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Identification of the Propeller Coefficients and Dynamic Parameters of
a Hovering Quadrotor from Flight Data

Damien Six1, Sébastien Briot2, Julian Erskine1 and Abdelhamid Chriette1

Abstract— Several methods can be applied to estimate the
propeller thrust and torque coefficients and dynamics param-
eters of quadrotor UAVs. These parameters are necessary for
many controllers that have been proposed for these vehicles.
However, these methods require the use of specific test benches,
which do not well simulate real flight conditions.

In this paper, a new method is introduced which allows
the identification of the propeller coefficients and dynamic
parameters of a quadrotor in a single procedure. It is based on
a Total-Least-Square identification technique, does not require
any specific test bench and needs only a measurement of the
mass of the quadrotor and a recording of data from a flight
that can be performed manually by an operator.

Because the symmetries of classic quadrotors limit the
performance of the algorithm, an extension of the procedure is
proposed. Two types of flights are then used: one with the initial
quadrotor and a second flight with an additional payload on the
vehicle that modifies the mass distribution. This new procedure,
which is validated experimentally, increases the performance of
the identification and allows an estimation of all the relevant
dynamic parameters of the quadrotor near hovering conditions.

I. INTRODUCTION

Quadrotor UAVs have recently experienced increasing
interest with advances in modeling, control and path plan-
ning. Many control techniques have been proposed for these
vehicles [1]–[8]. Several of those control laws require a
knowledge of the UAV’s dynamics parameters (e.g. mass
and inertia parameters) and propeller thrust and torque coeffi-
cients, and are sensitive to the accuracy of the parameters. An
accurate estimation of the parameters increases the precision
and robustness of the controllers and is therefore required.

Several methods can be applied to estimate the parameters
of quadrotor-style UAVs:

• Estimation of the frame dynamic parameters from de-
sign [9], [10]: This method can lead to an unevaluated
lack of precision in the estimation of the parameters.

• Experimental estimation of the structure parameters:
Apart from the mass which is directly measured with a
scale, the other parameters require specific test benches.
As an example, in [11], the inertia parameters are
measured indirectly with a pendulum device. With such
methods, the precision of the inertia parameters are
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impacted by the precision of the other ones previously
measured.

• Estimation of the dynamic parameters from the analysis
of flight data [12]–[14] by means of a Kalman filter
assuming the knowledge of, at least, the propeller
coefficients of thrust and torque.

Those algorithms all require a knowledge of the propeller
coefficients. The estimation of those coefficients and the
modelling of aerodynamic effects are studied with specific
test benches [15]–[18] and may not be completely equivalent
to those appearing during a free flight of the drone.

For classical robotic manipulators, most of the dynamic
off-line identification methods use an Inverse Dynamic Iden-
tification Model (IDIM), that gives a linear relation between
the joint forces/torques and the dynamic parameters, and
estimate the parameter values using least squares techniques
(LS) [19]–[21]. This procedure is called the IDIM-LS tech-
nique. An extension of this method using Total Least Square
(IDIM-TLS) is also used to identify dynamic parameters and
joint drive gains of robot manipulators in a single procedure
[22].

In this research, a new method is proposed to identify
all the structure and rotor parameters for a quadrotor UAV,
inspired by the IDIM-TLS procedure. Our approach aims to
obtain an identification of the dynamic parameters of the
device without any specific test bench or a computation
of some of the parameters from design, as other methods
would generally require. It uses the command reference of
the propeller velocities, and the flight data collected while
the robot is operated by a human pilot. All the dynamic
parameters and propeller coefficients are calculated in one
step as the Total Least Square solution (TLS) of an overde-
termined system. The method only requires a knowledge of
the vehicle mass, which is easily measured using a scale. This
algorithm was established in the scope of a project on aerial
manipulation. Thus, the study is limited to near hovering
flight configurations.

The paper is organized as follows. In the next Section,
we define the inverse dynamic identification model of the
quadrotor. In Section III, the TLS identification procedure is
introduced. Two different types of data can be collected in
order to feed the identification model: data from the Inertial
Measurement Unit (IMU) or from a motion capture system
(MOCAP). Identification results by using the first or second
set of data are then compared in the Section IV. Because a
classic quadrotor presents some symmetries that will lead to
a failure of the identification of some dynamic parameters
using the TLS method, an extended version of the procedure



Fig. 1. Local frame and propeller positions P1...P4 of the quadrotor.

is introduced in order to overcome this limitation. It is based
on a modification of the mass distribution of the UAV and
recordings of two types of flight data: a first set for the usual
quadrotor, and second set with a modified configuration of
the quadrotor. Finally, in Section V, conclusions are drawn.

