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ABSTRACT

Context. Characterization of the internal structure of the superclusters of galaxies (walls, filaments, and knots where the clusters
are located) is crucial for understanding the formation of the large-scale structure and for outlining the environment where galaxies
evolved in the last few gigayears.
Aims. We aim to detect the compact regions of high relative density (clusters and rich groups of galaxies), to map the elongated struc-
tures of low relative density (filaments, bridges, and tendrils of galaxies), and to characterize the galaxies that populate the filaments
and study the environmental effects they are subject to.
Methods. We used optical galaxies with spectroscopic redshifts from the SDSS-DR13 inside rectangular boxes encompassing the
volumes of a sample of 46 superclusters of galaxies up to z = 0.15. A virial approximation was applied to correct the positions of the
galaxies in the redshift space for the “finger of God” projection effect. Our methodology implements different classical pattern recog-
nition and machine-learning techniques (Voronoi tessellation, hierarchical clustering, graph-network theory, and minimum spanning
trees, among others), pipelined in the Galaxy System-Finding algorithm and the Galaxy Filament-Finding algorithm.
Results. In total, we detected 2705 galaxy systems (clusters and groups, of which 159 are new) and 144 galaxy filaments in the 46
superclusters of galaxies. The filaments we detected have a density contrast of above 3, with a mean value of around 10, a radius of
about 2.5 h−1

70 Mpc, and lengths of between 9 and 130 h−1
70 Mpc. Correlations between the galaxy properties (mass, morphology, and

activity) and the environment in which they reside (systems, filaments, and the dispersed component) suggest that galaxies closer to
the skeleton of the filaments are more massive by up to 25% compared to those in the dispersed component; 70% of the galaxies in
the filament region present early-type morphologies and the fractions of active galaxies (both AGNs and star-forming galaxies) seem
to decrease as galaxies approach the filament.
Conclusions. Our results support the idea that galaxies in filaments are subject to environmental effects leading them to be more
massive (probably due to larger rates of both merging and gas accretion), less active both in star formation and nuclear activity, and
prone to the density–morphology relation. These results suggest that preprocessing in large-scale filaments could have significant
effects on galaxy evolution.

Key words. galaxies: groups: general – galaxies: clusters: general – large-scale structure of Universe – methods: data analysis –
galaxies: evolution

1. Introduction

The large-scale structure (LSS) of the Universe is composed of a
network of groups and clusters of galaxies, elongated filaments,
widely spread sheets, and voids (e.g., Peebles 1980; Davis et al.
1982; Bond et al. 1996). Both the ΛCDM cosmological model
(e.g., Bond & Szalay 1983; Doroshkevich & Khlopov 1984)
and recent numerical N-body simulations (e.g., Millennium,
Springel et al., 2005; Bolshoi, Klypin et al., 2011; Illustris,
Vogelsberger et al., 2014) reinforce the idea that these structures
are assembled under the effect of gravity generated by the total
matter content. Since the baryonic matter follows, to first order,
the distribution of the dark matter, the galaxies and gas popu-
late these substructures accordingly (e.g., Eisenstein et al. 2005).
Moreover, there is increasing evidence that the galaxy proper-
ties (e.g., mass, activity, morphology, luminosity, surface bright-
ness, orientation, etc.) correlate with the LSS environment in
? Full Table 4 is only available at the CDS via anonymous ftp

to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/637/A31

which they are located (e.g., Smargon et al. 2012; Scoville et al.
2013; Poudel et al. 2016; Kuutma et al. 2017; Chen et al. 2017;
Wang et al. 2018) or, more specifically, with the internal struc-
ture of the supercluster (e.g., Einasto et al. 2008; Gallazzi et al.
2009; Gavazzi et al. 2010; Cybulski et al. 2014; Guglielmo et al.
2018). Furthermore, theoretical studies (e.g., Cen & Ostriker
1999) suggest that from one-half to two-thirds of the baryonic
matter in the Universe is hidden in the filamentary structures of
the LSS. Therefore, characterization of the LSS (e.g., topology,
density, temperature, dynamical state, matter distribution, and its
evolution over time) is an important step in placing constraints
on the current cosmological models.

Galaxy clusters are well studied through their gas component
since they are the densest regions of the LSS. However, the gas
in filaments is most likely in a relatively cool (T ∼ 105–107 K,
or 0.01–1 keV) and relative low-density gas phase called the
warm hot intergalactic medium (WHIM). There is already some
evidence for such gas from X-ray emission observed within
pairs of close clusters (e.g., Ursino et al. 2015; Alvarez et al.
2018). In addition, the WHIM between pairs of clusters has
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been observed through the Sunyaev–Zel’dovich effect (SZ; e.g.,
Planck Collaboration VIII 2013). Tanimura et al. (2019) carried
out statistical analyses using Planck SZ observations in the
regions of superclusters. The results of these latter authors pro-
vide evidence for inter-cluster gas at a temperature of T ∼

8×106 K. Also, Eckert et al. (2017) presented deep X-ray obser-
vations of the galaxy cluster Abell 2744, the analysis of which
suggests a gas fraction of between 5 and 15% for the fila-
ments that surround the cluster and a plasma temperature of
1−2 × 107 K. Therefore, the characterization of these struc-
tures through observables like X-ray emission or the Sunyaev–
Zel’dovich effect is still challenging due to the low density and
temperature of the WHIM.

An alternative is to analyze the galaxy distribution at
large scales. Recently, with the availability of large sky area
databases such as the Two Degree Field Galaxy Redshift Sur-
vey (2dFGRS; Colless et al. 2001), the 2MASS Redshift Sur-
vey (2MRS; Huchra et al. 2012), and the Sloan Digital Sky
Survey (SDSS; Albareti et al. 2017), the development of accu-
rate structure-detection algorithms has become an even more
important concern for astronomy. Visually, the galaxy distribu-
tion shows filamentary ridge-like structures that connect massive
clusters and groups. However, the identification of these struc-
tures through a computational algorithm is not easy to achieve. A
good algorithm should first produce an identification that resem-
bles the human visual perception. It should also deliver quantita-
tive results and be founded in a robust and well-defined numer-
ical theory. All of this must be done in an acceptable amount of
time with reasonable computational resources.

Currently, there are several filament-finding algorithms that
have been tested on the basis of N-body simulations. For exam-
ple, Aragón-Calvo et al. (2007) present the multi-scale morphol-
ogy filter method (MMF), which divides cosmic structure into
nodes (clusters), filaments, and walls using a smoothing over
a range of scales (from a Delaunay tessellation reconstruction,
DFTE) and a morphological response filter. Another approach,
presented by Aragón-Calvo et al. (2010), makes use of a water-
shed segmentation technique to trace the spines of the filaments.
Alternatively, Cautun et al. (2013) propose an algorithm called
NEXUS, that takes into account the density, tidal field, veloc-
ity divergence, and velocity shear of the galaxies. Other exam-
ples are the algorithm by González & Padilla (2010), which uses
the binding energy for selecting the filament members; and the
DisPerSE algorithm, by Sousbie (2011), based on the Morse
theory – both use Delaunay–Voronoi tessellation based on den-
sity estimations.

On the other hand, several attempts have been made to
trace the distribution of the real cosmic web using the SDSS
database. For example, Sousbie et al. (2008) applied their local
skeleton method to samples of Data Release (DR) 4, which
allowed them to estimate the mean filament length per unit vol-
ume. The algorithm by Bond et al. (2010), called the smoothed
Hessian major axis filament finder (SHMAFF), was applied to
the SDSS-DR6 after removing the finger-of-God (FoG) effect.
Platen et al. (2011) compared three different reconstruction tech-
niques, namely the DFTE, the natural neighbor field estimator
(NNFE), and a Kriging interpolation, and searched for voids also
in DR6. These latter authors found that DFTE works quantita-
tively better than the others while the Kriging and NNFE have a
better performance in producing visually appealing reconstruc-
tions than DFTE. Smith et al. (2012) applied their multi-scale
probability mapping (MSPM), which combines probability and
scale density information with a friends-of-friends (FoF) algo-
rithm, over the SDSS-DR7 galaxies. This method allowed these

latter authors to recover structures from clusters to filaments of
up to ∼10 h−1 Mpc. Tempel et al. (2014) applied a Bisous model
on the SDSS-DR8 spectroscopic galaxies to trace the filament
spines. This latter method adjusts cylinders to the galaxy posi-
tions applying a stochastic metric. The subspace constrained
mean shift (SCMS) approach, which uses a kernel density esti-
mator (KDE), was applied by Chen et al. (2016) to DR7 and by
Chen et al. (2015) to DR12. This method allows the identifica-
tion of high-density regions by smoothing the galaxy distribu-
tion. These latter authors applied this technique over slices of
0.05 in redshift for the SDSS sky area. Moreover, Alpaslan et al.
(2014) found, for the Galaxy And Mass Assembly (GAMA) sur-
vey, that there are fine filaments embedded inside the SDSS
voids. These structures, referred to as “tendrils”, have a lower
density than the SDSS filaments, appear to be morphologically
distinct, are more isolated, and span shorter distances. A compre-
hensive review and comparative analysis of the above algorithms
can be found in Libeskind et al. (2018).

Another approach to analyzing the LSS is to study the super-
clusters of galaxies. These are traditionally defined as con-
centrations of galaxy clusters (e.g., Abell 1961; Einasto et al.
2001; Chow-Martinez et al. 2014), that build up the cosmic web
from a network of connected high-density nodes; or directly
from the distribution of galaxies (e.g., Luparello et al. 2011;
Costa-Duarte et al. 2011; Liivamägi et al. 2012). They can also
be defined kinematically by mapping galaxy peculiar velocity
flows, a technique still restricted to the very nearby Universe
(Tully et al. 2014; Dupuy et al. 2019). This last method is the
closest to a purely gravitational-potential-based approach, and
allows the identification of the “basins of attraction” that parti-
tion the Universe into cells or cocoons (e.g., Dupuy et al. 2019;
Einasto et al. 2019). For this work we adopted the superclus-
ter second-order clustering definition for determining the super-
clusters of the sample. These systems are not virialized and
the contents of the inter-cluster medium (dark matter halos,
gas, and galaxies) dynamically interact and organize by falling
through the gravitational potential of the more massive struc-
tures, forming walls, filaments, groups, and clusters. As shown
in Tanaka et al. (2007), the possibility of finding elongated
chain-like structures increases in superclusters. Also, following
the classification of superclusters by Einasto et al. (2014) into
filament-type and spider-type, both have filaments, in a linear
or radial configuration, respectively. Following this approach,
Cybulski et al. (2014), for example, applied a combination of
Voronoi tessellation and minimum spanning tree (MST) tech-
niques over the Coma supercluster region in order to search for
bridges between clusters of galaxies.

