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Is OpenCL Driven Reconfigurable Hardware
Suitable for Virtualising 5G Infrastructure?

F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu, P. Castoldi, L. Valcarenghi

Abstract—The Open Computing Language (OpenCL) is increas-
ingly adopted for programming processors with reconfigurable
hardware acceleration. The 5G telecommunication infrastruc-
ture, imposing strong latency constraints on the managed com-
munications, may benefit from OpenCL-designed accelerated
processing. This paper presents the first study to evaluate
OpenCL hardware acceleration in the context of a 5G base station
physical layer. The implementation and optimization process
to accelerate the Orthogonal Frequency Division Multiplexing
(OFDM) part of the 5G downlink is conducted on a high-
end Field Programmable Gate Array (FPGA). We show that
the proposed OpenCL implementation complies with the 5G
processing timing requirements since the computation time is
consistent with the present 5G deployment. However, to be
suitable for 5G, the OpenCL platform must improve the data
latency transfer between hardware and software. Moreover,
a further enhancement for the OpenCL implementation is to
improve the code by means of OpenCL optimization techniques.
In this way, the performance can be further improved with
respect to optimized software on vectorized high-end processors.

Index Terms—5G, Hardware Acceleration, Reconfigurable Com-
puting, OpenCL

I. INTRODUCTION

In general, processing can be performed by exploiting two
paradigms: hardware and software. While the boundary be-
tween these paradigms is currently being blurred by methods
such as High-Level Synthesis (HLS) and High-Level Design
(HLD) [1], hardware is still today a costly solution in terms
of design and optimization efforts, but can lead to orders
of magnitude higher performance than software thanks to
specialization. When inflexible Application Specific Integrated
Circuit (ASIC) implementations are hindered by upgradability
requirements, reconfigurable hardware is an option of choice
for accelerating processing, especially when Application Pro-
gramming Interfaces (APIs), such as OpenCL, simplify hard-
ware/software communication and co-processing.
High-level software languages with extensive open libraries
(e.g., Java, .NET frameworks) [2] [3] have made software
design flexible and scalable by abstracting most of hardware
resources. However, the utilized level of abstraction and com-
pilation sub-optimality might negatively impact the achievable
performance.
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In this scenario, FPGAs are increasingly being used be-
cause they offer a third approach. Like ASICs, FPGAs are
hardware circuits dedicated to a specific task but they can
be reprogrammed a large number of times and for several
applications [4]. Moreover, a FPGA distributes computing
spatially, potentially exploiting large application parallelism,
while software allocates computing sequentially.
However, whilst FPGAs combine the benefits of hardware and
software, creating applications optimized for FPGAs is still
difficult and usually requires to learn a Hardware Description
Language (HDL) such as Verilog or VHDL.
OpenCL represents a more versatile solution, as this language
can be compiled for several architectures, and not only for
FPGAs, provided that a Host+Accelerator structure is used.
A single OpenCL program is thus portable to both parallel
and sequential computing devices. However, optimizations are
required to obtain good performance on the target platforms
[5]. Moreover, an additional advantage of OpenCL is its
dynamic and seamless reconfigurability. That is, a computer
program written in OpenCL can seamlessly run in hardware
or software based on the hardware resource status.
The 5G telecommunication standard is expected to dramat-
ically improve performance with respect to its predecessors
by providing both very high bandwidth and low latency. A
strong challenge is to comply with latency constraints while
supporting large data rates. Hardware acceleration may help
to reduce processing latency. For these reasons, OpenCL is
a good candidate for accelerating 5G tasks. Moreover, the
decision of offloading virtualized function computation to
hardware might also depend on compute resources status and
availability. For example, offloading computation to hardware
can free time slots on compute resource that can then be
exploited for improving the performance of already deployed
5G services or deploying additional ones.
The goal of this paper is to assess the suitability of the
utilization of OpenCL driven reconfigurable hardware in the
context of 5G virtualized base stations, specifically virtualized
next generation eNB (gNB) Distributed Unit (DU). To the
best of our knowledge, it represents the first study considering
the implementation of the 5G DU offloaded to the FPGA by
means of OpenCL approach. In particular, the implementation
is based on the OFDM acceleration and several performance
parameters characterizing the considered implementation are
taken into account. One of them is the hardware resource usage
considered to offload 5G downlink processing (i.e., the data
stream from base station to users). Using a high-end FPGA
and a state-of-the-art toolchain for OpenCL, we study how
many hardware resources are needed and how many 5G base
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station functions can be hosted into the FPGA. Moreover, a
resource comparison between OpenCL and HDL is reported
to understand the differences between these two approaches.
The work also addresses 5G processing performance in terms
of execution time, that results in 5G function processing
latency. A comparison between purely software approach (i.e.,
Single Instruction Multiple Data (SIMD)), purely hardware
approach (i.e., HDL), and OpenCL is reported to better under-
stand the OpenCL performance trend. Moreover, a model for
both OpenCL and SIMD approach is evaluated to predict the
processing delay for bigger OFDM symbol size, to understand
the best implementations (hardware and software) in case of
a future deployment.
We also evaluate the computational load needed by the Central
Processing Unit (CPU) to execute the SIMD and OpenCL.
Indeed, OpenCL model is based on software APIs to inter-
act with the hardware, thus, an evaluation of the software
processing is reported, highlighting the differences between
purely software (i.e., SIMD on a high-end processor) and co-
design (i.e., OpenCL) models over hardware. Furthermore, a
manager capable to automatically switch the computation from
software to hardware is deployed. Such a manager is utilized
to offload the processing into the hardware when the CPU
suffers from excessive computational load. This manager is
a first attempt to provide dynamic reconfiguration between
hardware and software, which can be considered for the 5G
context.
Finally, we discuss design productivity to assess the complex-
ity of creating and compiling OpenCL kernels to the FPGA
in a standard context.

II. 5G INFRASTRUCTURE

The fifth generation of mobile communications (5G) must
provide high level of efficiency, flexibility, and scalability in
the Radio Access Network (RAN). Indeed, applications such
as enhanced mobile broadband (eMBB), massive machine
type communications (mMTC), and ultra reliable low latency
communications (URLLC) [6] demand requirements that the
previous generation (4G) mobile communications cannot sat-
isfy. Thus, the RAN has to be re-thought.
In 4G, the evolved Node B (eNB) represents the hardware
and software located at the antenna site, enabling the wireless
access of many User Equipments (UEs) to the mobile network
infrastructure. Here, the protocol stack and signal processing,
which handle the data from mobile devices, are resolved.
This approach has many limitations, in particular for what
concerns flexibility and scalability, since the eNB is structured
to provide connectivity for a certain number of devices and it
is not able to adjust the power consumption (e.g., putting in
standby some functionalities) in case of less users connected.
On the contrary, if an area requires a higher number of users
to be served, another eNB has to be deployed.
An important novelty of 5G is splitting the eNB into two
different entities: the Central Unit (CU) deployed in central
locations and the DU deployed near the antenna. This ar-
chitecture is called Next Generation RAN (NG-RAN) or C-
RAN, where the ”C” stands for both centralized and cloud.

