
HAL Id: hal-02491854
https://hal.science/hal-02491854v2

Preprint submitted on 7 Jun 2020 (v2), last revised 22 Jul 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VTL: Timely Deployment and Seamless Adoption of
Network Protocols

El-Fadel Bonfoh, Samir Medjiah, Djolo Cédric Tape, Christophe Chassot

To cite this version:
El-Fadel Bonfoh, Samir Medjiah, Djolo Cédric Tape, Christophe Chassot. VTL: Timely Deployment
and Seamless Adoption of Network Protocols. 2020. �hal-02491854v2�

https://hal.science/hal-02491854v2
https://hal.archives-ouvertes.fr

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 1

VTL: Timely Deployment and Seamless Adoption
of Network Protocols

El-Fadel Bonfoh, Samir Medjiah, Djolo Cédric Tape, and Christophe Chassot

Abstract—Internet Transport layer plays a major role in the
end-to-end QoS delivered to applications on end-systems. Until
now, it has been subject to several propositions to improve
its extensibility and adaptability to the rapid evolution of the
Internet. Unfortunately, most of these proposals face deployment
obstacles and encounter shy-of-adoption on the Internet. This
leads to sclerosis of the Transport layer. In order to address this
issue, we propose VTL, a protocol deployment and data delivery
management system aiming to timely and dynamically deploy
protocol mechanisms to ensure optimal data moving between end-
systems. VTL provides support for legacy applications without
requiring their modification. VTL pushes innovation at the
Transport layer by enabling more agility and flexibility in the
provisioning of Transport services to applications. VTL is built
on a combination of two Linux kernel subsystems: TC that hooks
under IP layer to process outcoming packets, and XDP that
attaches to NIC driver to early process incoming packets. TC
and XDP are also part of eBPF infrastructure which eliminates
most of security concerns and provides the ability to insert
safe bytecode within the OS kernel from a userland program.
Experimentations under Linux 5.3.5 (i) show VTL ability to quick
off the deployment of protocol and to ease their adoption by
applications, and (ii) evaluate VTL performances by taking legacy
TCP stack as reference.

Index Terms—Communication Protocols, TCP/IP, eBPF/XDP,
Linux OS, Runtime Deployment, Prototype implementation and
testbed experimentation.

I. INTRODUCTION

THE fundamental role of Internet Transport layer is to
ensure end-to-end data moving between applications run-

ning on end-systems by providing multiplexing/demultiplexing
mechanisms based on the association of IP addresses and
port numbers. Additionally and in most cases, it ensures the
regulation of data transmission at end-systems as well as
within the network. With the growth of the Internet, several
Transport layer protocol mechanisms [e.g., 4-11] have been
proposed in the literature to improve the end-to-end quality
of service with the aim to satisfy the raising requirements of
applications and to adapt to a variety of emerging networks.

Unfortunately, as reported in Fig. 1, most of those protocols
either are not available within the mainstream OSes and/or
suffer from lack of adoption within the Internet. Additionally
to data reported at the top of Fig. 1, results of recent studies
[1], we capture a dataset of incoming and outgoing Internet
traffic to and from two Linux servers running different OS and
deployed at our private datacenter. The examination of the data
under Wireshark analyzer tool leads us to the same conclusion

E.-F. Bonfoh, S. Medjiah, D. C. Tape, and C. Chassot are with the LAAS-
CNRS laboratory, University of Toulouse, 31400, Toulouse, FRANCE (e-mail:
name@laas.fr).

0 10 20 30 40 50 60 70 80 90 100

Others

UDP

TCP

0 10 20 30 40 50 60 70 80 90 100

Linux 5.3.5

Firefox ESR

Chrome TCP

UDP

Others

0 10 20 30 40 50 60 70 80 90 100

Linux 4.10.0

Firefox ESR

Chrome TCP

UDP

Others

Fig. 1: Transport protocols usage repartition. (1) To navi-
gate on youtube.com or gooogle.com, the same application
(Chrome) uses different transport protocols depending on
whether it is running under Linux 4.10.0 (bottom) or under
Linux 5.3.5 (middle) ⇒ the used protocol depends on it
availability on the OS. (2) The same kind of application (i.e.
web browser, here Chrome and Firefox ESR) surfing on the
same website (youtube.com or facebook.com) don’t use the
same Transport protocol ⇒ the used protocol depends on the
one adopted by the application programmers.

as [1]: despite their convenient conceptual approach and better
performances against TCP/UDP in several cases [16, 18], any
new protocol solutions other than TCP and UDP are (i) faintly
deployed (in worst cases un-deployed) and (ii) suffer from
shy-of-adoption by applications on the Internet. This situation
prompts sclerosis of the Internet Transport layer also known
as ossification of Transport layer that explicates the lack of
effective innovation in this layer of Internet communication
stack. We argue that this sclerosis of Internet Transport layer
is a major barrier to the introduction of more agility and
flexibility necessary to the evolution of new paradigms in the
Internet such as the emerging softwarized networks and their
instantiations [42]. This paper therefore proposes to address
this sclerosis.

Deal with challenges (see section II) associated with the
Transport layer sclerosis calls for resolving two major ques-
tions: (i) How to deploy in a timely manner a specific protocol
mechanism at the end-system? (ii) And, assuming the avail-
ability of the mechanism on the end-system, how to ensure its

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 2

seamless usage by (existing) applications? The response to this
last matter is a key factor in the stimulation of the adoption of
any new protocol mechanism as long as this protocol meets the
needs of the application. However, most of the prior research
efforts to bring extensibility at the Internet Transport layer
focus on only one of the two above-mentioned concerns, not
yet both till now as far as we know.

On the one hand, part of investigations [2, 15, 28, 29] to
address Transport layer sclerosis proposes to rethink the whole
layer architecture in a way to eliminate current socket API
limitations. This approach goal is to ease the adoption of all
protocols available on the end-system by non-legacy appli-
cations. Nevertheless, this approach presents two main draw-
backs. First, it makes the assumption that the required protocol
is already available on the end-system OS and therefore lacks
a method to dynamically deploy a new protocol mechanism
when it is not available at the end-point. Second, it doesn’t
provide any transparent support for legacy applications, these
should be rewritten to leverage the new architecture.

On the other hand, several studies build their approach
around a specific protocol by either (i) extending an existing
protocol (e.g. TCP) [6, 19, 22, 23], (ii) building a part of the
protocol in user-space on top of UDP [7, 22, 27], or (iii) by
moving the entire network protocols in user-space [17, 24,
25, 26]. The studies that follow such an approach have the
worth of showing how to accelerate the deployment and the
extensibility of a kind of specific protocol. Nevertheless, such
an approach lacks a protocol-independent API and then forces
applications to bind to a specific protocol at their design-time
and may, therefore, leads to slow adoption.

In the light of the above observations, this paper argues
there is still a need for an approach that jointly (i) treats the
deployment issues within the end-systems and (ii) enables the
acceleration of the adoption of new protocol solutions by ap-
plications. Our approach follows the below design principles:

Transparent integration of legacy applications. As we
will see in section II, most of the existing applications use
the standard API socket to consume Transport layer services.
Most of the time, application programmers are unwilling to
switch from the standard API socket to the API of any new
architecture. Therefore, to ease and stimulate its adoption, the
Transport layer must provide transparent support to legacy
applications i.e. those applications should consume Transport
layer services without the need to rewrite them.

Separation of protocol from aware-application. In the
current standard socket API, the legacy application specifies
the protocol to be used at the design-time. This leads to a
binding and dependency of the application to a unique and
specific protocol preventing the timely structural adaptation of
the protocol to the evolution of network state or to the change
in the application requirements. Our approach breaks this
static tie between the application and protocol by providing
a protocol-agnostic API to aware-application in the way that
the latter expresses its needs (in terms of Transport features
associated with QoS parameters) instead of the specification of
the protocol to use. This principle is in the same line with the
TAPS standard [2] but goes far by providing seamless support
to legacy applications as stated above in the first principle.

Protocol modularization. In order to ease per-session pro-
tocol configuration and reconfiguration, we split any protocol
in a set of small units called Transport Function (TF) that are
packaged in deployable software wrappers (such eBPF pro-
grams, loadable kernel modules or Docker containers). Further,
the fact to integrate this principle brings to our approach most
benefits of modularization namely (i) the reusability, i.e., folks
other than the TFs developers are able to use them in order
to compose another protocol without the need either to know
or to change the code inside those TFs; (ii) the adaptability,
i.e., the ability to adapt to the evolution of network state or
applications requirement by replacing or inclusion of new TF
that provide more appropriate features in the new conditions;
and (iii) the customization/efficiency, i.e., the capacity to tailor
the protocol to the application requirements and therefore
reduce overheads by the elimination of unnecessary services.

