiled by the JIT compiler
in the eBPF native assembly code of the end-system CPU. The
loaded KTF is finally attached to the network interface and
ready to process all incoming packets if attached to the XDP
hook and all outgoing packets if attached to the TC hook.

5) Data Delivery Path:

Fig. 4 depicts how internally the VTL socket transfers data
through its associated buffers. During data moving, the interac-
tions between the application and VTL system are performed
asynchronously thanks to pairs of buffers at the transmission
(Tx buff and skb buff) and at the reception (Rx buff and umem).
Application ready to send data puts it in its 7x buff where Data
Broker picks it up, forms VTL packet payload, and pushes it
on the skb buff for the IP layer.

At the reception, the received data might be sent directly
to Data Broker in userland for fast delivery to the appli-
cation. With the aim of making use of XSK socket zero-
copy capability, Data Broker and the OS kernel share the
umem buffer. Since the umem buffer is shared, the memory
access conflicts and deadlock events might happen. To prevent
that, VTL leverages AF_XDP socket family [18] features to
associate two ring buffers to the umem buffer: the fill ring

2A common list of verifications include but are not limited to: (i) the
syntax of C code instructions, is there any infinite loop without explicit stop
condition; (ii) the way the protocol component interacts with the kernel, is
there any use of unknown or unauthorized helper function; (iii) the memory
access, does the KTF try to access a specific memory without prior check the
accessibility of this memory; (iv) the number of instructions in the KTF that
must be under 1M (4096 for all Linux version prior to v5.2.0).
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and the Rx ring. The former is used by Data Broker to pass
the ownership of the packet buffer to the kernel (9 in Fig.
4) whereas the kernel uses the Rx ring to pass the ownership
of packet buffer to Data Broker (@ in Fig. 4). In this way,
when the kernel receives a buffer on its fill ring, it knows that
the umem memory space associated with the buffer is free and
that it can safely put incoming frame data on this space. In the
same way, when Data Broker receives a buffer on its Rx ring it
knows that the umem space associated with that buffer is free
and that it can pick up the data there without conflict with the
kernel. Finally, Data Broker makes payload data available on
the Rx buff for the application where this latter may retrieve
it by making use of the protocol-agnostic API.

6) A Typical Transport Session of Aware-application:
Protocol-agnostic API component ensures the principle of the
separation between application and protocol. It is a shared
library used by applications to express their requirements
and to send/receive data. The protocol-agnostic API is easily
extensible and may integrate other functions in the future to
respond to more extensive use cases. We illustrate the currently
implemented functions through a function call flow in Fig.
6. Table III summarizes the way applications should specify
parameters when using the protocol-agnostic API.

7) Hooker: Legacy Applications Integration:
Hooker component’s goal is to provide support to legacy
applications. The internal structure of Hooker is shown in Fig.
7. Hooker attaches to the root cgroupv?2 [19]; therefore, by
making use of the hierarchical model of cgroups, it processes
every ingress and egress packets of all processes running on
the end-system. Hooker maintains a map of type SOCKMAP
that key is a structure containing the addressing information.
This key is used by the msg_redirector program to identify the
right socket towards which the packet data must be forwarded
to. Each time a connection is established or closed by one
process, the map is updated by msg_redirector thanks to a
SOCKS_OPS bpf program section attached to cgroupv2.

Every time an application process sends a data
packet by calling into sendmsg() on a TCP socket,
the SK_MSG bpf program running by msg_redirector
intercepts it, rewrites it if necessary thanks to the
helper function bpf_msg_push_data (). Finally, to
deliver the message either to the redirection socket or

Userland

hooker_userspace

Legacy App

sendnsg()

------ redir_sock ---»»»---------»»-------[(cp_sock
bpf_msg_redirect_map()
_______ a0
- push 2
msg_redirector et ;S92

O O
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protocol-agnostic API

VTL datapath
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T

XOP_DROP

Kernel-Space

NIC }

Outcoming packets data path

Incoming packets data path

Fig. 7. VTL Hooker Component Internal Structure.

to the TCP socket, msg_redirector program leverages
bpf_msg_redirect_map () helper  function.  The
redirection socket is created and maintained by Hooker
userspace program which will use the recvmsg () operation
to get the redirected data packet and send it to the VTL
datapath through the protocol-agnostic API. At the reception,
once the host network interface (NIC) receives data packet,
the XDP program running by Hooker ingress intercepts the
data packet and processes it by issuing the right verdict.
The Hooker ingress program can drop the packet data
(XDP_DROP), redirect it to the same NIC (XDP_TX) or,
as currently done, pass it to the ingress VTL datapath
(XDP_VTL_ACK) for further processing.

