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First and Second Order Moments of the

Normalized Sample Covariance Matrix of

Spherically Invariant Random Vectors
Sébastien Bausson, Frédéric Pascal, Philippe Forster, Jean-Philippe Ovarlez and Pascal

Larzabal

Abstract

Under Gaussian assumptions, the Sample Covariance Matrix (SCM) is encountered in many co-

variance based processing algorithms. In case of impulsive noise, this estimate is no more appropriate.

This is the reason why when the noise is modeled by Spherically Invariant Random Vectors (SIRV), a

natural extension of the SCM is extensively used in the literature: the well-known Normalized Sample

Covariance Matrix (NSCM) which estimates the covariance of SIRV. Indeed, this estimate gets rid of

a fluctuating noise power and is widely used in radar applications. The aim of this paper is to derive

closed-form expressions of the first and second order moments of the NSCM.

Index Terms

SIRV, NSCM, estimation, performance analysis.

I. INTRODUCTION

Given independent identically distributed observations of a zero-mean complex Gaussian random vector,

the Sample Covariance Matrix (SCM) is the Maximum Likelihood estimate of the data covariance matrix.
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BP 72, 92322 Chatillon Cedex, France (email:frederic.pascal,jean-philippe.ovarlez@onera.fr).

P. Larzabal is with the IUT de Cachan, C.R.I.I.P., Université Paris Sud, 94234 Cachan Cedex, France, and also the SATIE,
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It is well-known that the SCM is complex Wishart distributed, unbiased, and its second order moments

have simple expressions [1]. The full statistical characterization of the SCM allowed performance analysis

of numerous algorithms relying on this estimate. However, this widespread estimate is no more appropriate

when observations are not Gaussian. For instance, this is the case for radar clutter returns [2], radio fading

analysis [3], sonar interferences [4]... In these contexts, Spherically Invariant Random Vectors (SIRV)

have been appropriately used in modeling non-Gaussian problems. A SIRV is a complex compound

Gaussian process with random power. More precisely, a SIRV c [5] is the product of the square root of

a positive random variable τ , called the texture, and a m-dimensional independent zero mean complex

Gaussian vector x with covariance matrix Σ = E
[
xxH

]
normalized according to tr (Σ) = m, where

E[.] stands for the statistical mean, tr(.) is the trace of a matrix, and H denotes the transpose conjugate

operator,

c =
√

τx.

The notation x ∼ CN (0,Σ) means that x is a zero mean complex Gaussian vector with covariance

matrix Σ. In this paper, we consider the estimation scheme of Σ from N independent SIRV observations,

ck =
√

τkxk, for k = 1, . . . , N . In this context, we analyze the statistical properties of the well-known

Normalized Sample Covariance Matrix (NSCM), introduced in [6], and defined by

Σ̂ =
m

N

N∑

k=1

ckcH
k

cH
k ck

=
m

N

N∑

k=1

ckcH
k

‖ck‖2
=

m

N

N∑

k=1

xkxH
k

‖xk‖2
. (1)

Notice that, in Eq. (1), the NSCM does not depend on the texture. Moreover, the Central Limit Theorem

(CLT) ensures that the NSCM is asymptotically Gaussian, but, first and second order moments of this

estimate never appeared in the literature. Thus, the goal of this paper is to fill these gaps when the

Σ-eigenvalues are distinct, i.e., the most common and realistic case.

II. FIRST AND SECOND ORDER MOMENTS OF THE NSCM

This section is devoted to the presentation of the main results while computational details will be

provided in Appendix.

First, let us introduce the eigenvalue decomposition of Σ

Σ = UΛUH =
m∑

k=1

λkukuH
k , (2)

where

• Λ is the diagonal matrix of the Σ-eigenvalues, λ1 > . . . > λm > 0 ,
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• U is the unitary matrix of the Σ-eigenvectors.

Notice that we assume that all eigenvalues λ1, . . . , λm , are strictly positive and different, i.e., their

multiplicity order is 1.

