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The persistence of subsurface oceans in icy moons primarily depends on the efficiency of heat transfer through the outer ice shell. Scaling laws for heat transfer have already been determined by previous studies. These consider however a simplified rheology assuming a single creep mechanism, often using a linearized version of the temperature-dependent viscosity law (called Frank-Kamenetskii approximation). In the present study, we test the influence of ice rheology on the efficiency of heat transfer by considering a more realistic composite viscosity law, including diffusion creep, grain boundary sliding, basal slip and dislocation creep. We performed a large number of numerical simulations of thermal convection in the stagnant lid regime using a 2-D spherical annulus geometry using different rheology assumptions.

Our results show that the dynamics of the ice shell is mainly controlled by the dominant creep mechanism in the rheological sublayer (the unstable lower portion of the cold boundary layer beneath the stagnant lid), which is mostly determined by grain size. For grain sizes lower than 3 mm, diffusion creep is the dominant creep mechanism in the rheological sublayer, while a combina-

Introduction

Spatial Exploration of the outer solar system (Galileo, Cassini-Huygens) has provided evidences for salty water oceans within several icy moons of Jupiter and Saturn. Magnetic induction signals detected by the Galileo spacecraft during the close flybys of Europa, Ganymede and Callisto indicated that these three moons possess an electrically conductive salty ocean beneath their ice shell [START_REF] Khurana | Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto[END_REF][START_REF] Kivelson | The permanent and inductive magnetic moments of Ganymede[END_REF]. For Titan, evidence for an internal ocean was provided by three independent observations: the detection of electric perturbations in Titan's atmosphere during the descent of the Huygens probe [START_REF] Béghin | A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe[END_REF][START_REF] Béghin | Analytic theory of Titan's Schumann resonance: Constraints on ionospheric conductivity and buried water ocean[END_REF], the observation of an obliquity three times larger than expected for a solid body [START_REF] Baland | Astrophysics Titan ' s obliquity as evidence of a subsurface ocean ?[END_REF][START_REF] Baland | Titan s internal structure inferred from its gravity field, shape, and rotation state[END_REF], and the measurements of gravitational tides [START_REF] Iess | The tides of Titan[END_REF][START_REF] Mitri | Shape, topography, gravity anomalies and tidal deformation of Titan[END_REF]. The presence of a subsurface ocean was suspected on Enceladus since the discovery of tidally-induced jet activities [START_REF] Porco | Cassini Observes the Active South Pole of Enceladus[END_REF][START_REF] Spencer | Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot[END_REF][START_REF] Nimmo | Shear heating as the origin of the plumes and heat flux on Enceladus[END_REF]Tobie et al., 2008;[START_REF] Postberg | Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus[END_REF], and the detection of a significant physical libration (Thomas et al., 2016) provided a firm evidence confirming this assumption. Similarly, a significant libration possibly implying the presence of an internal ocean has been measured for Mimas (Tajeddine et al., 2014). The presence of an internal ocean has also been suggested, at least in the past, for Pluto, Ceres, Triton, Dione, Rhea, Titania or Oberon [START_REF] Bierson | Implications of the observed PlutoCharon density contrast[END_REF][START_REF] Ermakov | Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft[END_REF][START_REF] Nimmo | Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto[END_REF][START_REF] Nimmo | Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology[END_REF][START_REF] Beuthe | Enceladus's and Dione's floating ice shells supported by minimum stress isostasy[END_REF][START_REF] Hussmann | Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects[END_REF].

The existence of internal ocean at present is primarily determined by the amount of available internal energy and the efficiency of heat transfer through the outer ice shell, separating the ocean for the extremely cold surface conditions (90-130 K for Jupiter's moons, 60-95K for Saturn's moons).

The main sources of energy are kinetic energy associated to impacts during accretion, release of gravitational energy associated to differentiation, decay of radioactive elements and tidal heating (e.g. [START_REF] Hussmann | Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects[END_REF].

Heat accumulated during the early stage (accretion and differentiation) contributes to the internal melting and hence formation of internal ocean. Even if these energy sources have long been deposited in the interior, they have been stored in the form of latent heat in the liquid layer and thus indirectly still contribute to the thermal budget of the moons. At present, for most of the moons the main source of energy is radioactive decay, and for a few moons, tidal heating can be the dominant source (e.g. Enceladus, Europa).

The thermal evolution of the icy moons not only depends on how energy is distributed in their interior and change through time, but also on how it is transferred from the deep interior to the surface.

The efficiency of heat transfer through the outer ice shell depends mostly on the layer thickness. For thin layers, heat is transferred by conduction and heat flux decreases as the shell increases. But when the thickness exceeds a critical value, thermal convection can initiate start operating, leading to a strong increase of heat flux. The thickness at which this onset occurs depends mostly on the viscosity of ice, which controls at which rate the ice can flow. A particularity of geophysical fluids, like ice, is that their viscosity strongly depends on temperature (e.g. [START_REF] Weertman | Creep deformation of ice[END_REF], leading to a very large viscosity contrast between the ice/ocean interface and the surface. Due to the strong increase of ice viscosity, convection operates in the so-called stagnant lid regime [START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF][START_REF] Mckinnon | Convective instability in Europa's floating ice shell[END_REF]. The convective part of the layer is thus confined beneath a rigid lid where heat transfer is purely conductive. In the specific case of Europa, geophysical observations suggest that crustal material is recycled into the interior [START_REF] Mével | Resorption process in Astypalaea Linea extensive region ( Europa )[END_REF][START_REF] Kattenhorn | Evidence for subduction in the ice shell of europa[END_REF]. This indicates that the convection in this icy moon might be better described by a mobile lid regime, not discussed in this study.

The Stagnant lid convection in planetary bodies (either rocky or icy) have been widely studied by theoretical [START_REF] Morris | A boundary-layer analysis of Benard convection in a fluid of strongly temperature-dependent viscosity[END_REF][START_REF] Fowler | Fast Thermoviscous Convection[END_REF][START_REF] Howard | Convection at high Rayleigh number[END_REF], experimental [START_REF] Davaille | Transient High-Rayleigh-Number Thermal Convection With Large Viscosity Variations[END_REF] and numerical (e.g. [START_REF] Choblet | Early transient cooling of Mars[END_REF][START_REF] Deschamps | Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity[END_REF]Dumoulin et al., 1999;[START_REF] Freeman | Thermal convection with a water ice I rheology: Implications for icy satellite evolution[END_REF][START_REF] Guerrero | The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid : Implications for the 2-D and 3-D Modeling of Moons[END_REF][START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF][START_REF] Yao | Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons[END_REF] works. Relationships between Rayleigh number, Nusselt number, thicknesses of thermal boundaries boundary layers and velocity in-side the layer have been determined. Scaling laws, assuming either an isoviscous convective layer underneath the conductive lid or considering the entire layer, have been extensively used in evolution models to understand thermal history of Earth (e.g. [START_REF] Cook | Parameterized convection and the thermal evolution of the Earth[END_REF][START_REF] Honda | Comparison of the dynamic and parameterized models of mantle convection including core cooling[END_REF], of icy satellites (e.g. [START_REF] Consolmagno | The Evolution of Icy Satellite Interiors and Surfaces[END_REF][START_REF] Ellsworth | Saturn's Icy Satellites : Thermal and Structural Models[END_REF][START_REF] Hussmann | Thermal Equilibrium States of Europa's Ice Shell : Implications for Internal Ocean Thickness and Surface Heat Flow[END_REF][START_REF] Hussmann | Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects[END_REF][START_REF] Multhaup | Stagnant lid convection in the mid-sized icy satellites of Saturn[END_REF] and water planets (e.g. [START_REF] Fu | The interior dynamics of water planets[END_REF]. However, most of the scaling laws have been determined considering a simplified rheology, assuming a single creep mechanism and using a linearized version of the temperature-dependent viscosity law (called best known as Frank-Kamenetskii approximation). [START_REF] Noack | First-and second-order frank-kamenetskii approximation applied to temperature-, pressure-and stress-dependent rheology[END_REF] have derived a more accurate approximation of the Arrhenius viscosity law (called named the damped Frank-Kamenetskii approximation), but heat transfer parameterization have not been dervied with that rheology.