We design and implement our approach in VTL, a protocol
deployment and data delivery management system that, from
a userland library performs runtime deployment of protocol
mechanisms within the OS kernel.

To realize its goals, VTL leverages and combines two kernel
subsystems: XDP and TC, part of eBPF framework. The aim of
this association is (i) to grasp the outcoming packets as late as
possible just before they reach the Tx NIC ring buffers and (ii)
pick up the incoming packets as early as possible before they
reach the legacy network stack. Therefore, on its egress path,
VTL places TC hook under the IP layer in order to process
all outcoming packets as soon as they left the kernel network
stack. To lower as possible the legacy network stack overheads
on transmission, VTL takes advantage of RAW sockets to send
applications’ payload data directly to the IP layer without any
L4 processing. On its ingress path, VTL attaches XDP hook to
the Rx NIC driver to get and process the raw incoming frames
as soon as they enter the NIC without letting them reach the
legacy network stack. The goal is to fast deliver the data to
the application and completely remove legacy network stack
processing overheads at the reception. The fact that TC and
XDP are incorporated into eBPF infrastructure allows using its
verifier to guarantee the safety of the deployed bytecode and
then reduce most of security concerns and end-system crash
risks.

The main contributions of this paper are summarized as
follows: (i) we propose a technique to 1/ timely deploy
protocol mechanisms within the OS kernel and to 2/ ensure
their transparent use by aware-application as well as legacy
one; (ii) we design and implement VTL, a protocol deployment
and data moving management system; (iii) we implement from
scratch a set of protocol mechanisms to demonstrate and test
VTL capabilities to deploy and reconfigure at runtime protocol
mechanisms; (iv) finally, we conduct thorough experimenta-
tions of VTL under Linux 5.3.5 to evaluate its performances
(in terms of latency and throughput); we take Linux legacy
TCP as a reference of performance evaluations.

II. VTL DESIGN SPACE

This section will discuss the Transport layer sclerosis causes
and the resulting requirements for the VTL system. The goal

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 3

is to present the ecosystem of VTL and to introduce an
overview of its keys components. An insightful inspection of
the literature [3, 15, 17, 21] leads us to identify three causes
of the sclerosis of the Transport layer. The first two are related
to end-systems and are the focus of this paper. The last one
falls outside the scope of the contributions of this paper (see
section I).

A. Deployment Barriers

OS constitutes the location environment of the Transport
protocol mechanisms. The literature review shows that at the
question – in what space of the OS the protocol must be
implemented and executed? – two main approaches subsist. On
one side, for security and performance considerations, several
authors suggested to implement and execute the protocol
mechanisms in the kernel-space of the OS [32, 34, 35, 40],
and most of them went further and proposed to offload these
mechanisms in the NIC driver of the end-system [12, 36, 37,
41]. On the other side, a series of studies proposed to move
protocol stacks in the user-space [17, 24-26] of the OS with
the goal to gain more flexibility and to ease the integration of
new protocol solutions. More recent works in line with this
latter approach leveraged software acceleration tools such as
DPDK [13] or NetMap [14] to reduce performance degrada-
tion induced by the execution of protocols within a user-space
program. Nevertheless, user-space protocol deployment leaves
security and isolation concerns on the table [31].

Altogether, the appearance of software acceleration tools
such as DPDK and Netmap is relatively recent and the choice
that has since been made by OS developers is to dedicate
the kernel to the implementation and execution of Transport
protocol components. This choice is not without consequence.
To provide support for a new protocol, OS developers must
integrate it into the kernel, which requires upgrading of
their system. OS upgrade is not only time-consuming, very
tedious and error-prone, but it also poses enormous software
and hardware compatibility issues. As a result, OS upgrade
frequency is slow and for OS developers, only a high demand
from application developers can motivate and quick-off the
integration of a new protocol solution.

As a result, VTL must provide a safe and isolated runtime
environment for protocol mechanisms in the way that the
integration of new protocol components is transparent to the
OS and has little or no impact on it. This should not be
obtained at the sacrifice of flexibility. To fulfill those require-
ments, we opted for the in-kernel eBPF VM as the runtime
environment for protocol functions. Thanks to its integrated
verifier, eBPF VM provides necessary isolation and safety:
each protocol component is checked before its insertion in
the VM to guarantee that its execution will not harm the OS.
Furthermore, eBPF infrastructure provides to VTL the ability
to introduce programmability within the OS kernel by enabling
on-the-fly user bytecode insertion and temporary modification
of kernel behavior: protocol components may be inserted in a
timely manner without the need to recompile and upgrade the
OS.

B. Shy-of-adoption Explanation

The main interface used by applications to consume the
services provided by the Transport layer is the standard socket
API. This API has the particularity of requiring application
programmers to choose the protocol at the design time of the
application (i.e. when the code is written). Therefore, to adopt
any new protocol solution, programmers must modify their
applications. This can quickly become complex and is a source
of instability if it is necessary to rewrite application each
time a new protocol solution is released and best matched the
application needs. As a consequence, application programmers
prefer to rely on standard protocol solutions such as TCP or
UDP, which are recognized as stable and available on the
mainstream OSes and supported throughout the Internet, rather
than using a new protocol, even if this one is more appropriate
to meet the QoS requirements of their applications.

It results that VTL must provide a protocol-agnostic inter-
face to the applications. In this work, the protocol-agnostic
interface is similar to TAPS API [2]. In this way, applications
don’t have anymore to invoke a specific protocol but just
specify the services they want from VTL. The choice of the
most appropriate protocol mechanisms to satisfy application
needs is left to VTL. Furthermore, VTL must support legacy
applications without the need to rewrite them. This may be
performed by seamlessly redirect legacy applications socket
API invocations towards the protocol-agnostic interface.

C. Other Barriers Out of End-systems

Indeed, while the logic that prevailed at the birth of the
Internet is based on an end-to-end principle where the network,
composed mainly of routers, had no visibility over what
happens beyond the L3 level, the massive introduction of
middleboxes such as NAT, IPS/IDS, firewalls, proxies, etc., has
“violated” this principle. Those middleboxes are able to read
and modify packets up to level L4 and above, and reject any
unrecognized protocol. For security and performance reasons,
middleboxes vendors are unwilling to configure their devices
to whitelist any new protocol until it is supported by the
most popular OS developers. Nevertheless, through extensive
measurements, the authors of [17] come to the conclusion that
“the blame for the slow evolution of protocols (with extensions
taking many years to become widely used) should be placed
on end-systems”. Therefore, we argue that a handy approach
should place focus on the end-systems and we preconize
systematic fallback to TCP or UDP to prevent complete failure
in case of rejection during middlebox traversal.

III. VTL SYSTEM OVERVIEW

Geared by our analysis (see section II), we designed and
implemented VTL, a system that is able to timely deploy
a protocol component within the OS kernel and ease their
adoption by providing protocol-independent API to aware-
application and seamless support to legacy ones. As stated in
section I, VTL is designed around a set of principles namely
the notion of a protocol composition from a set of basic
functions. This section introduces the key concepts of this
principle and presents an overview of services and features

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 4

Protocol graft

Appli

Transport

...
IP

Entry point

Packaging of each function within Software Container (eBPF programs, etc.)

⇒ TF: Transport Function

⇒

Dynamic composition of protocol graft by compilation of the interaction pattern

⇒

Reliability
functions

Flow control
functions

Congestion ctrl
functions

Encryption
functions

Reliability
functions

Flow control
functions

Congestion ctrl
functions

Encryption
functions

Reliability
functions

Flow control
functions

Congestion ctrl
functions

Encryption
functions

Fig. 2: Tranport Function (TF) and Protocol Graft illustrations.

provided by VTL. It is worth to note that the concepts related
to a protocol composition are not new and specific to VTL;
therefore, they are not present here as a contribution of this
paper but only to show up the readers the way VTL organizes
its data plane for more efficiency in management of protocol
deployment and data delivery. The main contributions of this
paper are those stated in section I.

