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Large-scale space definition for the DG-VMS
method based on energy transfer analyses

By F. Naddei†, M. de la Llave Plata†, E. Lamballais‡, V. Couaillier†,
M. Massot¶ AND M. Ihme

A-priori analyses to study the effect of the large-scale space definition in the variational
multiscale simulation (VMS) approach to LES are carried out in the context of a modal
discontinuous Galerkin (DG) method. A numerically consistent framework is introduced
to derive the expression of the ideal subgrid-scale (SGS) energy transfer, which takes
into account the different terms involved in the DG discretization. Based on the insight
gained from this study, a locally adaptive modeling strategy able to adjust the definition
of the large-scale space to the local resolution requirements of the flow is proposed.

1. Introduction

The use of DG methods in the context of scale-resolving simulations has seen a rapid
increase in recent years, particularly due to their excellent parallel scalability and their
ability to achieve high-order accuracy on general meshes (Cockburn & Shu 2001).
The variational framework on which these methods rely also allows for the local sep-

aration of scales using the polynomial basis functions. This feature is most useful in the
development of multiscale LES techniques. In particular, the VMS approach introduced
in Hughes et al. (2000) offers an interesting alternative to traditional LES approaches.
The fundamental assumption of this approach is that the large-scale dynamics are vir-
tually free from SGS dissipation. However, the validity of such an assumption strongly
depends on the considered problem (e.g., Reynolds number and grid resolution) as well
as on the properties of the scale-separation operator (Sagaut & Levasseur 2005).
In most works found in the literature on VMS, the scale separation is defined either

heuristically or, alternatively, a-posteriori by performing simulations of a given configu-
ration based on different definitions of the large-scale space. These approaches present
serious limitations, especially when dealing with inhomogeneous or (statistically) unsteady
turbulence simulations that require the adaptation of the scale-partition parameter in
space and/or time.
The main goal of this research is therefore to extend the current understanding of

the VMS approach to the context of a modal DG method and to develop a method-
ology enabling a systematic use of the DG-VMS technique. To this end, the spectral
analyses performed by Sagaut & Levasseur (2005) and Hughes et al. (2004) using sharp
cut-off (orthogonal) filters are extended to the DG framework, thus relying on variational
projection (non-orthogonal filtering in Fourier space). This is achieved by performing
a-priori analyses based on the projection of reference DNS data of the Taylor-Green
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vortex (TGV) configuration at Re = 5, 000 and 20, 000 (Dairay et al. 2017) onto differ-
ent LES hp-discretizations (h denoting the characteristic mesh size and p the degree of
the polynomial approximation). The focus is on studying the spectral properties of the
SGS energy transfer provided by the DG-VMS approach. Based on the outcome from
this study, a local (in space and time) model-adaptive strategy is proposed. The accu-
racy of this new approach is illustrated a-posteriori on the TGV flow configuration at
Re = 5, 000.

2. A-priori analysis

A-priori testing can provide valuable information about the accuracy of LES modeling
approaches. The central question with this type of analysis is the definition of an appro-
priate ideal LES solution, which in the general case is not straightforward. It is, however,
essential to answer this question, as the way in which this ideal solution is defined will
have a direct impact on the way the ideal SGS quantities are computed. The classical
approach relies on defining the ideal LES solution as that obtained from the spatially
filtered Navier-Stokes (N-S) equations. This approach entirely ignores the details of the
discretization employed and the fact that the LES solution so defined might not be an
admissible solution of the considered discrete problem. A second approach has been pro-
posed by Pope (2001), in which the LES solution is conceived as the projection of the
DNS solution onto a set of local basis functions. This has been shown by Vreman (2004)
to actually correspond to the application of a non-uniform filter kernel. This methodol-
ogy provides a definition of the ideal resolved field which is consistent with the employed
numerical discretization. However, this projection can introduce significant aliasing errors
at wavenumbers close to the grid cutoff, producing unphysical reference data. This is a
direct consequence of the approximation properties of polynomial basis functions [see
Gottlieb & Orszag (1977)].
In this work we propose to employ an alternative approach in which the ideal DG-LES

solution is defined as the result of the application of two successive filtering operations.
A first convolution filter is applied to the DNS data which filters out frequencies beyond
the LES grid cutoff. Next, a L2-projection of this filtered field is performed on the
hp-discretization space (DG filter). This procedure reduces considerably the aliasing er-
rors introduced by Pope’s approach, while allowing the inclusion in the analysis of the
effect of the hp-discretization associated with the adopted numerical method.
The following section provides a formal framework for the definition of the ideal

DG-LES solution as described above and the expression of the corresponding ideal SGS
energy transfer.