Indeed, CU and DU can be even virtualized and deployed
in the cloud [7]. Likewise, the eNB in the 4G infrastructure
evolves in gNB. Centralizing the CU leads to several benefits
including economy of scale, reduction of the maintenance for
the cell towers, and performance improvement due to better
coordination between antennas. Economy of scale refers to the
possibility of deploying less hardware devices compared to the
actual 4G infrastructure. For instance, a single large router for
network access can serve the CU rather than many little routers
serving a single eNB. In this way, the CU can be designed to
be able to move router ports from under-utilized CUs to over-
utilized CUs. The maintenance can be reduced by upgrading
the software of centralized CUs. Finally, the performance in
terms of lower call drop rates and downlink data rates are 30%
improved with the centralized approach [8].

Fig. 1: 5G architecture

The NG-RAN architecture is depicted in Figure 1. Here, many
gNBs are connected to the 5G Core (5GC) which manages
the UE communication with the Data Network (DN). The
link between the gNBs and 5GC is the NG interface, which
corresponds to the backhaul. Each gNB consists of a CU,
gNB-CU in Figure 1, connected to many DUs, gNB-DU in
Figure 1, by means of the F1 interfaces, which are the midhaul
interfaces. Often, based on the DU location, an additional
element, including only the Radio Frequency (RF) functions
(e.g., filtering, mixing, upconversion/downconversion, Digital
to Analog Conversion (DAC)) called RRU (Remote Radio
Unit), is deployed and it is connected to the DU by the, so
called, fronthaul interface. Many protocols have been defined
to transmit the data in the fronthaul link, such as Common
Public Radio Interface (CPRI), ethernet-based CPRI (eCPRI)
and Next Generation Fronthaul Interface (NGFI). An analysis
of their performance is presented in [9].
As the gNB is splitted into CU and DU, so are the protocol
stack functionalities. This is an important novelty of 5G
called functional split where the functionalities can be splitted
according to the scheme in Figure 2. The 3GPP association
established the requirements, in terms of both latency and
bandwidth, reported in Table I [10], for the communication
network connecting DU and CU as a function of the consid-
ered functional split. As reported in Table I, when most of
the functions is implemented in the CU, the requirements are
stricter.
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Protocol Split Option Required bandwidth Max allowed one-way latency
Option 1 DL: 4Gb/s UL: 3Gb/s 10ms
Option 2 DL: 4016Mb/s UL:3024 Mb/s 1.5∼10ms
Option 3 lower than option 2 for UL/DL 1.5∼10ms
Option 4 DL:4000Mb/s UL:3000Mb/s approximate 100µs
Option 5 DL: 4000Mb/s UL: 3000 Mb/s hundreds of microseconds
Option 6 DL: 4133Mb/s UL:5640 Mb/s 250µs

Option 7-1 DL:10.1∼22.2Gb/s UL:16.6∼21.6Gb/s 250µs
Option 7-2 DL:37.8∼86.1Gb/s UL:53.8∼86.1 Gb/s 250µs
Option 7-3 DL:10.1∼22.2Gb/s UL:53.8∼86.1Gb/s 250µs
Option 8 DL:157.3Gb/s UL: 157.3Gb/s 250µs

TABLE I: Bandwidth and latency requirements for each functional split

RRC
Low-

PHY

High-

RLC

High-

PHY

Low-

MAC
PDCP

Low-

RLC

High-

MAC
RF

Data

RRC
Low-

PHY

High-

RLC

High-

PHY

Low-

MAC
PDCP

Low-

RLC

High-

MAC
RF

Data

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8

Downlink

Uplink

Fig. 2: 5G functional split
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This paper focuses on the Option 7-1 functional split as
case study, which corresponds to implement the low PHY
level functionalities at the DU while the other ones are
implemented at the CU. Such functional split is implemented
by the OpenAir Interface (OAI) experimental framework used
to establish a 5G communication [11]. Many other 5G tasks
can be also considered as good candidates to be accelerated
into the hardware, up to the entire layers of the 5G protocol
stack. However, offloading a lot of processing into the hard-
ware may result in a huge area required by the FPGA, as
well as a costly solution has to be adopted. Thus, only the
tasks that require strong computation capabilities with latency
critical constraints shall be deployed in hardware, exploiting
the reconfigurable computing approach where the hardware
represents the acceleration part, handled by the software.
Figure 3 shows the functionalities implemented in the DU both
in downlink and uplink, considering option 7-1 split based
on the OAI implementation. In downlink direction, the DU
receives compressed the In-phase/Quadrature (I/Q) samples
from the midhaul in the frequency domain. The data in the
midhaul is compressed to save capacity and the DU applies
the decompression algorithm based on the A-law [12]. Each
I/Q sample consist of 32 bits divided into 16 bits that represent
the real part and 16 bits for the complex part. Then, the DU
performs the inverse Fast Fourier Transform (iFFT) to convert

the samples in the time domain and it adds the cyclic prefix,
which is a guard interval to avoid inter-block interference
between successive symbols. As last step, the DU sends the
data to the radio front end, which has the role to perform the
DAC and it handles the communication with the UE, which
is a generic end-user device.
In the uplink direction, dual operations than the downlink
direction are performed with the addition of the frequency
offset removal. Indeed, such an offset is considered in
baseband receiver to address the non-idealities problems
such as sampling clock offset, IQ imbalance, power
amplifier, phase noise and carrier frequency offset non-
linearity. The processing described above is a part of
the OFDM modulation/demodulation that is utilized
for 5G communications. As specified in Table I the
communication network between DU and CU present strict
latency requirements.

III. ACCELERATION WITH RECONFIGURABLE HARDWARE
THROUGH OPENCL

A. OpenCL generalities

OpenCL is a framework for writing programs that can be ex-
ecuted across heterogeneous platforms such as CPUs, General
Purpose computing on Graphics Processing Units (GPGPUs),
Digital Signal Processors (DSPs) and FPGAs. OpenCL speci-
fies a programming language (based on C99) for programming
these devices and API to control the platform and execute
programs from the host side (i.e., computational unit on which
the host program runs to control the OpenCL device). The
main advantage of this framework is the possibility to write
a single program that can run on heterogeneous platforms
seamlessly, even if many optimizations must be done for
each platform to reach the best performance. Moreover, it
exploits the parallel computing approach which enhances
the application performance. Two main parallel programming
models are possible with OpenCL: task parallelism and data
parallelism. In the first one, the application can be decomposed
in several tasks with different computation loads. Each task
can be mapped onto Processing Elements (PEs), that can run
concurrently. However, it suffers of load balancing issue since
the processing finishes only when the last PE finishes its task.
Thus, an unbalanced loading brings to a loss of performance.
In data parallelism model, the application can be seen as
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Fig. 4: OpenCL platform model

collection of data elements that can be processed concurrently.
This means that a single task can be applied to each data
element. This model is possible when a processing on arrays
or matrix is needed since each element of the structure can be
easily computed by a single task.
The OpenCL platform model is shown if Figure 4. Here, a
single host acts as a master capable to interact with many
OpenCL devices which are the components where a stream
of instructions execute. Such a stream of instructions is called
kernel and it represents the program executed by the OpenCL
device. Each device is called Compute Devices (CDs) and
it can be a CPU, GPGPU, DSP or FPGA. Each CD can
be divided in OpenCL Compute Units (OpenCL CUs) which
are further divided into PEs. The PEs represent the smallest
OpenCL computation units and all the processing run within
the PEs.
The host program and one or more kernels must be considered
to create an OpenCL application. The host program has the
role to initialize and interact with the kernels by using the
standard OpenCL API [13]. It establishes the context for the
kernels as well as the command queues to be sent to the device.
Moreover, it defines the memory objects which are the buffer
to be read/written by the kernels. Each kernel needs its com-
mand queue. The host places the commands into the command
queue and the commands are then scheduled on the associated
devices. The commands supported by the OpenCL are: i)
kernel execution commands that are necessary to execute a
task into a PE of the CD, ii) memory commands that transfer
memory objects from/to the device and iii) synchronization
commands that refer to constraints on the order of commands
execution.
The kernels execute in the CD and they are the processing
core of the OpenCL model. Moreover, two types of kernel
are defined: pure OpenCL and native kernels. The first ones
are functions written and complied by OpenCL framework.
The native kernels are functions created outside the OpenCL
environment and it is possible to call them by means of
function pointers.
Particular attention must be dedicated to the OpenCL memory

Fig. 5: OpenCL memory model

model since it enables the communication between the host
and the device. Figure 5 shows the memory regions from the
host to the devices. Here, five memory regions are defined:

• Host Memory. This memory region belongs to the host
and it cannot be accessible by any other instance of the
OpenCL architecture.