A few studies have tested the effect of an Arrhenius rheology instead of the commonly-used Frank-Kamenetskii approximation on the dynamics of planetary bodies [START_REF] Reese | Non-Newtonian Stagnant Lid Convection and Magmatic Resur facing on Venus[END_REF][START_REF] Korenaga | Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting[END_REF][START_REF] Stein | Arrhenius rheology versus Frank-Kamenetskii rheology -Implications for mantle dynamics[END_REF].

They showed that the Nusselt-Rayleigh relationship and the thermal boundary layer thicknesses are different depending on the rheology (respectively [START_REF] Korenaga | Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting[END_REF][START_REF] Stein | Arrhenius rheology versus Frank-Kamenetskii rheology -Implications for mantle dynamics[END_REF][START_REF] Stein | Arrhenius rheology versus Frank-Kamenetskii rheology -Implications for mantle dynamics[END_REF].

In reality, for polycrystalline aggregates, such as ice and silicate minerals, different creep mechanisms may prevail depending on the stress, temperature and grain size (e.g. [START_REF] Poirier | Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals[END_REF], so that several Arrhenius viscosity laws should be considered simultaneously to properly predict the rheology of polycrystalline aggregates. In the particular case of polycrystalline ice, several creep mechanisms have been identified from laboratory measurements and field analysis (e.g. [START_REF] Montagnat | Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization[END_REF]Durham and Stern, 2001;[START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF]. At high stress level (> 0.1 MPa), typical of temperate mountain glaciers (e.g. [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF], the rheology of ice is dominated by intra-crystalline dislocation slip mainly on basal planes with a stress exponent n ∼ 3-4 [START_REF] Budd | A review of ice rheology for ice sheet modelling[END_REF]Durham et al., 1997) and is independent of grain size. At lower stress levels, representative of Earth's polar ice sheets and tidally deformed and/or convecting ice shells in icy moons [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF], the rheology of ice becomes grain size sensitive (e.g. [START_REF] Montagnat | Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization[END_REF]Durham and Stern, 2001;[START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF]. Although there is a consensus regarding the grain-size dependency at low stress, the deformation mechanism explaining the grain-size sensitivity is debated (Durham and Stern, 2001;[START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF]Duval and Montagnat, 2002;Duval, 2013). In the following, we use the formulation proposed by [START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF] which has the merit advantage to combine the four creep mechanisms in a composite flow law. [START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF] proposed that the grain-size sensitive creep observed in laboratory experiments performed on fined-grain ice samples (< 100 microns) is explained by a combination of grain boundary sliding and basal slip, and they predicted that at very low stress regime the creep of ice should be dominated by diffusion. Note that this very low stress regime where diffusion creep should be dominant has never been reached in laboratory mechanical tests. Using the constitutive relationship derived by [START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF], the deformation of ice in planetary conditions is described as a sum of contributions of four creep mechanisms: dislocation creep, grain boundary sliding, basal sliding and diffusion creep.

Based on this constitutive relationship, a variety of studies have tried to address the implications of these different creep regimes for the dynamics of ice shell (see [START_REF] Barr | Heat Transfer in Europa's Icy Shell[END_REF] for a review), however only a few studies have considered the composite rheology including simultaneously the four creep mechanisms [START_REF] Barr | Onset of convection in the icy Galilean satellites: Influence of rheology[END_REF][START_REF] Ruiz | Equilibrium Convection on a Tidally Heated and Stressed Icy Shell of Europa for a Composite Water Ice Rheology[END_REF][START_REF] Behounkova | Impact of tidal heating on the onset of convection in Enceladus's ice shell[END_REF][START_REF] Kalousová | Water generation and transport below Europa's strike-slip faults[END_REF]. None of them have addressed the effects of composite rheology on the scaling laws describing the efficiency of heat transfer through the ice shell. In the present study, we test the influence of ice rheology on the efficiency of heat transfer by performing numerical simulations of thermal convection using realistic composite viscosity law. In order to understand the influence of composite rheology, we also performed a series of simulations using the classically used Frank-Kamenetskii approximation and an Arrhenius rheology (including only diffusion creep). We derive numerical estimates of parameters involved in scaling relationships in order to provide simple rules for future parameterized modelling efforts dedicated to ice shells involving stagnant lid convection with a composite rheology. The numerical experiments are performed in the stagnant lid regime using a 2-D spherical geometry numerical code, CHEOPS (Besserer, 2012, Appendix A.1 and Appendix A.2) . In Section 2, we provide a description of the model and the different rheologies used. Section 3 then depicts the numerical results and the comparison between the different assumed rheologies. Finally, in section 4, we discuss the implications of our results for the thermal evolution of icy moons.

Model and rheological description

Physical model

The curvature of the external ice shell, represented by a spherical annulus, is related to

f = R bot R top , (1) 
where R bot is the bottom radius and R top the surface radius, and the layer

thickness is D = R top -R bot .
We opted for f > 0.9, which is relevant for the largest icy moons (Titan, Ganymede and Callisto) and for most of the icy moons during most of their evolution [START_REF] Hussmann | Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects[END_REF]. The bottom boundary corresponds to the interface between the internal ocean and the ice-I layer, modeled by a free-slip condition. We assume that the ice shell is only heated from below and has a fixed bottom temperature (T b ) corresponding to the melting temperature, varying between 255 and 273 K, depending on the composition of the underlying water ocean [START_REF] Grasset | On the internal structure and dynamics of Titan[END_REF]. We neglect the possible presence of a mush layer at the ice/ocean interface. Note that these specific boundary conditions imply that our simulations will not apply to deep high-pressure layers possibly present in the largest moons (Titan, Ganymede, Callisto) for which a specific treatment is required as the surface temperature is close to the melting point [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons and the dissipation number[END_REF][START_REF] Kalousová | Twophase convection in Ganymede's high-pressure ice layer Implications for its geological evolution[END_REF]. Although it is not realistic, for practical reason, we imposed a no-slip condition at the surface. This configuration does not affect the dynamics because we insure that all the simulations occur in a stagnant lid convection, where surface velocity is negligible. Periodic conditions are imposed on the lateral boundaries.

Dynamics of planetary mantles, either rocky or icy, are governed by mass, momentum and energy (heat) conservation equations. The external ice shell of icy bodies being rather thin (f > 0.9), we neglect the effect of compressibility. In the frame of the Boussinesq approximation and for an infinite Prandlt number, the conservation equations are

- → ∇ • - → v = 0, (2) ρ D - → v Dt = - → ∇ • σ + - → f , (3) 
and

∂T ∂t -κ∇ 2 T + - → v • - → ∇T = 0, (4) 
where -→ v is the velocity, t is time, T is temperature. ρ and κ are the density and the thermal diffusivity, respectively, which are material dependent.

These physical properties for ice I are listed in Table 1. σ is the stress tensor and -→ f represents the body force.

[Table 1 about here.]

Rheology

The convective dynamics of planetary mantle strongly depend on the viscosity of the convecting materials, here ice, which is known to be a strong function of temperature. Owing to the relatively small thickness of the ice crust, we neglect the effect of pressure. Most of previous studies (e.g. [START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF]Dumoulin et al., 1999;[START_REF] Deschamps | Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity[END_REF][START_REF] Reese | Scaling laws for time-dependent stagnant lid convection in a spherical shell[END_REF] used an exponential law with a temperature linearized term to describe this dependence (Frank-Kamenetskii approximation, Frank-Kamenetskii (1969)):

η(T ) = η 0 exp(-γ T -T 0 ∆T ) (5)
with η 0 the viscosity at the surface temperature T 0 and ∆T the temperature difference across the layer. γ is the Frank-Kamenetskii parameter representing the temperature dependence of viscosity. This law will be called FK-T in the following.