II. DYNAMIC MODEL OF A QUADROTOR

The quadrotor vehicle consists of four individual rotors
attached to a rigid cross airframe (Fig. 1). The control of a
quadrotor is achieved by differential control of the thrust
and drag torques generated by each rotor. The system is
underactuated, with only four inputs available to control
the six Degrees of Freedom (DoF). The dynamics of the
quadrotor are described through a combination of the rigid
body dynamic equations (Section II-A) and the model of the
propellers (Section II-B).

A. Rigid body dynamics
Let us consider a mobile frame Fd(Od,xd,yd, zd) at-

tached to the quadrotor (Fig. 1). The origin of this frame
Od is at the middle of the cross. The xd axis is placed
along the axis of one of the arms and the zd axis is aligned
with the quadrotor propellers axes. A standard assumption
in quadrotor modelling and control is to consider this origin
as the Center of Mass (CoM) of the vehicle. However,
this assumption is not guaranteed in general. We aim to
identify the real position of the CoM with the identification
procedure. For this purpose, a general model of the rigid
body dynamics is used. In this model, mechanical effects
affecting the main body of the quadrotor are described. This
study however neglects aerodynamical forces acting on the
quadrotor frame. Those forces become non negligible at high
speed (over 5 m/s) [23] but those flight configurations are out
of the scope of this study. The ten dynamic parameters of a
rigid body are the followings:

• The mass m
• The 3 components msx, msy , msz of the first moment

of inertia ms in the local frame, at its origin Od,
• The 6 components of the symmetric inertia matrix in

the local frame, at its origin Od,

I =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


The mass is the only parameter that is easily measured. All
the others unknown parameters are regrouped in a vector χ:

χT = [msx,msy,msz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz]

The following notations are also defined
• g = [0, 0,−g]T , g > 0, is the gravity vector, defined in

the world frame.
• ζ is the position of the mobile frame origin Od.
• ad = [ax, ay, az]

T is the acceleration of Od expressed
in the local frame Fd.

• R is the rotation matrix defining the orientation of the
mobile frame with respect to the world frame. In this
paper, the rotation sequence of the Bryant angles (η =
[ψ, θ, φ]T ) is chosen, i.e. R = Rz(ψ)Ry(θ)Rx(φ).
Ru(α) is the elemental rotation about axis u though
the angle α.

• ω = [ωx, ωy, ωz]
T is the angular velocity of the mobile

frame, expressed in frame Fd.
• f , τ are the vectors of forces and the torques applied to

the quadrotor by the propellers at Od, expressed in Fd.
The Newton-Euler equations, expressed at the body frame
origin Od in body frame Fd are given in [21] as:

mad + ω̇ ×ms + ω × (ω ×ms) = mR−1g + f (1)

I ω̇ + ω × Iω + ms× ad = ms× (R−1g) + τ (2)

Equations (1) and (2) give the dynamics of the quadrotor
body as functions of the measured variables usually available
from the embedded IMU. In this paper, we consider also
measurements from a MOCAP system. Those measurements
are the position of Od given in world frame ζ and the orien-
tation coordinates given in Bryant angles η. The acceleration
ad in the body frame is related to η through

ad = R−1ζ̈ (3)

The angular velocity ω and its time derivative are related to
the first and second time derivatives of Bryant angles η by

ω = Tηη̇ (4)

ω̇ = Ṫηη̇ + Tηη̈ (5)

The matrix Tη depends on the rotation representation chosen
[24]. Using (3) and (4), the dynamic equations (1) and (2)
as function of the measurements of the MOCAP and their
derivatives are given by

mR−1ζ̈ + (Ṫηη̇ + Tηη̈)×ms

+ Tηη̇ × (Tηη̇ ×ms) = mR−1g + f
(6)

I (Ṫηη̇ + Tηη̈) + Tηη̇ × ITηη̇ + ms×R−1ζ̈

= ms× (R−1g) + τ
(7)

B. Propellers model

The steady-state wrench provided by a hovering propellor
in free air along the zd axis is composed of a thrust fp and
a drag torque τ p given by [2]

fp = ktΩ
2zd, τ p = −sign(Ω)kdΩ

2zd (8)

The sign(x) function extracts the sign of a real number x.
Ω is the propeller rotational velocity about zd. In the scope
of this study (near hovering), kt and kd are considered as
positive coefficients named respectively thrust and torque



coefficients. They depend on the rotor design and are grouped
in a vector named χk, i.e. χTk = [kt kd]. In a real flight, there
are many aerodynamic (blade flapping, ground and ceiling
effects, etc) [25] and gyroscopic effects associated with any
rotor craft that modify the simple force model introduced
above. However, those effects are generally neglected or
considered as disturbances for control application [26] [2]
and will not be considered in our model.