• Global Memory. This region enables the communication
from the host to the device and vice versa. Indeed, it can
be accessible by all PEs. In Figure 5, a further cache level
is depicted. This level may be present depending on the
capabilities of the device.

• Constant memory. This memory has a read-only access
for the PEs. During initialization, the host writes this re-
gion which remains the same during the kernel execution.

• Local Memory. This region is shared by all the PEs
belonging to a certain CU and it is used to allocate
variables that are commons for all the PEs. Moreover, if
the CD has its own memory, it is deployed as a portion
of the CD memory, otherwise it is implemented in the
global memory. In this case, the access could be slower,
depending on the global memory interface bandwidth.

• Private Memory. This memory region belongs to the
single PE. The variables stored are not visible by any
other instance of the OpenCL architecture.

B. Specific OpenCL constructs and kernels for reconfigurable
hardware

In this Section, a focus on the kernels and tools considered to
exploit the OpenCL model for FPGA is provided. In particular,
we describe the relation between the two types of kernels that
can be deployed in hardware as well as the the SDK (Software
Development Kit) used for this work, which is capable to
create a hardware application starting from these kernels.
The OpenCL framework for FPGAs allows the designer to
simply create an application by means of HLD approach. For
this paper, the Intel FPGA SDK for OpenCL is considered and
it supports the OpenCL specification 2.0 [13]. The Intel FPGA
SDK for OpenCL Offline Compiler compiles the kernels to an
image file used by the host to program and run the kernel on
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the FPGA. The model previously described remains the same
with an important difference: the FPGA exploits spatial im-
plementation of a program, thus the instructions are executed
when the data is ready. However, in sequential programming
(considered for CPU, GPGPU, DSP), the program counter
controls the instructions to run. Indeed, even if the data is
available to be computed, the processing is executed one
instruction at a time, following the order of the program
counter. This method is time-dependent since the instructions
are executed on the hardware across time. Designers have to
take into account this crucial difference to create an application
FPGA-oriented. Indeed, the way the code is written permits
to avoid FPGA area overhead or performance degradation.
Figure 6 shows the Intel FPGA SDK for OpenCL kernel
compilation flow. The Intel FPGA SDK for OpenCL Offline
Compiler compiles the kernel and it creates the hardware
configuration in a single step (i.e., kernel.aocx). An interme-
diate step, that creates Intel FPGA SDK for OpenCL object
file (i.e., kernel.aoco), provides the report on area usage and
performance bottlenecks, especially in the memory access.
Two types of kernels are supported by the OpenCL for FPGA
framework: NDRange and Single Work-Item (SWI) kernels.
A NDRange kernel permits to partition the data among the
PEs. In particular, the OpenCL runtime system creates an
integer index space (i.e., NDRange) where each instance of
the kernel is executed. Each instance is called work-item and
it is identified by its coordinates in the NDRange. This kernel
is suitable when there is no data dependency that makes the
partitioning easy. The commands run from the host create the
collection of the work-item and execute all the work-items in
parallel.
Executing NDRange kernels with size (1,1,1) corresponds to
run a SWI kernel. SWI kernels permit to control the pipeline
since only one work-item is executed. This approach is better
when an application has loops or data dependencies. However,
the NDRange tries to parallelize the computation with several
work-items but the performance could be degraded due to a
possible stalls for conflicts with data. Unlike NDRange ker-
nels, single work-item kernels follow sequential programming
approach, more similar to C programming. Anyway, the data
parallelism is applied on SWI kernel type by pipelining the
iterations of loops. Indeed, custom pipeline is possible and

data access patterns can be modified using ad-hoc ”pragmas”.

IV. RELATED WORKS ON OPENCL HARDWARE
ACCELERATION

To the best of our knowledge, this study is the first that
considers OpenCL acceleration in the context of 5G. A number
of recent works relies on the OpenCL language for FPGAs
to deploy advanced services such as Convolutional Neural
Networks (CNNs), Finite Impulsive Response (FIR) filters or
image processing accelerations. In [14], the authors provide an
exhaustive analysis about the Time-Domain Finite Impulsive
Response (TDFIRs) and Frequency-Domain Finite Impulsive
Response (FDFIRs) implemented in the FPGA by means of
OpenCL. In particular, they focus on the performance of
several FIR implementations on the FPGA as well as perfor-
mance comparison between FPGA and GPGPU. Moreover, an
analysis on the area usage and power consumption is reported.
An optimized implementation of a CNN is proposed in [15],
where the authors consider Deep Learning Accelerator (DLA)
to overcome the memory bound limit of the CNN deployment
into FPGA. They maximize the data reuse and minimize
external memory bandwidth. Moreover, Winograd transform is
further applied to boost the FPGA performance. The results of
such a scenario show that the system is 10x faster of the state-
of-the-art implementation and it has comparable performance
with GPGPU CNN deployment.
Another approach to improve CNN computation on the FPGA
is described in [16]. Here, an analytical performance model
regarding area usage is presented and applied to a CNN imple-
mentation. Authors show a bottleneck on the on-chip memory
bandwidth and provide a 2D interconnection between PEs
and local memory to reduce the on-chip memory requirement.
Moreover, a 2D dispatcher is further designed to reduce the
external memory bandwidth.
Optimization techniques for image processing are presented in
[17] where the authors report an optimization review before
presenting a spatial-spectral classifier for Hiperspectral Image
(HI). This use case is based on the K Nearest Neighbours
(KNN) filter deployed into the FPGA by means of OpenCL
model. Both SWI and NDRange kernels are tested in terms
of area usage and processing time. Moreover, a comparison
between the output of KNN filtering and Support Vector
Machine (SVM) classification is reported to demonstrate the
image processing improvement.
Lastly, the implementation of an efficient 3D Fast Fourier
Transform (FFT) is presented in [18]. The core of the work
is to improve the pipelines of the FFT providing a valid
alternative to HDL deployment. Moreover, the authors report
a performance evaluation between OpenCL, HDL, GPU and
CPU. The results show that the OpenCL performance are con-
sistent with the HDL ones with the advantage of using fewer
resources than IP core design. A significant improvement, in
terms of execution time, is highlighted when the processing
is performed via OpenCL and HDL with respect to CPU and
GPU platforms performance.
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V. IMPLEMENTATION

