
NON-VOLATILE MEMORIES:
A NEW DEAL
FOR OPERATING SYSTEM
DESIGN?
Stéphane Rubini, Jalil Boukhobza
Lab-STICC, University of Western Brittany, France

Alger, April 17th 2018

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 1

PHC Tassili

Memory Wall and Data Explosion

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 2

Memory hierarchy limits
• Memory hierarchy: tradeoff capacity/speed

• How many levels? About 8 today…
• Temporal locality of processor accesses?

• Radical change of computer architecture
• Parallel access to memory array
• In-memory computing

• Or improve the memory management in current machine
• New memory technology
• Improve the memory service in OS

Memory Wall
+

Data explosion

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 3

Outline
1. Introduction
2. Storage/memory convergence

• Non-Volatile memory arrival
3. Operating System Mechanisms for NVM

• NVM as a universal memory
• DRAM/NVM hybrid memory architecture

• NVM as memory
• NVM in the middle
• NVM as storage

4. Conclusion

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 4

Storage and main memory
• User view: Two access models

and two address spaces
• Main Memory (primary storage)

• Short term memory  volatile
• Fast and direct memory CPU accesses

(load/store)
• Storage (secondary storage)

• Long term memory  permanence
• High capacity
• Data identification (file name), I/O

accesses

RAM

CPU

Disk

User view

I/0Load/store
instructions

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 5

Storage/memory convergence: Fuzzy
borders
• Virtual memory

• Memory Mapped File (mmap())
• Swap partition

• Disk-like non-volatile memory
• Persistent RAM disk
• Block addressable (IO API), but fast

• Memory-like non-volatile memory
• Byte-addressable
• But persistent
• NVDIMM DRAM/Flash for instance

Memory

Filemmap

Source: micron

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 6

Non-Volatile Memory: characteristics

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 8

SRAM DRAM HDD NAND
flash

STT-
RAM

ReRAM PCM FeRAM

Cell size
(F2)

120-200 60-100 N/A 4-6 6-50 4-10 4-12 6-40

Write
enduran
ce

1016 >1015 >1015 (pb:
mechanical
parts)

104-105 1012-1015 108-1011 108-109 1014-1015

Read
Latency

~0.2-2ns ~10ns 3-5ms 15-35 µs 2-35ns ~10ns 20-
60ns

20-80ns

Write
Latency

~0.2-2ns ~10ns 3-5ms 200-
500µs

3-50ns ~50ns 20-
150ns

50-75ns

Leakage
Power

High Medium (mechanical
parts)

Low Low Low Low Low

Dynamic
Energy
(R/W)

Low Medium (mechanical
parts)

Low Low/High Low/High Medium/
High

Low/High

Maturity Mature Mature Mature Mature Test
chips

Test
chips

Test
chips

Manufact
ured

Cf [5] for details

Example: Phase Change random access
memory (PCM or PRAM)

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 9

• Memory cell: thin layer of chalcogenide such as
Ge2Sb2Te5 (GST) + two electrodes wrapping the
chalcogenide + heater

• Resistive NVM  use of resistance to represent a bit
• chalcogenide material: subject to rapid amorphous-to-

crystalline phase-change process electrically initiated

PCM (2)

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 10

• Short but high voltage pulse  GST heated above the
melting temperature Tmelt
• Amorphous state (Reset, bit=0)

• Long pulse but low voltage  GST heated above the
crystallization temperature Tcrys
• Crystalline state (Set, bit=1)

• Ratio between the resistance of the material in a SET and
a RESET phase [Kim08]
• comprised between 102 and 104

•  MLC (Multi level Cell)

NVM in the hierarchy

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 11

That’s new or different with NVM?
• Almost all outcoming NVMs present a new mix of

characteristics:
• Read/write asymmetry (time and consumption)
• Limited write endurance
• Higher capacity than DRAM (quite soon)
• Permanent (non-volatile)
• Byte addressable

How computer OSs can take advantage of this new mix?

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 12

Outline
1. Introduction
2. Storage/memory convergence

• Non-Volatile memory arrival
3. Operating System Mechanisms for NVM

• NVM as a universal memory
• DRAM/NVM hybrid memory architecture

• NVM as memory
• NVM in the middle
• NVM as storage

4. Conclusion

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 13

NVM as a Universal Memory [3]

• Virtual memory :
• DRAM is a cache for disk data (VM);

Disk characteristics implies page size
granularity.

• Protection different for files and
memory

• Per page and process (application)
• Or per file and user id

• OS complexity (130000 LOC for
Linux), performance cost

• No need for page concept
• Limit the number of copies between the

different level of memories
• Single address space for files and

temporary data
• Resident applications, triggered by input
• System instant start

• Unified Protection paradigm? How to
replace MMU based-mechanisms ?