Motivated by the above context, we developed a methodol-
ogy1 for the identification of structures in the environment of
superclusters using the galaxies embedded in them. We restrict
our study to the SDSS-DR13 area, and use only galaxies with
spectroscopic redshifts for our analysis. The approach we fol-
low seeks to detect structures by using only the geometrical
information of the galaxy distribution. Using different pattern-
recognition methods, we identify high- to moderate-density
galaxy systems, and low-density filaments connecting them.
This allows the identification of structures over a wide range of
scales (1–100 Mpc), from groups to long filaments. Moreover,
the identified structures are validated through comparisons with
previously reported catalogs. We also carried out a qualitative
validation through a kernel method which is one of the most
commonly used methodologies for the detection of overdensity

1 https://gitlab.com/iris.santiagob89/LSS_structures
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regions. Our aim is to investigate whether previous filament can-
didates in the sample, identified from chains of Abell/ACO clus-
ters, are bona-fide structures and to characterize their galaxy
populations. Finally, we studied the relation between the galaxy
properties and the supercluster environment in which they reside
(e.g., systems, filaments, and the dispersed component of the
superclusters).

This paper is organized as follows: in Sect. 2 we present the
data for the sample of superclusters under analysis and the sam-
ple of galaxies from the SDSS survey. In Sect. 3 we describe
in detail the implementation of mathematical tools and pattern-
recognition methods applied for the detection of high-density
regions (clusters and groups) and for the skeletonization of the
low-density filamentary structures. In Sect. 4 we describe the
algorithm for detecting clusters and groups of galaxies inside
supercluster boxes, and in Sect. 5 we present the algorithm for
finding the filaments and their skeletons. In Sect. 6 we describe
the application of the algorithms to one of the superclusters,
MSCC 310, as an example of their use. Section 7 is devoted to
the validation and evaluation of the methodology and discussion
of its results. In Sects. 8 and 9 we present the results concerning
the analyses of the galaxy properties as a function of the super-
cluster environment. We also discuss these results and compare
with previously reported results. Finally, in Sect. 10 we present
the conclusions of this work. Throughout this paper we assume
the Hubble constant H0 = 70 h70 km s−1 Mpc−1, the matter den-
sity Ωm = 0.3, and the dark-energy density ΩΛ = 0.7.

2. The data

2.1. The superclusters and filament candidates

We are interested in unveiling and studying LSS filaments, which
can be defined as chains of clusters connected by bridges of
galaxies and probably by gas and dark matter. As mentioned pre-
viously, these elongated structures should most likely be found
in superclusters since they probably just passed the quasi nonlin-
ear regime described by the Zel’dovich’s approximation (1970;
see also the “sticking model” by Shandarin & Zel’dovich 1989).
In the current evolutionary stage of LSS, superclusters are a net-
work of sheets, filaments, and knots (clusters and groups) of
galaxies, gas, and dark matter, just starting a global gravitational
collapse process.

We selected a sample of superclusters of galaxies from
the Main SuperCluster Catalogue (MSCC; Chow-Martinez et al.
2014) that are inside the SDSS region (in order to have a sample
of galaxy data that is as homogeneous as possible). The orig-
inal MSCC is an all-sky catalog that contains 601 superclus-
ters, identified in a complete sample of rich Abell/ACO clusters
with updated redshifts from 0.02 to 0.15 using a tunable FoF
algorithm. From these superclusters, 166 are inside the SDSS-
DR13 region. For this work we selected those superclusters with
five or more clusters with a box volume (see below) inside the
SDSS-DR13 survey area. In addition, we used the list of filament
candidates for MSCC superclusters by Chow-Martínez et al. (in
prep.) as a reference in order to select the superclusters with the
most promising filaments. Roughly speaking, these filament can-
didates were identified as chains of at least three clusters – mem-
bers of the superclusters – separated by less than 20 h−1

70 Mpc
from each other. The present work also intends to validate these
filament candidates by searching for the bridges of galaxies that
we expect to connect them. It is worth mentioning that some of
the filament candidates may turn out to be only chance config-
urations, with no bridges of galaxies connecting the clusters of

a chain. Also, some bridges may exist, but not necessarily along
the straight lines connecting the clusters. Our final sample con-
sists of 46 superclusters of galaxies, which are listed in Table 1.

For the Abell/ACO clusters and for the galaxies in the
supercluster box volumes (see Sect. 2.3), we first transformed
their radial-angular coordinates to rectangular coordinates as
follows:

X = DC cos (δ) cos (α) , (1)
Y = DC cos (δ) sin (α) , (2)
Z = DC sin (δ) , (3)

where DC is the co-moving distance as obtained using the spec-
troscopic redshift and the cosmological parameters indicated
above.

2.2. The SDSS galaxies

The main galaxy sample of SDSS-DR13 (Albareti et al. 2017)
is a suitable database to search for filamentary structures on
the LSS because (i) it covers a large sky area (14 555 square
degrees) containing various MSCC superclusters; (ii) it contains
homogeneous photometric and spectroscopic data for galaxies
with an astrometric precision of 0.1 arcsec rms and uncertainty
in radial velocities of about 30 km s−1 (Bolton et al. 2012); (iii)
it is roughly complete to the magnitude limit of the main galaxy
sample (rPet = 17.77), which corresponds to an average z ∼ 0.1,
going (inhomogeneously) deeper for data releases after DR7
(Abazajian et al. 2009); and (iv) at the limit of our sample,
z = 0.15, the SDSS spectra are complete for galaxies brighter
than Mr ∼ −21.

SDSS-DR7 joins the SDSS-I/II spectra for one million
galaxies and quasars. It has ∼6% incompleteness due to fiber
collisions (Strauss et al. 2002) and another ∼7% incompleteness
attributed to pipeline misclassification (Rines et al. 2007). These
spectra are included in the final data release of the SDSS-III
(Alam et al. 2015). The Baryon Oscillation Spectroscopic Sur-
vey (BOSS) is part of the SDSS-III observations and obtained
spectra for another 1.4 million galaxies. The BOSS observa-
tions are divided in two main samples, the low-redshift LOWZ
(z < 0.4) and the high-redshift CMASS (0.4 < z < 0.7) galaxy
samples. The SDSS-DR13 (Albareti et al. 2017) includes spec-
tra for more than 2.6 million galaxies and quasars.

Although photometric redshifts are available for SDSS
galaxies, for this work we selected those objects listed on the
SpecObj sample for which spectroscopic redshifts are avail-
able (downloaded from the SkyServer web service) and that are
described as extragalactic (i.e., galaxies and low-z quasars). The
SpecObj table contains the best and unique spectra for the same
location within 2 arcsec; these are referred to as “sciencePri-
mary” objects. We considered galaxies within a redshift range
from 0.01 to 0.15 and selected spectra with quality flag “good”
or “marginal”. Because the kind of study presented here relies
on the galaxy distance measurement, we restricted our analy-
sis to galaxies for which spectroscopic redshift measurements
are available to its higher accuracy. However, galaxies for which
photometric redshift is available can be included in the sample
in further analyses to test whether or not their addition increases
the filament signal of detection.

For the present work we also made use of value-added
subproduct catalogs such as the Max Planck for Astro-
physics and Johns Hopkins University (MPA-JHU) catalog
(Brinchmann et al. 2004; Kauffmann et al. 2003; Tremonti et al.
2004). These latter authors calculated different galaxy
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Table 1. Sample of MSCC superclusters used in the present work.

SCl ID Name RA, Dec z̄ NCl Nfil Abell/ACO
(MSCC) [deg, deg] clusters
(1) (2) (3) (4) (5) (6) (7)

55 17.75, 15.44 0.0614 5 1 A0150 A0152 A A0154 B A0158 B A0160 B
72 25.17, 0.64 0.0802 5 1 A0181 A A0208 A A0237 A A0267 B A0279 A
75 28.09, −5.15 0.0937 7 1 A0256 A A0256 B A0266 A0269 A0274 A A0274 B A0277
76 28.35, −2.61 0.1299 16 3 A0211 A0233 e A0255 A0256 C A0261 B A0265 A0267 C A0268 B A0271 A0274 C A0279 B

A0281 A0285 A0295 D A0303 C A0308 e
175 125.29, 17.07 0.0942 6 1 A0635 A A0650 B A0651 A A0657 A A0658 A A0659
184 130.10, 30.24 0.1056 6 1 A0671 B A0690 C A0694 A0695 B A0699 B A0705 A
211 147.87, 64.88 0.1191 8 1 A0764 A0802 A0804 B A0845 A0871 e A0906 e A0975 A1014 A
219 153.99, 19.14 0.1155 5 1 A0938 B A0942 A A0952 A A0991 B A0994 A
222 155.14, 49.21 0.1382 10 2 A0915 B A0927 A A0950 A A0965 A A0990 A1002 A A1003 C A1003 D A1004 A1040 C
223 155.24, 62.94 0.1399 5 1 A0917 A0947 A A0962 A A1025 A A1025 B
229 156.14, 33.03 0.1423 7 2 A0924 A0951 A0982 A1007 B A1036 A1045 A1053 B
236 156.76, 10.38 0.0328 6 1 A0938 A A0957 A A0999 A A1016 A A1020 A A1142 A
238 156.98, 39.55 0.1068 21 4 A0967 A A0971 A A0971 B A0972 A A0995 A A0997 A A0997 B A0997 C A1010 B

A1021 B A1021 C A1021 D A1026
B A1028 A A1031 A A1031 B A1033 A1040 A A1050 A A1054 A A1055

248 159.49, 44.26 0.1246 5 1 A1040 B A1050 B A1054 B A1056 A1074 A
264 165.29, 12.20 0.1161 8 1 A1105 C A1116 A A1129 A A1141 A A1147 A A1157 A1201 B A1209 A
266 165.91, 11.85 0.1273 8 1 A1131 A1137 B A1141 B A1147 B A1152 A1159 A1183 A A1209 B
272 167.83, 41.33 0.0760 6 1 A1173 A1174 A A1187 A1190 A1193 A A1203
277 169.41, 49.67 0.1103 7 1 A1154 A1202 B A1218 B A1222 A1225 A1227 A A1231 A
278 Leo 169.37, 28.46 0.0333 6 1 A1177 B A1179 B A1185 A A1228 A A1257 A A1267 A
283 170.79, 20.34 0.1379 12 3 A1177 C A1188 A1230 B A1232 B A1242 A A1243 B A1247 e A1251 A1268 A1272 A1274 A1278
295 Coma 173.63, 23.11 0.0223 5 1 A1100 A A1177 A A1179 A A1367 A1656
310 UMa 175.91, 55.23 0.0639 21 3 A1212 A1270 A1291 A A1291 B A1291 C A1318 A A1318 B A1324 A A1324 B A1349 A A1349B