2.1. The DG-LES framework and the ideal energy transfer

The N-S equations for an incompressible flow read

∂u

∂t
+∇ · Fc(u, q) +∇ · Fd(u,∇u) = 0 , ∀x ∈ Ω, t ≥ 0 , (2.1)

∇ · u = 0 , (2.2)

where u is the velocity field, q is the pressure, and Fc and Fd are the convective and
diffusive fluxes, respectively. Let us denote by (·) a spatial convolution filtering operation
that is defined for any function f as, f(x) ..=

∫
ΩG(x − ξ)f(ξ)dξ. We define ΩK to be

a shape regular partition of Ω into N non-overlapping, non-empty elements. We further
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define the broken Sobolev space Sp
h

..= {φ ∈ L2(ΩK) : φ|K ∈ Pp(K), ∀K ∈ ΩK} to be the

space of piecewise polynomials of order at most p. We indicate as {φ1
K . . . φ

Np

K } ∈ Pp(K)
a hierarchical orthonormal basis for Pp(K) with φi

K(x) = 0, ∀x ∈ K ′,K ′ 6= K. Then we
indicate fh ..= PSp

h
(f) as the projection of any function f on the hp-discretization defined

by the space Sp
h.

Following the approach described in the previous section, we define the ideal DG-LES
solution as uh

..= PSp
h
(u), which is the result of the successive application of a convolution

filter and the DG filter defined by the space Sp
h to the velocity field u. In the a-priori

analysis presented in the next section, we consider this convolution filter to be a sharp
cut-off filter in Fourier space, with cut-off wavenumber corresponding to kc = (p+1)/(2h).
Starting from Eq. (2.1), the evolution equations for the ideal DG-LES solution there-

fore read

∂

∂t

∫

ΩK

uhφdx+
∑

K

[∫

∂K

Fd(u,∇u) · n+φ+ dσ −
∫

K

Fd(u,∇u) · ∇φdx

+

∫

∂K

Fc(u, q) · n+φ+ dσ −
∫

K

Fc(u, q) · ∇φdx

]
= 0 , ∀φ ∈ Sp

h ,

(2.3)

where we have used the fact that the convolution filter commutes with the spatial deriva-
tives and the definition of the L2-projection, i.e.,

∫
ΩK

(u− uh)φ = 0, ∀φ ∈ Sp
h.

The DG-LES equations can now be defined by rewriting Eq. (2.3) as

∂

∂t

∫

ΩK

uhφdx+
∑

K

[∫

∂K

hc(u
+
h , q

+
h ,u

−
h , q

−
h ,n

+)φ+ dσ −
∫

K

Fc(uh, qh) · ∇φdx

]
+

∑

K

[∫

∂K

hd(u
+
h ,u

−
h ,n

+)φ+ dσ −
∫

K

Fd(uh) · ∇φdx

]
+R(u,uh, φ) = 0 , ∀φ ∈ Sp

h ,

(2.4)

where hc and hd are the convective and diffusive numerical fluxes, respectively. In
Eq. (2.4), R(u,uh, φ) is the subgrid residual representing the effect of the unresolved
scales u − uh on the resolved field, which can be obtained by comparing Eq. (2.3) and
Eq. (2.4). In this work, we assume that the SGS term is dominated by convective effects.
The contribution of the viscous and pressure terms is thereby neglected. This leads to
the following form for the subgrid residual,

R(u,uh, φ) =
∑

K

[∫

K

(
Fc(uh)−Fc(u)

) · ∇φdx

−
∫

∂K

(
hc(u

+
h ,u

−
h ,n

+)−Fc(u) · n+
)
φ+ dσ

]
.