NVM

CPU

DRAM

CPU

Disk

Speed + Capacity + Low consumption + Low price = universal memory

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 14

More realistic approaches…
Here, NVM flavor is Flash memory…

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 15

Outline
1. Introduction
2. Storage/memory convergence

• Non-Volatile memory arrival
3. Operating System Mechanisms for NVM

• NVM as a universal memory
• DRAM/NVM hybrid memory architecture

• NVM as memory
• NVM in the middle
• NVM as storage

4. Conclusion

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 16

A case study
NVM in a Hybrid memory Architecture
• Horizontal integration

DRAM

NVM
SDD

or
HDD

Process
1

Process
i Processor

Cache
memories

L1 L1
LLC

TLB
Virtual memory
management

Main
memory

Storage
memory

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 17

Software integration options
• Use NVM as a “classical” main memory

Benefit: capacity, static consumption
Challenges: write (latency, power, endurance)

 migrant store
• Use NVM as a permanent memory

Benefit: speed, per word access
Challenge: consistency

 nvm_malloc
• Use NVM as a “classical secondary memory” through a

file system
Benefit: (speed), legacy code
Challenge: capacity

 PMFS

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 18

Software integration options
• Use NVM as a “classical” main memory

Benefit: capacity, static consumption
Challenges: write (latency, power, endurance)

 migrant store
• Use NVM as a permanent memory

Benefit: speed, per word access
Challenge: consistency

 nvm_malloc
• Use NVM as a “classical secondary memory” through a

file system
Benefit: (speed), legacy code
Challenge: capacity

 PMFS

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 19

NVM as a “classical” main memory
• Enabled by per word
access capability

• NVM benefits
• Capacity, better density

scaling than DRAM
• Static consumption
• Predictability of access times

• NVM problems
• Write (latency, power,

endurance)
DRAM NVM

SDD
or

HDD

Process
1

Process
i

L1 L1
LLC

TLB

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 20

NVM as a “classical” main memory
• Segmentation

• Read-intensive segments: text (code), input data
• Write-intensive segments: stack, heap, uninitialized

global data
• Capacity and Power consumption

• Decrease the memory static power if a part of DRAM is
replaced by NVM.

• NVM slower: How to choose the punished process?
• Allocation and/or migration rules

• Copy-on-write, write-intensive detection
• Choice of the applications, API?

• DVFS governor adaptation f(cpu time, #read, #write)

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 21

MigrantStore [4]
• Cache of NVM page in DRAM

• Endurance, and speed of DRAM
• Capacity of PCM memory

• Management through VM
mechanisms
• A kind of “swap”

• Performance issue
• Small cache / PCM size
 a lot of migration
 limited re-use rate due to
hardware cache absorption

cache

PCM
SDD

or
HDD

Process
1

Process
i

L1 L1
LLC

TLB

DRAM

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 22

MigrantStore: performance issue
• Isolate the heavily accessed

pages:
Placement into MigrantStore after

some number of accesses (cache
miss) has occurred on a page

• Replacement strategy
• LRU: information build from the

scan of referenced bits of page
tables entries (PTE)

• Too expensive for frequent
migration
proposition of a new hardware
buffer, that stores the addressed
pages between 2 migrations

cache

PCM
SDD

or
HDD

Process
1

Process
i

L1 L1
LLC

TLB

DRAM

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 23

Software integration options
• Use NVM as a “classical” main memory

Benefit: capacity, static consumption
Challenges: write (latency, power, endurance)

 migrant store
• Use NVM as a permanent memory

Benefit: speed, per word access
Challenge: consistency

 nvm_malloc
• Use NVM as a “classical secondary memory” through a

file system
Benefit: (speed), legacy code
Challenge: capacity

 PMFS

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 24

Pointer and persistence
Revisiting a common student error!
1. Save linked list nodes in PM, while mapped at VM address VA1

2. And next, reuse them later at VM address VA2…

How to retrieve n1 value?
 need for a permanent data name space
 need for permanent allocator data structure
Where are we going to by following n1->next field?
 volatile allocators don’t care about the position of the reservation,
the permanent ones must do.

struct node * { int data; struct node * next; };
struct node *n1=malloc(sizeof(*n1));
struct node *n2=malloc(sizeof(*n2));
n1->next=n2; …

PM

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 25

Use PM as a permanent memory:
ACID properties
• Assumption:

• use a transactional model is too expensive at the main memory
level

• Atomicity, Consistency, Isolation, Durability
• Durability:

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 26

Processor memory writing: the long way

core

cache

LLC

NVM

Load/store
Unit

write
instruction
completed!

NVM
update
completed

Store
Buffer

Store
Buffer

t

?

?

Write
Through (WT)

Re-read
value OK (read-after-write ordering)

cache
update
completed LLC

update
completed

?

PM
update
Completed (WT)

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 27

Durability
• Long write path increases the risk of data lost
• “Un-cached” accesses?

• Increase the number of writes into NVM memory (cache
absorption)

• Increase access latencies, power consumption and memory
wear.

”software” triggered synchronization of the memory
hierarchy

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 28

Processor memory writing: commit

core

cache

LLC

NVM

Load/store
Unit

write
instruction
completed!