A1377 A1383 A1396 A A1396 B A1400 A A1400 B A1400 C A1436 A1452 A1457 A
311 176.12, 9.93 0.0833 8 1 A1337 A A1342 A A1358 A A1362 B A1372 A A1379 A1385 A A1390
314 177.07, −2.01 0.0788 6 1 A1364 A A1376 A A1386 A A1389 A A1399 A A1404 A
317 177.42, −1.59 0.1278 13 2 A1373 A A1373 B A1376 C A1386 D A1386E A1386F A1389 C A1389 D A1392 A1399 C A1407

A1411 A1419 B
323 179.66, 27.26 0.1396 12 1 A1384 A A1403 A A1403 B A1413 B A1420 C A1425 B A1431 B A1433 C A1444 C A1449 B

A1455 C A1495
333 181.43, 29.34 0.0813 9 1 A1423 A A1427 A1431 A A1433 A A1444 B A1449 A A1455 B A1515 A A1549 A
335 182.42, 29.50 0.0732 6 1 A1444 A A1455 A A1478 A A1480 B A1486 A A1519 A
343 183.88, 14.31 0.0809 5 1 A1474 A1481 A A1499 A A1526 C A1527 A
360 Dra 190.94, 64.41 0.1055 11 1 A1518 A A1539 A A1544 A A1559 A1566 A1579 A A1621 A1640 A A1646 A1674 A A1718 A
386 199.50, 38.33 0.0715 5 1 A1680 A A1691 A1715 A A1723 B A1749 B
407 208.55, 26.70 0.1364 6 1 A1797 B A1817 C A1817 e A1818 C A1819 A1824
414 Boo 211.31, 27.32 0.0709 24 3 A1775 A A1775 B A1781 B A1795 A1797 A A1800 A1817 A A1818 A A1831 A A1831 B A1832 A

A1863 A A1869 A A1869 B A1873 B A1873 C A1874 A A1886 A A1898 A A1903 A A1908 A
A1909 A A1912 B A1921 A

419 212.33, 7.17 0.1122 5 1 A1850 A1862 A1866 A A1870 A1881
422 213.21, 28.95 0.1430 9 2 A1832 B A1840 B A1854 A1867 A A1874 B A1891 B A1903 C A1908 B A1912 E
430 216.72, 25.64 0.0982 6 1 A1909 B A1910 A A1912 A A1912 C A1926 A A1927
440 BooA 223.17, 22.28 0.1170 9 1 A1939 B A1972 A1976 A1980 A1986 A1988 B A2001 A A2006 A2021 C
441 223.22, 28.40 0.1249 5 1 A1973 A A1982 D A1984 A1990 A A2005 B
454 228.28, 7.33 0.0456 6 1 A2020 A A2028 A A2033 B A2040 B A2055 A A2063 B
457 228.59, 6.98 0.0789 6 1 A2028 B A2029 A2033 C A2040 C A2055 B A2063 C
460 229.70, 31.17 0.1142 9 1 A2025 D A2034 A A2049 A A2056 C A2059 B A2062 A2067 B A2069 A2083 B
463 CrB 232.18, 30.42 0.0736 14 2 A2056 A A2056 B A2059 A A2061 A A2065 A2067 A A2073 A A2079 A A2079 B A2089 A2092 A

A2106 A A2122 A A2124
474 Her 241.56, 16.22 0.0363 5 2 A2147 A2151 A2152 A A2153 A A2159 A
484 245.57, 42.39 0.1364 7 1 A2158 B A2172 A2179 A2183 A2196 A2198 D A2211 A
579 351.82, 14.79 0.0427 5 1 A2572 A2589 A2593 A A2593 B A2657
586 354.20, 23.67 0.1274 5 1 A2611 e A2619 B A2627 A2647 e A2650 e

Notes. The superclusters have five or more Abell cluster members, with z ≤ 0.15, and inside the SDSS-DR13 region. The columns in the table are
as follows: (1) the identify (ID) of the supercluster in MSCC; (2) supercluster proper name, if available; (3) sky coordinates, RA (α) and Dec (δ),
of the supercluster mean position; (4) supercluster mean redshift; (5) supercluster richness (number of member clusters); (6) number of filament
candidates found previously in each supercluster; (7) IDs of the Abell/ACO member clusters.
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properties (stellar mass, metallicity, activity type classifi-
cation, star formation rate, etc.) using the spectra from the
SDSS-DR8 galaxies (Aihara et al. 2011). As explained by
Tremonti et al. (2004), the galaxy properties in the MPA-JHU
catalog are calculated by processing the galaxy spectrum in such
a way that even the weaker emission lines are detectable. In
order to analyze the morphological distribution of the galaxies
in the different supercluster environments we employed the mor-
phological classification provided by Huertas-Company et al.
(2011). These latter authors calculate a probabilistic morpho-
logical classification for the SDSS-DR7 spectroscopic galaxies
by applying deep-learning techniques that make use of their
photometry. They also compare their automated classification
with a sample of the Galaxy Zoo (Lintott et al. 2008, 2011)
visual classification and show that their classification into early
and late types is in good agreement with the visual classification.

2.3. The supercluster boxes

For each supercluster in Table 1 we selected all the SDSS galax-
ies (according to the above criteria) located inside the corre-
sponding box volume. These boxes were defined in rectangu-
lar coordinates in a way that their walls were set at a distance
of 20 h−1

70 Mpc beyond the center of the farthest clusters in each
direction, for each supercluster. This extension was applied in
order to guarantee that any connection of the supercluster with
external structures could be detected. The box volumes of the
superclusters vary from (45 h−1

70 Mpc)3 to (157 h−1
70 Mpc)3. Com-

pared to the typical sizes of the observed and simulated basins of
attraction in Dupuy et al. (2019) [(50−100 h−1

70 Mpc)3], the boxes
we use here are slightly larger, as expected, implying that we are
sampling the LSS in a general way, and are not restricting the
analysis to the densest parts of the superclusters. Our sampling
of the superclusters may be compared to that by Krause et al.
(2013), that is, broader than the sampling done by, for
example, Kopylova & Kopylov (2006) and Liivamägi et al.
(2012).

The properties of the supercluster boxes along with infor-
mation about the detected galaxy systems (to be described
below) are presented in Table 2. In particular, the superclusters
MSCC 236, MSCC 314, and MSCC 317 lie close to the limits of
the SDSS region: although all their member clusters are inside,
their boxes were reduced to a margin of 10 h−1

70 Mpc in only one
direction.

Figure 1 shows the diminution of mean volume density of
the boxes with redshift due to Malmquist bias. The fitted func-
tion will be used as the selection function for the SDSS galaxies
considered in this work. It may be noted that the mean densities
of the superclusters MSCC 55 and MSCC 579 lie far below the
fit. This is also due to the positions of these superclusters close to
the border of SDSS coverage: their samplings seem sparse and
irregular. In fact, for MSCC 579 one can clearly see the shape of
the cones of observation through the galaxy distribution. For this
reason, the analysis of these superclusters and of the three cited
above must be taken with caution.

It is worth noting that, since we have only the radial velocity
component available (redshift), the transformation from radial-
angular coordinates to rectangular coordinates is more compli-
cated for the galaxies. Their peculiar velocity may bias their
redshift-space coordinate, especially when they are members of
clusters and groups of galaxies that are subject to the FoG effect.
Therefore, for the galaxy data used to detect the filaments, we
first applied a correction, as described below, which redefined
their individual DC in Eqs. (1)–(3).

3. Mathematical tools

In what follows, we consider the N galaxies in each supercluster
volume as a set of points x1, x2, . . . , xN ∈ X, all part of a sample X.

3.1. Voronoi tessellation

The Voronoi tessellation (VT; Voronoi 1908) of a sample X,
Vor(X), can be defined as the subdivision of a 2D plane or a
3D space into cells with the property that the seed point xi ∈ X
is located in the cell vi if and only if the Euclidean distance
DE(xi, vi) < DE(xi, v j) for each v j ∈ X with j , i. In other
words, the VT divides the space into polygonal cells centered
on the seed points (in our case, galaxies) in a way that the cell
walls are equidistant to all nearest seeds (e.g., Platen et al. 2011).
Therefore, the density at each galaxy position xi is determined as
di = 1/vi, with vi being the volume (or area) of the cell enclos-
ing the object xi. Scoville et al. (2013) and Darvish et al. (2015),
for example, use VT to find the high-density regions in sky slices
while Cybulski et al. (2014) apply VT to identify the filamentary
structures in the Coma cluster region.

3.2. Hierarchical cluster analysis

Hierarchical clustering (HC) is a machine-learning method
whose objective is to group objects with similar properties. It
has been used in several different fields such as artificial intel-
ligence, biology, medicine, and business. In general, it can be
used to carry out pattern-recognition analysis, allowing the user
to regroup, segment, and classify any kind of data. This method
is equivalent to a reduction of the dimensionality of the data and
reduces the computing time considerably. In astronomy, the most
popular application of HC has been in the detection of substruc-
tures inside galaxy clusters following the algorithm developed
by Serna & Gerbal (1996). This algorithm considers the posi-
tions, redshifts, and potential binding energy between pairs of
galaxies to detect substructures (see also Guennou et al. 2014).

As we are interested in finding galaxy structures on scales
larger than the ones for substructures and for structures that
may be less strongly gravitationally bound, we chose to use
an agglomerative hierarchical clustering analysis method that
considers only the positions and redshifts or 3D estimated
positions of galaxies. A detailed description of the HC algo-
rithm can be found in Theodoridis & Koutroumbas (2009),
Theodoridis et al. (2010) and Murtagh & Contreras (2011). For
our analysis we chose Ward’s minimum variance clusterization
criteria, described in detail by Murtagh & Legendre (2014). In
general, Ward’s method works by merging the groups following
the criterion:

∆D(c1, c2) =
|c1||c2|

|c1| + |c2|
||c1 − c2||

2, (4)

where ∆D is a term that measures the distance between two
groups c1 and c2, respectively.

In our case, each point is initially considered as a group, sub-
cluster, or singleton, and then each group can be agglomerated
with a neighbor that has the minimum ∆D distance. The agglom-
eration continues until all points are grouped together.

The results of the HC clusterization can be represented by a
dendrogram or hierarchical tree. A dendrogram represents, in a
graphical form, the connections between elements and groups at
different levels of agglomeration. The height of each connec-
tion line in the tree corresponds to the distance between two
connected elements or centroids. This representation also allows
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Table 2. Properties of the supercluster boxes and of the galaxy systems detected inside them using the GSyF algorithm.