(2.5)

The ideal energy transfer from the resolved modes of wavenumber k to all unresolved
scales can now be obtained from the subgrid residual as

Tsgs(k) =
∑

‖k‖=k

ûh(k) · R̂(k) , with R(x) =
∑

K

∑

i

R(u,uh, φ
i
K)φi

K(x) , (2.6)

where (̂·) denotes the Fourier transform and R represents the subgrid residual in the
physical domain.
Note that the use of the DG-projection filter introduces discontinuities in the filtered
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velocity field that need to be taken into account and require the definition of the numerical
flux hc that appears in the surface integral in Eq. (2.5). The subgrid stress thus depends
in general on both the definition of the filter and the choice of this numerical flux. In
this work we employ a symmetrical numerical flux hc = 1/2(Fc(u

+
h ) + Fc(u

−
h )) · n+, thus

allowing the evaluation of R(x) in the absence of numerical dissipation. This methodology
provides a rigorous framework for the derivation of the ideal energy transfer that is
consistent with the employed discretization.

2.2. The DG-VMS approach and the modeled energy transfer

Starting from Eq. (2.4), the effect of the subgrid scales can be approximated by a model
term that depends only on the resolved field R(u,uh, φ) ≈ Lm(uh, φ). To this end, we
can use for example an eddy-viscosity approach, such as the Smagorinsky model.
In VMS we assume that the effect of the unresolved scales on the largest resolved scales

is negligible and thus the effect of the SGS model is confined to a range of small resolved
scales. This is obtained in the DG-VMS framework by splitting the polynomial space
Sp
h into a low-order component V l ≡ SpL

h ⊆ Sp
h associated with the large scales and a

high-order component Vs ≡ Sp
h \ V l representing the small scales, where pL is called the

scale-partition parameter. In this work, the SGS term is computed from the full resolved
field, as done by Chapelier et al. (2016), and the effect of the SGS model is removed from
all scales belonging to V l by enforcing Lm(uh, φ) = 0, ∀φ ∈ V l.
The modeled energy transfer in DG-VMS can then be written as

Tm(k) =
∑

‖k‖=k

ûh(k) · L̂m(k) with Lm(x) =
∑

K

∑

i

Lm(uh, φ
i
K)φi

K(x). (2.7)

2.3. Results from a-priori testing

The methodology laid out in the previous section is applied to two DNS data sets of the
TGV configuration at Re = 5, 000 and 20, 000, with spatial resolution corresponding to
12803 and 34563 degrees of freedom (dofs), respectively. A snapshot of each of these data
sets at t = 14 (non-dimensional time units) is selected for analysis.
The ideal energy transfer, defined by Eq. (2.6), is compared to that provided by the

DG-VMS based on the Smagorinsky model for different hp-discretizations and values
of the scale-partition parameter pL. For each configuration, three hp-discretizations are
considered, corresponding respectively to 1/163, 1/83, and 1/43 of the DNS resolution
for Re = 5, 000, and 1/363, 1/183, and 1/93 of the DNS resolution for Re = 20, 000.
Figure 1 presents the energy spectra of the DNS velocity fields. The cut-off wavenumbers
corresponding to the selected resolutions are also shown in this figure; they are equal to
half the number of dofs of the considered hp-discretizations, namely kc = (p+ 1)/(2h).
For the configuration at Re = 5, 000, Figure 2(a) shows the ideal and modeled energy

transfer obtained for the coarsest resolution considered, for which the associated cut-off
frequency is located at the end of the inertial range [see Figure 1(a)]. As seen from this
plot, for this particular resolution the interaction between the large and the unresolved
scales is non-negligible and the dissipation provided by the Smagorinsky model is in good
agreement with the ideal energy transfer. Note that the Smagorinsky model is actually
equivalent to the DG-VMS approach in which the model is applied to all resolved scales.
For higher resolutions (Figure 2(b) and (c)) the ideal energy transfer is negligible at

low wavenumbers and presents the expected cusp-like behavior toward the upper end
of the spectrum. In this case, the Smagorinsky model provides an excessive amount of
dissipation, whereas the DG-VMS approach appears in fairly good agreement with the