Theorem 1 The first order moment of the NSCM is given by

E
[
Σ̂

]
= mU∆UH , (3)

where

δk =
m∑

n=1
n6=k

dnλk


 log λn − log λk

λn − λk
−

1

λn


 , (4)

dn =
m∏

p=1
p6=n

(1− λp/λn)−1, (5)

and where ∆ is the diagonal matrix of the δk’s, with δ1 > · · · > δm > 0.

Proof: See Appendix I.

Remark 1 This theorem provides as a by-product the eigen-decomposition of E
[
Σ̂

]
. It shows also that

E
[
Σ̂

]
and Σ share the same eigenvectors but have different eigenvalues. Consequently, the NSCM is a

biased estimate of Σ.

Remark 2 The NSCM preserves the ordering of the eigenvectors.

Let us denote vec(.) the operator which reshapes a m×n matrix elements into a mn column vector and

let us introduce the two matrices

V1 = E
[
vec

(
Σ̂

)
vec

(
Σ̂

)H
]

and V2 = E
[
vec

(
Σ̂

)
vec

(
Σ̂

)T
]

, (6)

from which the covariances of the real and imaginary parts of the NSCM are straightforwardly derived.

Theorem 2 The NSCM is asymptotically Gaussian and

V1 =
m2

N

m∑

p=1

m∑

k=1

(wpk + (N − 1) δp δk) vec
(
up uH

p

)
vec

(
uk uH

k

)H

+
m2

N

m∑

p=1

m∑
k=1
k 6=p

wpk vec
(
up uH

k

)
vec

(
up uH

k

)H
, (7)
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V2 =
m2

N

m∑

p=1

m∑

k=1

(wpk + (N − 1) δp δk) vec
(
up uH

p

)
vec

(
uk uH

k

)T

+
m2

N

m∑

p=1

m∑
k=1
k 6=p

wpk vec
(
up uH

k

)
vec

(
uk uH

p

)T
, (8)

where

wkk =
m∑

n=1
n 6=k

dnλk


2λk log(λk/λn)

(λk − λn)2
−

1

λn

λk + λn

λk − λn


 , (9)

wpk =
m∑

n=1
n 6=p
n6=k

dn w̃pkn, for p 6= k, (10)

with

w̃pkn =


λn (λp + λk)− 2λp λk

λ2
n (λp − λk)2


λp λk −


 λp λk

(λn − λp) (λn − λk)


 log

λn

λp

+


 λp λ2

k (λn − λp)

λ2
n (λn − λk)(λp − λk)3


 (2λp λn − λp λk − λ2

k) log
λk

λp
, (11)

where δn and dn are respectively defined in equations (4) and (5).

Proof: See Appendix II, III, IV.

III. CONCLUSION

The closed-form expressions of the first and second order moments of the NSCM for SIRV modeling

have been provided in this paper with full detailed proofs.

These analytical equations are essential for analyzing performance of signal processing methods based

on NSCM: detection schemes in radar applications, direction of arrivals (DOA), estimation in array

processing, ...

APPENDIX I

PROOF OF THEOREM 1

Using the eigen-decomposition of Eq. (2), let us whiten x according to y = Λ−1/2 UH x. Hence,

y ∼ CN (0, I) and consequently

xxH

‖x‖2
= UΛ−1/2

yyH

yH Λ−1 y
Λ−1/2 UH .

June 19, 2006 DRAFT
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The NSCM statistical mean can be rewritten as

E
[
Σ̂

]
= E


m

N

N∑

k=1

xk xH
k

‖xk‖2


 = mE


xxH

‖x‖2


 = mUΛ−1/2 E


 yyH

yH Λ−1 y


 Λ−1/2 UH . (I.12)

Each component yk of the vector y is a zero-mean unit variance circular complex Gaussian variable and

can be expressed as:

yk =

√√√√1

2
χ2

k exp(iθk) ,

where χ2
k is Chi-squared-distributed with 2 degrees of freedom, θk is uniformly distributed on [0, 2π].