SCl ID V N d = N/V dsurf = N/A dbas Ngal f NHC NFoG Rvir σv
(MSCC) [103 h−3

70 Mpc3] (DR13) [h3
70 Mpc−3] [deg−2] [deg−2] di > dbas N j ≥ 3 Nmem < 10 Nmem ≥ 10 [h−1

70 Mpc] [km s−1]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

55 424.3 812 0.0019 77.6 8.3 468 27 57 11 5 1.1–2.4 245–806
72 549.7 1941 0.0035 232.0 22.1 1341 18 228 30 22 0.9–2.4 184–689
75 854.6 1607 0.0019 95.8 22.6 877 15 69 9 7 1.5–3.4 335–1144
76 2628.3 2617 0.0010 110.1 26.6 1536 27 204 14 11 1.3–3.6 214–1051

175 577.4 2504 0.0043 116.3 25.8 1315 6 172 22 10 1.2–2.7 220–735
184 692.9 2101 0.0030 70.5 20.7 1003 3 137 10 9 1.4–2.7 278–739
211 814.7 1484 0.0018 28.6 11.5 654 6 53 2 3 1.9–2.1 406–496
219 628.4 1913 0.0030 118.2 19.5 1273 6 175 13 10 1.4–3.7 292–1151
222 955.9 1865 0.0020 97.3 20.3 885 3 123 10 8 1.3–4.1 245–1207
223 777.0 776 0.0010 302.7 13.8 247 3 45 1 3 2.1–2.1 475–475
229 1352.4 1855 0.0014 45.2 22.3 745 3 106 6 2 2.2–2.2 498–498
236 643.6 8636 0.0134 52.9 10.3 4733 3 309 93 73 0.5–1.8 105–703
238 3861.8 8328 0.0022 74.4 20.3 4860 6 832 38 74 0.7–4.0 112–1293
248 690.1 1263 0.0018 72.4 17.4 564 3 75 5 2 1.7–2.8 366–730
264 923.7 1704 0.0018 59.6 24.5 626 3 105 11 12 1.3–3.5 245–1026
266 458.5 958 0.0021 49.5 28.8 318 3 55 6 3 1.6–3.1 320–823
272 138.4 1379 0.0100 135.3 28.0 654 3 87 10 5 1.1–2.4 219–699
277 905.3 2748 0.0030 76.0 20.2 1329 6 179 017 9 1.4–2.5 278–675
278 459.3 7920 0.0172 52.3 10.3 4116 6 222 80 35 0.5–1.9 112–711
283 1478.8 2320 0.0016 70.3 20.2 1379 12 239 10 17 1.5–3.4 295–907
295 535.5 14 308 0.0267 48.5 7.2 7422 6 272 114 46 0.4–2.0 74–909
310 1558.8 12 286 0.0079 76.9 15.7 7529 6 1015 116 139 0.8–3.0 140–1182
311 958.8 5270 0.0055 91.8 22.4 3050 6 416 48 40 0.8–2.4 131–704
314 91.9 558 0.0061 135.2 27.0 289 3 49 10 4 1.2–2.3 254–659
317 438.6 840 0.0019 104.2 38.2 433 6 76 10 5 1.8–3.3 366–929
323 1909.6 3330 0.0017 77.3 21.7 1764 6 304 17 21 1.5–3.7 295–1069
333 445.5 1968 0.0044 65.1 22.6 793 3 135 14 27 1.1–2.9 221–949
335 574.5 3099 0.0054 62.2 21.4 1285 3 211 29 38 0.8–3.0 144–973
343 427.9 2679 0.0063 105.8 19.2 1526 6 196 23 25 0.8–2.4 131–675
360 657.7 2199 0.0033 80.1 15.3 934 12 160 15 16 1.3–2.5 253–653
386 535.9 3256 0.0061 54.9 17.2 1600 9 257 33 40 1.0–2.7 211–852
407 800.0 1126 0.0014 48.9 22.8 481 12 79 5 5 1.5–4.0 280–1184
414 1245.9 10 902 0.0088 93.0 23.1 6366 6 1066 144 161 0.8–3.2 140–1191
419 497.6 1723 0.0035 91.7 19.7 1103 6 196 25 20 1.2–3.3 211–976
422 884.6 1065 0.0012 41.9 24.2 382 3 62 2 6 2.1–2.3 474–526
430 437.0 1603 0.0037 88.6 22.9 871 3 121 20 9 1.3–2.4 281–647
440 1017.1 3442 0.0034 99.4 72.9 917 6 143 24 14 1.5–3.3 309–935
441 516.1 1058 0.0021 60.8 20.9 425 6 59 2 3 3.0–3.0 796–796
454 389.0 5704 0.0147 99.7 18.9 3231 6 524 84 106 0.7–1.9 142–610
457 529.6 4072 0.0077 129.0 22.7 2605 6 443 58 44 1.0–3.1 187–1038
460 1041.1 3499 0.0034 108.4 27.3 1925 3 335 35 23 1.3–3.6 238–1073
463 959.2 8466 0.0088 121.6 22.4 5278 3 898 113 113 0.6–3.1 103–1077
474 343.8 7424 0.0216 109.2 15.3 4506 9 166 64 26 0.6–2.6 122–1115
484 805.0 1319 0.0016 43.1 19.2 571 6 86 5 4 2.3–3.0 536–793
579 658.9 1477 0.0022 142.9 1.2 1234 3 149 19 23 0.6–1.9 128–659
586 962.1 373 0.0004 18.3 13.6 72 3 8 0 0 −99.0 to −99.0 −99 to −99

Notes. The value −99 is set when GSyF does not detect systems. The columns in the table are as follows: (1) ID of the supercluster in MSCC;
(2) supercluster box volume; (3) number of galaxies inside this volume; (4) mean volume number density inside the box; (5) mean surface (sky
projected) number density of the box; (6) baseline density of the box; (7) number of galaxies with surface density above the baseline density;
(8) used segmentation parameter f ; (9) number of HC groups (see Sect. 3.2 for details); (10) remaining groups, after FoG correction, with richness
between 5 and 9 galaxies; (11) remaining groups, after FoG correction, with richness higher or equal to 10 galaxies; (12) range of radii for the
Nmem ≥ 10 FoG groups; (13) range of velocity dispersions for the Nmem ≥ 10 FoG groups.

visualization of the principal branch structures where the single-
tons are the final leaves. The number of desired groups, Ncut, is
therefore obtained by cutting the hierarchical tree at a certain
level. The exact value of this level depends on the characteristics
of the sample or, more precisely, on the underlying physics used
to define the groups. Each created group can be represented by
a 2D or 3D Gaussian model, P j(x). This allows the groups to
be classified by their Gaussian properties, for example by their

centroid (mean position, C j), richness (number of members, N j),
and compactness (covariance, σ j).

3.3. Graphs

Graph theory-based algorithms have shown to be a suitable tool
to analyze complex networks. Some of the most common sub-
jects where these algorithms are successfully applied are social
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Fig. 1. Distribution of mean volume densities (see fourth column of
Table 2) for the 46 superclusters in our sample as function of red-
shift (blue points). The red line corresponds to the best fit of a power-
law function. Residuals of the fitting are shown in the bottom panel.
MSCC 579 and MSCC 55 were excluded from the fitting.

networks, computer vision, statistics, business, and transporta-
tion networks.

A graph is a representation of the connections in a network.
It is composed of “nodes” and “edges”, where each node
represents an object, and the edges represent the connections
between nodes. Also, the edges can have weights that represent
the strength of the connection. An undirected graph has edges
that do not have direction. We can define an undirected graph
as G = (U, E,W), with n nodes (or vertices) ui ∈ U, m edges
ekl ∈ E, and a weight set W with a wkl for each edge ekl. The
information of a graph can be represented by a square adjacency
matrix. The values of the matrix entries indicate the weight of
the connection between nodes. Hence, the adjacency matrix A
of the graph G is defined as:

[A]kl =

{
1 if (uk, ul) ∈ E
0 otherwise,

where uk and ul are nodes in G. One can refer to Ueda & Itoh
(1997) for a discussion on the use of the graph theory approach
for quantifying the LSS of the Universe.

3.4. Minimum spanning tree

A spanning tree connects all nodes in a graph in a way that does
not produce cycles. A graph can contain several unconnected
spanning trees. Since the edges in a graph can have weights, the
MST algorithm (Graham & Hell 1985) searches for a spanning
tree that minimizes the total weight. This algorithm traces a tree-
like continuous path for a group of edges and nodes in an opti-
mal way. In particular, the Kruskal MST algorithm analyzes the
edges in sequence, sorting them by weight. At the beginning, the
shortest edge is analyzed and this would be the first tree branch.
The nodes are then added to the tree under three conditions: (i)
only one node is added to the tree; (ii) a node is added based on
the number of connected edges; (iii) their edges cannot be con-
nected to another existing node in the tree. The process continues

with the following edges in the graph until all connected edges
are analyzed. Finally, the tree is extracted from the graph and
the process begins again with the remaining nodes until all are
tested. As its name suggests, the result is a forest of optimized
independent trees.

3.5. Dijkstra’s shortest path

Dijkstra’s algorithm (Dijkstra 1959) is a classical method for
finding the shortest path between two nodes in a graph. We
define a path of length ekl between two nodes uk and ul as a
sequence of connected nodes u1, u2, . . . , un if k , l ∀ k, l ∈
1, . . . , n. In general, Dijkstra’s algorithm works as follows. First,
an origin is selected by taking the node at the beginning of the
path, u0. A distance value is then assigned to all nodes: set as
zero for the origin, s(u0), and as infinity for all the other nodes,
s(ui) = inf. Next, all nodes are marked as unvisited and u0 is
marked as current a. The algorithm then calculates the distance
from the current node a to all the unvisited nodes connected by
the edges ei as snew = s(eai) + wai; here s(eai) is the distance
from a to the node ui and wai is the weight of the edge ei. If
s(eai) + wai < s(ei), then the distance is updated and the con-
nected node label is updated as the current a. After visiting all
neighbors of the current node, they are marked as visited. A vis-
ited node will not be checked again; the recorded distance s(eai)
is therefore final and minimal. Finally, if all nodes have been
visited, the algorithm stops. Otherwise, the algorithm sets the
unvisited nodes with the smallest distance (from the initial node
u0, considering all nodes in the graph) as the next “current node”
and continues from the second step. A detailed description of the
algorithm can be consulted in Santanu (2014).

3.6. Kernel density estimator

As mentioned before, VT is used to measure the local density
at each point position. However, in some cases, it fails to iden-
tify large overdensity regions, as mentioned by Cybulski et al.
(2014). An alternative to the VT method is to apply KDEs. In
general, KDE methods work by adjusting a kernel function over
each observation in the sample. However, the choice of the opti-
mal kernel model and its intrinsic parameters is still under inves-
tigation in the pattern-recognition community. Also, there have
been several attempts to apply adaptive Gaussian model kernels,
in other words, to change the size of the Gaussian model as a
function of different parameters, such as for example the distance
to the nearest neighbor (Chen et al. 2016) or a weighting func-
tion (Darvish et al. 2015).