110



Large-scale space definition for the DG-VMS approach

100 101 102

10−9

10−7

10−5

10−3

10−1

k

E

k−5/3

k−6

(a)

100 101 102 103

10−9

10−7

10−5

10−3

10−1

k

E

k−5/3

k−6

(b)

Figure 1. Energy spectra for the TGV at (a) Re = 5, 000 and (b) Re = 20, 000 at t = 14.
Dashed lines correspond to the resolutions considered in the evaluation of the energy transfer.
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Figure 2. TGV at Re = 5, 000: spectral energy transfer for the ideal subgrid stress, the
standard Smagorinsky model and the DG-VMS model for three DG-LES resolutions.

reference values for an optimal choice of the model parameters Cs and pL. The values
of these parameters are reported in the corresponding legends on the top left corner of
each of these plots. As expected, when the resolution is increased, the optimal value of
pL also increases, moving from pL = 4 to pL = 5. Another interesting feature of the
modeled energy transfer is the smooth transition it displays between its plateau values
and its value at the peak, which indicates that the DG-VMS scale-separation operator
is equivalent to a non-orthogonal filter in Fourier space [see Sagaut & Levasseur (2005)].
Finally, it is worth noting that, for these two higher resolutions, the peak of the modeled
energy transfer is slightly shifted to the left with respect to the ideal one. This would
suggest that a minimum amount of numerical dissipation is still necessary to cover the
full ideal dissipation spectrum. This is in agreement with our observations in a-posteriori
DG-VMS tests, for which a minimum amount of numerical dissipation is always necessary
to stabilize the simulation.
These results suggest that an adaptive DG-VMS approach able to adjust the model

parameters both in space and time could considerably improve the quality of the sim-
ulation with respect to the standard approach. Note that in an actual simulation the
resolution requirements might change across space and over time, which points to the
necessity of developing a space-time adaptive method able to dynamically adjust and
redistribute the amount of SGS dissipation in modal space.
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Figure 3. TGV at Re = 20, 000: spectral energy transfer for the ideal subgrid stress, the
standard Smagorinsky model and the DG-VMS model for three DG-LES resolutions.

For the higher Reynolds number case at Re = 20, 000, the results shown in Figure 3
corroborate the conclusions drawn from the lower Reynolds number configuration. One
notable difference can be observed however for the intermediate resolution, which cor-
responds to a cut-off frequency located at the beginning of the dissipation range [see
Figure 1(b)]. This is the coexistence of both a non-negligible interaction between the
large and the unresolved scales and a peak of energy transfer at a frequency close to the
cutoff. This can be interpreted as the presence of a non-zero plateau of the effective eddy
viscosity, already observed by Lamballais et al. (2017) for this same configuration and in
theoretical analyses considering an infinite inertial range. It appears that in this situation
the appropriate combination of the standard Smagorinsky and VMS approaches could
lead to improved results.

3. A new adaptive DG-VMS algorithm

Based on the insights gained from the previous section, we propose here an adaptive
algorithm able to dynamically adapt the value of the scale-partition parameter pL in
the DG-VMS approach. To this end, we start by defining the large-scale space as V l =

{φ ∈ Sp
h, φ|K ∈ P pK

L (K) if pKL ≥ 0, φ|K = 0 if pKL = −1} where −1 ≤ pKL ≤ p is the
local scale-partition parameter. The value pKL is selected based on the decay rate of the
momentum energy in modal space, which provides a measure of the local smoothness of
the solution in each element. The modal energy is defined as