All the χ2
k’s and θk’s are two-by-two independent. It follows that Eq. (I.12) yields

E
[
Σ̂

]
= m

m∑

k=1

λk E

[
χ2

k

/
m∑

n=1

λn χ2
n

]
uk uH

k .

Let us set

δk = E

[
λk χ2

k

/
m∑

n=1

λn χ2
n

]
= E


 1

1 + X2/X1


 , (I.13)

where X1 = λk χ2
k and X2 =

m∑
n=1
n 6=k

λn χ2
n.

To complete the proof, the PDF of X2 has to be derived. Since all χ2
k’s are independent, the characteristic

function of X2 is

φX2(u) =
m∏

n=1
n6=k

(1− 2 i λnu)−1 =
m∑

n=1
n6=k

cn

1− 2 i λnu
,

where cn =
m∏

p=1
p6=n
p6=k


1−

λp

λn



−1

. Thus, the PDF of X2 follows

pX2(x) =
1

2

m∑
n=1
n6=k

cn

λn
exp


−

x

2λn


, x ≥ 0. (I.14)

So, the density of X2 is obtained by the weighted sum of the densities of λnχ2
n by the coefficient cn.

Now, the PDF of the ratio X2/X1 is a weighted sum of F laws (Fisher-Snedecor)

pX2/X1
(x) =

m∑
n=1
n 6=k

cn

λk

λn


1 +

λk

λn
x



−2

, x ≥ 0, (I.15)
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and after some manipulations, Eq. (I.13) yields

δk =
m∑

n=1
n 6=k

cn


 λn/λk

(1− λn/λk)2
log(λn/λk) +

1

1− λn/λk


 .

It remains to show that δ1 > · · · > δm > 0. First, the δk’s, defined in Eq. (I.13), are strictly positive.

Now, let us consider the function

fw(x, y) =
1

4

∫

R2
+

xu

xu + y v + w
exp


−

u + v

2


 dudv,

where it follows from (I.13) that we have δk = Ew [fw(λk, λp)] and δp = Ew [fw(λp, λk)], for w =
m∑

n=1
n 6=k
n6=p

λnχ2
n, and where Ew[.] stands for the statistical mean related to w.

To show that δk < δp, we prove that fw(λk, λp) < fw(λp, λk) for all w, assuming λk < λp.

Let us define the functions

f1(t) = fw((1− t)λp + tλk, λp),

f2(t) = fw(λp, (1− t)λp + tλk),

which verify f1(0) = f2(0), f1(1) = δk and f2(1) = δp. To demonstrate that δk < δp, we show hereafter

that f1 and f2 are respectively strictly decreasing and strictly increasing functions of t on the interval

[0, 1]. To proceed, we compute and study the signs of the partial derivatives of fw,

∂fw

∂x
(x, y) =

1

4

∫

R2
+

u (y v + w)

(xu + y v + w)2
exp


−

u + v

2


 dudv > 0,

∂fw

∂y
(x, y) = −

1

4

∫

R2
+

v x u

(x u + y v + w)2
exp


−

u + v

2


 dudv < 0,

which allow to find the signs of the derivatives of f1 and f2,

df1

dt
=


∂fw

∂x




((1−t)λp+tλk,λp)

(λk − λp) < 0,

df2

dt
=


∂fw

∂y




(λp,(1−t)λp+tλk)

(λk − λp) > 0.

In summary, δk < δp for any k, p such that λk < λp. This completes the proof of theorem 1.