This section describes the implementation of the 5G DU
processing by means of OpenCL, SIMD and HDL, as well
as the considered experimental setup for each method. Figure
7 depicts the block diagram of both HDL and SIMD deploy-
ments.
Figure 7a shows the block diagram for the SIMD approach.
The data coming from midhaul is uncompressed and processed
by the iFFT task based on SIMD instructions. In this work, we
consider the Intel Advanced Vector Extension 2 (AVX2) SIMD
instruction set that performs operations on 256-bit vectorized
data. Such instruction set achieves better performance than
previous SIMD extensions, in particular with floating point
calculation and data organization. The iFFT algorithm is
computed by using the forward FFT and considering complex
conjugation of the data before and after the forward FFT pro-
cessing. Three SIMD functions are implemented to address the
integer FFT Cooley-Tukey algorithm [20]: i) decomposition
of the signal in frequency, which consists in the division of a
frequency spectrum composed by N points into N frequency
spectra each composed of a single point; ii) the second step
considers the conversion of N frequency spectra into N time
signals; iii) last step is the recomposition of N time signals into
a single time signal. The last step is the most significant one
in terms of computation complexity due to totally connected
data dependencies to previous steps. Each input sample of the
FFT consists on 32 bit integer type where the first 16 bits
represent the real part and the second 16 bits the imaginary
part. As discussed above, the Intel AVX2 SIMD instructions
can process 256 bit at once, thus 8 FFT samples are computed
with a single instruction, ensuring a good degree of data

(a) (b)

Fig. 7: Architecture descriptions for a) SIMD and b) HDL
implemented 5G DU processing

parallelism. Since iFFT is considered, all the samples are
points of signal in frequency to be converted to a signal in
time domain. The output data is computed by the cyclic prefix
insertion SIMD function that inserts redundant bytes before
iFFT samples in the stream. The number of bytes to be added
is summarized in Table II together with the complete OFDM
5G numerology considered for this work [21], [22]. Even if
the present value considered as maximum symbol size is 4096
[23], we also evaluate the results up to 8192 symbol size
to understand which are the better approaches to address a
possible future implementation of this size, since the 5G PHY
layer is still under study.
Figure 7b shows the top-level block diagram for the HDL use
case. Here, the data in the frequency domain from the midhaul
is uncompressed and sent to the FPGA by means of the PCIe
interface. Then, the data is processed by the Intel iFFT IP
core that returns the samples in the time domain. We consider
the streaming iFFT setting that allows continuous processing
of input data and it provides continuous complex data stream
as output, without halting the dataflow. The streaming iFFT
is based on quad output iFFT engine which minimizes the
transform time. Quad-output refers to the throughput of the in-
ternal iFFT butterfly computing [24]. As described for SIMD,
the butterfly represents the last of the three steps necessary to
compute the iFFT, according to the Cooley-Tukey algorithm.
The engine implementation computes all four radix-4 butterfly
complex outputs in a single clock cycle. The output of the iFFT
block is sent to the custom IP for cyclic prefix addition. The
IP core is synchronized at the output of the iFFT block to add
the cyclic prefix bytes without adding clock cycles. The output
of the design is a burst of samples in time domain composed
by some redundant samples representing the cyclic prefix and
the complex samples converted from frequency to time. The
number of cyclic prefix bytes depends on the OFDM symbol
size considered, as summarized in Table II.
Regarding OpenCL, we choose to implement the 5G OFDM
computation inside the DU to evaluate both the FPGA area
usage and processing time for OpenCL offloading. Thus, the
iFFT and the cyclic prefix addition kernels are deployed in
hardware, according to Figure 3. Dealing with the iFFT task,
we implement an integer algorithm based on the Cooley-

Fig. 8: OpenCL system setup [19]
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OFDM
Symbol Size (N)

Cyclic prefix
length (M)

Resource Blocks
(RBs)

Channel Bandwidth
(MHz)

128 10 6 1.4
256 20 15 3
512 40 25 5

1024 80 50 10
2048 160 100 20
4096 320 275 up to 200
8192 640 550 up to 900

TABLE II: OFDM numerology

Tukey approach and the same steps considered in the SIMD
deployment are taken into account. In the OpenCL for FPGA
scenario, the implementation of an integer algorithm is prefer-
able to avoid excessive usage of DSP blocks of the FPGA.
Indeed the floating point calculations require complex circuits
based on adders, subtractors and multipliers that use DSP
resources of the FPGA. The algorithm developed for the
OpenCL application receives as input a number of samples
equals to the OFDM symbol size. To complete the OFDM
processing at the DU side, the cyclic prefix addition kernel is
also offloaded to hardware. It prevents interferences between
OFDM symbols.
Figure 8 shows the setup with the internal connection between
host, FPGA and FPGA memory. The communication interface
between the host and the FPGA is a PCIe that can directly
interact with the global memory by means of a memory hard-
ware controller. The PCIe bandwidth is around 4 GB/s. The
maximum symbol size considered for this work is 8192 and
each samples is 32 bit based. Thus, the maximum bandwidth
for the OFDM used to transfer the data from the host to the
FPGA is 262144 bits/s, significantly below the maximum PCIe
bandwidth. The Random Access Memory (RAM) of the board
represents the global memory of the OpenCL environment and
it can be accessible from the kernel pipeline, exploiting the
global memory interconnect to interleave data accesses and
hide latencies. The intermediate variables necessary for the
kernel computation can be stored in both the RAM blocks
(local memory) and the FPGA registers (private memory). In
case of using RAM blocks, a local memory interconnect is
necessary to access the memory itself.
Table III summarizes the characteristics of the Terasic DE5-
Net high-end board exploited for this work as OpenCL device.
Moreover, the host is based on the the processor Intel Xeon W-
2133 equipped with 12 cores with a 3.60GHz clock frequency.

Board Terasic DE5-Net
FPGA Intel Stratix V GX

Resources ∼622000 LEs
256 DSPs

RAM 2x 4GB DDR3 @933 MHz each
Interface to Host PCI Express (PCIe) x8 lanes

TABLE III: Terasic DE5-Net board specifications

The host is capable of both compiling and starting the kernel.
Once the FPGA is programmed, the host starts the kernel and
reads/writes the global memory exploiting the OpenCL API.
The kernel considered for this work is SWI based and it
is optimized to reach high global memory throughput and

to reduce memory latency transfer. Closing the gap between
kernel frequency and memory controller frequency achieves
the saturation bandwidth, which is an important parameter
to obtain the above optimizations. In particular, memory
controllers usually run at 1

8 of the clock of the external
memory for DDR3 memory types. Considering a bus width
of 64 bits for DDR3 memory, the memory bandwidth is
saturated if the kernel runs at the same operating frequency
than the memory controller (18 of memory frequency). Thus,
the saturation bandwidth SB is calculated with Eq.1, where
BW is the bus width, Nddr is the number of DDR banks, MF
is the memory frequency and KF is the kernel frequency.