Assuming that the thrust and torque coefficients are the
same for all the propellers, the contribution of all the
propellers are summed and expressed at the frame origin
Od. The total wrench w = [fT τT ]T acting on the body
(see Fig. 1 for the position of each propeller) is

f =

 0
0

kt
∑
i

Ω2
i

 , τ =

 ktd(−Ω2
1 + Ω2

2)
ktd(−Ω2

3 + Ω2
4)

kd
∑
i

−sign(Ωi)Ω
2
i

 (9)

where
• d is the distance of a propeller axis from Od along xd

and yd.
• Ωi is the angular velocity of the propeller i around zd.

The dynamic model of the hovering quadrotor is obtained
through the equations of its body dynamics (1)-(2) and the
equation of the total wrench applied by the propellers (9). For
other multi-rotors, this method only requires a modification
of (9) to include the wrench effects of the extra propellers.

C. Inverse Dynamic Identification Model (IDIM)

The IDIM-TLS procedure [22] requires an expression of
the dynamic model linear w.r.t. the dynamic parameters and
propeller coefficients that need to be identified. This linearity
is well known for classical robots [21] and can be easily
obtained for the quadrotor dynamic model.

Equations (1), (2) and (9) giving the dynamic model of a
quadrotor are linear w.r.t. the mass m, the unknown dynamic
parameters χ and the coefficients of the rotors grouped in
χk. Then the dynamic model can be written under the form

mDm + Dχ = Dkχk (10)

with

D =


−ω2

y − ω2
z ωxωy − ω̇z ωxωz + ω̇y 0 0

ωxωy + ω̇z −ω2
x − ω2

z −ω̇x + ωyωz 0 0
ωxωz − ω̇y ω̇x + ωyωz −ω2

x − ω2
y 0 0

0 az + gcφcθ −ay − gsφcθ ω̇x −ωyωz
−az − gcφcθ 0 ax − gsθ ωxωz ω̇y
ay + gsφcθ −ax + gsθ 0 −ωxωy ωxωy

0 0 0 0
0 0 0 0
0 0 0 0

ωyωz −ωxωz + ω̇y ωxωy + ω̇z ω2
y − ω2

z

−ωxωz ω̇x + ωyωz −ω2
x + ω2

z −ωxωy + ω̇z
ω̇z ω2

x − ω2
y ω̇x − ωyωz ωxωz + ω̇y



DT
k =



0 0
0 0∑

i
Ω2
i 0

d(−Ω2
1 + Ω2

2) 0
d(−Ω2

3 + Ω2
4) 0

0
∑
i
−sign(Ωi)Ω

2
i



Dm =
[
ax − gsθ ay + gsφcθ az + gcφcθ 0 0 0

]T
where c and s are shorthand for cosinus and sinus.

Because of perturbations due to measurement noise and
modeling errors, the model (10) differs from reality by an
error e such that

mDm + Dχ = Dkχk + e (11)

Equation (11) is called the Inverse Dynamic Identification
Model (IDIM). Note that the IDIM model may be extended
to include any additional effects as long as the dynamic
model remains linear w.r.t. the coefficients of those effects.
Non linear coefficients have to be identified either with a
separate study or with a linear approximation.

III. IDENTIFICATION OF THE QUADROTOR DYNAMIC
PARAMETERS USING THE TOTAL LEAST SQUARE (TLS)

PROCEDURE

A. Identification of the propellers coefficients and dynamic
parameters

The off-line identification of the UAV’s dynamic parame-
ters can be achieved thanks to the data obtained for feeding
the matrices Dm, D and Dk. The data are collected while the
vehicle is flying (methodology is discussed in Section III-C).
The model (11) is sampled, low-pass filtered and, in standard
identification procedures like [20] decimated in order to get
the following overdetermined linear system of n×6 equations
and 11 unknowns (variables in χ and χk):

Wkχk + Wχ+mWm = ρ (12)

in which:
• W = [DT

1 DT
2 . . . DT

n ]T ,
• Wm = [DT

m1 DT
m2 . . . DT

mn]T ,
• Wk = −[DT

k1 DT
k2 . . . DT

kn]T ,
• ρ = [eT1 eT2 . . . eTn ]T ,

where Di = D(t = ti), Dmi = Dm(t = ti) and Dki =
Dk(t = ti) (i = 1, ..., n) are the matrices D, Dm and Dk,
respectively, computed with the motion’s data collected at
time t = ti, while ei is the error of the model at time ti.