E
{j}
K

..=

∫

K

(ρu){j} · (ρu){j}dx , (3.1)

where (ρu){j} for 0 ≤ j ≤ p is the projection of the resolved momentum density on the
space Sj

h \ Sj−1
h . It is assumed that, for a sufficiently resolved field, the modal energy

follows a power law, namely, E
{j}
K ∝ (j + 1)−σK , where the decay rate exponent σK

is obtained by means of a least-square method. The idea of using the spectral slope to
develop dynamic SGS models was originally proposed by Lamballais et al. (1998) in the
context of a high-order finite-difference scheme. A similar smoothness measure has been
employed recently by Chapelier & Lodato (2016) to develop a dynamic eddy-viscosity
model based on a high-order spectral difference method.
The relevance of this approach in the context of VMS is demonstrated by the results

obtained in our a-priori analysis. Indeed, as reported in the previous section, if the filter
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cut-off wavenumber is located in the inertial range, E(k) ∝ k−
5
3 , the Smagorinsky model

can provide the ideal distribution of energy transfer over all resolved scales. In contrast,
if the cut-off wavenumber is located in the dissipation range, E(k) ∝ k−α, α > 5/3,
the DG-VMS approach with pL ≥ 0 can more accurately approximate the physical en-
ergy transfer from resolved to unresolved scales. Thus, the slope of the spectrum α can
provide an indication of the range of applicability of the VMS approach. It has been
verified a-priori that the exponent σK provides very similar information, with the ad-
ditional advantage that it can be computed locally within an element and with limited
computational overhead, as the modal coefficients are readily available.

The value σK is therefore computed over the course of the simulation for each element
K, and pKL is locally set as

pKL (σK) =

{
round

[
(p+ 1)

(
σK−σth

β+σK−σth

)
− 1

]
, if σK ≥ σth ,

−1 , if σK < σth .
(3.2)

In Eq. (3.2), the value of the threshold σth represents the level of smoothness under which
the SGS dissipation is applied to all scales represented within the element. The additional
parameter β is related to the rate of change of pKL . This relation therefore allows us to
recover the Smagorinsky model for highly under-resolved regions when σK ≤ σth and
yields high values of pKL in sufficiently resolved zones. In the limit case σK → ∞, we have
that pKL → p, and no SGS dissipation is applied, which corresponds to locally using a
no-model approach, also called implicit LES (ILES).
The value of the threshold σth has been estimated in a-priori tests carried out for

Re = 5, 000 on the coarsest resolution considered, for which the Smagorinsky model
matches the ideal energy transfer [see Figure 2]. A value of σth between 1.8 and 2 has
been obtained by considering the solution at different times between t = 14 and t = 20
(fully developed turbulence). The sensitivity of the solution to this parameter is analyzed
in the a-posteriori tests described below.

3.1. Results from a-posteriori testing

The proposed algorithm is evaluated by performing simulations of the TGV configuration
at Re = 5, 000 and Mach number M = 0.1, using the DG solver Aghora [see Chapelier
et al. (2016)]. The hp-discretization considered consists of 123 elements and a polynomial
degree p = 7. Unless stated otherwise, the discretization of the convective fluxes is carried
out using a low-dissipative version of the Roe scheme for which the upwind component
has been scaled by a parameter αRoe = 0.1. The discretization of the viscous and SGS
model terms is performed based on the BR2 scheme. An explicit third-order strong
stability-preserving Runge-Kutta scheme with time step ∆t = 5 · 10−4 is used for time
integration. For de-aliasing purposes, the evaluation of the integrals employs (3p+ 1)/2
quadrature points per space direction.

The adaptive DG-VMS approach based on a value of σth = 1.8 and β = 0.7 is compared
to the standard DG-VMS with pL = 5, which corresponds to a fraction of large scales
equal to 75%, as recommended in the literature on VMS. These simulations are compared
to reference data obtained by filtering the DNS data following the procedure described in
section 2.3. We also report the results corresponding to an ILES for which the only source
of dissipation is that introduced by the upwind component of the Roe scheme (αRoe = 1).
For all model-based simulations, the Smagorinsky constant is set to Cs = 0.1.
Figure 4 illustrates the evolution over time of the resolved kinetic energy K and
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Figure 4. TGV at Re = 5, 000: evolution of the (a) resolved kinetic energy and (b) enstrophy.
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Figure 5. TGV at Re = 5, 000: evolution of the average scale-partition parameter for
σth = 0.18 and β = 0.7.