A. Transport Function (TF) and Protocol Graft Concepts

1) Transport Function (TF):
A Transport function (TF) is the most atomic entity of the
VTL data plane that executes a single protocol processing
logic such as a checksum calculation or packet numbering.
It provides one property that could roughly be grouped as fol-
lows (see Fig. 2): reliability functions, flow control functions,
congestion control functions, security/encryption functions.
Readers should note that all functions related to connection
management (opening, parameters negotiation, teardown, etc.)
are provided by default within the control plane of VTL by
Control Broker component (see Fig. lambda). Each TF must be
made “loadable” by it wrapping in software container (eBPF
programs, in the current implementation of VTL) that will
provides it with at least two important interfaces: (1) the
input interfaces from which it should receive any packet data
or control information; (2) the output interfaces to which it
should push any packet data. Furthermore, TF should have
access to a shared memory created and maintained by the
protocol graft to which it belongs.

2) Protocol Graft:
As illustrated in Fig. 2, a protocol graft is a list of loadable
TFs with their interaction pattern defining the way the TFs
are connected. It should provide one or more services such
as reliability service, ordering service, multipath service, en-
cryption service, and so on. A protocol graft is distributed
between the sender end-system and receiver ones and provides
a comprehensive single or more Transport feature(s). The
sender side maintained the egress graft whereas the receiver
side maintained an ingress graft. Fig. 3 illustrates a protocol
graft distribution for a typical ARQ-based reliable service;
note that this is only for illustration purposes; more com-
prehensive reliable service should have many other functions

such as duplication control. Finally, at each side of a session,
a protocol graft should create and maintain a memory buffer
shared between TFs serving to ensure data persistence.

B. VTL Services and Features

VTL core functionality is to deploy the appropriate protocol
graft on behalf of the application in order to ensure that data
are moved according to the application requirements. To do
that, VTL priorly provides applications with an access point
to Transport services in order to allow it (1) to express it
requirements, (2) to send and receive data, and (3) to reset it
requirements on-the-fly. The access point is explicitly provided
from a protocol-agnostic API in the case of aware-application
and seamlessly attributed to a legacy application so that the
latter should consume VTL services without any modification.
From an internal point of view, VTL ensures the Transport
session establishment as needed; ensures the selection, the
negotiation, and the deployment of the right protocol graft;
and monitors the network state in order to adapt at runtime to
the change of network environment. VTL provides by default
a message-stream-oriented service that should be replaced if
the underlying deployed protocol graft provides a byte-stream-
oriented one. Finally, VTL provides protocol developers with

get payload()

NIC

put payload()

NIC

Appli AppliSENDER RECEIVER

egress graft ingress graft

Entry point

Interactions pattern “Loadable” Transport Function (TF)

numbering()

compute
checksum()

send packet()

retransmit()

TF()

acknowledge()

recv packet()

validate
checksum()

control
sequence()

Fig. 3: Illustration of protocol graft providing an ARQ-based
reliable service.

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 5

User Space

Kernel Space

C-Std Library (libc)

User Space Socket API

Legacy Application

Kernel’s networking
datapath

Kernel Space Socket API

Network Interface Card

Aware-Application

Protocol-agnostic API

Launcher

Control
Broker

NetMon

Kernel VM

VTL_SOCK

Data
Broker

Hooker Userspace

Hooker Kernelspace

VTL Control plane

VTL Data plane

MAPS

Ingress GraftEgress Graft

KTF1() KTFn() KTF1() KTFn()

Fig. 4: VTL System Architecture Overview. Blue arrows rep-
resent the legacy application datapath, green arrows the aware-
application datapath, and black arrows the KTFs deployment
path.

the facilities to write, test and publish new protocols within
the end-systems. The rest of this subsection provides the
specifications of QoS and Transport Features in the context
of VTL.

1) QoS and Transport Features: VTL allows applications to
express their requirements by firstly characterizing the desired
Transport services and then associating to those Transport
services a set of required or desirable quality of service
parameters. A requested Transport feature should be expressed
in terms of reliability (full or partial), order (full or partial),
flow control, congestion control, security, and multipath. Ad-
ditionally to these Transport features, VTL allows applications
to associate QoS parameters that can be expressed in terms of
maximum acceptable delay or latency (max_delay, expressed
in ms), minimum throughput (min_throuphput, expressed in
Mb/s) and allowable loss rate (max_loss, expressed as a per-
centage). It should be noted that certain services requirements
by applications may be redundant, such as an application that
requests to set its allowable loss rate (max_loss) to zero and
at the same time invokes the use of a fully reliable Transport
service. In the current implementation of VTL, the selection of
the most appropriate TFs to meet the application requirements
is based on predefined matching rules built on top of a set of
decision trees. Future implementations of VTL would include
more complex selection models based on machine learning
techniques.

IV. VTL DESIGN AND IMPLEMENTATION

A. KTF: and eBPF Instantiation of TF

1) eBPF Overview:
The goal of this section is to provide the reader with a
background on eBPF [43]; the core technology on top of
which VTL is currently built. The authors of [44] presented the
Berkeley Packet Filter (BPF) virtual machine as a kernel agent
aiming to capture as early as possible incoming packets on the

Helpers Description
vtl_start_timer(i, n) Set timer i to n ms

vtl_stop_timer(i) Stop a timer i
vtl_build_graft() An exogenous wrapper of

bpf_tail_call() helper

TABLE I: Main added helper functions within VTL System.

host’s network interface card (NIC). For a long time, BPF has
been used for packet filtering. Recently, Linux introduced an
extended version under the name of eBPF [43], for extended
BPF. The name of eBPF no longer reflects the reality and
is confusing because a plethora of new features are added to
it, and its usage scenarios go far beyond the naive filtering.
Indeed, eBPF is used today by many industrials like Facebook
or Netflix to perform tracing, monitoring, networking or to
enhance the security of their systems. As its predecessor, eBPF
allows injecting bytecode within the OS kernel at runtime, i.e.
without having to recompile the OS. We can summarize eBPF
features into three major components: maps, helper functions,
and tail calls.

Maps are generic data structures storing a set of key /
value pairs used to exchange data either between user-space
programs and in-kernel eBPF programs, or between eBPF
programs running at different points of the kernel. Maps are
always attached to the root file system /sys and therefore
are very useful to ensure data persistence between successive
invocations of eBPF programs.

Access to kernel functions by eBPF programs is strictly
controlled to prevent OS damage; consequently, the eBPF pro-
gram has a list of accessible functions called helper functions
that are part of the kernel. These helper functions allow eBPF
programs to interact directly with the kernel. For instance, to
perform tail calls, bpf_tail_call() helper may be used by
the current eBPF program to ask the kernel to jump to another
eBPF program. Tail calls feature can be used to build a chain
of eBPF programs and therefore to implement modularization.

Each deployed eBPF program inside the OS kernel must be
attached to a hook point, a.k.a. as a kernel event (incoming
packet, system calls, socket operations, . . .). Then, each time
the event occurs, the eBPF program attached to it is executed.
eXpress Data Path (XDP) and Traffic Controller (TC) are the
two main networking hook points around which VTL is built.

2) KTF Specification:
KTF, for Kernel Transport Function, is an instantiation of TF
in the form of eBPF program. As such, it inherits common
properties of an eBPF program, i.e.:

• Input interface: a hook point serving as an entry point
of the function (TC to get all egress packets, and XDP to
pick all ingress packets as soon as they arrived at the NIC
driver);

• Memory: MAPS, serving as data buffers to store packets
for eventual retransmission, or to share control informa-
tion with the user-space programs such as a list of already
acknowledged packet or connection negotiation state.

• Output interfaces: helper functions used to implement
core algorithms and serving as output points towards
either the application or the network.

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 6

NIC

Fill
Ring

Rx
Ring

Application

Rx Buff

VTL_SOCK

RAW_SOCK XSK_SOCK

Tx Buff

Running KTFs associated to
the VTL socket (VTL_SOCK)

sk Buff umem

i ii

Packet buffers moving

Packet data moving

Fig. 5: Data moving between application and VTL Socket and
its associated buffers.

It is worth to note that VTL extends helper functions provided
by the native eBPF VM in order to address some specificity re-
lated to protocols functioning. For instance, a simple stop-and-
wait protocol needs a timer to trigger packet retransmission in
case of loss. But there is currently no timing control helpers.
VTL then adds and exposes to KTFs a set of helper functions
necessary to start and stop a timer. Table 1. summarizes the
set of added helper functions by VTL at the writing time of
this paper.