Considering that the mass m of the quadrotor is accurately
known, and grouping all unknowns χ and χk into a single
vector χt, (12) is re-expressed as

Wtχt = ρ (13)

where Wt = [Wk W mWm] is a (r×12) (r = 6n) matrix
and χt = [χTk χ

T 1]T is a vector of dimension 12.
Based on this form of equation, it is possible to find the

unknowns in χt thanks to a Total Least Square identification
procedure [27], [28]. Indeed, without perturbation, ρ = 0.
As a result, Wt should be rank deficient. Then would exist
an infinite number of solutions to the Eq. (13) that are all in
the kernel of Wt:

χ̂t = λχ̂∗
t (14)

where χ̂∗
t is the unit vector such that Wtχ̂

∗
t = 0 and λ is a

scalar value.



Due to measurement perturbations and, in our case, model
errors, Wt is of full rank. Therefore the system (13) is
changed to the closest compatible system w.r.t. the Frobenius
norm. This system is obtained through the “thin” Singular
Value Decomposition (SVD) of Wt.

Wt = USVT (15)

where U and V are (r×nt) (nt = 12) and (nt×nt) matrices
and S is a diagonal matrix with the singular values sj of Wt

sorted in decreasing order. The closest rank deficient matrix
Wt is given by

Wt = Wt − snt
Unt

VT
nt

(16)

where snt is the smallest singular value of Wt and Unt

(respectively Vnt
) is the last column of U (respectively V).

Then, the normalized solution χ̂∗
t such that

Wtχ̂
∗
t = 0 (17)

is given by the last column of V, i.e. χ̂∗
t = Vnt

.
There is an infinite number of solutions χ̂t = λχ̂∗

t to
equation (17). However, the only solution respecting the
second condition given by (13), i.e. last value of χ̂t equal to
one, is obtained for λ = 1/χnt , where χnt is the last value
of χ̂∗

t . Then, the dynamic parameters identified are given by
χ̂t = χ̂∗

t /χnt
.

B. Statistical analysis, essential parameters and weighted
TLS

In order to compute the standard deviations σχ̂j
(j =

1, . . . , 11) on the dynamic and propeller coefficients, it is
assumed that all errors in data matrix Wt are independently
and identically distributed with zero mean, and the common
covariance matrix CWW is defined by

CWW = σ̂2
W Irnt

(18)

where Irnt
is the identity matrix of dimension (rnt × rnt).

In [27], an unbiased estimation of the standard deviation σ̂W
is provided:

σ̂W = snt
/
√
r − nt (19)

In [27], the covariance matrix of the estimation error is also
approximated by

Cχ̂χ̂ ' σ2
W

(
1 + ||χ̂1:n−1||22

) (
W

T

t1:nt−1
Wt1:nt−1

)−1

(20)
with χ̂1:nt−1 the vector containing the nt−1 first coefficients
of χ̂ andWt1:nt−1 a matrix composed of the nt − 1 first
columns of Wt. Then the standard deviation of the jth
parameter is given by

σχ̂j
=
√
Cχ̂χ̂(j, j) (21)

with Cχ̂χ̂(j, j) the jth diagonal coefficient of Cχ̂χ̂. The
relative standard deviation of the jth parameter is given by

%σχ̂j
= 100σχ̂j

/|χ̂j | (22)

During the identification process, some small parameters
remain poorly identifiable because they have no significant

contribution in the dynamic model. They can be canceled
in order to simplify the dynamic model and to improve
the quality of identification of the other parameters. These
parameters are called “essential” parameters and are calcu-
lated using an iterative procedure starting from the initial
parameters estimation. At each step the parameter which has
the largest relative standard deviation is canceled. A new TLS
parameter estimation of the simplified model is carried out.
The procedure ends when max(%σχ̂j )/min(%σχ̂j ) < rσ ,
where rσ is a ratio defined by the user. The remaining
essential parameters are enough to describe the dynamic
model of the quadrotor. Also, in order to improve the
estimation of Wt, the rows of Wt are weighted taking into
account the confidence in the measurements. As proposed in
[22], to improve the TLS solution, the following procedure
is applied

1) The rows of Wt are regrouped as function for
each component of the wrench w in (9): Wt =
[WT

1 . . .W
T
6 ]T with Wj (j = 1 . . . 6) grouping all

equations corresponding to the jth component of w.
2) Each submatrix Wj (j = 1 . . . 6) is weighted by the

inverse of the standard deviation corresponding to the
equations in Wj .