enstrophy ζ, given respectively by

K =
1

2V

∫

Ω

ρu · udx , ζ =
1

V

∫

Ω

(∇× u) · (∇× u)dx . (3.3)

We can observe from Figure 4(b) that the adaptive approach presents a remarkable
agreement with the filtered DNS data. In contrast, the standard DG-VMS approach and
the ILES appear to overestimate the total amount of enstrophy beyond t ≈ 6, suggesting
an insufficient amount of dissipation in these simulations. Furthermore, the ILES exhibits
multiple (unphysical) peaks, which might be caused by aliasing effects. It is also visible
from Figure 4(a) that the adaptive DG-VMS achieves an improved level of accuracy
of K predictions as compared to its non-adaptive counterpart and the ILES, with an
evolution of K that practically falls on top of the reference. The low levels of K displayed
by the standard DG-VMS in the final stages of the simulation can be explained by the
fact that for this value of pL the method is not able to provide sufficient dissipation
during the transition phase leading to a proliferation of small scales and consequently
to an overdissipative behavior past the peak of enstrophy (t > 9). This unsatisfactory
behavior is avoided in the adaptive DG-VMS algorithm by progressively reducing the
local scale-partition parameter during the transition phase and slowly increasing it during
the dissipation phase, as shown in Figure 5.
To analyze the sensitivity of the adaptive approach to the parameters σth and β, the

evolutions of the enstrophy obtained for several values of these parameters are shown in
Figure 6. As expected, higher values of β and σK lead to lower levels of enstrophy caused
by a higher amount of dissipation in the simulations. However, only limited differences
can be observed, which leads to the conclusion that the sensitivity of the solution to
the values of these two parameters is low, notably if compared to the sensitivity of the
standard DG-VMS to the scale-partition parameter (Figure 7). These results suggest
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Figure 6. TGV at Re = 5, 000: sensitivity of the evolution of the resolved enstrophy for the
adaptive VMS approach to the model parameters: σth (left) and β (right).
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Figure 7. TGV at Re = 5, 000: sensitivity of the evolution of the resolved enstrophy for the
standard VMS approach to the scale-partition parameter pL.

that the adaptive DG-VMS model proposed here can significantly improve the results
and provide a more robust approach as compared to its standard counterpart.

4. Conclusions

This work analyzes the spectral properties of the DG-VMS approach to LES by
performing a-priori tests of the inter-scale energy transfer in Fourier space. A consistent
methodology has been proposed to evaluate the ideal SGS stresses from DNS data in-
cluding the effect of the DG filter. The DG filter introduces discontinuities in the filtered
field that need to be taken into account to properly evaluate the ideal SGS stresses.
The ideal energy transfer has therefore been evaluated from DNS data of the TGV at
Re = 5, 000 and Re = 20, 000 for various hp-discretizations and compared to the energy
transfer provided by the DG-VMS approach based on the Smagorinsky model. For both
Reynolds numbers at sufficiently fine resolutions, the energy transfer between large and
unresolved scales can be neglected. It has also been demonstrated that the DG-VMS
approach can accurately approximate the ideal energy transfer when appropriate values
of the scale-partition parameter pL and the model constant are selected. The values of
these two parameters will necessarily depend on the level of resolution of the problem at
hand. The decay rate of the modal energy also exhibits a correlation with the ideal value
of pL.
Based on these results, we have developed a locally adaptive DG-VMS strategy allowing
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us to adjust the VMS partition in space and time. It relies on the estimation of the
decay rate of the modal energy spectrum as an indicator of the local smoothness of the
solution. The adaptive DG-VMS approach has provided promising results for the LES of
the TGV at Re = 5, 000 considering a very coarse mesh (1/143 of the DNS resolution).
The adaptive algorithm actually yields improved accuracy and robustness as compared to
its standard counterpart. More extensive analyses need to be carried out to evaluate the
generality of the proposed algorithm for different hp-discretizations and more complex
configurations.
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