B. VTL Design

The main components and workflows of VTL are shown in
Fig. 4. VTL components are separated between two planes:
the control plane constituted by a userland library and the
datapath plane constituted mainly by the KTFs runtime en-
vironment (eBPF kernel VM). Both planes share information
(ACK/NACK, KTF negotiation state, packet data, ...) thanks
to a set of shared MAPS. As already stated, those MAPS are
attached to the root filesystem /sys and additionally serve
as a buffer of deployed protocol grafts. VTL defines two
main workflows: KTF deployment workflow and data delivery
workflow that are described more in-depth below.

1) KTF deployment:
KTF deployment workflow defines how VTL deploys a new
protocol function within the eBPF VM and attaches it to the
right hook (TC or XDP) depending on whether the KTF is
intended to process incoming and/or outgoing packets. KTF
deployment is decided by Control Broker component and can
be triggered by three events: (i) an invocation of the regular
API or the protocol-agnostic API by applications, (ii) a request
for a connection from remote end-system received on VTL
socket (section IV.B.2), and (iii) a change in network condition
reported by the NetMonitor daemon. When Control Broker
requests the deployment of a specific KTF stored as a user-
space object file, Launcher component picks it in KTFs pool

and starts its loading within the eBPF VM. KTFs pool is
a repository of a set of precompiled and ready to deploy
KTF. The precompilation of KTF in object file eliminates
Clang/LLVM compilation overheads during the deployment
of protocol functions (see section VI). Prior to the effective
loading of the KTF, it is checked by the verifier that performs
a series of verification such as (i) the syntax of C code
instructions, is there any infinite loop without explicit stop
condition; (ii) the way the protocol component interacts with
the kernel, is there any use of unknown or unauthorized helper
function; (iii) the memory access, does the KTF try to access
a specific memory without prior check the accessibility of this
memory; and (iv) the number of instructions in the KTF that
must be under 1M (4096 for all Linux version prior to v5.2.0).
The goal of verifier operations is to ensure that the deployed
KTF will not crash the OS kernel. As soon as the verifier
finishes its checking, the KTF is compiled by the JIT compiler
in the eBPF native assembly code of the end-system CPU.
The loaded KTF is finally attached to the network interface
and ready to process all incoming packets if it is attached to
the XDP hook and all outcoming packets if it is attached to the
TC hook.

2) Data delivery:
Data delivery workflow determines how application payloads
and protocol headers are moved on egress/ingress paths by
VTL framework in order to ensure optimal data transfer be-
tween end-systems. Application payloads transfer may be pre-
ceded by protocol graft negotiation stage (section IV.B.4) that
ensures that the appropriate KTFs to satisfy application needs
are deployed and ready to process incoming and outcoming
traffics. Data Broker controls data moving by configuring and
providing to application a VTL socket that is the access point
to VTL Transport services. VTL socket emulates either a RAW
socket for data transmission and/or an XSK socket for data
receipt (Fig. 5). After obtaining a VTL socket (section IV.B.3),
a VTL-aware application is able to use the protocol-agnostic
interface to send and receive their data. Hooker component
provides transparent support to legacy applications; this sup-
port may be activated or not. When the system admin activates
this support, it systematically enables Hooker component to
interface to regular socket API. Therefore, legacy application
send/receive operations are seamlessly redirected by Hooker
towards VTL datapath (section IV.B.6).
Fig. 5 depicts how internally the VTL socket transfers data
through its associated buffers; for clarity purpose, Data Broker
and protocol-agnostic API are not shown in this Figure. During
data moving, the interactions between the application and VTL
system are performed asynchronously thanks to a peer of
buffers at the transmission (Tx buff and skb buff in Fig. 5) as
well as at the reception (Rx buff and umem in Fig. 5). Rx buff
and Tx buff are useful to ensure the protocol reconfiguration
without interrupting application. Application ready to send
data puts it in its Tx buff where Data Broker picks it up,
forms VTL packet payload, and pushes it on the skb buff for
the IP layer.
At the reception, there is no intermediate IP layer processing
and the received data may be sent directly to Data Broker in
userland for fast delivery to the application. With the aim of

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 7

egress_cano_graft

Application

proto-agnostic API

Control Broker

TCP/UDP

IP

listener_tf_sec
XDP section

NIC

qos_nego_MAP

index=0
VTL_SOCK_fd0

nego_state...
index=n

VTL_SOCK_fdn

nego_state

Launcher

egress_tf_sec
TC section update()

create()

lookup()

ingress_cano_graft

Application

proto-agnostic API

Control Broker

NIC

ingress_tf_sec
XDP section

Launcher

index=0
VTL_SOCK_fd0

nego_state...
index=n

VTL_SOCK_fdn

nego_state

qos_nego_MAP

SENDER RECEIVER

Kernel-space

Userland Userland

Kernel-space

KTF deployment control path

Data delivery management path

Interactions with shared MAP

create()

lookup()

update()

1

2

3

4

5

1’

6.1

6.2

7.2

8

9

VTL_SOCK VTL_SOCK

7.1

Fig. 6: Protocol grafts negotiation process under VTL System.

making use of XSK socket zero-copy capability, Data Broker
and the OS kernel share the umem buffer. Therefore, to avoid
memory access conflicts and deadlock issues, VTL leverages
AF XDP socket family [39] features to associate two ring
buffers to the umem: the fill ring that is used by Data Broker
to pass the ownership of packet buffer to the kernel (i in
Fig. 5) and the Rx ring that is used by the kernel to pass the
ownership of packet buffer to Data Broker (ii in Fig. 5). In
this way, when the kernel receives a buffer on its fill ring, it
knows that the umem memory space associated with the buffer
is free and that it can securely put incoming frame data on this
space. In the same way, when Data Broker receives a buffer
on its Rx ring it knows that the umem space associated with
that buffer is free and that it can pick up the data there without
conflict with the kernel. Finally, Data Broker makes payload
data available on the Rx buff for the application where this
latter may retrieve it by making use of the protocol-agnostic
API.

3) Obtaining VTL Socket:
In order to transmit and receive data, the application must
first obtain a VTL socket. The application indicates its transfer
mode in one of the following three modes: sender, receiver, or
both. Based on the transfer mode specified by the application,
Control Broker creates and configures a new VTL socket and
its associated buffers (Fig. 5) and triggers the deployment
of the canonical graft (see section V.A.1). Finally, Control
Broker associates the file descriptor of the deployed canonical
graft to the VTL socket and gets back the resulting VTL socket
structure to the application. At this stage, the application gets
a ready VTL socket that it can use to send and receive its data.
The canonical graft aim is to allow the application that doesn’t
require a specific QoS need to directly send and receive its
data without additional overheads and unnecessary delays. For
application with specific QoS requirements, the canonical graft

is used to conduct the KTFs and protocol graft negotiation
stage. Additionally, the ingress canonical graft is useful to
conduct a stateful runtime reconfiguration of protocols (section
V.A.5).

4) Protocol Graft Negotiation and Deployment:
The protocol grafts negotiation process between a sender
and receiver is shown in Fig. 6 and in case of successful
negotiation, it ends up by the deployment of the suitable
grafts to satisfy application requirements. Each side of the
connection maintains its own map named qos_nego_MAP.
Each index of the qos_nego_MAP contains the file descrip-
tor of the VTL socket and the associated graft negotiation
outcome (N_ACCEPT / N_REFUSE). At the sender side, the
canonical graft named egress cano graft runs two KTFs: one
TC section named egress_tf_sec and one XDP section named
listener_tf_sec. The receiver side canonical graft, named
ingress cano graft, executes a single XDP program section
named ingress_tf_sec.

Sender side: the client of the negotiation. VTL-aware
application that requires specific QoS defines it by invoking
the protocol-agnostic API 1 . Based on a set of predefined
matching rules, Control Broker selects in the KTFs pool the
most appropriate egress and ingress grafts to meet application
needs. Then, it pre-builds a negotiation packet by setting up
its gid header field especially useful to tell the receiver the
specific ingress graft it must deploy. Once it finishes packet
preforming, Control Broker transmits it to the IP layer 2 and
waits for a while before looking up the negotiation state in the
qos_nego_MAP which must be updated by listener_tf_sec

at the receipt of the receiver reply. As soon as the packet left
the IP layer, it is intercepted by egress_tf_sec which based
on gid field may determine if the intercepted packet is a nego-
tiation one or not. When the gid value is not set (value is, in
that case, NULL), the packet contains application payload and

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 8

it is not a negotiation packet. Therefore, egress_tf_sec sets
packet type value to DATA. Otherwise, it is a negotiation packet
and then egress_tf_sec sets the packet type value to NEGO.
The packet is finally transmitted to the network device 3 .
The negotiation acknowledgment packet, sent by the receiver
7.2 in reply to negotiation request, is intercepted and processed
by listener_tf_sec which updates the qos_nego_MAP to
signal to Control Broker the receiver response to negotiation
request 8 . In the case of acceptance (value set to N_ACCEPT

on the map), Control Broker triggers the deployment of the
previously selected egress graft to replace the canonical one
9 .