C. Data collection for the observation matrix

The collection of data to fill the observation matrices can
be provided by several measurement sources. For this paper,
the propeller velocities Ωi (i = 1 . . . 4) required for the
observation matrix Wk are computed from the recordings
of each motor speed command related to the Pulse Width
Modulation command set in the electronic speed controller
by an empirical law. The propeller dynamics are neglected
in this study. If available, a direct measure of the propeller
velocity will increase the quality of the identification proce-
dure. Two sources are then explored to obtain data in order
to estimate the observation matrices Wm and W: the drone
IMU and an external MOCAP system. For classic robot
identification techniques, the IMU is generally not a good
source of data to conduct an identification process, as it is
quite noisy and leads to drift biases when reconstructing the
position. However, in the specific case of quadrotors, the
local dynamic equations do not depend on the position of the
device. In addition, the orientation only impacts the gravity
force which is included in the accelerometer measurement.
Thus it makes the IMU a very good candidate to collect data
for the identification of the dynamic model of a quadrotor.
As a result, we tested two types of data collection for Wm

and W:

1) Data collection from IMU: The angular velocity ω
and the acceleration (including gravity) ad − R−1g
are measured with the gyroscope and accelerome-
ter, respectively. Gyroscope biases are estimated and
compensated by an online Extended Kalman Filter.
The angular acceleration estimation ˆ̇ω is obtained by
sampling, band-pass filtering the measure of ω with
zero-phase noncausal Butterworth filter and central dif-



ference algorithm [29]. Those three vectors are enough
to compute the matrices Dm and D in (10).

2) Data collection from MOCAP system: The position
ζ and the orientation coordinates given in Bryant
angles η are measured from the MOCAP system. Their
derivatives ˆ̇

ζ, ˆ̈
ζ, ˆ̇η and ˆ̈η are obtained by sampling,

band-pass filtering with zero-phase noncausal Butter-
worth filter and central difference algorithm. Then, the
acceleration ad, the angular velocity and acceleration
ω, ω̇ are computed respectively from (3) and (4).

Using the IMU as a data source has several advantages.
It doesn’t require any external sensor in addition to those
usually available on a quadrotor. If the data collection is
done onboard, there is also no data synchronization required
as the IMU and the rotor speed data are both available on the
UAV. Also the data collected from the MOCAP must be dif-
ferentiated twice, while the acceleration is directly collected
on the IMU. We would expect a better data quality from the
IMU, however, depending on the IMU, its calibration and
online measurement processing, the data may be quite noisy
and/or biased. This is why we propose a comparison of the
two data collection methods in this paper.

IV. CASE STUDY

A. Experimental protocol

Experimental validation was performed using a custom
quadrotor based on a Lynxmotion Crazy2fly frame, with
MT2208 brushless DC motors, 12A ESCs, and plastic 8045
dual-blade propellers. The controller was a Pixhawk 2.4 run-
ning PX4-v1.7.3. Motor speeds and IMU data were gathered
from the Pixhawk using an onboard Raspberry Pi 3B+. The
pose of the UAV was gathered using a Qualisys MOCAP
system with eight cameras. All data was nominally gathered
at 200 Hz.

In order to carry out robot dynamic identification, it is
usual to make the robot move along “exciting” trajectories,
i.e. optimized reference trajectories that can be computed
by nonlinear minimization of a criterion function of the
condition number of the observation matrix [30]. However,
agressive maneuvers in automatic flight mode would require
a fine tuned control strategy relying on an external system
(such as the MOCAP system). The objective of this paper is
to propose a method that does not require specific equipment
and so the trajectories were performed by a human pilot.
Flights of 60 to 90 seconds were performed with a fully
charged 11.1 V LiPo battery in a 6×4×4 m flying arena
which limited the dynamics of the flights. While an effort was
made to excite all dynamics of the quadrotor, the thrust and
roll had the most variation while the pitch and yaw were less
aggressive due to piloting skill and flight area constraints.

Tests were performed using two different quadrotor config-
urations. Configuration A corresponds to the base quadrotor
with a measured mass of 1.285 kg (Fig. 1). For configuration
B, a 0.125 kg mass was added to the arm in the +x direction
and a 0.042 kg mass to the arm in the -y direction (Fig. 2).