IV. EXPERIMENTS AND VTL EVALUATIONS
A. Implemented KTFs and Grafts

We revisited and implemented, from scratch, a set of pro-
tocol mechanisms well-known in the literature namely and
ARQ reliable graft based on Go-back-N, a Selective Repeat
(SR) graft, and a Partial Reliable (PR) graft. Code Listing 1
illustrates a fremplate of an egress graft part of a protocol.

Canonical Grafts purposes are (i) to enable the immediate
transfer of data of applications that do not have specific
requirements and (ii) to conduct the KTFs negotiation stage
for QoS-oriented applications. Canonical grafts are deployed
at the creation of a new VTL socket to which the KTFs
composing the canonical grafts are associated by default. For
each packet it processes, the egress canonical graft sets up
the type header field of the packet (either to DATA or to
NEGO), ensures the processing of acknowledgment packet
and signals to Control Broker the receiver’s reply thanks to
the shared MAPS. On its side, at each packet it receives,
the ingress canonical graft extracts the fype value of the
packet before passing it either to Control Broker or to Data
Broker in userland. When the packet type is DATA, the
ingress canonical graft immediately passes it to the Data
Broker and continues processing the next incoming packet.
Otherwise (i.e., the received packet is negotiation one), it waits



TABLE III
VTL PROTOCOL-AGNOSTIC API FUNCTIONS PARAMETERS.

Functions Parameters

Description

vtl_init () mode, src_ip, dst_ip

Create anew VTL socket and its associated resources
(buffers, canonical grafts, etc.).

vtl_sock,1l4_services,

vtl_negotiate() qos_values

Get application’s requirements and trigger a graft
negotiation process.

vtl_validate() vtl_sock

Retrieve graft negotiation.

vtl_send_data () vtl_sock, buffer,

buffer_size

Send payload and retrieve the size of written data.

vtl_recv_data() vtl_sock, buffer,

buffer_size

Fetch payload and return the read data size.

vtl_close () vtl_sock

Close VTL socket and free resources (buffers, KTFs,
etc.)

for the outcome of negotiation handled by Control Broker,
transmits an acknowledgment to the sender, and pursues the
next packet’s processing.

Partial Reliable (PR) Graft. Partial reliability concept
consists of allowing KTFs not to issue at reception all the
data packets submitted by the sender, provided to respect a
maximum percentage MAX_LOSS of allowable losses (e.g.
20% of the packet data may be lost). The goal is to deliver,
as quickly as possible, the out-of-sequence packets data to
applications that tolerate a certain amount of loss.

#include <vtl.h>
// and other useful headers

/+ Declare a MAP to store data packet for retx */
struct bpf_elf_map SEC( )
EGRESS_PKT_WND_MAP = {
.type=BPF_MAP_TYPE_HASH,
.size_key=sizeof (int),
.size_value=sizeof (vtl_pkt_t),
.pinning=PIN_GLOBAL_NS,
.max_elem=16,

bi

SEC ( )
int _tf tc_egress(struct __ sk _buff xskb) {
// skb is the entry point of the TF

/#+%x TF code here *x*%/

}

SEC ( )
int _listener_tf (struct xdp_md *xskb) {
// xskb is the entry point of the TF

/##++ TF code here #*x/

}

Code listing 1: Template of protocol graft and Kernel Trans-
port Function (KTF).

B. Testbed Setup and Methodology

We implemented and evaluated VTL under Linux 5.3.5.
VTL experiments are performed under a testbed constituted
by two hosts linked by one router. The router and the as-
sociated network parameters are emulated thanks to netem
tool [20]. Unless otherwise stated, the network parameters

used during experimentation are the following: RTT=10 ms,
bandwidth=16 Mbps and loss rate € [0, 5%]. Each host is
equipped with Intel Core 17-7500U CPUs, 3.8 GiB RAM, and
Qualcomm Atheros QCA6174 NIC driver.

Further, we implemented two VTL aware-applications, one
acting as a data streaming server and the other one playing
the client role. The server application is able to stream several
kinds of files with different sizes and formats. The reference
we used to discuss the obtained results is TCP (cubic) that
we evaluated in similar network conditions. The window
size of the Go-Back-N, the Selective Repeat, and the partial
reliability grafts is set to 16. Finally, to avoid interference with
packets not directed to VTL within the testbed environment,
we set the IP protocol number of VTL packets to experimental
hexadecimal value O0xfd [21].