Receiver side: the server of the negotiation. After the
application has finished obtaining a VTL socket (see IV.B.3), it
issues a blocking request to the protocol-agnostic API 1’ to ex-
pect and to retrieve the outcome of the negotiation handled by
Control Broker. At the reception of a negotiation packet from
the sender 4 , ingress_tf_sec delivers it to Control Broker
which extracts the gid value of the packet 5 . Then, it consults
the KTFs pool to confirm the availability of the ingress
graft requested by the sender and updates the qos_nego_MAP

to N_ACCEPT; if the availability of the requested KTF is
not confirmed, the map is updated at N_REFUSE 6.1 . In the
case of availability of the requested graft, after updating the
map, Control Broker triggers the deployment of the requested
ingress graft that provokes systematic deactivation of the
ingress canonical graft 6.2 . Each time it receives and passes a
negotiation packet, ingress_tf_sec waits for a while, then
reads qos_nego_MAP to check the decision take by Control
Broker 7.1 and ends up by sending acknowledgment packet to
the sender 7.2 . This acknowledgment packet should take one
of the two following values: NEGO_ACK in case Control Broker
validates the graft negotiation request or NEGO_NACK if it does
not.

5) Protocol-agnostic API:
Protocol-agnostic API is a shared library used by VTL-aware
applications to express their QoS requirements and to send
and receive their data. The protocol-agnostic API is easily
extensible and may integrate other functions in the future to
respond to more extensive use cases. We describe the currently
implemented functions through a typical function call flow as
illustrated in Fig. 7. Furthermore, Table 2. summarizes the way
application should specifies parameters when using this API.

Sender

vtl_init()
Here, Canonical Grafts

are ready

vtl_negotiate()

vtl_send_data() DATATX Loop

vtl_close()
Here, egress/ingress Grafts are

unloaded and VTL socket and its
associated buffers freed

QoS?

Receiver

vtl_init()

vtl_validate()

vtl_recv_data() RX Loop

vtl_close()

QoS?

Fig. 7: Typical Function call flow by VTL-aware applications
for data Tx/Rx.

Function Params Description
vtl_init() mode, src ip, dst ip Create a new VTL

socket (buffers,
canonical grafts,

etc.)
vtl_negotiate() vtl sock,

qos values
Get sender

application QoS
requirements and

trigger a graft
neotiation process

vtl_validate() vtl sock Retrieve graft
negotiation

outcome to receiver
application

vtl_send_data() vtl sock, buffer,
buffer size

Send application
payload data and

retrieve the size of
written data

vtl_recv_data() vtl sock, buffer,
buffer size

Fetch application
payload data and
return the readed

data size
vtl_close() vtl sock Close VTL socket

and free it
associated

resources (buffers,
KTFs, etc.)

TABLE II: VTL protocol-agnostic API functions parameters.

Prior to any request, the aware application must call into
vtl_init() function that will trigger the creation and config-
uration of a new VTL socket (section IV.B.3). At this stage,
thanks to canonical grafts associated with the newly created
VTL socket, the application (without any special QoS) may
directly enter in its Tx/Rx loops to start data transfer by
issuing vtl_send_data() or vtl_recv_data(). In contrast,
before entering in its Tx/Rx loops, a sender application with
specific QoS requirements may call into vtl_negotiate() to
transmit their needs to VTL system. At the receiver side, ap-
plication must invoke the blocking function vtl_validate()

to indicate to VTL system that he is waiting for a graft
negotiation stage result. Both functions vtl_negotiate()

/ vtl_validate() should return a positive value (the file
descriptor of the newly deployed graft) to signal a successful
negotiation to the application or a negative value in case of
failure. At the end of data transfer, applications should issue
vtl_close() function to close the file descriptor associated
with VTL socket; this will (i) free the buffers associated with
the socket as well as (ii) unload the KTFs of grafts associated
with this socket.

6) Hooker: Legacy Application Support:
Hooker component’s goal is to provide support to legacy
applications. In its current implementation, VTL supports
all regular applications based on TCP. As shown by results
reported in Fig. 1, since almost 90% of Internet applications
are based on TCP, we argue that support to TCP applications
may be a significant step to accelerate the adoption of regular
applications. The internal structure of Hooker is shown in Fig.
6.

When sysadmin activates support for legacy applications,
Hooker attaches to the root cgroupv2 [20]; therefore, by
making use of the hierarchical model of cgroups, it processes
every ingress and egress packets of all processes running on

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 9

redir_sock

protocol-agnostic API

hooker_userspace

msg_redirector

hooker_ingress

Legacy App

VTL datapath

TCP/IP stack

Outcoming packets data path

Incoming packets data path

SK_MSGSOCK_OPS

Userland

Kernel-Space

tcp_sock

 NIC

XDP

bpf_
msg_

push
_dat

a()

bpf_msg_redirect_map()

recvmsg()sendmsg()

r
ec
v
m
sg
(
)

sendmsg()

XDP_TX

XDP_DROPXD
P_
VT
L_
AC
K

Fig. 8: Legacy applications data moving under VTL System.

the end-system. Hooker maintains a map of type SOCKMAP that
key is a struct containing the addressing information. This key
is used by the msg redirector program to identify the right
socket towards which the packet data must be forwarded to.
Each time a connection is established or closed by one process,
the map is updated by msg redirector thanks to a SOCKS_OPS

bpf program section attached to cgroupv2.
Every time an application process sends a packet data

by calling into sendmsg() on a TCP socket, the SK_MSG

bpf program section running by msg redirector intercepts
it. When Hooker userspace invokes recvmsg(), it receives
only the payload without Transport layer address information.
By consequence, in order to allow the Hooker userspace
to deliver data to the right process when it receives a re-
sponse from remote peer end-system, before making data
available on the redirection socket, msg redirector rewrites it
by adding one tag field in the header thanks to buffer extension
permitted by the helper function bpf_msg_push_data().
Finally, to deliver the message either to the redirection socket
or to the TCP socket, msg redirector program leverages
bpf_msg_redirect_map() helper function. The redirection
socket is created and maintained by Hooker userspace program
which will use the recvmsg() operation to get the redirected
data packet and send it to the VTL datapath through the
protocol-agnostic API.

At the reception, as soon as the host NIC driver receives
packet data, the XDP bpf program section running by Hooker
ingress intercepts the packet data and processes it by issuing
the right verdict. The Hooker ingress program can drop the
packet data (XDP_DROP), redirect it to the same NIC (XDP_TX)
or, as currently done, pass it to the ingress VTL datapath
(XDP_VTL_ACK) for further processing and acknowledgment
of the packet.

V. USE CASES

A. Carried Out Use Cases

For proof-of-concept and testing purposes, we revisit and
implement, from scratch, a set of protocol mechanisms well-
known in the literature. All implemented mechanisms have

the same structure. At the sender side, the egress graft main-
tains two KTFs: a TC section named egress_tf_sec that
ensures the processing of all outcoming VTL packet, and an
XDP section named listener_tf_sec that job is to process
acknowledgment packets. At the receiver side, the ingress
graft runs a single KTF composed by an XDP section (named
ingress_tf_sec) sufficient to process incoming packets and
to send acknowledgment if needed thanks to the verdict
XDP_VTL_ACK. This section presents those mechanisms.

1) Egress/Ingress Canonical Grafts: Canonical grafts,
egress one as well as ingress one, purposes are (i) to enable
the immediate transfer of data of applications that don’t need a
specific QoS and (ii) to conduct the KTFs negotiation stage for
QoS-oriented applications. Additionally, the ingress canonical
graft is useful to ensure the reconfiguration of protocols
(section V.A.5). Both canonical grafts are deployed at the
creation of a new VTL socket to which the KTFs composing
those canonical grafts are associated by default.