Fig. 2. Test configuration B, were ma = 0.125 kg and mb = 0.042 kg

While an effort was made to acquire accurate data, the
setup has several systematic flaws which decreased the qual-
ity of the experiment. A delay of at least 5 ms was present
between the MOCAP data and motors. The motor velocity
used here is the output reference for the speed controllers
which have a non-zero rise time, and thus leads the actual
motor speed by an unknown but likely non-negligible amount
[9]. Another source of error is the rigid-body model of
the quadrotor, when in reality it flexes. This particularly
affects the roll-pitch dynamics of the drone where part of
the actuation moments are used to flex the arms.

B. Identification from IMU

This section presents the identification results obtained
from the IMU data. Inspired by the results obtained with
two different configurations, we propose a procedure to
identify a more complete set of dynamic parameter on a
quadrotor. In order to distinguish the parameters associated
to each configuration, parameters, vectors and matrices are
annotated with the superscripts A, B or AB respectively if
they concern the configuration A, B or both (resp.). The
propeller coefficients are not associated to superscripts as
they do not depend on the configuration of the drone.

The results obtained from the MOCAP data are presented
and discussed in the next Section.

1) Configuration A: The first identification procedure,
using the methodology presented in Section III, is run on a
quadrotor without additional payload (configuration A). The
measured mass of the system is 1.285 kg. The left-hand side
of Table I presents the dynamic parameters identified with the
procedure. The algorithm shows a very good performance for
the identification of the thrust coefficient kt in comparison
to the other parameters. This performance is required to
set the ratio rσ (for computing the essential parameters,
see Section III-B) to 250, so to avoid discarding too many
parameters while selecting the essential ones (see also III-B).

The algorithm discards the dynamic parameters AIxy ,
AIyz and AIxz . This result is expected as the mobile frame
is aligned with the principal axes of inertia of the quadrotor.
We can also see that the procedure discards the parameters
kd and AIzz . Those parameters are mainly related to the
moment along the local zd axis. To understand why those
parameters are discarded, we can have a closer look at the
equation related to this moment. Using the Table I, we can
assume the hypothesis: Amsx ' 0, Amsy ' 0, AIxx ' AIyy



TABLE I
ESSENTIAL PARAMETERS IDENTIFIED FROM IMU DATA (SI BASE UNITS)

Configuration A
Param. Value %σχ̂j
Amsx -4.32E-03 2.70
Amsy -1.95E-03 6.88
Amsz -6.16E-03 4.55
AIxx 1.69E-02 1.52
AIyy 1.76E-02 1.45
kt 3.46E-06 0.05

Configuration B
Param. Value %σχ̂j
Bmsx 4.30E-02 0.31
Bmsy -2.01E-02 0.80
Bmsz -1.22E-02 4.20
BIxx 2.43E-02 1.95
BIyy 3.58E-02 1.63
BIzz 4.75E-02 7.36
kt 3.65E-06 0.04
kd 5.40E-08 7.68

and AIxy = AIyz = AIxz = 0. Under those hypotheses,
from (10), we get

AIzzω̇z ' kd
∑
i

−sign(Ωi)Ω
2
i (23)

This equation is independent from all the other dynamic
parameters. In addition, the term kd is not present in the
other equations of the dynamic model and the AIzz terms
are linearly related to AIxx or AIyy in the other equations
of the drone’s moments. This configuration makes the terms
kd and AIzz completely independent from the other dynamic
parameter and, thus, impossible to identify, knowing only the
mass of the quadrotor. Note that Izz is often approximated
as Ixx + Iyy for quadrotors due to symmetry, but it is not
seen as rigorous within the scope of this paper.

In order to identify the parameters associated with the
moment about zd, it is necessary to break the symmetry of
the quadrotor. Configuration B fills this requirement and will
be used in a second identification procedure.

2) Configuration B: The second identification procedure
is run on a quadrotor with an additional payload that breaks
the symmetry of the device (configuration B). The measured
mass of the system is 1.452 kg. The right-hand side of
Table I presents the dynamic parameters identified with our
procedure. Since the dynamic symmetry of the quadrotor is
broken, the equation of the moment along zd contains now
other dynamic parameters in addition to the terms BIzz and
kd. This allows the algorithm to compute all the dynamic
parameters, apart from the non diagonal terms of the inertia
matrix which still do not sufficiently impact the dynamics of
the quadrotor.