This viscosity law is a linearized approximation of an Arrhenius-type law for the viscosity in diffusion creep,

η = A -1 d 2 g exp E a RT , ( 6 
)
where R is the gaz gas constant, E a the activation energy, A the preexponential constant and d g the grain size. In our simulations, E a ranges from 50 to 62 kJ•mol -1 . This law will be called AR-D in the following.

The standard definition of the Frank-Kamenetskii parameter is

γ = E a ∆T RT 2 i , (7) 
where T i is the temperature of the well-mixed interior [START_REF] Frank-Kamenetskii | Diffusion and heat transfer in chemical kinetics[END_REF].

Four creep mechanisms have been identified for ice-I: diffusion creep, dislocation creep, grain boundary sliding and basal slip. For each mechanism, in addition to temperature, viscosity is, in general, stress-and grain sizedependent:

η = d m g A σ n-1 II exp E a RT . (8) 
In Eq.8, σ II is the second invariant of the deviatoric stress tensor. m, n, and the activation energy E a are creep parameters that have been determined by [START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF] for each mechanism (see Table 2).

[Table 2 about here.]

Following the composite creep framework introduced by [START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF], the effective viscosity η tot including the four creep mechanisms can be written as [START_REF] Freeman | Thermal convection with a water ice I rheology: Implications for icy satellite evolution[END_REF][START_REF] Kalousová | Water generation and transport below Europa's strike-slip faults[END_REF])

1 η tot = 1 η dif f + 1 η disl + 1 η gbs + η bas . (9) 
In this formulation, the dominant mechanism is the one associated with the smallest value of viscosity.

The three alternative rheological laws (only temperature-dependent FK-T and AR-D (eq.5 and eq.6 respectively) or composite (eqs.8 and 9)) are considered in the following. For simplicity, we neglect the effect of premelting, which results in an enhancement of temperature dependence (activation energy) for temperature approaching the melting point [START_REF] Goldsby | Superplastic deformation of ice: Ex-perimental observations[END_REF]Durham and Stern, 2001). This point will be discussed in section 4.

In the cases of AR-D and composite rheologies, a uniform value for grain size, constant trough time, is used for each simulations (10 -6 m ≤ d g ≤ 10 -2 m ). As the viscosity strongly increases near the surface up to unrealistically large values for these rheologies, we prescribe a viscosity cut-off (∆η max =10 8 leading to a maximal viscosity value of 10 20 -10 24 Pa•s). Practically, the cutoff value is reached only in the upper part of the stagnant lid and does not influence the convective process underneath.

Numerical method

The problem is solved in its dimensionless form using the numerical code CHEOPS-2D initially developed by J. Besserer [START_REF] Besserer | Approche numérique du couplage par effets de marée entre transferts thermiques internes et évolution orbitale des corps planétaires[END_REF] and adapted to the case of ice shell convection with the appropriate rheology. Equations are discretized on an annular, orthogonal, staggered mesh, through a finite volume method [START_REF] Patankar | Numerical Heat Transfer And Fluid Flow[END_REF] in the spherical annulus geometry following the approach of [START_REF] Hernlund | Modeling mantle convection in the spherical annulus[END_REF] (see Appendix A.1). The purpose of this specific geometry is to capture as much of the essential characteristics of the fully-spherical geometry as possible in a 2-D framework requiring smaller computational times, thus allowing to investigate a wider parameter space in simulations. It is associated with a polar coordinate system (r, θ),

and an orthonormal basis. The mesh is divided into n r and n θ cells into the radial and azimuthal directions respectively, with a radial grid refinement in the top and bottom regions. Simulations have been performed using an annulus fraction with an aspect ratio of 4, with for most cases n r =128 and n th =320. A few tests have been performed with a doubled resolution and no significant difference has been observed. Details of the numerical schemes used to solve the conservation equations (eqs. 2-4) are provided in Appendix A.2.

Dimensionless numbers

The vigor of convection is controlled by the internal Rayleigh number

Ra i = αρg∆T D 3 η i κ . ( 10 
)
associated to the viscosity of the well-mixed interior (η i ).

The surface Nusselt number N u top measures the efficiency of heat transfer by convection compared to heat transfer by conduction :

N u top = q top φ top , (11) 
with q top the surface heat flux and φ top the surface heat flux that would be obtained for steady state conduction in the layer

φ top = f (1 -f ) 2 k∆T D R 2 top (12)
for a spherical case, with k the thermal conductivity (Table 1). Similarly, the bottom Nusselt number N u bot is

N u bot = q bot φ bot , (13) 
with q bot the bottom heat flux and

φ bot = φ top f -2 . ( 14 
)

Simulation processing

The number of simulations for each rheology as well as the ranges for bottom Rayleigh number Ra b and rheological parameter γ are listed in Table 3.

Computations are performed until a quasi-stationary state is reached: the average temperature and the Nusselt number at the top and bottom (N u top and N u bot ) oscillate around constant values that satisfy Eq. 14. We also ensured that the average temperature in the layer reached a quasi-stationary state. After a quasi-stationary state is reached, in the case of time-dependent simulations, we performed a time-averaging on an average window of 25000-50000 time steps typically corresponding to dimensionless durations of 0.1-0.3. We define N u as the average value of the Nusselt number between these two values. When the internal Rayleigh number (Ra i ) is lower than ∼ 10 7

(see Fig. 1), the simulations are in the stationary regime (Moresi andSolomatov (1995), Dumoulin et al. (1999)). In this case, the surface heat flux is constant through time. Snapshots of the temperature field exhibit strong cold and hot plumes as well as pronounced lateral variations of the lid thickness (Fig. 1 top right). For higher Ra i , the surface heat flux oscillates around a mean value and convection is time-dependent. In these cases, the lid thickness is almost uniform and time-dependent instabilities at the base of the cold thermal boundary layer drive convection (Fig. 1 bottom right). We also observe an intermediate regime (stars in Fig. 1). In this case, the convective pattern is very similar to the stationary one, except that secondary instabilities at the base of the cold thermal boundary layer are advected toward the main downwellings that remain almost stationary (Fig. 1 middle right).

The transition between stationary and time-dependent simulations is around Ra i = 10 7 whatever the assumed rheology. As shown by Dumoulin et al.

(1999), Nu-Ra relationships are different for stationary and time-dependent regimes. We thus discriminate between the two endmember regimes in the following. The transitionnal regime corresponding to a very limited range of Ra i values, it is not considered in the following analysis.

[Table 3 about here.]

[Figure 1 about here.]

We define the convective sublayer as the part of the total layer where the convective heat flux exceeds the conductive flux on the time averaged radial profiles (see Fig. 2 [START_REF] Davaille | Transient High-Rayleigh-Number Thermal Convection With Large Viscosity Variations[END_REF]. Note that all thicknesses are nondimensionalized with the total layer thickness. θ sl is the dimensionless temperature at the bottom of the stagnant lid (r = R top -d sl ).

θ i is the dimensionless temperature representative of the well-mixed interior.

It is computed as the mean temperature between the local maximum closest to the surface and the local minimum closest to the bottom on the timeaveraged radial temperature profile. The interior viscosity η i is computed as the mean viscosity in the same region.

[Figure 2 about here.]