C. Microbenchmarks

1) KTFs Size and Graft Negotiation Delay:

First, we assessed the delay required to complete protocol
graft negotiation procedure. This delay is composed of 1/
packets processing delay (negotiation one and its associ-
ated acknowledgement), and 2/ KTFs deployment delay at
both sides (sender and receiver). Nevertheless, the carried-
out experiments demonstrated that the packet processing delay
is negligible compared to the delay of KTFs deployment
precisely when the RTT is low (as that is the case here). Con-
sequently, the results reported in Fig. 8 illustrate essentially
the delay of KTFs deployment within the end-system OS. We
compute delays with the help of time tool [22].

The delay of one KTF deployment is the sum of the
compilation delay (T0) and the loading delay (T1+T2). The
former measures the time required by the userland compiler
Clang/LLVM to compile the KTF from a source file to object
file. Further, the loading delay is the total time elapsed during
verifier/JIT operations (see footnote 2 in Section 3) and the
XDP (resp. TC) hooks attaching performed by iproute?2
[23] (resp. tc [17]) tool. Based on this breakdown of the
negotiation delay, to reduce the deployment delay (i.e. the
negotiation delay), the first and intuitive approach is to pre-
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compile and to store KTFs/grafts as an object file rather than a
source file. This will obviously eliminate userland compilation
delay during the deployment. The results reported in Fig. 8
validated this intuition and most importantly showed that the
benefit of precompiled grafts is not negligible. In fact, we
found that when the KTFs are precompiled and stored as object
files, the total delay of protocol grafts negotiation could be
reduced by 20% to 60%. Moreover, we noted that (excepted
Go-Back-N) the negotiation delay increases with the size of
the grafts, which makes sense in view of the important part
of the deployment delay over the total cost of the negotiation
procedure.

Given the significant reduction enabled by precompiled
grafts on the negotiation delay, one might be tempted to
precompile all grafts and store them as object files in the KTFs
pool. Nevertheless, a closer look at Table IV that provides the
statistics on the complexity of the grafts shows that even if the
precompiled grafts have a definite advantage on the negotiation
delay, they are bulkier than the non-precompiled grafts (i.e.
stored as source files). For example, for a canonical graft, it
takes 6 times more memory space to store its precompiled
version (33.1 KB) than its source version (5.58 KB). If the
KTFs pool is small and the end-system has a large storage
capacity (as in most commodity computers.), the size of the
precompiled grafts will not be a limit. This will not be the
case when the KTFs pool will store more and more protocol
grafts or when the end-system will have less storage capacity
(such as on a microcontroller). Moreover, in a scenario where
protocol grafts, instead of being stored locally, should be
retrieved from a remote server, a large graft will undoubtedly

TABLE IV
THE CODE COMPLEXITY OF THE IMPLEMENTED GRAFTS.
SLoC Source File Size Object File Size
Grafts - - =
egress | ingress | Total egress ingress Total egress ingress Total
Canonical 102 65 167 345KB | 2.13 KB 5.58 KB 214 KB | 11.7KB | 33.1 KB
Go-Back-N 187 81 268 8.12KB | 2.84 KB | 10.96 KB | 25.6 KB 147 KB | 40.3 KB
Selective Repeat 193 65 258 8.83 KB | 221 KB | 11.04 KB | 26.8 KB 13.7 KB | 40.5 KB
Partial iabili 206 104 310 9.13 KB | 3.07 KB 12.2 KB 278 KB | 145 KB | 42.3 KB

take longer to be downloaded. This will have a negative
impact on the delay of the graft negotiation phase. Finally,
the impact of protocol graft negotiation delay should be more
or less cushioned by the actual duration of the transfer of the
application’s data. That is to say, for a short duration data
transfer, it might be more interesting to keep the canonical
grafts whereas for a transfer of large amounts of data, the
application could afford to trigger and wait for the completion
of a negotiation procedure more.

2) Data Moving Performances: latency & throughput:
Second, we evaluated each implemented protocol graft’s per-
formances within several network conditions by the variation
of the network loss rate. The results are reported in Fig. 9 and
show the file completion time (FCT) and the data transfer
speed rate. We define FCT as the amount of time elapsed
between the first packet sent and the last packet received
during the Transport session. The acceptable loss rate in partial
reliability graft is set approximately at 10%. According to [7],
this is the maximum loss rate that can be resorbed by adaptive
coding for some applications such as multimedia transfer.