SB = BW × Nddr ×
MF
KF

= 64 bit× 2 × 8 = 1024 bits/clock cycle
(1)

This value is the maximum achievable SB and it can be
obtained under the following conditions: i) the kernel has to
exactly have one read and one write memory access. Then, ii)
no stall shall occur, iii) the memory accesses have to be word
aligned and iv) balanced readings and writings have to be
done (the same number of bytes have to be read and written
from/to the memory). Otherwise, if one or more conditions
are not met, a significant overhead of computing cycle occurs
and the execution time performance is degraded. These
conditions permit to increase the OpenCL kernel frequency
up to 1

8 of the clock of the external memory. As described in
Table III, the Terasic DE5-Net board is based on two banks of
DDR3 memory, 933 MHz each, with double data-rate. This
means that we can consider 1866 MHz (i.e., 2 × 933 MHz)
as external memory clock and the FPGA memory controller
is 1

8 of this value (i.e., ∼233 MHz). Hence, the saturation
bandwidth is achieved if the kernel frequency is equal to
233 MHz (at least, as close as possible). In this work, all
the OpenCL kernels developed for the evaluation reach this
working frequency, ensuring the maximum global memory
throughput.
The main advantage of the OpenCL model is certainly the
portability, but each architecture requires its own optimization
since specific instructions have to be executed to achieve
better performance. For instance, the considered SWI kernel
can run in a GPGPU but with very low throughput [25].
Indeed, the GPGPU is equipped with thousands of tens of
SIMD cores, each with tens of individual cores capable to
run a single work-item. Thus, NDRange kernels are more
suitable for GPGPUs. Indeed, their SIMD cores usually
require to execute at least 16 to 32 times the same instruction
on separate data to reach their peak performance. Such strong
data parallelism is the reason of existence of NDRange
kernels. Hence, the platform optimization is an important
process before compiling an OpenCL application and bad
optimizations may lead to a platform inefficiency for OpenCL
application. The choice of a SWI kernel is preferable in
FPGA to NDRange kernels due to possible conflicts in the
memory accesses. Moreover, SWI kernels permit to control
the whole pipeline, as well as the memory accesses.
The kernel developed for the application is loop-based.
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Each loop inside the SWI kernel is unrolled, which means
that the system tries to run each loop iteration in parallel.
Hence, by means of a #pragma unroll N directive, the
compiler is forced to unroll the loop N times. This reflects
into a speed up of N times in the execution performance
of the loop (without specifying the N factor, the compiler
automatically unrolls the whole loop). Thus, to achieve the
best performance, it is important to avoid dependencies
on the pipeline and concurrent memory accesses. These
conditions are fundamental to optimize the SWI kernel,
otherwise the OpenCL compiler needs too much FPGA area
to efficiently address data dependencies (i.e., implementation
of multiple instances of the same variable). To address this
optimization, we store the variables inside the FPGA registers
to reach lower processing time. Indeed, if we consider
on-chip memory (RAM blocks) to store the kernel variables
necessary for the processing, several accesses are required to
the block RAMs, reducing the processing time. For instance,
unrolling loops with large unroll factor can cause memory
conflicts on the on-chip memory, if a precise pattern for the
accesses is not well-defined. Moreover, the OpenCL compiler
tries to optimize the accesses but area usage and latency
increases due to the concurrence. Storing the kernel variables
as registers permits to achieve higher performance since no
memory access is required and no conflicts are possible for
concurrent access. As matter of example, we can consider
to store an array of 64 elements 16-bit each. The compiler
considers 64 registers of 16-bit width. In this scenario, no
conflicts are possible since every element of the array has its
own register. However, this methods requires higher FPGA
resources, in particular Adaptive Look Up Tables (ALUTs)
and Flip Flops (FFs). Too many variables stored as registers
can rapidly increase the overall logic utilization and the
OpenCL design does not fit into the FPGA.
Another optimization is to unroll read and write loops of
global memory access to achieve the compile-time memory
coalescing. This approach is typical to have uniform and
regular memory accesses. In particular, an irregular or
not aligned access to the memory tends to decrease the
performance in FPGA. Furthermore, the memory transfer
between the host and the global memory has to be aligned
to exploit the Direct Memory Access (DMA) acceleration.
Unrolling global memory loops permits to have an efficient
access, exploiting the whole communication bandwidth of the
memory (as described for Eq.1). On the other hand, choosing
big values of N correspond to have accesses larger than the
external memory bandwidth, thus the best unrolled factor is
the one that saturates the memory bandwidth.
A significant optimization on area usage is done by avoiding
function calls in the SWI kernel. Indeed, every function call
is implemented as a circuit on the FPGA, resulting in a large
usage of FPGA resource. Functions call prevents the compiler
to create a correct report about FPGA area usage that makes
the debugging harder.
Finally, writing OpenCL code for hardware-oriented
programming is a best practice to optimize the SWI kernel.
This aspect leads to an improvement in terms of both
performance and area usage. As a matter of example, we

can consider a simple if-then-else directive implemented in
both software and hardware. In software (i.e., sequential
programming), the if-then-else statement presents an issue
in the pipeline. Indeed, there are two possible instructions
to be fetched and the CPU has to take a decision based on
the condition. Modern CPUs attempt to predict the correct
instruction to be executed. Then, the processor fetches the
instructions based on such a prediction and, in case of wrong
prediction, it discards the partially executed instructions in
the pipeline. In this scenario, the pipeline is not stalled,
ensuring a smooth execution of the directives. However, in
hardware approach (i.e., spatial programming), both ”if”
and ”else” instructions are mapped into hardware circuits
which lead to a FPGA area overhead since only one circuit
is considered at a time. Using conditional statements (i.e.,
out = (condition) ? in_1 : in_2) instead of
if-then-else statements can reduce the FPGA resources in
many cases. Indeed, the if-then-else construct follows the
sequential approach and infers a priority routing network,
which needs higher resources. On the other hand, conditional
statements are mapped as a unique MUX circuit in hardware
and they yields better results in terms of both resource saving
and performance since they follow the concurrent approach
[26].

VI. PERFORMANCE EVALUATION AND RESULTS

To evaluate the offloading of 5G computation to reconfigurable
hardware, we consider three different performance parameters:
FPGA area usage, overall execution time and computational
load. All the parameters refers to the implementation of the
OFDM downlink processing for Option 7-1 functional split in
the DU part of the 5G architecture, as described in Figure 3.
The first parameter permits to evaluate the FPGA resources
needed to offload the computation. Moreover, we report the
resource utilization for both HDL and OpenCL methods to
have a comparison between these two different approaches.
The second parameter considers both processing time and
memory transfer time performance. In particular, memory
transfer time is evaluated for both OpenCL and HDL ap-
proaches and it is defined as the time necessary to send the
data from the host to the device and vice versa. However,
the pure processing is defined as the time to execute the
OFDM processing for all the deployments, without consid-
ering memory transfers. Processing time analysis is done by
comparing the OpenCL platform with HDL and software
SIMD implementations. Moreover, a model is developed to
predict the pure processing time values for those OFDM
symbol sizes that not fit into the FPGA (for OpenCL case).
Likewise, the present 5G deployment considers OFDM symbol
sizes up to 4096, thus a SIMD model is necessary to estimate
the processing time for bigger OFDM symbol size. The SIMD
approach is already implemented in the OAI 5G framework,
thus it can be considered as a benchmark to evaluate the
processing time performance and the correctness of the data.
Moreover, it has the best software performance for the iFFT
computation [27] which represents the most significant part of
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OFDM Symbol
Size

Logic Util (ALMs) Registers Total Memory bits DSPs
HDL OpenCL HDL OpenCL HDL OpenCL HDL OpenCL

128 2% 29% 1% 13% <1% 7% 2% 24%
256 3% 51% 1% 25% <1% 7% 2% 48%
512 5% 95% 2% 49% <1% 8% 2% 86%

1024 9% No FIT 3% No FIT <1% No FIT 2% No FIT
2048 16% No FIT 4% No FIT 1% No FIT 5% No FIT
4096 31% No FIT 8% No FIT 2% No FIT 5% No FIT
8192 60% No FIT 15% No FIT 3% No FIT 5% No FIT

TABLE IV: OpenCL and HDL FPGA resource usage

the OFDM processing.
Finally, the computation load parameter is referred to the
CPU processing load for both SIMD execution and OpenCL
hardware offloading. In this case, the goal is to show if the
OpenCL approach permits to save the CPU processing.