The rheological parameter γ corresponds to the inverse of the viscous temperature scale, proposed by [START_REF] Davaille | Transient High-Rayleigh-Number Thermal Convection With Large Viscosity Variations[END_REF], and is defined as

γ = - ∂η/∂T η . ( 15 
)
For Frank-Kamenetskii simulations, γ is fixed and constant across the layer (see Eq. 5). In the case of a purely diffusive Arrhenius viscosity law, γ is calculated using the expression of the derivative of the viscosity (Eq. 15)

evaluated with taken at the internal temperature (Eq. 7). For the composite rheology, γ depends on the dominant deformation mechanism which varies as a function of depth (see Section 3.2.1). We estimate an effective γ value in the rheological sublayer (δ rh in Fig. 2) from the mean viscosity profile by computing the local derivative of viscosity with T.

Results

Frank-Kamenetskii versus Arrhenius-diffusion creep

In order to test the limit of the classically-used Frank-Kamenetskii approximation, we performed a series of simulations using either FK-T or AR-D formulation. We then compare the scaling relationships of the Nusselt number and the layer thicknesses found for the classically used Frank-Kamenetskii approximation and the purely diffusive Arrhenius formulation.

Nusselt -Rayleigh relationship

Scaling relations of heat transfer in stagnant lid convection have been widely studied in theoretical, experimental as well as numerical frameworks.

These previous studies show that the surface Nusselt number N u is related to the internal Rayleigh number Ra i and the rheological parameter γ following

N u ∝ Ra b i γ c .
The asymptotic boundary layer theory [START_REF] Morris | A boundary-layer analysis of Benard convection in a fluid of strongly temperature-dependent viscosity[END_REF][START_REF] Fowler | Fast Thermoviscous Convection[END_REF] yields b = 1/5 and c = -1 for the stagnant lid regime, while the bound-ary layer stability analysis yields b = 1/3 and c = -4/3 [START_REF] Howard | Convection at high Rayleigh number[END_REF][START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF]. Using numerical simulations in the stagnant lid regime, Dumoulin et al. (1999) show that the asymptotic boundary layer theory applies to the stationary convection, whereas the boundary layer stability analysis applies to the time-dependent cases. Studies using an inversion for the determination of the exponents b and c (e.g. [START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF][START_REF] Deschamps | Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity[END_REF][START_REF] Deschamps | Stagnant lid convection in 3D-Cartesian geometry: Scaling laws and applications to icy moons and dwarf planets[END_REF] 

r 2 = (x -x)(y -ȳ) 2 (x -x) 2 (y -ȳ) 2 , ( 16 
)
where • stands for the mean, indicates the proportion of the distribution of points (of coordinates (x,y)) determined by the equation for the best linear fit.

[Figure 3 about here.]

Our data are in good agreement with the theoretical predictions, either for steady state (Fig. 4a) or time-dependent convection (Fig. 4b).

For the Frank-Kamenetskii approximation, the two coefficients of determination are larger than 0.98. For the Arrhenius diffusion creep rheology, the coefficients are slightly smaller: r 2 = 0.969 for steady state and r 2 = 0.962 for time-dependent simulations. The best fits are provided by the following prefactors

N u = 1.90 Ra 1/5 i γ -1 (17)
for the steady state convection and

N u = 0.52 Ra 1/3 i γ -4/3 (18) 
for time-dependent simulations with a Frank-Kamenetskii rheology. These values are close to those of previous studies [START_REF] Davaille | Transient High-Rayleigh-Number Thermal Convection With Large Viscosity Variations[END_REF][START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF]Doin et al., 1997;Dumoulin et al., 1999). For the diffusion creep Arrhenius rheology, the proportionality coefficients are lower for both types of convection. For stationary simulations, we obtain

N u = 1.61 Ra 1/5 i γ -1 , (19) 
which lead to a diminution of the Nusselt number of ∼15% compared with a

Frank-Kamenetskii rheology. In the case of time-dependent simulations, the Nu-Ra relationship is

N u = 0.37 Ra 1/3 i γ -4/3 , (20) 
yielding to a Nusselt number reduction of ∼28%. The Frank-Kamenetskii approximation thus systematically overestimates the efficiency of heat transfer, which may a have significant impacts on the modeling of thermal evolution of icy moons. This result is in agreement with [START_REF] Reese | Non-Newtonian Stagnant Lid Convection and Magmatic Resur facing on Venus[END_REF] who find that the Nusselt number obtained with a FK-T viscosity law is overestimated by ∼20% compared with an Arrhenius rheology.

[Figure 4 about here.]

Boundary layer thicknesses

As expected, the total thickness of the cold boundary layer scales as the inverse of the Nusselt number (e.g. [START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF]. The best fit is identical for the stationary and time-dependent simulations, reflecting similar values of the interior temperature θ i (see our tables of results in online supplementary material).

Deschamps and Lin (2014) and [START_REF] Yao | Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons[END_REF] show a proportional relationship between d sl and N u -1 . The thickness of the stagnant lid depends on the viscosity law (Fig. 5a). The purely conductive layer is thicker in purely diffusive Arrhenius rheology than in cases using the Frank-Kamenetskii approximation. We obtain

d sl = 0.70 N u -1 (21) 
for FK-T simulations (r 2 = 0.975) and

d sl = 0.77 N u -1 (22)
for AR-D simulations (r 2 = 0.988).

According to [START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF], the upper and lower boundary layer thicknesses are related as δ 1 ∝ δ 0 γ -1 . We find four scaling laws for δ 1 , depending on convection mode and rheological assumptions (Fig. 5b). The difference between stationary and time-dependent regime is more important in AR-D cases than in the Frank-Kamenetskii approximation. This can be explained by the fact that γ is constant in the FK-T simulations, but varies in the layer with a purely diffusive Arrhenius viscosity law. With an Arrheniustype viscosity law, δ 1 is about 20% thinner than in Frank-Kamenetskii simulations for time-dependent convection.

Together with the Nusselt-Rayleigh relationships previously found, the parameterizations of thicknesses δ 0 , d sl and δ 1 enable to rebuild a synthetic temperature profile at thermal equilibrium from γ and Ra i .

[Figure 5 about here.]

Scaling laws determined in this section for Frank-Kamenetskii and purely diffusive Arrhenius simulations are listed in Table 4.

[Table 4 about here.]

Composite rheology

Four creep mechanisms are involved in the composite rheology (Eq. 9).

In this case, the scaling relationships for Nusselt number and for the layer thicknesses become more complex. In the first subsection, we show how to determine the dominant creep mechanism in the rheological sublayer. Then we explain how the dominant creep mechanism affects the heat transfer and the structure of the ice layer. Because too few simulations with composite rheology and in the stagnant lid regime are stationary, we restrict our analysis to the time-dependent convection simulations.

Dominant mechanism

As shown in Eq. 8 and Eq. 9, viscosity depends on temperature, grain size and stress. In all the other treated cases, a similar transition is always observed for d g values between 2 and 5 mm. For cases with d g < 0.5 mm, the contribution of 1 η dif f to 1 ηtot is always larger than 90%. As such large values are not realistic, no simulations with d g >10 mm have been performed. Grain sizes in Earth's polar ice sheets, which can be considered as good analogous of convecting ice shells, typically ranges between 1 and 5 mm (Thorsteinsson et al., 1997;[START_REF] Montagnat | Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization[END_REF]Durand et al., 2006;[START_REF] Barr | Ice grain size and the rheology of the martian polar deposits[END_REF].

We therefore restrict our computations to grain sizes < 10 mm. Grain size above 10 mm may exist, as observed in accreted ice above Lake Vostok [START_REF] Montagnat | High crystalline quality of large single crystals of subglacial ice above Lake Vostok (Antarctica revealed by hard X-ray diffraction[END_REF], but only for very pure ice with extremely low impurity content and subjected to very small strain.

[Figure 6 about here.]

[Figure 7 about here.]

Because the dynamics of the ice layer is mainly controlled by the rheological sublayer of thickness δ rh , we pay a special attention to the dominant mechanism just below the lid. Figure 8 displays the contribution of diffusion creep p dif f to the total deformation (in %) in this sublayer as a function of grain size. The effect of the Rayleigh number is found to be only modest and a satisfactory relationship is obtained when considering only grain size.