June 19, 2006 DRAFT
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APPENDIX II

PROOF OF THE EQS. (7), (8) AND (9) OF THEOREM 2

By expressing the variance of the NSCM as a linear combination of functions of the Σ-eigenvectors,

we compute the statistical means of the coefficients. Eqs. (1), (3), (6) and (I.12) leads to

V1 =
m2

N2

m∑

k=1

m∑

p=1

E


vec


xk xH

k

‖xk‖2


 vec


xp xH

p

‖xp‖2




H

 ,

=
m2

N
E


vec


xxH

‖x‖2


 vec


xxH

‖x‖2




H

 + m2

N − 1

N
vec


E


xxH

‖x‖2





 vec


E


xxH

‖x‖2







H

,

=
m2

N

m∑

p=1

m∑

j=1

m∑

n=1

m∑

k=1

(ωpjnk + (N − 1) δp δn δ(p− j) δ(n− k)) vec
(
up uH

j

)
vec

(
un uH

k

)H
,

where ωpjnk = (λp λj λn λk)1/2 E




(χ2
p χ2

j χ2
n χ2

k)
1/2

(
m∑

t=1

λt χ2
t

)2



E [exp (i(θp − θj + θk − θn))] and δ(.) is the Kro-

necker delta. The θ’s being independent uniform variables, the last term of previous equations is zero if

p 6= j and n 6= k, or if p 6= n and k 6= j, which leads to

V1 =
m2

N

m∑

p=1

m∑

k=1

(wpk + (N − 1) δp δk) vec
(
up uH

p

)
vec

(
uk uH

k

)H

+
m2

N

m∑

p=1

m∑
k=1
k 6=p

wpk vec
(
up uH

k

)
vec

(
up uH

k

)H

where

wpk = λp λk E


χ2

p χ2
k

/(
m∑

n=1

λn χ2
n

)2

 , (II.16)

This is Eq. (7) of theorem 2 and Eq. (8) is derived from the same reasoning. Concerning Eq. (9), one

has, from Eq. (II.16), for p = k, wkk = E
[
(1 + X2/X1)

−2
]
, where X1 and X2 are defined in (I.13).

Thus, wkk =
∫ +∞

0
(1 + x)−2 pX2/X1

(x) dx. Eq. (10) will be derived in Appendix IV. Its proof needs

some results on exponential integrals, recaped in Appendix III.

June 19, 2006 DRAFT
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APPENDIX III

EXPONENTIAL INTEGRALS AND RELATED FUNCTIONS

This section contains some mathematical tools used in Appendix IV. From pp. 228 of [7], let us recall

the definition of the exponential integral

En(z) =
∫ +∞

1

e−z t

tn
dt , n ∈ N , <(z) > 0,

E1(z) =
∫ +∞

1

e−z t

t
dt =

∫ +∞

z

e−t

t
dt = −γ − ln z −

+∞∑

n=1

(−1)n zn

nn!
, (III.17)

where <(z) denotes the real part of z and γ ' 0.57721 is Euler’s constant. Let us introduce the function

Fn(a, z) =
∫ +∞

z
tn e−a t E1(t) dt , n ∈ N , <(z) > 0 , a > −1 , (III.18)

which gives for n = 0 and n = 1

F0(a, z) =
1

a
e−a z E1(z)−

1

a
E1 ((1 + a) z) ,

F1(a, z) =
1 + a z

a2
e−a z E1(z)−

1

a2
E1((1 + a) z)−

1

a (1 + a)
e−(1+a) z.

In particular, for a > −1, we will use the values

F1(a, 0) =
1

a


1

a
ln(1 + a)−

1

1 + a


 ,

F2(a, 0) =
2

a3
ln(1 + a)−

3 a + 2

a2 (1 + a)2
. (III.19)

APPENDIX IV

END OF PROOF OF THEOREM 2 (wpk FOR p 6= k, SEE EQ. (10))

At the end of Appendix II, it remained to compute Eq. (II.16) to complete the proof of theorem 2. A