For this work we used the results from the VT method (see
Sect. 3.1) as the input parameters for the KDE. We start by fit-
ting an ellipsoid inside each VT cell. Thus, instead of choos-
ing a fixed bandwidth for the kernel, we employ the eigenvalues
and eigenvectors of the ellipsoids to calculate a Gaussian kernel
φΣ centered at µ with covariance matrix Σ for each observation.
Therefore, each n-dimensional kernel is represented as:

φΣ(x − µ) = (2π)d/2|Σ|−1/2e−1/2(x−µ)TΣ−1(x−µ). (5)

The KDE can then be estimated as:

p̂KDE(x) =

N∑
i=1

αiφΣi (x − xi) , (6)

where αi is a weight factor calculated from the VT cell volume
(vi) as 1/vi.
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The identification of the overdensity regions is done through
the projection of KDE kernels in 2D planes superposing a reg-
ular rectangular grid to the data. Thus, the density estimation
is obtained at a given grid intersection by calculating the aver-
age density of all kernels that overlap at that point. Observations
closer to an evaluating point will therefore contribute more to
the density estimation than points farther away from it. Conse-
quently, the density will be higher in areas with many observa-
tions than in areas with few observations.

3.7. Transversal profiles

The distribution of galaxy properties in filaments is analyzed by
constructing transversal profiles. These profiles are calculated by
setting up a series of concentric cylinders with axes orientated
along the filament skeletons. A bin is then considered to be the
volume within two concentric cylinders of radius Rcy and Rcy +
∆Rcy. The occurrence of a galaxy proxy in each bin is determined
with respect to the galaxy distance from the filament skeleton
Dske. The total count of galaxies per bin is weighted by the bin
volume, in a similar way as making a normalized histogram. In
order to compare samples of different sizes, a normalization is
applied by dividing the number of events in a bin by the total
number of galaxies in the sample.

4. Galaxy System-Finding algorithm (GSyF)

4.1. Detection of high-density regions

We first searched for the high-relative-density regions, clusters,
and groups of galaxies (which we refer to generically as galaxy
systems) inside the studied superclusters, because these systems
are the natural nodes for filaments. This was also necessary
for correcting the FoG effect and having the data prepared for
the application of the filament-finding algorithm (see following
section). Furthermore, the detection of galaxy systems allows the
identification of new and possibly previously unknown systems
(especially poorer galaxy groups), and the improvement of the
membership estimation of the superclusters themselves.

A description of the algorithm, including the strategy we
used for optimizing its parameters using simulated mock vol-
umes, is presented in Santiago-Bautista et al. (2019). Here we
review the main steps of this algorithm. First we calculate the
local surface density at the position of each galaxy in the pro-
jected area of the supercluster by applying the VT method
(Sect. 3.1). The VT individual area of the galaxy can be directly
converted to a surface density estimation (di = 1/ai), in this case
in units of deg−2. It is worth noting that the boxes we consid-
ered for the superclusters in our sample comprehend slices in
redshift-space in the range 0.02 ≤ ∆z ≤ 0.07.

In order to identify the galaxy systems, we start by applying
the HC method (Sect. 3.2), but only to the Ngal galaxies with den-
sities above a baseline density, dbas, which should be analogous
to a background density. In a certain sense, this separates super-
cluster galaxies from void galaxies (i.e., under-dense regions).
This baseline is calculated from the mean density by random-
izing the galaxies in each sky-projected area. Since the distri-
bution of points in space is not isotropic, it is not possible to
directly set a background density from the projected positions of
the galaxies. Therefore, it is necessary to simulate an isotropic
distribution of the points in order to set the baseline value (see,
e.g., Cybulski et al. 2014). A set of 1000 randomizations of the
point positions is generated, each with the same sample number
over the same area. The mean surface density is then calculated

using:

dbas =
1
m

m∑
j=1

1
n

n∑
i=1

d′i, j, (7)

where d′i, j = 1/a′i, j corresponds to the inverse of the area of the
point x′i for the randomization j.

Since the distribution of galaxies is not homogeneous among
the different boxes, we calculate independent baseline values for
each supercluster; see Table 2. A density contrast (δi) is then
calculated as:

δi =
di − dbas

dbas
· (8)

Here, the Ngal galaxies to which we apply the HC are the ones
with a density contrast, δi > 0 (see Santiago-Bautista et al. 2019,
for an evaluation of the negligible effect of slightly changing the
density threshold).

Subsequently, we apply HC to the set of parameters (RA,
Dec, 1000 z) for these galaxies (the factor of 1000 is the weight
for z values to be comparable to the sky coordinates values).
The number of groups taken from the analysis is defined as a
cut of the HC tree, fixed to Ncut = Ngal/ f , with a segmenta-
tion parameter f , which is the expected mean number of ele-
ments per group. Currently, the selection of the optimal number
of groups in clusterization methods is still a topic under inves-
tigation in the pattern-recognition community, which includes
the HC algorithm. A specific value of f was calculated for each
supercluster (3 ≤ f ≤ 36) according to the optimization pro-
cess described in Santiago-Bautista et al. (2019). This strategy
was adopted because a physically motivated value for f would
depend on many parameters, like the density of galaxies in each
box, the sampling of these galaxies with respect to the real dis-
tribution, and the redshift, among others, which are difficult to
estimate for our data.

Finally, we select only those systems with a number of galax-
ies, N j, larger than two. These pre-identified systems are then
subjected to the next step of refinement: the iterative estimation
of the dynamical parameters, virial mass and radius.

4.2. Finger of God correction

After identifying the galaxy systems, we proceed to refining the
galaxy membership and correcting the galaxy positions for the
FoG effect using a virial approximation. We apply a simplified
version of the algorithm presented by Biviano et al. (2006) for
the estimation of the virial mass and radius. We do not apply
the surface pressure term correction based on the concentration
parameter. Avoiding such a correction can lead to an overestima-
tion of the virial radius, but for this geometric analysis, a virial
approximation is enough.

The virial-parameter-calculation algorithm works as follows:
First we take the projected center and mean velocity of the sys-
tem from the results of HC (C j). The projected center is then
set at the position of the brightest r-band magnitude member
galaxy (BMG) within 1σ j from the HC center, while the HC
mean velocity is used directly. Those galaxies that are expected
to belong to the system are selected among all galaxies in the
sample (those with spectroscopic redshift in SDSS-DR13) that
are projected inside a cylinder of radius Ra (hereafter referred
to as the aperture). Biviano et al. (2006) show that the dynami-
cal analyses are similar for different aperture sizes. We chose an
aperture of Ra = 1 h−1

70 Mpc. Subsequently, for the line-of-sight
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Fig. 2. Flow chart of the GSyF (left side) and GFiF (right side) algorithms.

direction, we select galaxies with a difference in velocity of up
to S a = ±3000 km s−1 with respect to the mean cluster velocity.
This would correspond to three times the velocity dispersion of
a rich cluster. A robust estimation of mean velocity, vLOS, and
velocity dispersion, σv, for the galaxies inside the cylinder is
obtained using Tukey’s biweight method (Beers et al. 1990). An
approximation of the mass Ma in the aperture is computed as:

Ma =
3π
2G

σ2
v Rh, (9)

where G is the gravitational constant, 3π/2 is the deprojection
factor, and Rh is the projected harmonic radius.

We calculate the virial radius, R3
vir = (3/4π)(Mvir/ρvir), by

assuming a spherical model for nonlinear collapse, that is, by
taking the virialization density as ρvir = 18π2[3H2(z)]/[8πG],
and Ma as an estimation for Mvir. We thus obtain

R3
vir =

σ2
v Rh

6π H2(z)
· (10)

The aperture Ra is then updated to the calculated Rvir value, the
mean velocity to vLOS, and S a toσv, defining a new cylinder. This
process is repeated iteratively until the radius Rvir converges.
Mvir is finally calculated at the end of the iteration process.

The correction for the FoG effect is carried out by adjusting
the position of the Nmem galaxies inside the final cylinder. This

is done by scaling their comoving distances along the cylinder
to the calculated virial radius. A schematic representation of the
GSyF algorithm, including the FoG correction, can be found on
the left side of Fig. 2.

5. Galaxy Filaments skeleton-Finding algorithm
(GFiF)

5.1. Detection of low-density regions

As we are interested in the detection and analysis of elongated
and low-relative-density contrast structures, we apply again a
combined VT+HC method to the data, but now in the rectan-
gular 3D space, with the positions of the galaxies corrected for
the FoG effect. Thus, the VT densities are now volume densi-
ties, in units of Mpc−3. At the beginning of this analysis the HC
method is applied to all galaxies in the volume without density
restrictions, that is, no baseline is applied. Density restrictions
are considered later as criteria for the construction of filaments.
Another difference between this application of VT+HC and the
one used for the GSyF methodology is a relaxed cut in the hierar-
chical tree. Since we are interested in detecting more elongated
representative structures, we tested values for the segmentation
parameter f between 10 and 40. The direct effect of relaxing the
cut is to allow the detection of groups at lower densities.
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Fig. 3. Representation of a filament. Graph nodes are represented by
white circles and edges by dark lines. The five systems connected are
represented by a dotted circle of radius Rvir. A bridge connecting two
systems is represented as a bold black line. The distance from galaxies
to the filament (bold dashed line) is measured along a line perpendicular
to the edges.

Here we need to make some practical definitions in order to
describe our strategy. Figure 3 shows the following definitions
schematically.

– The nodes to which we apply the method correspond, in
the context in which we are working, to the HC group centroids.

– An edge is defined as any connection between two
nodes.

– The real “links” between the systems are defined as the
most promising edges, filtered according to their proximity and
density contrast.

– Spanning trees are extracted as described in Sect. 3.4, by
cutting the graph in uncycled optimal trees. Some nodes inside a
spanning tree may have been detected as galaxy systems by the
GSyF algorithm.

– A “bridge” is defined as a sequence of links and nodes
between two systems.

– A “filament” is identified if a spanning tree bridges three
or more systems connected by bridges.

– If the spanning tree contains zero or only one system, it is
called a “tendril”.

– The “skeleton” is the medial line of a filament. The method
for finding it, which intends to reduce the dimensionality of the
objects (in our case, galaxy filaments), is known as “skeletoniza-
tion”.

5.2. Chaining the filaments

Once we have applied HC, we measure the Euclidean dis-
tance DE of the centroid (node) of each group against all its
group neighbors. These connections (edges) can be represented
by an undirected graph as described in Sect. 3.3. The weights
W of the edges are set by the Bhattacharyya coefficient, BC,
defined as:

BC(P1, P2) =
∑
x∈X

√
P1(x)P2(x). (11)

The Bhattacharyya coefficient quantifies the amount of over-
lapping between two distributions P1(x) and P2(x). Thus, the ori-
entation of the two groups weights the connection between them.