For grain sizes of less than 5×10 -4 m, p dif f = 100%. If 0.5 mm < d g < 10mm, the relationship

p dif f = -16.63 ln (d g ) -43.18 (23)
allows us to determine the contribution of diffusion creep in the rheological sublayer with a good accuracy (r 2 = 0.976). p dif f is then greater than 50% for d g < 3.6 mm.

[Figure 8 about here.]

Owing to a small contribution of the dislocation creep (< 5%, see above), the contribution of grain boundary sliding/basal slip in total viscosity is generally the predominant counterpart of the contribution of diffusion creep to the global composite viscosity (Fig. 9). More precisely, the relationship

p gbs/bas = -0.95 p dif f + 95.34 (24)
describes very well the p gbs/bas observed in our numerical experiments (r 2 = 0.999).

[Figure 9 about here.]

Scaling laws Effect on heat transfer

As already mentioned in section 2.5, for a composite rheology γ cannot be computed directly from the rheological equation since several creep mechanisms and hence activation energies are involved. We decided to use γ rh computed from the time averaged temperature and viscosity profiles in the rheological sublayer, using Eq. 15. γ rh mostly depends on grain size (and therefore on p dif f , see previous section) and typically ranges from 13 -17 for d g = 10 mm to 25 -30 for d g = 0.1 mm (see online supplementary material).

We observe little influence of the curvature for f larger than 0.95 (Fig. 10), whereas for thicker shells, γ rh tends to significantly increase (up to 40%) with decreasing f for a given value for p dif f . No simple description of this effect is proposed here, but we note that γ rh can be estimated by the relation

γ rh = 0.18 p dif f + 8.27 (25) 
for f higher than 0.95 (r 2 = 0.903). Note that many simulations with small grain size (and hence high diffusion creep contribution) and high curvature (low f ) were not in the stagnant lid regime. This explains the lack of points with f > 0.97 and p dif f > 70% in Fig. 10, as we represent only result in the stagnant lid regime.

[Figure 10 about here.]

Because the dominant creep mechanism varies according to the grain size, the classical parameterization of the Nusselt number obtained for a single creep mechanism (Eq. 20) is not appropriate. Our results clearly exhibit an influence of the dominant creep mechanism (Fig. 11). Within our range of parameter γ rh , a reasonable description of the Nusselt number is

N u = 0.65 Ra 1/3 i (c g γ rh ) -4/3 (26)
where c g = 1 when the dominant creep mechanism in the rheological sublayer is diffusion creep (p dif f > 50%) and c g = 1.25 when the dominant mechanism is grain boundary sliding/basal slip (p dif f < 50%) (Fig. 12). In Figure 12, the purely diffusive Arrhenius results are plotted using γ rh computed in the same way than for our composite results, and c g = 1, in order to compare them. The influence of the dominant creep mechanism (i.e. c g value) was

found to be better approximated by a piecewise constant function than by a linear function of p dif f . [START_REF] Christensen | Convection in a variable-viscosity fluid : Newtonian versus power-law rheology[END_REF] and Dumoulin et al. (1999) showed that heat transfer in Newtonian and non-Newtonian cases are similar if the activation energy, and thus the rheological parameter, is adjusted according to a coefficient depending on the creep mechanism occurring in the layer. However, a direct comparison of our parameterization to their studies is made difficult by the fact that their numerical experiments use the Frank-Kamenetskii approximation. Consequently, γ and the stress exponent n are fixed and constant across the layer. As seen above, the dominant creep mechanism, and thus the dominant activation energy, vary with depth in composite rheology. Note that simulations with a contribution of diffusion creep to the inverse of the total viscosity of more than 90% (red circles on Fig. 12) are in very good agreement with the simulations performed with a purely diffusive Arrhenius viscosity law using γ rh computed in the same way than for composite rheology (open circles).

[Figure 11 about here.]

[Figure 12 about here.]

The scaling relationship between δ 0 and Nusselt number is close to the relationship obtained with the Frank-Kamenetskii approximation and the purely diffusive Arrhenius rheology. We find δ 0 = 0.98N u -1 (r 2 = 0.997).

The best fit for the stagnant lid thickness is (Fig. 13)

d sl = 0.82N u -1 (27)
for these simulations (r 2 = 0.994). Note that this implies a lid that is 8% thicker than for the purely diffusive Arrhenius rheology (diffusion creep only) and 15% thicker than for the Frank-Kamenetskii approximation. The part of the stagnant lid in the thermal boundary layer (δ 0 /d sl ) is about 79% in AR-D cases and about 84% for a composite rheology.

[Figure 13 about here.]

As seen before for simulations in the Frank-Kamenetskii approximation or with a purely diffusive Arrhenius rheology, the lower thermal boundary layer thickness is linked to the Nusselt number and the rheological parameter γ rh . This parameter has to be weighted by the coefficient c g in the same way as for the Nusselt number scaling law. Our data yield the following law:

δ 1 = 1.12 N u -1 (c g γ rh ) -1 (28)
with r 2 = 0.961 (Fig. 14).

[Figure 14 about here.] Table 4 summarizes the different scaling relationships found for the composite rheology the considered rheologies allowing comparison of heat transfer.

Simple scaling relationships

In the specific case of icy shells, the activation energy of the four potential creep mechanisms is very comparable (50-60kJ•mol -1 , see ), as already used in section 3.1.1 for the purely diffusive rheology. Figure 15 shows the obtained fit assuming the simplified scaling law for the Nusselt number:

N u = 0.40 Ra 1/3 i γ -4/3 (29)
with an activation energy of 50 kJ.mol -1 (coefficient of determination r 2 =0.977).

This simple scaling applies equally well to the composite rheology and to purely diffusive Arrhenius rheology (see open symbols on Figure 15).

[Figure 15 about here.]

The parameterization of the lower thermal boundary layer δ 1 can also be simplified along the same lines, using the activation energy of diffusion creep or grain boundary sliding mechanism (E a =50 kJ.mol -1 , see Figure 16) :

δ 1 = 0.92 N u -1 γ -1 (30) 
with r 2 = 0.988.

[Figure 16 about here.]

These relationships are more convenient to use in the framework of a thermal evolution model. Again, the validity of this simplified parameterization relies on the specific rheology of ice I and the fact that other aspects such as the interior temperature or stress level are also relatively comparable over all the results presented here. As our simulations aimed at covering a quite extensive range of plausible conditions for the outer ice shells of ocean worlds operating in the stagnant lid regime, the use of such a simple parameterization in this specific context is therefore appropriate. (Taffin et al., 2012;[START_REF] Hansen | Amorphous and crystalline ice on the Galilean satellites : A balance between thermal and radiolytic processes[END_REF], which is unfortunately not representative of grain size inside the ice shell. Spectral studies found that grain size at the surface ranges from few micrometers to few hundreds micrometers (Stephan et al., 2005;[START_REF] Dalton | Europa's icy bright plains and dark linea : Exogenic and endogenic contributions to composition and surface properties[END_REF][START_REF] Hansen | Amorphous and crystalline ice on the Galilean satellites : A balance between thermal and radiolytic processes[END_REF][START_REF] Poch | Polarimetry of Water Ice Particles Providing Insights on Grain Size and Degree of Sintering on Icy Planetary Surfaces[END_REF]. Grain sizes in the ice shell are likely larger, owing to grain growth which tends to reduce the total grain boundary energy of the system [START_REF] Ralph | Grain growth[END_REF]. Associated with sintering, grain sizes are expected to increase with depth [START_REF] Poirier | Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals[END_REF], until reaching a steady-state value [START_REF] Montagnat | Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization[END_REF]. Grain growth is indeed limited by dynamical recrystallization and pinning effects exerted by secondary non-water ice phase located on grain boundaries (dust, bubble, clathrate etc.) (Durand et al., 2006). For instance, [START_REF] Barr | Ice grain size and the rheology of the martian polar deposits[END_REF] show that only 2% of impurities a fraction of impurities of as little as 2% leads to a limited grain size of 0.7 mm in the martian polar deposits. For ice shells, we estimate that 1% of impurities can reduce grain size to ∼1 mm (using the pinning effect model of Durand et al., 2006). This impurity concentration remains relatively low and the assumption of a pure water ice for the physical and creep parameters seems valid in a first approach. The grain size is also reduced by the recrystallisation process due to the motion of dislocations during the ice flow, inducing the formation of new grains [START_REF] Montagnat | Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization[END_REF].