A. FPGA area usage evaluation

To evaluate the area usage in the FPGA, we report the resource
utilization for both HDL and OpenCL approaches. Area usage
is reported in Table IV where the results are presented for
different OFDM symbol sizes. The values refer to the resource
occupation, given by the report generated during the OpenCL
kernel compilation. Here, it is evident the resource usage
differences, which reflect the different model application of
HDL and HLS. Indeed, the FPGA resources used for the
OpenCL implementation are much higher than the HDL cases.
The reason lies in the abstraction layer introduced by the
OpenCL. However, the OpenCL resources could be lower
since we consider the fully unrolled implementation of the
OFDM computation. This means that all the loops inside the
OpenCL kernels are unrolled to improve the processing time to
meet the 5G requirements, at the cost of significant increase
of the area usage. In this scenario, the maximum OpenCL
hardware acceleration is implemented for a 512 symbol size
OFDM while for higher symbol size the OFDM does not fit.

B. Overall execution time performance evaluation

To evaluate the overall execution time considered for the
OpenCL approach, the pure processing time and the memory
transfer time between the host and the OpenCL device are
considered. Regarding the OpenCL memory transfer latency,
it is calculated by subtracting the execution time of the OFDM
kernel under exam with the execution time of a no operation
loopback kernel (the data is sent from the host to the kernel
and immediately forwarded by the kernel to the host). We
measure around 233 µs for all the OFDM symbol sizes,
considering a CPU core dedicated to run the OpenCL kernel.
This time represents a bottleneck due to the data transfer and
synchronization between the host and the device memory, as
well as the reading and writing from/to the global memory
(which is the DDR3 RAM for the considered board) and the
FPGA. We also measure the transfer time in case of OFDM
hardware offloading exploiting a single CPU core shared with
other concurrent tasks, obtaining a value around 468 µs for all

the OFDM symbol sizes. Such a value is around the double of
233 µs, measured in case of ideal condition of CPU dedicated
core, which demonstrates that this latency is due to software
synchronization with the PCIe interface, since the pure kernel
processing time remains the same (the hardware execution
does not change).
For these reasons, in a possible deployment of the OpenCL
approach for the 5G communication, the PCIe interface be-
tween the host and the device represents a bottleneck that has
to be avoided. A possible solution is to exploit the auto-run
kernels and the OpenCL channels. The auto-run kernels permit
to execute the processing in hardware without the interaction
with the global memory. Indeed, the host starts the auto-run
kernel which can process the data acquired by means of the
I/O OpenCL channels. For instance, in the 5G context, such a
kernel can gather the data to be directly computed exploiting
the Ethernet or optic fiber hardware interfaces. Moreover, if
more kernels are instantiated, the OpenCL channels enable
the data transfer between the kernels without global memory
interactions that increase the overall processing time.
Regarding the pure computation time for all the deployments,
Figure 9 shows the processing time performance for SIMD,
OpenCL and HDL and performance ratio trend for SIMD and
OpenCL as functions of the OFDM symbol size from 128
up to 8192. Here, the processing time curves are both based
on experimental results and estimation, except for the HDL
case. As previously discussed, the PHY layer of 5G is still
under study, thus the SIMD values are calculated according to
the present symbol size which corresponds to 4096. However,
according to Table IV, OpenCL kernels does not fit into the
hardware for OFDM symbol size bigger than 512. This means
that for both OpenCL and SIMD is necessary a model to
estimate the processing time up to 8192 OFDM symbol size
to understand the behaviour of these deployments.
The model to evaluate the processing time is based on the
performance ratio calculated by taking into account the com-
plexity of the OFDM processing. Indeed, in downlink side, the
DU have to compute the iFFT and the cyclic prefix addition
to complete the OFDM. Since the iFFT is based on the
Cooley-Tukey algorithm, the complexity can be calculated by
N × logN, where N is the OFDM symbol size considered,
while the complexity of the cyclic prefix addition is M, where
M is the number of samples to be added as cyclic prefix.
Table V shows the complexity of the both iFFT and cyclic
prefix addition. The number of samples considered for the
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Fig. 9: a) OpenCL, SIMD, HDL measured and estimated processing time; b) performance ratio trend obtained by dividing
performance time measured by OFDM complexity

OFDM symbol
sizes

iFFT complexity
O(N*logN)

Cyclic prefix
addition complexity

O(M)
128 269.72 10
256 616.51 20
512 1387.15 40
1024 3082.55 80
2048 6781.60 160
4096 14796.23 320
8192 69049.06 640

TABLE V: DU OFDM computation complexity for Option
7-1 split

cyclic prefix are the same presented in [28] and summarized
in Table II, while we estimate a possible value for 8192 OFDM
symbol size. Since the complexity of the cyclic prefix is much
smaller than the iFFT complexity, we can approximate the
overall complexity equal to the iFFT one. The performance
ratio is calculated by dividing the measured processing time
by the complexity. The trends are obtained by the interpolation
of the performance ratio values calculated for different OFDM
symbol sizes. To get the curves for the performance ratio, we
use the Matlab curve fitting tool and we choose the equation
that maximizes the R factor. Such a factor is defined as the
square of the correlation between the response values and the
predicted response values and it can be a value between 0 and
1. A value close to 1 indicates that a greater proportion of
variance is accounted for by the model.
The OpenCL trend follows the exponential law while the
SIMD trend can be considered as a second order hyperbola
(Eq. 2).

OpenCL => axb + c and SIMD => a+
b

x
+

c

x2
(2)

Such models permit to estimate the processing time for both
SIMD and OpenCL and they are depicted in Figure 9b in
logarithmic scale, where it is evident the differences between
the two trends. Indeed, OpenCL has a better processing feature
when the data size increases due to its pipelined approach.
Moreover, the OpenCL performances are not expected to
significantly increase since we considered a fully parallelized