At each packet it processes, the egress canonical graft sets
up the type header field of the packet (either to DATA or
to NEGO), ensures the processing of acknowledgment packet
and if necessary the updating of qos_nego_MAP (Fig. 6) to
signal to Control Broker the receiver reply. On its side, at
each packet it receives, the ingress canonical graft extracts the
type value of the packet before passing it either to Control
Broker or to Data Broker in userland. When the packet type
is DATA, the ingress canonical graft immediately passes it to
the Data Broker and continues the processing of the next
incoming packet; otherwise (the received packet is negotiation
one), it waits for the outcome of negotiation handled by
Control Broker, transmits an acknowledgment to the sender
and pursues the processing of the next packet. Moreover, the
ingress canonical graft has the property to be systematically
activated or deactivated when there is no any other XDP section
running on the NIC or when a new XDP section is attached to
the NIC respectively. This latter property is essential to ensure
a stateful reconfiguration of KTFs (section V.A.5).

2) ARQ Reliable Graft Based on Stop-and-wait: Stop-and-
wait algorithm is the most basic ARQ-based flow control that
ensures loss and error recovery and in-order delivery of data.
At the sender part, it consists of sending one packet at a time.
At each time there is only one packet in-flight. That packet is,
after a while, automatically retransmit if the receiver doesn’t
positively acknowledge it; otherwise, the next data packet is
transmitted.

At the sender side, egress_tf_sec KTF creates and
maintains a hash map named egress_socks_MAP that is
regularly updated by listener_tf_sec KTF at the receipt
of an acknowledgment packet from the receiver. Therefore,
after timer expiration, by reading the map, egress_tf_sec is
able to determine if there is a need for packet retransmission or
not. The value of the timer duration must be set depend on the
RTT. If its value is under the RTT, egress_tf_sec will read
the map before the reception of acknowledgment and therefore
possibly trigger unnecessary packet retransmission(s). At the
receiver side, ingress_tf_sec KTF ensures that the received
packet is not corrupted and sets the acknowledgment packet
type value to ACK; otherwise, it sets the type value to NACK

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 10

and sends a reply to the sender.
3) ARQ Reliable Graft Based on Go-back-N: Go-back-N

flow control is an optimized version of stop-and-wait algo-
rithm. Instead of sending only one packet at a time, Go-back-
N mechanism allows the sender to transmit at a time N > 1
packets without waiting for acknowledgment from the receiver.
The aim is to reduce at maximum the idle time of the simple
stop-and-wait flow control. Furthermore, to ensure in-order
packet delivery, sender and receiver make use of sequence
numbers as opposed to stop-and-wait algorithm where there is
no need for numbering packets1. Therefore, at the receiver, ad-
ditional to data integrity validation, ingress_tf_sec makes
sure that the packet is in sequence before positively acknowl-
edge it. Code listing 1 illustrates an example of ARQ Go-
back-N. To optimize space, we only show the template of the
egress graft part of the protocol.

1 #include <stdbool.h>
2 #include <linux/bph.h>
3 // Other useful headers and ...
4 #include <../vtl.h>
5
6 // Declare a MAP to store packet for retx
7 struct bpf_elf_map SEC("maps")
8 EGRESS_PKT_WND_MAP = {
9 .type = BPF_MAP_TYPE_HASH,

10 .size_key = sizeof(unsigned int),
11 .size_value = sizeof(struct vtl_pkt_t),
12 .pinning = PIN_GLOBAL_NS,
13 .max_elem = 16,
14 };
15
16 SEC("egress_tf_sec")
17 int _tf_tc_egress(struct __sk_buff *skb){
18 // skb is the entry point of the TF
19
20 /*** TF code here ***/
21 }
22
23 SEC("listener_tf_sec")
24 int _listener_tf(struct xdp_md *xskb){
25 // xskb is the entry point of the TF
26
27 /*** TF code here ***/
28 }

Listing 1: Kernel Transport Function (KTF) Example

4) Partial Reliable Graft: Partial reliability concept con-
sists of allowing KTFs not to issue at reception all the packets
data submitted by the sender, provided to respect a maximum
percentage MAX LOSS of allowable losses (e.g. 20% of the
packet data may be lost). The goal is to deliver as quickly
as possible the out-of-sequence packets data to applications
that tolerate a certain amount of loss (such as multimedia
applications). This considerably reduces the transmission delay
with less impact on the proper execution of the application.

Fig. 9 illustrated this concept under video streaming where
each packet data vehiculates one image. The assumption is
made that the loss of one packet data (image) every 10 images
is acceptable because not perceptible by the human eye. In first
case, only one image (I3) is lost, the packet data containing

1Note that the assumption is made here that there is no loss on ACK packets.

Sender Receiver

I10

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I1

I1

I2

I4

I5

I6

I7

I8

I9

I10

I2

I3

I4

I5

I6

I7

I8

I9

I10

Sender Receiver

I1

I2

I3

I4

I5

I6

I7

I9

I1

I1

I2

I4

I5

I6

I7

I8

I9

I2

I3

I4

I5

I6

I7

I8

I9

I10

I10

I8

I8

“Acceptable” loss of Image I3 ⇒ no Retransmission “Acceptable” loss of Image I3 ⇒ no Retransmission

“Unacceptable” loss of Image I8 ⇒ Retransmission

Case 1 Case 2

Fig. 9: Partial Reliability illustration under video streaming
with accepted loss rate set to MAX LOSS = 10%.

that image is not retransmitted. In the second example, the
images I3 and I8 are lost. The first lost packet data is not
retransmitted but to respect the MAX LOSS (10% here), the
second lost packet data (I8) must be retransmitted.

5) Runtime Graft Reconfiguration: VTL system leverages
eBPF infrastructure dynamic reloading feature to guide run-
time reconfiguration of protocol grafts. It consists of dynamic
replacement of KTFs attached to TC or XDP hooks without
application outage. Reconfiguration may be performed either
to end up successful KTFs negotiation process (section IV.B.4)
or when NetMonitor daemon reveals change within the net-
work that requires adaptation actions. At the difference of
KTFs negotiation, the reconfiguration trigger by a change
within a network doesn’t require synchronization between the
sender and the receiver, each side conducts its reconfigura-
tions independently. VTL can perform two types of runtime
reconfiguration: a stateless reconfiguration, to fasten the adap-
tation actions at the expense of packet loss, or a stateful
reconfiguration, more conservative reconfiguration approach
that ensures that no packet is lost or dropped at the cost of
additional overheads and delay, especially at the sender (Fig.
10). The right tradeoff must therefore be found depending on
the application use scenario.

During a stateful reconfiguration, on the egress path, VTL
leverages the fact that TC subsystem allows running more than
one TC hook at a time on the NIC to load the new egress graft
before unloading the old one. In this way, during a while,
all packets data transmitted by the application are processed
sequentially by both egress grafts. Contrary to TC hook, on the
ingress path, XDP subsystem doesn’t allow executing more than
one XDP hook at a time on the same NIC. To solve this issue,
owing to make heavy use of a new map to store umem buffers
(Fig. 5) before old ingress graft unloading, VTL leverages the
systematic activation properties of the ingress canonical graft
(when there is no any XDP section running on the NIC) to
ensure the persistence of incoming packets processing. At the
loading of the new graft, the canonical graft is systematically
deactivated.

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 11

NIC

protocol-agnostic API

App

NIC

protocol-agnostic API

App

new egress Graft

old egress Graft old egress Graft

NIC

protocol-agnostic API

App

new egress Graft⇒
Load new progs

⇒
Unload old progs

Packets data are
processed by both
Grafts till unloading

NIC

protocol-agnostic API

App

NIC

protocol-agnostic API

App

old ingress Graft

NIC

protocol-agnostic API

App

new ingress Graft⇒
Unload old progs

⇒
Load new progs

Systematic activation of
ingress canonical Graft

ingress canonical
Graft

E
gr

es
s

pa
th

In
gr

es
s

pa
th

Fig. 10: Protocol Graft stateful reconfiguration actions. To
ensure no packet loss, the egress path may generated moderate
overheads during stateful reconfiguration.

VI. VALIDATION AND PERFORMANCE EVALUATION

We implemented and evaluated VTL under Ubuntu
distribution running Linux 5.3.5. The goals of carried
experimentations were to evaluate (i) the correctness of VTL,
i.e. its protocol deployment and reconfiguration capabilities,
(ii) the performances of VTL in terms of deployment latency
and data sending throughput, (iii) the performances under
VTL of the implemented KTFs and grafts, and (iv) the impact
of legacy applications support.