Concluding discussion

Based on typical grain sizes in Earth's polar ice sheets, we can expect that grain sizes within convecting ice shells should vary in the range of 1-5 mm [START_REF] De La Chapelle | Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antartcica and Greenland[END_REF][START_REF] Montagnat | Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization[END_REF]Durand et al., 2006), which is just at the transition between diffusion creep to grain boundary sliding/basal slip as dominant creep mechanism. This grain size range is also consistent with the modeling prediction of [START_REF] Barr | Convection in ice I shells and mantles with self-consistent grain size[END_REF].

Our results showed that a small variation in grain size between 1 and 5 mm can change the dominant creep mechanism, and hence have an can influence on the efficiency of heat transfer. Ideally, the evolution of grain size as well as spatial variations should be taken into account to predict self-consistently the average grain size and the dominant creep mechanism. This will be addressed in a future study The work presented here is a first step and the grain size evolution should be taken into account in the future.

In the present study, for simplicity, we also neglect the role of premelting, which leads to an enhancement of temperature dependency and reduction of viscosity for temperature approaching the melting point. For instance, the activation energy rises from 49 kJ•mol -1 to 192 kJ•mol -1 for grain boundary sliding creep mechanism if temperature exceeds 255K (Goldsby and Kohlst-edt, 2001). In our composite simulations, the average internal temperature is 255K (T i-max = 260K), which is at the limit of premelting regime, and the average temperature just below the lid is 238K (T sl-max = 253K). All presented calculations assume a bottom temperature of 273K, which is the melting temperature of pure water ice at 1 bar. For salty ocean, bottom temperature decreases and may reach values below 255K (e.g. [START_REF] Grasset | On the internal structure and dynamics of Titan[END_REF]), ensuring that the entire layer temperature is below the premelting limit. The enhancement of strain rate near the melting point may impact the dynamics of hot upwellings, but only for ocean temperatures higher than ∼260 K. However, as the efficiency of convective heat transfer appears to be controlled by the rheological sublayer underneath the conductive lid where temperature never exceed 255 K, we can anticipate that premelting should not have a significant effect on the efficiency of heat transfer, at least for ice shell heating from below. For tidally-heated ice shells, the impact of premelting may be more important, but this is out of the scope of the present study.

It is important to keep in mind that all numerical experiments presented here have been performed in 2D spherical annulus geometry. As pointed by [START_REF] Guerrero | The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid : Implications for the 2-D and 3-D Modeling of Moons[END_REF], the Nusselt number and thermal structure may significantly vary in full 3D spherical geometry compared to the 2D spherical annulus geometry, at least for a simple rheology (Frank-Kamenetskii approximation). We have performed six simulations in 3D geometry with Oedipus [START_REF] Choblet | OEDIPUS: a new tool to study the dynamics of planetary interiors[END_REF]: three in the framework of the Frank-Kamenetskii approximation and three with an Arrhenius-type viscosity law. As in [START_REF] Guerrero | The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid : Implications for the 2-D and 3-D Modeling of Moons[END_REF], we obtain values of the Nusselt number that are about 20-30% larger than in the 2D spherical annulus. Although comparable in amplitude to the influence of the rheological law presented here, simulations in 3D geometry including composite rheology should be performed in the future to test how both 3D geometry and rheological properties affect the heat transfer throughout icy shells.

Our numerical simulations have been performed in the spherical annulus geometry, but with low curvature (f >0.90). In our results, we do not observe any effect of f on scaling laws, except for the parameterization of γ rh . [START_REF] Guerrero | The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid : Implications for the 2-D and 3-D Modeling of Moons[END_REF] indicate that there is only minor differences between Cartesian cases (f = 1) and simulations with f = 0.9. For higher curvatures (0.2 < f < 0.9) the Nusselt-Rayleigh relationship should take into account a correcting factor f d , with d = 1.70-1.91 [START_REF] Guerrero | The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid : Implications for the 2-D and 3-D Modeling of Moons[END_REF][START_REF] Yao | Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons[END_REF]. However, this correction has been derived using the Frank-Kamenetskii approximation for describing the viscosity. Similar investigations should be done using the composite rheology in order to extend our scaling laws to curvatures lower than f = 0.9. For the biggest icy bodies (Europa, Ganymede, Callisto, Titan), f is always larger than 0.9 allowing the use of the scaling laws without curvature correction. Our new scaling relationships that practically account for the dominant creep mechanism allow for Because they account for the dominant creep mechanism, our new scaling relationships allow a more accurate quantification of the temperature profile in the ice shell and its relation with the internal heat flux. This will be crucial to interpret the future geophysical data collected by JUICE [START_REF] Grasset | JUpiter ICy moons Explorer ( JUICE ): An ESA mission to orbit Ganymede and to characterise the Jupiter system[END_REF] on the ice shell structure and dynamics.

with the OEDIPUS code [START_REF] Choblet | Modelling thermal convection with large viscosity gradients in one block of the 'cubed sphere[END_REF][START_REF] Choblet | OEDIPUS: a new tool to study the dynamics of planetary interiors[END_REF] corresponding to 3 cases with a Frank-Kamenetskii rheology and 3 cases with an Arrhenius rheology presented in this study: values of the Nusselt number in these 3D

cases are typically 20-30 % larger than with CHEOPS-2D, and depend only modestly on the convection parameters.

[Figure 17 about here.]

Appendix A.2. Numerical schemes Momentum equations are solved using a geometric multigrid method [START_REF] Brandt | Multi-Level Adaptive Solutions to Boundary-Value Problems[END_REF], with F-cycles, and a SIMPLER-based smoother [START_REF] Patankar | Numerical Heat Transfer And Fluid Flow[END_REF][START_REF] Trompert | The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity[END_REF]) that couples pressure and velocity. Relaxation at each level of the SIMPLER algorithm is performed using a standard Gauss-Seidel method. Coarse grid operators are derived from the fine grid discretization. Prolongation between the grid levels is achieved through bilinear, curvature-corrected interpolating schemes. In particular, pressure prolongation between the grid levels, as well as continuity residual restriction, is optimized for high viscosity contrasts [START_REF] Hernlund | Modeling mantle convection in the spherical annulus[END_REF][START_REF] Gerya | Introduction to Numerical Geodynamics Modelling[END_REF].

Conservation of energy is treated with a second-order method in space, using centered derivatives for heat diffusion, and a high resolution Godunovlike method together with a "superbee" slope limiter for the advective term [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF][START_REF] Roe | Characteristic-Based Schemes for the Euler Equations[END_REF], thus minimizing numerical diffusion. Advancing in time is performed using a simple, explicit scheme with a standard Courant-Friedrichs-Lewy criterion [START_REF] Courant | Über die partiellen Differenzengleichungen der mathematischen Physik[END_REF]. The treatment of the energy equation (Eq. 4) is therefore completely decoupled from that of equations 2 and 3 (infinite Prandtl number approximation).