Since we obtained the torque coefficient kd with the
configuration B, it would be interesting to feed it in the
computation of the configuration A to have a more complete
identification of the initial quadrotor (which is the one we
want to control at the end), as the propellers coefficients are
not modified from one configuration to another. We could
have done that in two steps, getting the propellers coefficients
from the identification of configuration B then use them
as known variable in the identification of configuration A.
However, computing in cascade the coefficients and then the
inertia is not an efficient methodology because the error of
identification of the coefficients will impact the identification
of the inertia. As a result, in the next section, we propose
an observation matrix that includes both configurations and

TABLE II
ESSENTIAL PARAMETERS ESTIMATED FROM COMBINED IDENTIFICATION

PROCEDURE (SI BASE UNITS)

IMU Data MOCAP Data
Param. Value %σχ̂j

Value %σχ̂j
%δ

Amsx -4.54E-03 3.35 - - -
Amsz -8.31E-03 5.62 - - -
AIxx 1.82E-02 1.84 1.88E-02 3.49 3.3
AIyy 1.86E-02 1.79 1.93E-02 2.77 3.6
AIzz 2.88E-02 4.90 - - -
Bmsx 4.28E-02 0.18 4.25E-02 0.15 0.7
Bmsy -1.99E-02 0.47 -1.97E-02 0.37 1.0
Bmsz -1.30E-02 3.20 -1.20E-02 3.31 7.7
BIxx 2.42E-02 1.11 2.42E-02 0.88 0.0
BIyy 3.57E-02 0.93 3.84E-02 0.74 7.0
BIzz 4.76E-02 3.71 - - -
kt 3.63E-06 0.03 3.68E-06 0.02 1.4
kd 5.11E-08 3.84 - - -

%δ is the relative difference (in %) between the values identified from
IMU data and those identified from MOCAP data.

allows the computation of all the dynamic parameters in a
single computation.

3) Combined identification: The combined identification
consist in solving both identifications for configurations A
and B in a single TLS algorithm. The vector of the unknown
dynamic parameters ABχTu =

[
χTk

AχT BχT
]

is now
composed of 20 dynamic parameters: 9 inertia parameters
associated to each configuration (A and B) and 2 parameters
for the propellers coefficients which are not dependent on
the configuration. The observation matrix ABWt used in the
TLS equation is thus:

ABWt
ABχt = ρ, ABχTt =

[
χTu 1

]
(24)

It is equivalent to Eq. (13) and is then composed of several
observation matrices as described by the following equation

ABWt =

[
AWk

AW 0 AmAWm
BWk 0 BW BmBWm

]
(25)

In order to represent the higher trust we have in the iden-
tification of configuration B, an additional weighting was
performed on the lines of the matrix ABWt associated to
the configuration B by a coefficient kw > 1 (in this case
kw = 2)..

The Table II presents the dynamic parameters identified
with the procedure. As desired, the algorithm takes advantage
of configuration B to estimate the parameter kd with the
consequence of also allowing the estimation of the parameter
AIzz for configuration A.

4) Cross-validation: In order to confirm the relevance of
the identified parameters, a cross-validation is performed on
flight data different from those used in the identification pro-
cedure. Figures 3 and 4 give the estimations obtained using
the identified parameters from the combined identification
(Section IV-B.3). Table III gives the error norm relative to the
motor inputs (||ρ||/||Wkχk||) respectively for configurations
A and B for all the identification procedures with the flight
data for cross-validation. We can see that the estimations are
completely relevant for the thrust. The moments are quite



TABLE III
RELATIVE ERROR NORMS ||ρ||/||Wkχk|| (%)

Configuration A
Wrench component Fz Mx My Mz

10.46 46.15 43.73 -
Configuration B

Wrench component Fz Mx My Mz

4.40 20.99 10.70 45.19
Configuration A - Combined identification

Wrench component Fz Mx My Mz

8.47 47.07 42.96 68.13
Configuration B - Combined identification

Wrench component Fz Mx My Mz

3.96 20.96 10.59 46.79

low in amplitude, so unmodelled effects can have a non-
negligible impact on the accuracy of the estimations.

These unmodelled effects are several in nature: sensor
biases and calibration, experimental recording delays, tran-
sitions states, body flexibility, aerodynamic effects, battery
load, etc. Our estimation method gives the dynamic param-
eters for the imperfect dynamic model provided which is
confronted with real flight data. It leads to the identification
of dynamic parameters that may not be the real ones but
those best fitted to the dynamic model used. The more
precise the model, the closer to the real dynamic parameters
the estimation will be. Nevertheless, in practice, the model
provided should be the same for the identification and for the
control law, because the identified values for a given model
will be those leading to less modelling errors, and thus the
best dynamic behavior.

C. Identification from MOCAP

Identification from MOCAP data was performed. How-
ever, worse data quality allowed the identification of fewer
parameters, even with the combined identification procedure.
The Table II shows the identified values for the dynamic
parameters with data collected from the MOCAP system
and a comparison to the data obtained with the IMU. The
relative difference up to 7.7 % is quite low considering
that the reference frame between the two sensor systems
are not perfectly aligned and that each system has its own
calibration.