In the next step, we filter the edges by two criteria: First we
select the edges corresponding to a DE smaller than a threshold,
Dmax (hereafter, linking length). Secondly, we consider an edge
as a real link of galaxies based on the following: (i) we define
a cylinder along the edge with a radius of 1 h−1

70 Mpc; (ii) we
measure the linear density of galaxies along the cylinder; and
(iii) if the mean linear density of the cylinder is above d = N/V
(Table 2) we take the cylinder as a link of galaxies connecting
the two nodes.

Each ensemble of connected links is a tree in the forest
graph. We then apply Kruskal’s MST technique (Sect. 3.4) to
the forest graph to identify independent trees and their domi-
nant branches. To proceed we need to match the list of detected
spanning trees with the list of detected GSyF systems. However,
due to the effect of losing sampled galaxies with increasing red-
shift (see Fig. 1), the richness of the detected systems depends
on the redshift. In other words, to have a comparable richness
for two similar systems, for instance one at z = 0.03 and another
at z = 0.13, we have to apply a correcting factor to the rich-
ness of the second one. To overcome this limitation, we apply
the following lower limit for the richness of the systems at the
supercluster redshift: log10 Nmin = a log10 z + b, with a = −1.0
and b = −0.2. This leads to a lower richness limit of Nmin = 30–
5 galaxies per system, from the nearest and farthest supercluster
in our sample respectively.

Now that we have the systems, and the bridges between them
(instead of the nodes and edges in the previous step), we can
identify the filaments. As stated above, and following the defi-
nition by Chow-Martínez et al. (in prep.), we search for the fil-
aments which have at least three galaxy systems connected by
bridges.

Although isolated bridges (i.e., connecting only one pair of
systems) and tendrils (connections between nodes with no sys-
tem embedded) are important and are also a byproduct of the
algorithm, we focus our discussion hereafter on the filaments.
The connecting edges of these filaments are then refined using
Dijkstra’s algorithm (Sect. 3.5). This refinement allows the iden-
tification of the filament skeleton, that is, the principal branch
connection. According to the pattern-recognition literature, a
skeleton represents the principal features of an object such as
topology, geometry, orientation, and scale. Figure 4 presents the
steps of the GFiF algorithm schematically.

The results of the filament-finding algorithm depend on sev-
eral parameters, in particular the number of HC groups, Ncut (or,
equivalently, f ), and the linking length Dmax. Therefore, it is
necessary to carry out a search for the optimal combination of
these parameters. In addition, in order to find the longest fila-
ments possible inside the supercluster volume, we search for the
linking length that maximizes the number of filaments in the box,
that is just before they begin to percolate. The optimization for
these parameters is described in detail in Santiago-Bautista et al.
(2019). We found that the optimized parameter f decreases with
z from about 20 to 10 galaxies in the range covered by our sam-
ple, that is, depending on the sampling, a smaller density is found
with increasing z. The Dmax, in turn, increases with z, in such a
way as to compensate for the decrease in f . A schematic repre-
sentation of the GFiF algorithm can be found on the right side of
Fig. 2.
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Fig. 4. Illustration of the steps of the GFiF algorithm. In the first box
(top-left) one can see the distribution of galaxies. In the second one
(top-right) the HC groups are marked, with denser red colors represent-
ing the richer HC groups. The filtered edges (links) among the groups
of the spanning tree are displayed in the third box (bottom-left). The last
box (bottom-right) presents the systems (green circles), bridges (brown
lines), and other links (blue lines) found among the groups of the pre-
ceding step.

6. Detection algorithms in action

In order to illustrate the function of the detection algorithms
presented above, we now describe their application to one of
the superclusters in our sample, MSCC 310, the Ursa-Majoris
Supercluster (see Tables 1 and 2). This supercluster contains 21
Abell clusters with redshifts in the range from 0.05 to 0.08 and is
one of the largest in volume in our sample. MSCC 310 occupies
an area in the sky of about 1700 deg2, equivalent to a volume
of (116 h−1

70 Mpc)3 – including the 20 h−1
70 Mpc added to the box

limits from the farthest clusters.
The volume contains N = 12 286 SDSS galaxies with spec-

troscopic redshift. This corresponds to a mean surface density
of 76.9 gal.deg−2 or 0.008 gal.h3

70 Mpc−3; see Table 2. The list of
parameter values used is shown in Table 3.

6.1. Application of GSyF to MSCC 310

First we applied the VT algorithm to the projected distribution
of MSCC 310 galaxies and calculated their di. We then made
1000 simulations to estimate dbas (15.7 deg−2, for this case). We
applied the HC algorithm to the Ngal = 7529 galaxies with
δi > 0. After calculating the best f parameter from the 30 mock
simulations ( f = 6, in this case), we took the Ncut = 1140
groups generated from the HC application. As expected, these
groups have, approximately six members on average. Of these,
we retained 1015 with N j ≥ 3.

The iterative virial refinement was initialized by assigning
the center of each HC group to the brightest r-band galaxy
member close to its geometrical centroid (see Table 4). For
MSCC 310 groups, the mean difference between the geomet-
rical center and the projected position of the brightest galaxy
was found to be about 350 h−1

70 kpc. On average, virial refine-
ment required six iterations in order to produce convergence to
the virial radius. This refinement resulted in 122 systems with

Nmem ≥ 10 for the MSCC 310 volume. The refinement also
detected 113 smaller systems with 5 ≤ Nmem < 10.

In Table 4 we list the properties of the first 25 richest sys-
tems for the MSCC 310 supercluster. The range of virial radii
of the GSyF systems with Nmem ≥ 10 in MSCC 310 was
0.7−2.5 h−1

70 Mpc. For groups with 5 ≤ Nmem < 10, the range
of virial radius lies within 0.4−0.9 h−1

70 Mpc. After the refine-
ment, the projected central position of the systems changed by
170 h−1

70 kpc on average, while the redshift was refined for some
cases up to ∆z ∼ 0.001 or ∆σv ∼ 300 km s−1.

As an example, the richest system in MSCC 310 is the cluster
A1291 A. Its HC initial centroid position (set as the position of
the brightest galaxy in the HC group: α = 172.73, δ = 56.49
and z = 0.0611) changed by 13 h−1

70 Mpc after 17 iterations of the
virial refinement (the final centroid position corresponds to α =
173.01, δ = 56.09, z = 0.0535). This position is at 240 h−1

70 kpc
from the system’s brightest galaxy detected for A1291 A which
has coordinates (α = 173.05, δ = 56.05, z = 0.0585; Lauer et al.
2014).

Finally, as described in Sect. 4.2, we correct the DC of the
member galaxies in each system by re-scaling their dispersion
range to the Rvir of the system. An example of the MSCC 310
volume before and after the correction is shown in Fig. 5.

6.2. Application of GFiF to MSCC 310

With the co-moving distances for the MSCC 310 galaxies cor-
rected for the FoG effect, we proceeded to transform their sky
coordinates to rectangular ones following Eqs. (1)–(3). The Ngal
was now taken to be the total number of galaxies in the box
of MSCC 310, N = 12 286, for which we applied the GFiF
method. The VT algorithm was then applied to calculate vol-
umetric numerical densities. We used a segmentation parame-
ter of f = 16 for the HC algorithm. From that, we identified
768 low-density groups and for each pair we calculated the DE
distance between centers and the BC weight. As expected, the
implementation of the HC algorithm over all galaxies detected
larger groups (∼15 galaxies on average now) and those were
more elongated, with a mean σ j of 1.8 h−1

70 Mpc compared with
the mean σ j of 0.5 h−1

70 Mpc found with the application of GSyF.
In order to filter the connections, a linking length of Dmax =

8 h−1
70 Mpc was used resulting in 334 edges. As described above,

Dmax and f were obtained by the optimization process described
in Santiago-Bautista et al. (2019). The second filter, the min-
imum mean linear density along the edge cylinders (in this
case 0.008 gal.Mpc−3), left 273 links from the 316 connections
smaller than Dmax. This resulted in 34 trees, to which we applied
MST. Of these, only 9 are linking three or more systems of
galaxies with a richness Nmem above 11 galaxies, and the rest are
isolated bridges and tendrils. This result is shown in the dendro-
gram depicted in Fig. 6 (top panel) which shows nine dominant
filaments for the MSCC 310 supercluster.

Concerning the systems embedded in the structures, from the
359 HC groups (nodes) in the spanning trees, 116 were found to
have a match in the systems with Nmem ≥ 10 identified with GSyF.
From these, 61 were found to be in filaments (53%), 26 (22%) in
bridges between pairs of systems, and 29 (25%) were found to
not be connected by bridges, that is, they were relatively isolated.
The filaments detected by the GFiF algorithm in the MSCC 310
supercluster and their main properties are listed in Table 5.

We can also observe the filaments inside the MSCC 310
volume in the bottom panel of Fig. 6. In this panel, the nine
filaments are plotted over the distribution of galaxies in a
RA [deg]×Z [Mpc] plane. This projection allows the recognition
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Table 3. Glossary of parameters used by GSyF and GFiF algorithms.

Param. Description MSCC 310

Properties of the rectangular box
N Total number of galaxies 12 286
V Total volume (116 h−1

70 Mpc)3

d = N
V Mean volumetric number density 0.008 h3

70 Mpc−3

A Projected area in the sky (12.65 deg)2

dsurf = N
A Mean surface number density (sky projection) 76.9 deg−2

vi, ai Local volume or projected area of VT cell Each galaxy
di Local VT (surface or volume) density Each galaxy
DC Comoving distance of the galaxy or system Each galaxy or system
DE Euclidean distance between two galaxies or two nodes (edge size) Each pair
Dske Euclidean distance of galaxy from filament skeleton Each galaxy

Amount of systems

NCl Richness of the supercluster (nr. of Abell/ACO clusters) 21

Ncut =
Ngal

f No. of extracted HC groups 1140, 768
NHC No. of detected HC groups (N j ≥ 3) found by GSyF algorithm 1015
Nnodes No. of nodes found by GFiF algorithm which remained in the MSTrees 359
NFoG No. of systems (that survived the FoG filter) 255
Nsys No. of systems with Nmem > Nmin in box which matched nodes 116
Nsfil No. of systems embedded in the filaments 61
Nspair No. of systems forming pairs connected by isolated bridges 26
Nsout No. of systems not forming filaments or pairs 29

Amount of filaments, isolated bridges and tendrils

Nfil No. of filament candidates of the supercluster 4
Nske No. of detected filaments in the box (linked bridges) 9
Nbrid No. of detected isolated bridges between two systems only 17
Ntend No. of detected tendrils (not bridges or filaments) 18