A. Testbed Setup and Methodology

VTL experimentations are performed under a testbed con-
stituted by two hosts linked by one router. The router and the
associated network parameters are emulated thanks to netem

tool [33]. Unless otherwise stated, the network parameters
used during experimentations are reported in Table III. Each
host is equipped with Intel Core i7-7500U CPUs, 3.8GiB
RAM, and Qualcomm Atheros QCA6174 NIC driver.

To evaluate implemented KTFs and grafts, we build two
VTL-aware applications, one acting as data streaming server
and the other one playing client role. In the same way, to
evaluate legacy application support by VTL, we build two
TCP-based applications (one server and one client too). Each
server application is able to stream several kinds of files with
different sizes range from a simple 4K file text to more than
16M video files. In order to capture outliers and thus avoid
biases, for each metric evaluated, we repeated the experiment
enough and observed the standard deviation of the sample. The
mean of the observed sample is taken only for a relatively
small standard deviation. The reported evaluation of legacy
TCP is provided only as a reference for the reader. Therefore,

min RTT Bandwidth Loss rate
10ms 16Mbps 0-25%

TABLE III: Testbed Network Configurations.

iproute2/tcVerifier+JIT

Clang/LLVMdeployment delay = precompiled?

T0: userland compilation

T1: kernel compilation T2: attaching delay

yes

no

Fig. 11: KTF deployment delay breakdown. Precompiled
KTFs eliminate Clang/LLVM compilation delay (T0).

this is not an absolute comparison with TCP since a fair
comparison would require a large scale configuration and
deployment. The window size of the Go-Back-N and partial
reliability grafts is set to 16. Finally, to avoid interference with
packets not directed to VTL within the testbed environment,
we set IP protocol number to experimental value 0xfd for
VTL packets.

B. Microbenchmarks

1) KTF and Graft Negotiation Delay:
We start by assessing the delay required to complete KTF
negotiation process. This delay is composed of 1/ packets
processing delay (negotiation one and its associated acknowl-
edgment) and 2/ KTFs deployment delay at both sides (sender
and receiver). The experiments carried out demonstrated that
the packet processing delay is negligible compared to the
KTFs deployment one. Consequently, the results reported in
Fig. 12 illustrate essentially the cost of KTFs loading.

As illustrated in Fig. 11, the KTF deployment delay is
the sum of the Clang/LLVM userland compilation delay, the
verifier operations and JIT kernel compilation and the delay
of attaching to XDP or TC hooks by iproute2 or tc tool
respectively. As shown in Fig. 12, we found that precompiled
KTF provides not negligible value, almost 76% reduction
of total delay. Moreover, we note that the negotiation delay
increases with the size of the KTFs to load, which makes sense
in view of the dominance of the loading time of KTFs over
the total cost of the negotiation procedure.

The impact of graft negotiation stage should be more or
less cushioned by the actual duration of the Tx/Rx of the
application payloads. Therefore, a Tx/Rx of short duration
will have more interest in keeping the Canonical grafts while
for a Tx/Rx of large amounts of data, the application, as
necessary, can afford to trigger and wait for the completion
of a negotiation procedure.

2) Moving Data Performances – latency & throughput:
Each implemented graft is evaluated under the streaming of
files of different sizes and under various network conditions,
especially loss rate variation. The results, reported in Fig.
14, shows the file completion time (FCT) latency and the
speed rate of sending data. We define FCT as the amount
of time elapsed between the first packet sent and the last
packet received. The accepted loss rate in the partial reliability
graft is set to 10% during experiments. In an ideal lossless
network, only the sending of large files allows capturing

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 12

the sub-performance of stop-and-wait mechanism. This sub-
performance is completely hidden during the Tx/Rx of short
files where stop-and-wait graft can align with more elaborated
strategies such as Go-Back-N and partial reliability. However,
contrary to what one might think, when network conditions
deteriorate, a simple stop-and-wait graft has about 1.5x times
better throughput than Go-Back-N and partial reliability grafts.
This is explained by the fact that the stop-and-wait almost
never floods the network with packets, which plays to its
advantage in case of high loss.

3) Legacy Application and Reconfiguration Use Case:
In this section, we demonstrate that VTL can perform a
runtime reconfiguration of protocols following a predefined
reconfiguration rule and that legacy applications are able to
leverage VTL features without modification. The metric under
evaluation by NetMonitor daemon during this test scenario
is the RTT that is reported with 0.5 ms periodicity. When
RTT < 300ms, VTL deploys and maintains the use of
Go-Back-N graft and as soon as RTT >= 300ms it sys-
tematically triggers the replacement of Go-Back-N by partial
reliability graft with MAX LOSS rate set to 20%. In order not
to distort the evaluation of support for traditional applications,
the loss rates considered in the following scenarios are zero.

The file used in this use case is a 16M video with a
duration of 45 seconds. For each of the applications evaluated,
legacy and aware, the scenario is identical. During the first
14 seconds, we send the packets under an RTT of 20 ms.
From the 15th second, we introduce an RTT of around 320ms
and observe the adaptation actions implemented by the VTL.
The results reported in Fig. 14 show that the cost of support
for traditional applications, observed over the duration of the
video is more marked under a low delay network. Over long
delay network conditions, this cost is compensated by the gains
of partial reliability graft deployed by VTL. As a reference, we

0.05 0.1 0.15 0.2 0.25 0.3

Canonical KTFs Negotiation delay (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

precompiled

not precompiled

legacy TCP

0 0.1 0.2 0.3 0.4

Stop-wait KTFs Negotiation delay (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 0.1 0.2 0.3 0.4 0.5

GoBack-N KTFs Negotiation delay (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Partial reliability KTFs Negotiation delay (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Fig. 12: KTFs and graft negotiation delay. Precompilded KTFs
(red) considerably reduce negotiation delay.

5 10 15 20 25 30 35 40 45

Video Time line (s)

0

5

10

15

T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

VTL-aware application

Hooked TCP application

No hooked TCP application

Reconfiguration delay

RTT > 300 ms

Fig. 13: Runtime reconfiguration benefits and overheads for
aware and legacy applications.

observed that the same TCP application without VTL support
will show significant degradation of its throughput under long
delay conditions.

VII. DISCUSSION AND RELATED WORK

In section I, we have introduced prior work aimed at
improving the Internet network protocols stack. These works
are numerous; therefore, in this section, we bring up the
discussion on the most recent ones.

PQUIC [22] introduced a prototype of a framework able
to dynamically extend QUIC [7] by loading at runtime new
protocol plugins that contain the mechanisms implementation.
In [19], the authors present an eBPF-based framework able to
allow user applications to quick off the adding of new TCP
options. As with PQUIC, [19] keeps the binding to a specific
protocol that prevents the adoption of new functionalities from
applications not write for the specific protocol or its new
versions. Multistack [17] developed a kernel module able to
deploy and manage network protocols in user-space. The main
goal of Multistack is to accelerate the deployment of protocols.
However, we found during our work that kernel modules can
easily crash the whole end-system OS and therefore pose
a severe security concern. Furthermore, Multistack requires
the rewrite of applications. To overcome this latter limitation,
StackMap [25] introduced support for legacy applications.
Nevertheless, this support is not transparent for applications.

At the best of our knowledge, NEAT [38] is the single prior
implementation of TAPS-like API that permits applications to
express their needs without specifying a protocol to use at
their design-time. While it eases the way applications consume
Transport layer services, NEAT doesn’t provide any technique
to deploy at runtime a new protocol when it is not available
on the OS; the choice is dependent on the end-system OS
network stack.

VIII. CONCLUSIONS

We present and implement VTL, a system that is able to
timely deploy protocol functions within the OS kernel and
ensures their transparent usage by applications. VTL provides
seamless support to legacy applications, i.e., their modification
is not required to fully consume VTL services. We build VTL
on a combination of XDP and TC Linux subsystems, part of
eBPF infrastructure. This combination ensures that packets
data are grasped as soon as they left the IP layer and picked
up once they arrived on the NIC driver.