The numerical code was benchmarked against 2D-Cartesian data sets from [START_REF] King | A community benchmark for 2-D Cartesian compressible convection in the Earth's mantle[END_REF], [START_REF] Blankenbach | A benchmark comparison for mantle convection codes[END_REF] and [START_REF] Travis | A benchmark comparison of numerical methods for infinite Prandtl number thermal convection in two-dimensional Cartesian geometry[END_REF] for quasi-Cartesian case (i.e. with low curvature f =0.9999) [START_REF] Besserer | Approche numérique du couplage par effets de marée entre transferts thermiques internes et évolution orbitale des corps planétaires[END_REF]. (red) to the inverse of the total viscosity η tot (Eq. 9). The four panels are associated to grain size of 1 mm, 2 mm, 5 mm and 10 mm. Time averages over a sufficiently long statistical quasi steady state have been considered. Dashed lines depict the thicknesses d sl , δ 0 and δ 1 . (c g γ rh ) -4/3 , with c g = 1 for p dif f > 50% and c g = 1.25 for p dif f < 50%. The color denotes the contribution of diffusion creep to the inverse of the total viscosity p dif f in the composite rheology framework and the open circles are for the purely diffusive Arrhenius rheology, with γ rh calculated in the rheological sublayer instead of γ calculated with T i used previously (Fig. 4b and Eq. 20). All AR-D cases displayed here are simulations using E a =50 kJ•mol -1 , the activation energy of diffusion creep in composite rheology. The symbol size indicates the grain size, ranging from 0.1 to 10 mm. 

R bot R top

Figure 17: Working geometry of CHEOPS-2D. The physical domain, here in solid gray, is an annulus (full, or segment of angular extent ∆ϑ) of aspect ratio A and curvature f , delimited by its inner and outer radii (R bot and R top respectively). Red line segment AB depicts a radial cross-section through the annulus. The corresponding slices, on the right side, represent the radial evolution of the 'virtual thickness' r d-1 (see [START_REF] Hernlund | Modeling mantle convection in the spherical annulus[END_REF], showing the additional intrinsic degree of curvature for the spherical annulus (d = 2) as compared to the cylindrical annulus (d = 1).

Parameter

Symbol Value Density ρ 920 kg•m -3 Thermal conductivity k 2.3 W•m -1 •K -1 Thermal diffusivity κ 1.2• 10 -6 m 2 •s -1 Thermal expansion α 1.6• 10 -4 K -1
Table 1: Physical properties of ice I at 270K [START_REF] Hobbs | Thermal properties and diffusion in ice[END_REF], [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF]). 

  find values close to the theoretical ones. This distinction between stationary and time-dependent simulations is supported by Fig.3 showing simulations in the Frank-Kamenetskii approximation (γ=14) and with a purely diffusive Arrhenius-type viscosity law (with different ranges of γ). In a log scale, and because γ is constant (FK-T) or nearly constant (AR-D), the slope of the best fit corresponds to the Ra exponent b. Two different trends are obtained for both rheologies: the stationary simulations yield b very close to the predicted 1/5 and time-dependent ones yield b close to 1/3. Hence, we chose to set values for b and c as found in theoretical studies, depending on the convection mode (stationary or timedependent). The least squares method is then used to determine the prefactor coefficient. The coefficient of determination

  Figure 6 displays snapshots of fields of temperature, viscosity, stress and the contributions of the different mechanisms in 1/η tot : diffusion creep, dislocation creep and grain boundary sliding/basal slip. In the convective region and in the rheological sublayer, the higher stress is correlated with the cold downwellings. If While stress does not affect the viscosity associated with diffusion creep (n = 1), it strongly decreases the viscosity associated with the grain boundary sliding/basal slip (n = 2). A decrease of temperature, and thus an increase of stress, leads to a reduction of the contribution of diffusion creep in the total viscosity compared with the contribution of grain boundary sliding/basal slip.

Figure 7

 7 Figure7displays the contribution of each creep mechanism to the total deformation (corresponding to the inverse of effective viscosity) at each depth for simulations corresponding to f = 0.97 and R top = 2576 km. Practically, the largest contribution defines the dominant mechanism. Note that by definition of the composite rheology (Eq. 9), for a contribution of diffusion creep larger than 50% the total viscosity will be close to the viscosity associated with the diffusion creep mechanism.In all simulations, the contribution of dislocation creep is modest at most least in the convecting region (including the rheological sublayer): it reaches locally a maximum of 5% in the case d g = 10 mm for the example shown in Figure7. Its contribution is significant only in the uppermost fraction of the conductive lid, corresponding to the region where the viscosity is limited by the maximum cut-off value, and therefore does not affect the convective

Using a 2

 2 -D spherical geometry numerical code, we have performed a large number of numerical experiments of thermal convection in the stagnant lid regime assuming different viscosity laws: the classically used Frank-Kamenetskii approximation, a purely Arrhenius formulation and the a more realistic composite rheology. We show that parameterizations derived by many previous studies using a Frank-Kamenetskii approximation overestimate efficiency of heat transfer by about 30% relative the Arrhenius law in the diffusion creep regime.Using a systematic exploration of parameter space, we have investigated the influence of a composite rheology on the scaling laws of heat transfer through an ice-I layer for time-dependent convection. Our results show that the dynamics of the ice shell is mainly controlled by the dominant creep mechanism in the rheological sublayer which is mostly determined by grain size. According to Eq. 23, if grain size is lower than ∼3.6 mm, diffusion creep is the dominant mechanism occurring in the rheological sublayer. For larger grains, the deformation is determined by a combination of grain boundary sliding and basal slip, the strain rate being limited by the slowest process. We introduced a local rheological parameter γ rh calculated in the rheological controlling sublayer which controls the dynamics to take into account the effect of dominant creep mechanism on the predicted Nu-Ra relationship. We showed that γ rh is mostly determined by the local contribution of diffusion creep to the total strain rate. The Nusselt-Rayleigh relationship has to be corrected according to the dominant creep mechanism.We find N u = 0.645 Ra 1/3 i (c g γ rh ) -4/3 , with c g = 1 if deformation is mainly accommodated by diffusion creep, and c g = 1.25 if the main mechanism is grain boundary sliding/basal slip However, in the framework of ice rheology and thin shells, a simple scaling-law for the heat transfer can alternatively be used: N u = 0.40 Ra 1/3 i ((E a ∆T )/(RT 2 i )) -4/3 . Indeed, in this specific case, the two main deformation mechanisms acting in the rheological sublayer have similar activation energies. Compared to the Frank-Kamenetskii approximation and the purely diffusive Arrhenius creep, our simulations show that the ratio between the rheological sublayer, δ rh , of the cold thermal boundary layer and the conductive lid thickness, d sl , is smaller for the same Nusselt value. The stagnant lid is ∼10% thicker in composite rheology for an equivalent Nusselt number value. The parameterization of the lower thermal boundary layer thickness (δ 1 ) is impacted by the dominant creep mechanism occurring in the rheological sublayer, and the rheological parameter γ rh has to be corrected by the factor c g , as for the Nusselt-Rayleigh relationship We also propose a simple param-eterization for the lower thermal boundary layer thickness (δ 1 ), suitable for the specific case of thin ice shells. All the scaling laws found for composite rheology are summarized in Table 4. They can be used in order to rebuild a synthetic temperature profile in a parameterized model. Our simulations confirmed that grain size is a key parameter controlling the convective dynamics and associated heat transfer. By exploring a wide range of grain sizes and ice shell thicknesses, i.e. Rayleigh number, we showed that the dominant creep mechanism in the convective part is primarily determined by the assumed grain size and does not significantly depend on the Rayleigh number. Knowing the typical grain size is thus essential to determine the efficiency of heat transfer through the ice shell. Estimates of grain size on icy moons are based on remote sensing of surface water ice
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 124 Figure 1: Representation of the different convective regimes (left) and characteristic snapshots of temperature fields for stationary, intermediate and time-dependent simulations (right). Black circles stand for simulations with a Frank-Kamenetskii rheology, the red ones for simulations with a purely diffusive Arrhenius rheology and the green ones for composite rheology. The results of time-dependent simulations are represented by solid circles whereas stationary simulations are represented by open circles. Stars stand for intermediate simulations.The boundaries between stagnant lid and transitional regimes, and between transitional and small viscosity contrast regimes are taken from[START_REF] Solomatov | Scaling of temperature and stress dependent viscosity convection[END_REF] and the boundary between convective and conductive regimes is the critical Rayleigh number computed with the viscosity at T i = 0.9 ∆T(Stengel et al., 1982).
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 5 Figure 5: Parameterizations of the stagnant lid thickness d sl (a) and of the bottom thermal boundary layer thickness δ 1 (b), for steady state and time-dependent simulations for both Frank-Kamenetskii (black circles) and purely diffusive Arrhenius (red circles) cases. Open circles stand for steady state simulations and solid circles stand for time-dependent simulations.
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 6 Figure 6: Snapshots of fields of temperature, viscosity, effective stress and contribution in percent of diffusion creep, dislocation creep and grain boundary sliding/basal slip to the total deformation rate for two simulations with d g = 1 mm (a) and d g = 10 mm (b) (f = 0.97 and R top = 2576 km). Dashed lines represent, from top to bottom, depths of the base of the stagnant lid (d sl ), of the cold thermal boundary layer (δ 0 ) and of the top of hot thermal boundary layer (δ 1 ). The gray region at the top of the layer is the part affected by the viscosity cutoff.
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 7 Figure 7: Contribution of each creep mechanism to the composite viscosity as a function of radius in the case of f = 0.97 and R top = 2576 km. Each curve indicates the fraction (percentage) associated to one of the three terms 1 η dif f (black), 1 η disl (green) and 1 η gbs +η bas
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 8910 Figure 8: Contribution of diffusion creep p dif f (in %) to the global composite creep as a function of grain size d g in the rheological sublayer. Each symbol corresponds to one simulation: a time average as well as a spatial average over the thickness δ rh of the rheological sublayer have been performed (see Fig.2 for definition of the various thicknesses). The color denotes the internal Rayleigh number Ra i .
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 11 Figure 11: Nusselt-Rayleigh relationship using coefficients b = 1/3 and c = -4/3 determined for Newtonian rheology (see Section 3.1.1). The color scale represents the internal Rayleigh number Ra i and the symbol size indicates the grain size, ranging from 0.1 to 10 mm.