When there is no packet loss in the network, all protocol
grafts have almost equal performances. For small files (< 8
MB), TCP clearly presents the lowest performances. However,
when the file is a bit larger (> 8 MB), TCP achieves better
throughput and FCT than all protocol grafts executed in VTL.
Under packet losses, as expected, Go-Back-N graft presents
the worst performance. The severity of this poor performance
is proportional to the level of the loss rate. Contrary to the
lossless network environment where TCP always presents
better performance than all protocol grafts when the file size
is large, we could note in Fig. 9 (e) and (f) that partial
reliability graft has better performance than TCP. Two factors
could explain this: first, the partial reliability graft does not
systematically retransmit all windows containing lost packets
unless the number of lost packets is greater than the acceptable
loss rate (2 out of 16 packets ~ 10%). Second, it is well-known
that when TCP experiences losses, it exponentially decreases
its congestion window (i.e. its data sending speed rate).

Finally, we demonstrated that VTL can perform a runtime
reconfiguration of protocols based on a straightforward pre-
defined reconfiguration rule. The metric under monitoring by
NetMonitor component during this test scenario is the RTT
that is reported with 0.5 ms periodicity. That is to say, the
RTT of the network link is calculated every 0.5 ms.

The rule is the following one: when RTT < 300ms, VTL
deploys and maintains the use of the Go-Back-N protocol graft
and as soon as RTT > 300ms, it systematically triggers the
replacement of Go-Back-N by the partial reliability protocol
graft with MAX_LOSS keep at approximately 10%.
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Fig. 9. Data moving performances under various network conditions of protocol grafts: Go-Back-N (gBn), Selective Repeat (SR) and Partial Reliability (PR).

The file used in this use case is a 32 MB video file. We
evaluated two types of applications: VTL aware-application
and TCP application. For each application, the scenario is
identical. During the first 20 seconds, data packets are trans-
ferred under RTT of 20 ms. Between the 20th and the 25th
second, we switched the RTT from 20 to 320 ms and observed
the adaptation actions implemented by the VTL. The results
(see Fig. 10) show that VTL is able to adapt to the network
conditions in order to limit performance degradation. Indeed,
we can observe in Fig. 10 that when an additional delay is
introduced at "22 ms, TCP throughput significantly decreases.
This decrease remains permanent. However, VTL first ex-
periences the effects of the increased delay before slightly
offsetting the impacts of the change in network context by
replacing the Go-Back-N protocol graft with partial reliability
one.

Throughput (Mbps)

Video Timeline (s)

Fig. 10. Throughput variation of VTL aware-application in changing network
conditions.

V. LIMITATIONS AND FUTURE WORK

The protocols we have relied on to assess and demonstrate
VTL’s capabilities are basic mechanisms. A quite feasible and
relevant perspective would be implementing more complex
mechanisms such as those of the QUIC or MPTCP protocols
in the form of eBPF programs. This enrichment of the protocol
mechanisms set would lead to the extension of the carried out
evaluations and to the reinforcement of the results obtained.

Although conceptually robust, eBPF technology presents
some limitations related to the current implementation choices
of some of its components, notably SOCKMAP. In the imple-
mentation of the Hooker component of VTL, these limitations
have led us to not being able to bypass TCP socket calls
without ’going back” from the kernel-space to the user-space.
At the cost of an implementation effort (and potentially higher
complexity), we could initially consider replacing SOCKMAP
with a DATAMAP which would allow the Hooker to share data
with the application directly in the kernel without the need to
open and manage additional sockets from the user-space. A
contribution to the eBPF community (more broadly to Linux’s
one) to address this limitation is a possible technical area of
future work.

VI. CONCLUSION

In this paper, we introduced the VTL system that can (i)
timely and effectively deploy Transport protocols within the



OS kernel and (ii) ensures the flexible use of the deployed
protocol by any application, i.e., aware and legacy ones. Fol-
lowing a modular approach, we implemented each considered
Transport protocol component as a set of basic Transport
functions called TF. In the current implementation of VTL,
each TF is implemented in the form of an eBPF program
that can be deployed at runtime in the kernel-space of the
operating system. The deployed TF in kernel-space is called
KTF (that is a pluggable form of TF) and could be composed
with other KTFs to form a comprehensive protocol mechanism
that we called a protocol graft. To evaluate the dynamic
deployment capability of VTL, we implemented from scratch
a set of protocol grafts. During our experiments, we found
that VTL could speedily deploy the protocol grafts and KTFs,
notably when the deployed grafts and KTFs are precompiled
and stored in a dedicated repository. Finally, we evaluated the
implemented protocol mechanisms’ performances and showed
that they achieve excellent performances under VTL. The
reference during this evaluation was TCP (cubic) performances
in the same testbed configurations.
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