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 13

4K 32K 256K 1M 8M

 File size (Bytes)

(a): No Loss

0

20

40

F
C

T
 L

a
te

n
c
y
 (

m
s
) Stop-wait

GoBack-N

Partial Reliability

Legacy TCP

4K 32K 256K 1M 8M

File size (Bytes)

(b): No Loss

0

2

4

6

8

T
h

ro
u

g
h

p
u

t
(M

b
p

s
) Stop-wait

GoBack-N

Partial Reliability

Legacy TCP

4K 32K 256K 1M 8M

 File size (Bytes)

(c): Max Loss at 10%

0

10

20

F
C

T
 L

a
te

n
c
y
 (

m
s
) Stop-wait

GoBack-N

Partial Reliability

Legacy TCP

4K 32K 256K 1M 8M

File size (Bytes)

(d): Max Loss at 10%

0

1

2

T
h

ro
u

g
h

p
u

t
(M

b
p

s
) Stop-wait

GoBack-N

Partial Reliability

Legacy TCP

4K 32K 256K 1M 8M

 File size (Bytes)

(e): Max Loss at 25%

0

50

100

150

F
C

T
 L

a
te

n
c
y
 (

m
s
) Stop-wait

GoBack-N

Partial Reliability

Legacy TCP

4K 32K 256K 1M 8M

File size (Bytes)

(f): Max Loss at 25%

0

0.2

0.4

0.6

0.8

T
h

ro
u

g
h

p
u

t
(M

b
p

s
) Stop-wait

GoBack-N

Partial Reliability

Legacy TCP

Fig. 14: Data Moving latency (a, c, e) and throughput (b, d, f) under various network conditions.

To evaluate VTL, we implemented from scratch a set of
protocol mechanisms. We found during evaluations that a
support to legacy applications generated a moderated overhead
that must be mitigated by the benefits of VTL. Further,
the evaluation of the current implementation demonstrates
the runtime protocol deployment and reconfiguration property
of VTL and shows that it presents low deployment delay,
especially when the deployed protocol functions (KTF) are
precompiled and stored in a dedicated repository.

REFERENCES

[1] D. Murray, T. Koziniec, S. Zander, M. Dixon, P. Koutsakis, “An analysis
of changing enterprise network traffic characteristics”, IEEE Asia-Pacific
Conference on Communication (APCC), 2014.

[2] “Transport Services (TAPS)”, https://bit.ly/2nLN46u, accessed 2020-01-
24.

[3] M. Handley, “Why the Internet only just works”, BT Technology Journal,
Vol. 24, No 3, July 2006.

[4] R. Stewart et al., “Stream Control Transmission Protocol”, RFC 2960,
Internet Engineering Task Force, October 2000.

[5] E. Kohler, M. Handley, S. Floyd, “Datagram Congestion Control Protocol
(DCCP)”, RFC 4340, Internet Engineering Task Force, March 2006.

[6] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses”, RFC 6824, Internet
Engineering Task Force, January 2013.

[7] J. Roskind, “QUIC: Multiplexed stream transport over UDP“, Google
working design document, 2013.

[8] L.-A. Larzon et al., ”The Lightweight User Datagram Protocol (UDP-
Lite)“, IETF RFC 3828.

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, ”RTP: A
transport protocol for real-time applications“, IETF RFC 3550.

[10] ”SPDY: An experimental protocol for a faster web“,
http://bit.ly/2Sh14Az, accessed 2020-01-29.

[11] V. Singh, S. Ahsan, and J. Ott, ”MPRTP: Multipath considerations for
real-time media“, 4th ACM Multimedia Syst. Conf. (MMSys), Oslo,
Norway, 2013.

[12] J. C. Mogul, ”TCP Offload Is a Dumb Idea Whose Time Has Come“,
In HotOS, pages 25–30, 2003.

[13] ”Data Plane Development Kit“, https://www.dpdk.org/, accessed 2020-
01-24.

[14] L. Rizzo, ”netmap: A novel framework for fast packet I/O”, In Proc. of
USENIX Annual Technical Conference, pages 101–112, 2012.

[15] N. Khademi et al., “NEAT: A Platform- and Protocol-Independent
Internet Transport API”, IEEE Com. Magazine, June 2017.

[16] E. Dubois, et al., “Enhancing TCP based communications in mobile
satellite scenarios: TCP PEPs issues and solutions”, Proc. of the 5th
ASMS and 11th SPSC, September 2010.

[17] M.Honda, F.Huici, C.Raiciu, J.Araujo, and L.Rizzo, “Rekindling Net-
work Protocol Innovation with User-level Stacks”, ACM SIGCOMM
CCR, Apr. 2014.

[18] M. Alizadeh, et al., “DCTCP:Efficient packet transport for the commodi-
tized data center”, In SIGCOMM, 2010.

[19] V. H. Tran and O. Bonaventure, “Beyond socket options: making the
Linux TCP stack truly extensible”, IFIP Networking, 2019.

[20] “Linux man page”, http://bit.ly/2O8UGKN, accessed 2020-01-29.
[21] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O.

Bonaventure, and M. Handley. “How hard can it be? designing and
implementing a deployable multipath TCP”, In USENIX NSDI, 2012.

[22] Q. De Coninck et al., “Pluginizing QUIC”, ACM SIGCOMM, Beijing,
China, 2019.

[23] C. Nicutar, C. Paasch, M. Bagnulo, and C. Raiciu, “Evolving the Internet
with connection acrobatics”, in Proc. Workshop Hot Topics Middleboxes
Netw. Funct. Virtualization (HotMiddlebox), Santa Barbara, CA, USA,
2013.

[24] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska, “Implementing
network protocols at user level”, IEEE/ACM ToN, 1993.

[25] K. Yasukata et al., “StackMap: Low-Latency Networking with the OS
Stack and Dedicated NICs”, In Proc. of the 2016 USENIX ATC.

[26] E. Jeong, et al., “mTCP: a highly scalable user-level TCP stack for
multicore systems”, In Proc. 11th USENIX NSDI, Apr. 2014.

[27] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Aminy, and B. Ford, “Fitting
square pegs through round pipes: Unordered delivery wire-compatible
with TCP and TLS”, in Proc. USENIX NSDI, San Jose, CA, USA, 2012.

[28] G. Papastergiou, et al.,, “De-ossifying the Internet transport layer:
A survey and future perspectives”, IEEE Communications Surveys &
Tutorials, vol. 19, no. 1, 2017.

[29] Korian Edeline and Benoit Donnet, “A Bottom-Up Investigation of
the Transport-Layer Ossification”, In: Network Traffic Measurement and
Analysis (TMA) Conference, 2019.

[30] M. Fleming, “A thorough introduction to eBPF”, https://bit.ly/2osxU6l,
accessed 2019-05-08.

[31] T. Høiland-Jørgensen and al., “The eXpress Data Path: Fast Pro-
grammable Packet Processing in the Operating System Kernel”, 14th
ACM International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’18), Dec 2018.

[32] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr., “Exokernel: an

El-Fadel B. et al.: VTL: TIMELY DEPLOYMENT AND SEAMLESS ADOPTION OF NETWORK PROTOCOLS 14

operating system architecture for application-level resource management”,
In Proc SOSP ’95, December 1995.

[33] “netem”, https://bit.ly/2owJ36m, accessed 2019-09-22.
[34] H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. “The

performance of µ-kernel-based systems”, In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 1997.

[35] Adam Belay, et al., “IX: A protected dataplane operating system for high
throughput and low latency”, In Proc. of the 11th USENIX Symposium
on Operating Systems Design and Implementation, 2014.

[36] M. Zitterbart, “A multiprocessor architecture for high speed network
interconnections”, in INFOCOM’89. Proc. of the 8th Annual Joint
Conference of the IEEE Computer and Communications Societies, vol.
1, Apr. 1989.

[37] H. Kanadia and D. R. Cheriton, “The VMP Network Adapter Board
(NAB): High-Performance Network Communication for Multiproces-
sors”, in ACM symposium on Communications architectures and pro-
tocols, 1988.

[38] “NEAT project”, http://bit.ly/2SqfTBd, accessed 2019-05-08.
[39] Magnus Karlsson and Björn Töpel, “The Path to DPDK Speeds for

AF XDP”, In Linux Plumbers Conference 2018 Networking Track.
[40] Simon Peter, et al., “Arrakis: The operating system is the control plane”,

In Proc. of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’14), 2014.

[41] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradhan, and J.
Tracey, “Server Network Scalability and TCP Offload”, In USENIX’05,
2005.

[42] Mu He et al., “Flexibility in Softwarized Networks: Classifications and
Research Challenges.”, IEEE Communications Surveys & Tutorials, Vol
21, No. 3, Third Quarter 2019.

[43] M. Fleming, “A thorough introduction to eBPF”,
https://lwn.net/Articles/740157/, accessed 2020-05-31.

[44] S. McCanne, and V. Jacobson, “The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture”, USENIX winter, Vol 93, 1993.