kernel. This approach results in a more resource usage, as
shown in Table IV, but the performance considerably improve.
However, the SIMD computation is lower for smaller data
processing that reflects into an important distance between
the two curve for OFDM symbol size less than 2048. Indeed,
the SIMD model follows the sequential computing approach,
typical of the software, that increases computation for large
data batch. Performance ratio estimated values are calculated
starting from the measured processing time, which permits
to build part of the performance ratio plot. In particular, the
OpenCL ratio trend is also based on 16 and 64 symbol sizes,
to have more points for a better performance ratio estimation,
even if these are not possible OFDM symbol sizes and they
are not shown in Figure 9b.
Regarding the processing time, depicted in Figure 9a in
logarithmic scale, the SIMD implementation has constant
performance which reflects into a parabolic behaviour in linear
scale. Moreover, for SIMD evaluation, two different curves are
depicted, which correspond to the computation of the OFDM
task exploiting a CPU core dedicated and a CPU core shared
with concurrent tasks. The performance time trend for SIMD
considering a core dedicated is the best one after 2048 symbol
size but it reflects an ideal situation that is difficult to meet in
5G. Indeed, one of the main novelty of 5G is the virtualization
that require multiple treads to be executed in parallel, thus, for
this analysis, we consider the OFDM SIMD processing along
with other parallel tasks.
OpenCL has a almost linear behaviour (negative exponential
in linear scale) and the performance are worse up to 2048
symbol size with respect to SIMD. However, the OpenCL
trend increases less rapidly than SIMD and they have the same
performance at 4096 symbol size, while OpenCL could be
a better approach after this value. Furthermore, as discussed
at the beginning of this Section, running OpenCL kernel in
parallel with other software tasks does not affect the hardware
processing time but only the data transfer latency. Thus, the
OpenCL processing time under CPU core resources shared is
the same of CPU core dedicated, shown in Figure 9a.
The same parameter considered for the OpenCL can be
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taken into account for HDL deployment. Indeed, the overall
execution time can be divided in the throughput latency
(i.e., memory transfer time) and the calculation latency (i.e.,
processing time). The first one represents the latency due to the
data transfer towards the OFDM processing hardware IP and
it corresponds to N clock cycles, where N is the OFDM sym-
bol size. The calculation latency represents the clock cycles
needed to do the processing. Figure 9a shows HDL curves that
only takes into account the calculation latency, which is the
delay introduced by the OFDM computation task. Calculation
latency is depicted in time domain after multiplying the clock
cycles needed for the computation by the inverse of the FPGA
operating frequency. Here, 50 MHz and 200 MHz working
frequencies are imposed for the evaluation of the HDL curves:
50 MHz constraint as working frequency is respected while
the 200 MHz is not met for OFDM symbol size bigger than
1024. Table VI shows the frequencies reported by the Intel
Quartus Timing Analyzer according to the Slow 85C Timing
model which provides timing delays for the FPGA operating
under the conditions of i) slowest silicon for the specific
speed grade, ii) low voltage and iii) 85C junction temperature.
Such conditions represent a possible worst-case for the device.
Indeed, since each FPGA that is cut from a silicon wafer has
delay differences, the timing analyzer takes into account the
worst performance of a specified speed grade. Moreover, low
voltage decreases the transistor switching speed by decreasing
electron mobility through the transistors. High temperature
also affects transistor speed by changing the characteristics
of the silicon material, leakage current, and electron mobility
[29].
In Figure 9a, it should be noticed that the HDL curves have
better performance of both OpenCL and SIMD for OFDM
symbol size less than or equal to 1024. After this values, the
HDL computation increased and the SIMD processing time is
the best of the three approaches up to 2048 OFDM symbol
size. Starting from 8192 OFDM symbol size, both OpenCL
and SIMD approaches are expected to have less processing
time. The rising processing time after 1024 symbol size is
due to the increased number of clock cycles considered to
complete the iFFT step in the Intel iFFT IP core.
Finally, a consideration about the technology is necessary.
The Intel Xeon W-2133 used for the SIMD processing is
produced with a 14 nm production technology while the Intel
Stratix V FPGA is based on the 28 nm technology. This
means that 14 nm FPGA (e.g., Intel Stratix 10 series) can
achieve better performance in terms of both area usage (in
particular for OpenCL approach) and working frequency that
can significantly reduce the curves reported for the hardware
scenario.

C. Computational load evaluation

For the last evaluation, the performance parameter considered
is the CPU load. Such a parameter can be further characterized
by three CPU states during the computation: idle state, system
processing state, and user state. The first one refers to the time
that the CPU is idle and the system does not have outstanding
I/O requests. The system processing state represents the CPU

OFDM Symbol
Size

FPGA Fmax
(MHz)

50 MHz
Constrain

200 MHz
Constrain

128 131 231
256 126 222
512 100 209

1024 95 198
2048 78 194
4096 75 183
8192 71 150

TABLE VI: FPGA Timing analyzer frequency report for each
OFDM symbol size

utilization that occurred to execute task at the system level
(kernel). Moreover, this state refers to the interaction of the
system with the external physical peripherals. The last state
is the user state that stands for the CPU utilization while
executing user level applications.
All the tests were performed considering a single core of the
Intel Xeon processor. In particular, one core is unhooked from
the operative system computation and exclusively dedicated
to the processing of the OFDM algorithm.
Figure 10 reports the results of the CPU load during
computation of the OFDM via SIMD (purely software) and
via OpenCL while Figure 11 shows the performance of
the CPU during a switch from software to the hardware
processing, triggered by a manager. Such a manager is
developed to control the CPU state in terms of processing
load. Thus, the hardware offloading is enabled when the CPU
computation is heavy for long time. For the manager, we
consider a simple algorithm based on a threshold on the CPU
load and the hardware acceleration is triggered once this
threshold is overcame for a minute. However, more efficient
algorithm that can take into account the average energy
consumed by the CPU during the processing phase can be
developed.
Figure 10a shows the CPU load when the processing is
purely software. Here, the CPU core is in idle state only at
the beginning and at the end of the test since the computation
load required by the SIMD is constant at 100% for the
entire duration of the OFDM execution. Moreover, the core
is always in user state since no interaction with the external
peripheral are required.
Figure 10b depicts the percentage of the CPU core during
the OpenCL offload. In this scenario, the computation state is
divided between the user state and the system state. Indeed,
the user state is due to the host OpenCL application running
while the system state reflects the PCIe interactions of the
host with the global memory. It should be noted that the user
application requires around 25% of the core load while the
interaction with the PCIe interface is around 60%. However,
the idle state is around 15% which is not found in the pure
software use case.
Figure 11 show the transition between hardware to software.
Such a transaction is triggered by the manager after around
60 seconds of the CPU core utilization at 100%. Here, the
differences between the two approaches are highlighted and
the OpenCL approach reduces the computation load since the
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CPU core load during SIMD computation
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CPU core load during FPGA acceleration 
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Fig. 10: CPU core computation load for OFDM execution via a) SIMD (purely software) and b) via OpenCL offload

CPU-FPGA computation switch
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Fig. 11: CPU core computation load during the switch from
software to the hardware

core remains in idle state for the 15% of the time. This means
that the computational power of the CPU can be reduced by
means of hardware offloading and part of the computation
load can be reassigned to other tasks.
Finally, a consideration for the OFDM symbol size is
necessary. This parameter evaluation is carried out with 256
and 512 OFDM symbol sizes and, in both scenarios, the
results for SIMD and OpenCL are the same. Considering
SIMD approach, OFDM computation always requires 100%
of CPU processing. However, OpenCL approach requires the
same CPU computation since all the processing is carried out
in the hardware. Indeed, on the software side, the OpenCL
application, that controls the FPGA execution, needs the same
percentage of CPU resources in terms of both user state (i.e.,
OpenCL API application) and system state (i.e., interaction
with PCIe) for all the OFDM symbol sizes.