V. CONCLUSIONS

In this paper we proposed a method to identify in one
single procedure the rigid body parameters and thrust and
torque coefficients of a hovering quadrotor from flight data.
The procedure does not require any specific benchmark, and
requires only the mass of the quadrotor and a recording of
flight data (motor inputs and IMU outputs). The flight did not
require a specific trajectory and can be performed manually
by a somewhat skilled human operator as long as it remains
“sufficiently exciting” [31] for the dynamics to be identified.
The identification was performed in real flight conditions,
giving the best fitting values in presence of perturbations and
avoiding biases that may appear on a specific test bench.

We observed that the symmetries of a classic quadrotor
limited the performance of the algorithm and we proposed an

extended identification procedure which required two types
of flights: one with the the initial quadrotor and a second
flight with an additional payload on the vehicle that broke
the mass distribution symmetries of the UAV. This new
procedure increased the performance of the identification and
allowed an estimation of all relevant dynamic parameters of
the quadrotor.

The procedure has been presented in a near hovering
context. Future work includes an extension of the procedure
to aerodynamical effects in high speed flight. We believe also
that it could be adapted to other multi-rotor UAVs.

REFERENCES

[1] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 664–
674, 2012.

[2] R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles:
Modeling, estimation, and control of quadrotor,” IEEE Robotics and
Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[3] J. Wang, T. Raffler, and F. Holzapfel, “Nonlinear position control
approaches for quadcopters using a novel state representation,” in Pro-
ceedings of the AIAA Guidance, Navigation, and Control Conference,
Minneapolis, Minnesota, USA, aug 2012, pp. 1–17.

[4] K. U. Lee, Y. H. Yun, W. Chang, J. B. Park, and Y. H. Choi,
“Modeling and Altitude Control of Quad-rotor UAV,” in Proceedings
of International Conference on Control, Automation and Systems,
Kintex, Gyeonggi-do, Korea, 2011, pp. 1897–1902.

[5] H. Bouadi, S. Simoes Cunha, A. Drouin, and F. Mora-Camino,
“Adaptive sliding mode control for quadrotor attitude stabilization
and altitude tracking,” in IEEE 12th International Symposium on
Computational Intelligence and Informatics, Budapest, Hungary, 2011,
pp. 449–455.

[6] H. Voos, “Nonlinear control of a quadrotor micro-uav using feedback-
linearization,” in Proceedings of the IEEE International Conference on
Mechatronics, Malaga, Spain, apr 2009, pp. 1–6.

[7] A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-
dynamics stabilisation for quadrotor control,” IET Control Theory and
Applications, vol. 3, no. 3, pp. 303–314, 2008.

[8] A. Mokhtari and A. Benallegue, “Dynamic feedback controller of Eu-
ler angles and wind parameters estimation for a quadrotor unmanned
aerial vehicle,” in Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), New Orleans, LA, USA, apr 2004,
pp. 2359–2366.

[9] S. Bouabdallah, “Design and control of quadrotors with application to
autonomous flying,” Ph.D. dissertation, Ecole polytechnique fédérale
de Lausanne, 2007.

[10] M. Elsamanty, A. Khalifa, M. Fanni, A. Ramadan, and A. Abo-Ismail,
“Methodology for identifying quadrotor parameters, attitude estima-
tion and control,” in Proceedings of the IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), Wollongong,
Australia, jan 2013, pp. 1343–1348.

[11] L. Derafa, T. Madani, and A. Benallegue, “Dynamic modelling and
experimental identification of four rotors helicopter parameters,” in
Proceedings of the IEEE International Conference on Industrial Tech-
nology, Mumbai, India, jan 2006, pp. 1834–1839.

[12] G. Chowdhary and R. Jategaonkar, “Aerodynamic parameter estima-
tion from flight data applying extended and unscented Kalman filter,”
Aerospace Science and Technology, vol. 14, no. 2, pp. 106–117, 2010.

[13] N. Abas, A. Legowo, and R. Akmeliawati, “Parameter identification
of an autonomous quadrotor,” in Proceedings of the 4th International
Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia, may
2011.

[14] P. Lyu, S. Bao, J. Lai, S. Liu, and Z. Chen, “A dynamic model
parameter identification method for quadrotors using flight data,”
Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 233, no. 6, pp. 1990–2002,
2019.

[15] C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Ku-
mar, “Influence of Aerodynamics and Proximity Effects in Quadro-
tor Flight,” in The 13th International Symposium on Experimental
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