Figure 12 :

 12 Figure 12: Nusselt-Rayleigh relationship N u ∝ Ra 1/3 i

Figure 14 :

 14 Figure 14: Parameterization of δ 1 for composite rheology, with c g = 1 for p dif f > 50% and c g = 1.25 for p dif f < 50%.

Figure 15 :Figure 16 :

 1516 Figure 15: Nu-Ra relationship N u ∝ Ra 1/3 i γ-4/3, with γ = (E a ∆T )/(RT 2 i ) for E a =50 kJ.mol -1 . The color denotes the contribution pf diffusion creep to the inverse of the total viscosity p dif f in the case of a composite rheology. The open circles stand for the purely diffusive Arrhenius rheology.

  

Table 2 )

 2 , especially if we neglect the two mechanisms that are the least active in the rheological sublayer (i.e. dislocation and basal slip creep mechanisms). The only region where the dislocation creep becomes significant is the upper part of the rigid lid, which control neither the internal dynamics nor the heat transfer. The

two dominant mechanisms (diffusion creep and grain boundary sliding) are also those associated to the smallest stress-dependence n. In this context, one can approximate the viscosity contrast across the upper thermal boundary layer by using a simple expression for γ = (E a ∆T )/(RT 2 i

TABLE 1 -

 1 Results for the FK-T simulations. f = Rint Rext represents the curvature of the layer ; R

	is the
	ext is the external radius in km ; γ

TABLE 2 -

 2 Results for the Arrhenius-diff simulations. f = Rint Rext represents the curvature of the layer ; R

	ext is the external radius in km ;

* i is the dimensionless viscosity in the well-mixed interior ; Ra i is the Rayleigh number computed with η i ; θ i is the average dimensionless temperature of the well-mixed interior ; θ sl is the dimensionless temperature just below the lid ;∆T

TABLE 3 -

 3 Results for the composite simulations. f = Rint Rext represents the curvature of the layer ; R ext is the external radius in km ; d g is grain size in m ; γ rh is the rheological parameter computed in the rheological sublayer ; ∆T is the temperature difference across the layer in K ; N uis the mean Nusselt number adjusted for the curvature ; η * i is the dimensionless viscosity in the well-mixed interior ; Ra is the average dimensionless temperature of the well-mixed interior ; θ sl is the dimensionless temperature just below the lid ; ∆T δ1 is the dimensionless temperature difference across δ 1 ; d sl is the dimensionless thickness of the stagnant lid ; δ 0 is the dimensionless thickness of the upper thermal boundary layer ; δ 1 is the dimensionless thickness of the lower thermal boundary layer ; p dif f , p disl and p gbs/bas are the contributions of diffusion creep, dislocation creep and grain boundary sliding/basal slip respectively to the total deformation. All simulations are time-dependent.

i is the Rayleigh number computed with η i ; θ i

Acknowledgment

The authors thank two anonymous reviewers for their comments and suggestions that helped to improve the manuscript. This work was supported by CNES in preparation of the ESA JUICE mission and by INSU's Programme National de Planétologie (France). The numerical simulations were carried out using CCIPL computational facilities (France).

Appendix A. Numerical method

Appendix A.1. Geometry and grid mesh

The spherical annulus geometry [START_REF] Hernlund | Modeling mantle convection in the spherical annulus[END_REF] is constructed as the intersection of a spherical shell with a plane including its center. Its coordinate system (r,θ) corresponds to the equatorial restriction of the spherical coordinates. Two implicit hypotheses allow this restriction:

1) variations of quantities orthogonal to this plane are neglected; 2) the velocity component normal to this plane is prescribed to be zero. It then can be shown [START_REF] Besserer | Approche numérique du couplage par effets de marée entre transferts thermiques internes et évolution orbitale des corps planétaires[END_REF]) that an effective curvature d enters the definition of classical vector operators such as the divergence and the Laplacian with d = 2 for the spherical annulus, and d = 1 for the classical cylindrical annulus (see Fig. 17). The lateral extension can be prescribed by considering a fraction of the annulus corresponding to the aspect ratio A (Fig. 17) and the lateral extent ∆ϑ. When compared to other two-dimensional curvilinear geometries (e.g. spherical-axisymmetric or cylindrical annulus), the spherical annulus approach yields the closest approximation of the fully spherical geometry for most of the convection cases investigated by [START_REF] Hernlund | Modeling mantle convection in the spherical annulus[END_REF]. In addition, we performed six 3D spherical simulations ) n E a (kJ.mol -1 ) m Diffusion (diff) 3.3×10 

Stationary

Frank-Kamenetskii

Composite -general γ rh = 0.18 p dif f + 8.27 (f >0.95) N u = 0.65 Ra 1/3 i (c g γ rh ) -4/3 δ 0 = 0.98 N u -1 d sl = 0.82 N u -1 δ 1 = 1.12 N u -1 (c g γ rh ) -1

Composite -simplified

Table 4: Summary of scaling laws for stagnant lid convection obtained with the commonly used Frank-Kamenetskii approximation, a purely diffusive Arrhenius viscosity law and a composite rheology (general and simplified parameterizations). For a composite rheology, c g = 1 when diffusion creep is the dominant mechanism in the rheological sublayer and c g = 1.25 if grain boundary sliding/basal slip is the dominant creep mechanism in the rheological sublayer.
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