PDF decomposition similar to Eq. (I.14) provides

wpk =
m∑

n=1
n 6=p
n6=k

δpkn

m∏
j=1
j 6=n
j 6=p
j 6=k


1−

λj

λn



−1

, (IV.20)

where δpkn = λp λk E


 χ2

p χ2
k(

λp χ2
p + λk χ2

k + λn χ2
n

)2


 can be rewritten as

δpkn =
λp λk

8

∫

R3
+

xp xk

(λp xp + λk xk + λn xn)2
exp


−

1

2
(xp + xk + xn)


dxp dxk dxn. (IV.21)

June 19, 2006 DRAFT
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An analytic expression of δpkn is obtained by computing the above integral. Eq. (IV.21) is rewritten as

δpkn =
λp λk

8

∫ +∞

0

∫ +∞

0
xp xk exp


−

1

2
(xp + xk)


 t1 dxp dxk, (IV.22)

where t1 =
∫ +∞

0

exp (−xn/2)

(λp xp + λk xk + λn xn)2
dxn . Then, by setting C = λp xp +λk xk, t1 is rewritten as

t1 =
1

λn C
exp


 C

2λn


E2


 C

2λn


 =

1

λn C


1−

C

2λn
exp


 C

2λn


 E1


 C

2λn





 .

where E1 and E2 are defined in (III.17). Now, by replacing t1 in Eq. (IV.22), we obtain

δpkn =
λp λk

8 λn


t2 −

1

2λn
t3


 , (IV.23)

where

t2 =
∫ +∞

0

∫ +∞

0

xp xk

(λp xp + λk xk)
exp ((xp + xk)/2)dxp dxk ,

t3 =
∫ +∞

0

∫ +∞

0
xp xk exp


−

1

2


xp + xk −

λp xp + λk xk

λn





E1


λp xp + λk xk

2λn


 dxp dxk .

Integrating firstly along xk in t2 allow to rewrite t2 as

t2 =
8

λk
−

8λp

λ2
k

F2


λk − λp

λp
, 0


 , (IV.24)

where the function F2(.) is defined in Appendix III. Now, let us compute t3 as

t3 =
∫ +∞

0
xp exp


−

xp

2


1−

λp

λn





 t4 dxp ,

with

t4 =
∫ +∞

0
xk exp


−

xk

2


1−

λk

λn





E1


λp xp + λk xk

2λn


 dxk .

By a change of variable, t4 is rewritten as

t4 =
2λn

λ2
k

∫ +∞

λp xp

2 λn

(2 λn t− λp xp) exp


−

1

2λk
(2λn t− λp xp)


1−

λk

λn





E1(t)dt ,

=
2λn

λ2
k

exp


 λp

2λk


1−

λk

λn


 xp





2 λn F1


λn

λk
− 1,

λp xp

2λn


− λp xpF0


λn

λk
− 1,

λp xp

2λn





 .

June 19, 2006 DRAFT
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and can be simplified with the following relation

F1(a, z)− z F0(a, z) =
1

a2
e−a z E1(z) +


z

a
−

1

a2


 E1((1 + a) z)−

1

a (1 + a)
e−(1+a) z ,

where a > −1 , <(z) > 0 . The simplified expression of t4 allow to rewrite t3 as

t3 =
16λ2

n

λn − λk


 λk

λ2
p (λn − λk)

[
λ2

n F1 (bn, 0)− λ2
k F1 (bk, 0)

]−
1

λn
+

λ2
k

λn λ2
p

F2 (bk, 0)


 .

where bj =
λj − λp

λp
, for j = k, n .

Finally, combining the previous result with Eqs. (III.19), (IV.23) and (IV.24), one has

δpkn = λp λk


 λn (λp + λk)− 2λp λk

(λn − λp) (λn − λk) (λp − λk)2
−

λ2
n log λn

(λn − λp)2(λn − λk)2




+
λ2

p λ2
k

(λp − λk)3


2λp λn − λp λk − λ2

k

λp (λn − λk)2
log λk −

2λk λn − λp λk − λ2
p

λk (λn − λp)2
log λp


 .

Thanks to Eq. (IV.20), the previous equation provides Eqs. (10) and (11). This concludes the proof of

theorem 2.
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