NVM
update
completed

t

cache
update
completed

mfence
inst

• After mfence, all standing memory accesses
are warranteed to be finished.
• After clflush, all cache lines containing the
address content are flushed.

clflush
inst

committed

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 29

Use NVM as a permanent memory:
ACID properties
• Atomicity, Consistency, Isolation, Durability
• Durability: flush instructions, Write Through

performance issue
• Isolation: mutual exclusion between concurrent threads
• Consistency: integrity constrains? Upper software layer…
• Atomicity (all or nothing)

• Memory controllers ensure atomic write of words
 Careful update order

Copy and update commit

free

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 30

Allocator nvm_malloc [1]
• NVM-aware memory allocator

• 3 steps process: reservation, initialization and activation
1. void * nvm_reserve(int size);

reserve an area of size byte in NVM memory,
update allocator “shadow meta-data” in DRAM

2. Initialize data in memory area
3. Void nvm_activate(const void *p, void * link, const void* target …);

mark area as permanent, and atomically link it with another object

• Recovery status
Reserved state: memory will be recovered as “free“
Activated state: memory will be recovered as “in use“

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 31

Allocator nvm_malloc (2)
• Need for a name to locate formerly created data, and use

it again.
• String ID associated to allocated memory area
• Allow to locate the address of a previously allocated area through a

hashmap structure

void * nvm_reserve(const char *id, int size);
void nvm_activate(const char * id);
void * nvm_get_id(const char *id);

• In practical, only the “root” of the data structure needs for
an ID.

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 32

Software integration options
• Use NVM as a “classical” main memory

Benefit: capacity, static consumption
Challenges: write (latency, power, endurance)

 migrant store
• Use NVM as a permanent memory

Benefit: speed, per word access
Challenge: consistency

 nvm_malloc
• Use NVM as a “classical secondary memory” through a

file system
Benefit: (speed), legacy code
Challenge: capacity

 PMFS

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 33

NVM through a File System
• Rest on a block device

interface
• “NVMTL”: Generalization of the

Flash Translation Layer concept
• Allow for using legacy File System

(ext4 for instance)
• But, all NVM aren’t so complex to

manage than NAND Flash
• Performance issues

• Multiple page/buffer copies, read-
modify-write per block

• Rest on a byte-addressable
memory interface
• PM mapped in kernel VM space

(controlled by OS)
• NVM aware file system
• Performance: direct copy between

NVM and application buffers
• Protection against OS pointer

corruption?

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 34

PMFS (Intel [2])
• PM-aware file system
• Posix API
• FS implementation:

• Allocation by page, extend
• B-Tree Indexation
• Protection in kernel mode

• CPU dependent
• Intel x86: read only pages + override only when CR0.WR bit set
• PMFS set CR0.WR bit before writing

• Consistency
• “Undo” journaling (fine-grained (64 bytes) logging) for meta-data
• Copy on Write
• Atomic in-place update

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 35

From [2]

Outline
1. Introduction
2. Storage/memory convergence

• Non-Volatile memory arrival
3. Operating System Mechanisms for NVM

• NVM as a universal memory
• DRAM/NVM hybrid memory architecture

• NVM as memory
• NVM in the middle
• NVM as storage

4. Conclusion

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 36

Conclusion
• Some Operating system updates already exist for using NVM

• XIP (eXecute In Place) + permanent state: consequences?
• Missing hardware mechanisms for heterogeneous memory

(“NUMA+” extension)
• Application memory profile  Accounting read or write memory

references per page (hardware support)
• Protection model (MMU based versus File System based)

• Temporary, configuration, session, result data
API to guide memory placement

• Embedded real-time system
• predictability, power consumption?

• NVM “killer application”?
• Look at the main application classes and find the good strategy (Assia

deals with Big Data!)

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 37

References
1. nvm_malloc: Memory Allocation for NVRAM, D. Schwalb et al., International

Workshop on Accelerating Data Management Systems Using Modern Processor and
Storage Architectures - ADMS 2015, Hawaii, USA, 2015.

2. System software for persistent memory, S. R Dulloor, Sanjay Kumar,
A.Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, J. Jackson, Proceedings of the
9th European Conference on Computer Systems, 2014

3. Operating System Implications of Fast, Cheap, Non-Volatile Memory. K. Bailey, L.
Ceze, S. Q. Gribble, Henry M. Levy, Usenix HotOS. 2011.

4. MigrantStore: Leveraging Virtual Memory in DRAM-PCM Memory Architecture. H. B.
Sohail, B. Vamanan, and T. N. Vijaykumar. Technical report, Purdue University,
Department of Electrical and Computer Engineering, 2012.

5. Emerging NVM: A Survey on Architectural Integration and Research Challenges.
J. Boukhobza, S. Rubini, R. Chen, Z. Shao, ACM Transactions on Design
Automation of Electronic Systems (TODAES), 23(2), 2017

S. Rubini, J. Boukhobza, PHC Tassili GHEEMaS 38