VII. DESIGN PRODUCTIVITY ANALYSIS WITH OPENCL
ACCELERATION

In this Section, the evaluation of the design productivity of
deploying OpenCL kernel is addressed. According to [30],
the performance of a HLS approach is a trade-off between
a quality system optimization (e.g., resource usage, memory
accesses, etc.) and design efficiency. In particular, design
efficiency can be expressed with several indicators such as

����

�����

�����

�����

�	�	�

����

���
�

���������		
������	
	
�
�����������
���	����
�������������������	
��
����������	���������
�
 �
��
�
����!������"��
�������#�$
�%���"&
��
������
���������
��

Fig. 12: Design efficiency and implementation chart

complexity of the design, the cost of the new code, the ”de-
veloper friendliness” of programming language, the designer
experience and the testability of results. These indicators can
be also used ”as is” for the HLD method considered in
this work and they reflect into system integration time and
design time. The first one concerns the verification and the
validation of the the design and it depends on more electronic
aspects like analog-to-digital and digital-to-analog conversions
or electrostatic discharge that can damage the system. The
design time refers to all the tasks necessary to create an
application up to the deployment phase. This second parameter
depends on the knowledge of the designer about both the
system where the application has to be developed and the
programming language and tools used to create the application.
In this work, the time considered refers to a single developer
with experience on the embedded systems but novice in the
OpenCL programming model.
Figure 12 reports the percentage of overall time considered (3
months) to finish a precise task in the application development.
The work starts with the analysis of the 5G DU processing
under the option 7-1 functional split. In particular, the most
significant contribution, in terms of complexity, is represented
by the iFFT Cooley-Tukey algorithm. Thus, some examples
of its implementation in both float and integer representation
are considered before starting the implementation (this task
requires 9.4% of the development time). Since many OpenCL
iFFT float implementations are available off-the-shelf, the
second step considers the adaptation of the float version in the
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integer version of the iFFT. This step permits to understand
if the off-the-shelf iFFT can be suitable for the OFDM stage
in the 5G DU processing. It requires 12.5% of the time.
Unfortunately, such a conversion needs a lot of work due to
the conversion of each float operation into an integer one and
the computation of all the twiddle factors. Indeed, twiddle
factors are calculated at runtime in the float version by means
of sine and cosine functions. In the integer iFFT considered in
the 5G architecture, twiddle factors have to be constant values
to avoid FPGA resource overhead or they can be computed
at runtime after an offline conversion of the functions sine
and cosine into integer lookup tables. Thus, a better way to
address the integer iFFT design is to consider an OpenCL
kernel created from the SIMD implementation of the integer
iFFT. The SIMD version of iFFT is already deployed in the 5G
communication framework. The replacement of such a iFFT
in the 5G application can be easier thanks to the excellent
integration of the OpenCL with the software. The SIMD-iFFT
conversion to an OpenCL kernel requires 21.9% of the time.
The next step is related to the optimizations of the iFFT kernel
created in terms of area resources. Initially, the iFFT kernel
does not fit into the hardware since we consider unrolled loops
to improve processing time. Thus, many optimizations have to
be performed, especially for the data dependency inside the
loops (a complete explanation of the kernel optimizations is
reported in Section V). This task takes 15.7% of the overall
time.
The next two steps refers to the compilation of the kernel into
the FPGA and some bug fixing. Despite these steps may seem
faster than the rest of the tasks, they take 28.2% of the overall
time due to the Intel FPGA Quartus tool compilation time.
Kernel compilation requires from some minutes up to several
hours for OpenCL execution file generation, thus, this time is
significant it should be taken into account by the designers
before starting an OpenCL application.
The last step considers the development of the cyclic prefix
addition kernel to be combined with the iFFT kernel to
complete the OFDM modulation at the 5G DU side. This task
takes 12.3% of the overall time.
Finally, a brief discussion about the productivity design com-
parison between OpenCL and HDL method is necessary to
understand the possible improvements in considering OpenCL
for FPGA designs. By using OpenCL, as reported in Figure
12, a good balance between the different steps is obtained.
As matter of example, we can consider the SIMD-OpenCL
conversion, the OFDM implementation and the co-design im-
plementation steps as an unique coding step which represents
the 45% of the overall time. By cutting in half such time, the
design time would not be reduced more than a quarter. Thus,
the effort of each design phase is more relevant with respect
to the obtained benefits. However, the coding time is anyway
higher than the other steps due to the inexperience of the devel-
oper in both SIMD and OpenCL approaches. For this reason,
a good estimation of the overall time to offload 5G OFDM
in hardware via OpenCL could be around 2 months, when
developed by an expert OpenCL designer. Regarding HDL, an
estimate of the development time to complete the 5G OFDM
hardware offloading is about twice as much as OpenCL devel-

opment time, if we consider a novice HDL developer (i.e., 6
months versus 3 months in case of novice OpenCL developer).
Indeed, the HDL languages are not programming languages
like C/C++ or OpenCL itself, but description languages where
timing constraints are entangled with functional constraints. As
HDL acronym may suggest, a hardware language describes the
FPGA architecture that must be synthesized and implemented
by means of ad-hoc Integrated Development Environments
(IDEs). Moreover, hardware programming involves concepts
like parallel operations, waiting for clock edges, tri-state logic,
hardware propagation delays and hierarchical structures that
are not taken into account when software programming is
considered. This converts design into a deep study of the
hardware world that requires more time since the designer
has to manually set the concrete hardware architectures.

VIII. CONCLUSION

The goal of this paper was to evaluate the viability of OpenCL
for implementing some functionalities of a virtualized next
generation eNB. To perform such evaluation, the implementa-
tion of the OFDM in the 5G DU with Option 7-1 functional
split has been considered in a hardware, software and co-
design approach exploiting OpenCL model. The performance
evaluation showed that OpenCL implementation is useful
when virtualized functions shall be dynamically deployed in
hardware or software for orchestration purposes. However,
OpenCL shows some drawbacks with respect to the other
considered methods. Thus, it requires a stronger optimizations
and further studies. In particular in terms of resources, OFDM
kernels with OFDM symbol size up to 512 can be deployed
in hardware by means of OpenCL, but large FPGAs or more
pipelined loops have to be considered over this threshold.
Furthermore, the pure kernel processing time is compatible
with 5G latency performance but memory transfers between
host and accelerator are the bottleneck of the system when
using PCIe. Around 233 µs have been measured, considering
a CPU core dedicated to the processing and, likewise, around
468 µs have been measured in case of CPU core shared
with other concurrent tasks. This behaviour is due to data
synchronization from the host to FPGA in both directions,
almost regardless of the message size. To overcome this
drawback, the OpenCL kernels should be developed as auto-
run to avoid the interaction with global memory and the
PCIe data transfer, otherwise the overall execution time is not
compatible with 5G processing. This solution will be further
investigated as future work.
Only considering the pure processing time, OpenCL over
hardware is more suitable for large data batch processing since
results have shown that SIMD and HDL approaches have
better performance up to 4096 OFDM symbol size. A model
for SIMD and OpenCL performance curves has been evaluated
to predict the processing time for bigger OFDM symbol size.
Such models have shown that over 4096 OFDM symbol size
the OpenCL implementation starts to show less excution time
than both SIMD and HDL approaches. Thus, in case of a future
implementation of a 8192 OFDM symbol size in the 5G PHY
layer (the present implementation reaches 4096), the OpenCL
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over hardware with current performance could be considered
to implement the DU processing. Moreover, the results are
strictly related to the devices and the technologies considered,
thus the hardware performance for both OpenCL and HDL
can significantly increase with the next FPGA technology.
Regarding the computational load, results have shown that
the SIMD execution (purely software) require 100% of the
computational load throughout the duration of the OFDM
execution. On the other hand, with OpenCL offloading, the
CPU core computation is limited to 85% and, for the 15% of
the OFDM execution time, the core is in idle state. Moreover,
the evidences between the two approaches are also highlighted
by the performance measured with the manager developed for
the dynamic hardware offloading. These scenarios have been
used to demonstrate that the computational power of the CPU
shall be reduced and part of the processing can be reassigned
for another tasks to deploy more services.
Finally, an OpenCL design productivity evaluation has been
reported to understand the efforts necessary to create and
deploy the kernels. In particular, we highlighted the difficult
steps that a new designer has to take into account for a new
OpenCL design on FPGA, and the cost in terms of time to
deploy an OpenCL kernel in a standard context.
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