Properties of the systems

P j(x) Gaussian model for detected HC group Each HC group
N j Richness the detected HC group Each HC group
C j Centroid position of the detected HC group Each HC group
σ j Compactness (covariance) of the detected HC group Each HC group
CBMG Position of Brightest HC group Member Galaxy Each HC group
CFoG Centroid position of the detected FoG system Each system
Nmem Richness (nr. of galaxies) of the detected FoG system Each system
Nmin Minimum nr. of galaxies for systems in filaments at different z 10
Rh Harmonic radius of the detected FoG system Each system
Rvir Virial radius of the detected FoG system Each system
Mvir Virial mass of the detected FoG system Each system
vLOS Robust line-of-sight velocity of the detected FoG system Each system
σv Robust velocity dispersion of the detected FoG system Each system

Properties of the filaments

Nedges No. of edges that survived filter 1 334
Nlinks No. of edges that survived filters 1 and 2 316
Ntrees No. of trees after MST 17
Nnod No. of nodes in the filament (or in the skeleton) Each filament (skeleton)
`fil Length of filament skeleton Each filament
Rfil Mean radius of the filament Each filament
dfil Mean galaxy number density inside the filament Each filament
Ngfil No. of galaxies hosted in the filaments of the box 2568
Vfil Volume occupied by the filaments of the box (1.16 h−1

70 Mpc)3

GSyF and GFiF parameters
dbas Projected number density baseline 15.7 deg−2

δi Local density contrast Each galaxy
Ngal No. of galaxies above the baseline dbas 6842
Ra, S a, Ma Parameters of iterative process for FoG correction Each HC group
f Segmentation parameter (OPTIMIZATION) 6, 16
BC Bhattacharyya coefficient (edge weight) Each edge
Dmax Linking length (first filter) (OPTIMIZATION) 8 h−1

70 Mpc
dedge Edge cylinder density (second filter) Each edge
Rcy Filament concentric cylinder radius Each filament
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Table 4. Main properties of the 25 richest systems identified in the volume of the supercluster MSCC 310.

System Nmem CBMG CFoG σv Rh Rvir cross-ref
Nr. RAJ2000 DecJ2000 z RAJ2000 DecJ2000 zLOS [km s−1] [h−1

70 Mpc] [h−1
70 Mpc] ACO Nr.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 123 173.09667 55.96744 0.0515 173.01489 56.09476 0.0535 1182 1.09 2.54 A1291 A
2 103 174.01464 55.07526 0.0571 174.17793 55.19984 0.0587 1103 1.28 2.56 A1318 A
3 95 180.26970 56.37019 0.0648 180.07048 56.20431 0.0649 762 1.04 1.87 A1436
4 94 167.09625 44.15030 0.0587 167.10957 44.07194 0.0590 644 0.81 1.53 A1169
5 91 176.83909 55.73018 0.0515 176.80652 55.69322 0.0518 712 0.80 1.64 A1377
6 82 177.19063 54.51936 0.0601 177.05852 54.64399 0.0604 845 0.95 1.94 A1383
7 67 168.84947 54.44412 0.0695 168.90590 54.50901 0.0700 659 0.91 1.63
8 61 175.27722 55.18836 0.0593 175.25812 55.29493 0.0609 1103 1.30 2.58 A1349 A
9 61 163.40237 54.86794 0.0716 163.54104 54.84312 0.0722 640 0.89 1.58
10 59 172.33060 54.12608 0.0689 172.44575 54.08347 0.0690 582 0.75 1.40 A1270
11 54 158.24537 56.74813 0.0448 158.32527 56.82434 0.0454 459 0.69 1.16
12 52 180.22849 51.42263 0.0666 180.46535 51.65240 0.0649 1069 1.08 2.37 A1452
13 50 152.32009 54.21099 0.0465 152.41409 54.42037 0.0460 415 0.68 1.08
14 46 183.70265 59.90619 0.0600 183.59629 59.90299 0.0599 443 0.75 1.17 A1507 B
15 43 168.06955 57.07599 0.0471 168.12753 57.04832 0.0467 491 0.77 1.26
16 42 178.37743 52.68944 0.0716 178.59933 52.77017 0.0695 761 0.84 1.74
17 39 151.21598 54.56786 0.0470 150.99614 54.65456 0.0472 460 0.64 1.13
18 39 163.28303 56.33167 0.0772 163.35966 56.33847 0.0745 1003 0.89 2.13
19 36 172.42861 55.38047 0.0685 172.44796 55.42240 0.0684 534 0.54 1.19
20 36 162.94746 55.38567 0.0739 162.89992 55.34739 0.0737 367 0.68 1.00 A1112 A
21 34 182.19381 53.33371 0.0813 182.19494 53.31805 0.0821 573 0.66 1.33
22 33 181.31486 43.16902 0.0528 181.40583 43.20470 0.0526 504 0.67 1.23
23 31 177.05076 52.85209 0.0503 177.04947 52.59945 0.0505 556 0.67 1.31
24 31 178.57105 55.47082 0.0508 178.68334 55.20458 0.0513 584 0.82 1.45
25 31 151.31217 53.14899 0.0463 151.31677 52.99140 0.0451 431 0.68 1.11

Notes. The columns in the table are as follows: (1) sequential number assigned to the system according to its richness; (2) richness of the system;
(3) RA coordinate of the brightest member of the system; (4) Dec coordinate of the brightest member of the system; (5) redshift of the brightest
member of the system; (6) RA coordinate of the final system centroid; (7) Dec coordinate of the final system centroid; (8) redshift of the final
system centroid; (9) velocity dispersion calculated for the system; (10) harmonic radius calculated for the system; (11) virial radius calculated for
the system; (12) cross-reference with Abell clusters. The complete version of this table and the tables of systems of the other superclusters are
available at the CDS.

of structures both in one of the coordinates of the sky plane
and depth. Filaments are depicted in the same colors in both
panels of this figure. Isolated bridges, which connect two sys-
tems alone without forming a filament, are represented only
in the bottom panel and by black lines. Tendrils are not rep-
resented to avoid crowding. The longest paths for the fila-
ment skeletons, that is, those that connect the farthest sys-
tems of each filament, range from 18 to 62 h−1

70 Mpc and
connect up to 11 systems inside the MSCC 310 volume.
Moreover, we measured the paths between pairs of systems
chained together by bridges; such distances range from 5 to
24 h−1

70 Mpc.

7. Validation of the methods

7.1. Checking the identified systems of galaxies

In order to validate our GSyF algorithm we compared the list of
identified systems to different cluster and group catalogs in the
region of SDSS. For MSCC 310, for instance, GSyF detected
122 systems with ten or more galaxies and another 113 systems
with 5 ≤ Nmem < 10. A match was considered positive if the pro-
jected positions of the system in the two compared catalogs were
found to be within 1 h−1

70 Mpc of one another, while in redshift
space we considered a difference ∆z = 0.007 which corresponds
to ±2100 km s−1.

For the rich clusters, first we compared our results to
the original Abell/ACO catalog (Abell et al. 1989) based on
the most recent parameter measurements for its clusters (e.g.,
Chow-Martinez et al. 2014). Also, we compared the detected
systems against the central galaxy position provided by the
Brightest Cluster Galaxy catalog (Lauer et al. 2014, hereafter
L14). Regarding catalogs based on the SDSS spectroscopic
sample we compared with the C4 cluster catalog (Miller et al.
2005), based on the SDSS-DR2. For less rich clusters and groups
we compared our systems with the Multi-scale Probability Map-
ping clusters/groups catalog (MSPM, Smith et al. 2012) and the
Tempel et al. (2012) catalog (hereafter T11), carried over the
SDSS-DR7 and -DR8 respectively. For the comparisons we used
all systems detected by GSyF down to a richness of five galaxies.

Using the tolerance cylinder described above, 19 of the 37
Abell/ACO clusters inside the MSCC 310 box were detected as
systems of richness above five galaxies with our method (51%),
while the equivalent number was 26 (76%) for the 34 clusters
in C4. There are 11 clusters in the L14 catalog embedded in
the volume and 8 (73%) of them have GSyF counterparts. How-
ever, by increasing the aperture to 2 h−1

70 Mpc, we increased the
detection of Abell clusters to 29/37 (78%), C4 clusters to 33/34
(97%) and the L14 catalog to 100%; see Table 6. The increase
of 20−30% in cluster matches caused by using a larger aper-
ture size can be related to the fact that the mean separation of
member galaxies increases for lower richness systems, and the
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Fig. 5. Three-dimensional distribution of galaxies for the MSCC 310
supercluster volume. Top: Galaxy positions before the application of
the FoG correction. Bottom: Galaxy positions after correction for FoG
effects. The colors represent density as calculated from 3D VT. The
highest density is represented in red while lower densities are repre-
sented in green to blue.

determination of the cluster center is then subject to this separa-
tion; see Table 6. For example, A1452 and A1507 B have a GSyF
counterpart located at ∼1.5 h−1

70 Mpc projected distance and ∆σv
of ∼630 km s−1 and 120 km s−1 respectively (see Table 4, sys-
tems No. 12 and 14), while their C4 counterparts are 0.7 and
0.4 h−1

70 Mpc away respectively.
For what concerns the less massive systems, there are 315

groups detected by T11 and 213 groups listed in the MSPM cat-
alog with richness larger than or equal to five galaxies for the
MSCC 310 volume. Our algorithm detected systems that corre-
spond to 61% (79%) of the T11 groups and 67% (78%) of the
MSPM groups, within an aperture of 1 h−1

70 Mpc (2 h−1
70 Mpc); see

Table 6. This is acceptable for our purposes because we have con-
structed GSyF to find the clusters that present the FoG effect,
although we can clearly go farther towards poorer systems with
GSyF.

The region of the UMa supercluster was studied by
Krause et al. (2013). These authors identified 31 galaxy systems
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Fig. 6. Results of the GFiF algorithm for the MSCC 310 supercluster
volume. Upper panel: dendrogram with the nine detected filaments rep-
resented by different colors. The y axis of the dendrogram plot indicates
the distance at each level of the tree. Lower panel: RA × Z distribution,
where SDSS galaxies are represented by gray points and filaments are
represented by lines according to the colors in the upper panel. Tendrils
are represented by gray lines.

in the MSCC 310 area, each with between 15 and 94 galaxies.
We found that our GSyF systems match with 24 (77%) of these
clusters within an aperture of 3 h−1

70 Mpc, of which 10 are Abell
clusters.

The systems detected in the main portion of the MSCC 310
supercluster are depicted on a sky projected distribution in Fig. 7
(top panel) and are represented by black circles with radii equal
to the measured virial radius. The system positions from the
Abell, C4, L14, MSPM, and T11 catalogs are depicted as red,
pink, cyan, blue, and green points, respectively. We also observe
that the system membership number detected by GSyF is in
agreement, for most of the cases, with the number of mem-
bers for the same systems detected by T11, C4, and MSPM (see
Fig. 8). Qualitatively one can observe in this figure that the rich-
ness from T11 is in better agreement with our measurements,
while MSPM estimates a richness slightly lower than both ours
and T11.

A similar analysis can be done for the other superclusters in
our sample. For example, for the Coma supercluster (MSCC 295,
Fig. 7, bottom panel), the GSyF algorithm detected 115 systems
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Table 5. Main properties of the filaments extracted through GFiF for the supercluster MSCC 310.

Fil. Nsfil Ngfil Redshift dfil Rfil Nnod `fil

ID systems gals. [mean, min, max] [h3
70 Mpc−3] [h−1

70 Mpc] Filament Skeleton [h−1
70 Mpc]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MSCC 310-F1 10 499 0.0609 0.0518 0.0689 0.4180 2.81 18 11 61.6
MSCC 310-F2 8 523 0.0502 0.0443 0.0588 0.5210 2.84 22 11 51.8
MSCC 310-F3 7 407 0.0481 0.0427 0.0528 0.3486 2.50 19 10 49.0
MSCC 310-F4 8 313 0.0656 0.0585 0.0710 0.4263 2.46 14 10 59.0
MSCC 310-F5 7 325 0.0700 0.0642 0.0774 0.5303 2.60 13 7 47.6
MSCC 310-F6 6 243 0.0725 0.0651 0.0791 0.2986 1.97 12 9 39.3
MSCC 310-F7 4 219 0.0551 0.0479 0.0619 0.4062 2.76 7 5 20.7
MSCC 310-F8 4 164 0.0546 0.0485 0.0617 0.2118 2.22 9 7 33.7
MSCC 310-F9 4 124 0.0464 0.0437 0.0528 0.1464 1.13 9 6 17.9

Notes. The columns in the table are as follows: (1) sequential number assigned to the filament; (2) number of systems detected by GSyF and
linked by the filament; (3) number of galaxies attributed to the filament; (4) mean redshift of the filament; (5) minimum redshift of the filament;
(6) maximum redshift of the filament; (7) mean number density inside the filament; (8) mean transversal radius of the filament measured at 10× d;
(9) number of nodes that constitute the filament; (10) number of central skeleton nodes in the filament; (11) length of the filament skeleton.

Table 6. GSyF systems detected by other catalogs for the MSCC 310 supercluster.

Other catalog Number Fraction Number Fraction Separation
Nmem > 5 Nmem > 10 h−1

70 Mpc ∆σv

Aperture = 1 h−1
70 Mpc

Abell 19/37 51% 17/37 46% 0.45 295
C4 26/34 76% 24/34 71% 0.43 100
L14 8/11 73% 8/11 73% 0.50 340
T11 192/315 61% 73/105 70% 0.33 230
MSPM 142/213 67% 63/79 80% 0.34 145

Aperture = 2 h−1
70 Mpc

Abell 29/37 78% 24/37 65% 0.82 300
C4 33/34 97% 32/34 94% 0.77 166
L14 11/11 100% 11/11 100% 0.80 430
T11 249/315 79% 85/105 81% 0.64 320
MSPM 167/213 78% 68/79 86% 0.55 193

in total. Of these, we found that A1656, the richest one, is com-
posed of 579 galaxies. The estimated virial radius and mass are
1.96 h−1

70 Mpc and 7.7×1014 M�, respectively. The second-richest
cluster, A1367, has 243 galaxies, while its radius and mass are
1.73 h−1

70 Mpc and 5.3 × 1014 M�, respectively. These estima-
tions are in good agreement with those measured by Rines et al.
(2003). The complete catalog of systems for each volume is
available online2.

7.2. Checking the filament skeletons

We compared the filaments obtained using the GFiF algorithm
for the MSCC 310 volume with those presented by Tempel et al.
(2014, hereafter T14) as extracted from their Table 2. We trans-
formed the T14 filament positions in survey coordinates (see
T14, Eq. (1)) to our rectangular space and cosmology. There are
about 630 T14 filaments that lie in the sampled volume of the
MSCC 310 supercluster. These filaments have a mean length of
9 h−1

70 Mpc while the largest one has a length of 48 h−1
70 Mpc. As

a comparison, the filament skeletons detected by GFiF have a
mean length of 42 h−1

70 Mpc and the largest one has a length of
62 h−1

70 Mpc. We found a 40% match between our detected fila-

2 https://gitlab.com/iris.santiagob89/LSS_structures

ments and T14 and an 80% match with our isolated bridges and
tendrils. The mean difference between the medial axis of the T14
filaments matching the nearest filament or tendril detected by us
is ∼1.5 h−1

70 Mpc. In Fig. 9, T14 filaments are represented by a
sequence of points forming a line. The calculated separation was
taken to be the distance from the T14 filament points to the edges
of our filaments. Our filaments are depicted over T14 filaments
in this figure. As can be seen, GFiF detects the most prominent
(dense) filaments among the ones in T14.

7.3. Comparison with KDE density maps

In order to validate the results from GSyF and GFiF algorithms
and specifically to corroborate the densities, we performed an
independent analysis of the galaxies in the MSCC 310 volume
using the KDE method, as described in Sect. 3.6. A quantitative
comparison in the space between the 3D KDE and the skele-
ton structures is left for upcoming works. Here, we restricted
our analysis to 2D projections (density maps) of the 3D KDE
(XY, XZ,YZ). For this analysis we used kernels of 1 Σ in size
(see Sect. 3.6). Since each kernel is created based on the VT
cell, we used dbas as a baseline density. We selected those regions
for which dKDE > dbas in the RA × Dec projected density map.
Subsequently, we compared the position of the density peak of
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Fig. 7. Projected distribution in the sky of
systems detected by GSyF. Top: systems
detected for the MSCC 310 (UMa super-
cluster). Bottom: systems detected for the
MSCC 295 (Coma supercluster). The sys-
tem radii are shown as circles of r =
Rvir. For comparison, the positions of sys-
tems reported by MSPM, T11, C4, L14,
and Abell catalogs are depicted by color
points: blue, green, pink, cyan, and red,
respectively.

each region against the centroids of the 122 GSyF systems. We
found that 93 GSyF systems with N j ≥ 10 (76%) match density
peaks above 3 dbas. The remaining 29 GSyF systems (24%) are
identified with density peaks in the range (1−3) dbas. Moreover,
we observe that the filament edges connect these density peaks
forming chains of overdensity regions. Figure 10 (top panel)
shows the systems detected by GSyF represented by circles of
r = Rvir over the galaxy density distribution as measured using
KDE in a RA × Dec projection. The bottom panel of Fig. 10
shows the filaments overlaid on the KDE density map for the
MSCC 310 volume. The density maps are set in terms of the
mean number density.

8. Filament properties

8.1. Main properties of the filaments

In a similar way as described for MSCC 310, we applied the
GFiF algorithm to the 46 superclusters of our sample, detect-

ing a total of 144 filaments in 40 superclusters which are listed
in Table 7. This table also lists the parameters used or mea-
sured by GFiF. The process of filtering the connections can
be followed through columns 5–10. The list of detected fila-
ments for all studied supercluster volumes can be consulted in
Table A.1, in the same format as in Table 5. The MSCC 75,
MSCC 76, MSCC 264, MSCC 441, MSCC 579 and MSCC 586
superclusters have not been evaluated with GFiF due to the
sparseness of the SDSS coverage in these sky areas.

The filament skeletons detected by GFiF have lengths of
between 9 and 130 h−1

70 Mpc. Figure 11 depicts the length dis-
tribution for all the detected filaments. The distribution shows
that the majority of the structure lengths range from 10 to
40 h−1

70 Mpc. There are two structures longer than 100 h−1
70 Mpc.

The first is the filament of 130 h−1
70 Mpc in length located

in MSCC 323, which contains the Abell clusters A1449 B
and A1532 A, and the second, of 105 h−1

70 Mpc, is located in
MSCC 335, which contains A1478 A, A1480 B, and A1486 A.

A31, page 16 of 26

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936397&pdf_id=7


I. Santiago-Bautista et al.: Identification of filamentary structures in the Local Universe

101 102

GSyF Nmem

101

102

ca
ta

lo
g 

N
m

em

T11
C4
MSPM

Fig. 8. Comparison of MSCC 310 supercluster GSyF system richness
against the richness measured by other catalogs for the matching sys-
tems. Symbol colors are the same as the ones in Fig. 7. The dashed line
represents the identity.

[deg]

[M
pc

]
Z 

 [h
70

 M
pc

]
-1

Fig. 9. Comparison of GFiF filaments for the MSCC 310 supercluster
to the T14 filaments in the same region for the SDSS-DR8. Gray lines
are T14 filaments. Colored lines depict filaments identified in this work.

Excluding these two particular cases, we observe that the mean
length of the filaments is about 37 h−1

70 Mpc while the median cor-
responds to 29 h−1

70 Mpc.

8.2. Distribution of galaxies along the filaments

In order to evaluate the environment within the filaments, we
extracted longitudinal profiles of number density. Figure 12
shows the longitudinal distribution of galaxies for all bridges,
from one extreme to the other (ending systems), in the super-
cluster MSCC 310. We observe that the density of galaxies is
higher near the ends of the bridges, as expected, and decreases
through the midpoint between systems. We then proceeded to
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Fig. 10. Top: RA×Dec projected density map as measured from 3D-
KDE with 1Σ in terms of the density contrast. The GSyF systems are
represented by white circles with radius scaled to the estimated Rvir.
Bottom: RA×Z projection. The filaments detected in this work are over-
laid in color. Density is represented following the color scale displayed
on the right, where denser regions are redder and less dense zones are
bluer.

extract density profiles for bridges, from the systems to the mid-
point, by counting the galaxies that lie within a cylinder of radius
1 h−1

70 Mpc with the medial skeleton set by the bridge skeleton.
The galaxies are counted in slices of size ∆d = 0.5 h−1

70 Mpc
along the skeleton axes. We also calculated the longitudinal pro-
files after excluding the galaxies belonging to systems (consid-
ered at 1.5 Rvir) from their bridges in order to determine pure
filament profiles. These profiles allow us to evaluate the mean
density contrast of the filaments as compared with the back-
ground density. In Fig. 13 we show the longitudinal number den-
sity profile for all filaments detected in our sample. The stacked
longitudinal profile including galaxies in systems is depicted by
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Table 7. Summary of the properties of the filaments detected by GFiF for the superclusters in Table 1.

MSCC f Ncut Dmax Nedges Nlinks Ntrees Nske Nbrid Ntend Nmin Fraction (%) of systems in Ngfil Filling factor (%)
ID Filaments Bridges Isolated Vfil/V Ngfil/N

Nsfil/Nsys Nspair/Nsys Nsout/Nsys

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

55 10 81 6 7 6 2 2 0 0 10 63.6 0.0 36.4 121 0.2 14.9
72 16 121 8 29 28 6 4 1 1 8 56.7 6.7 36.7 829 1.0 42.7
175 29 86 14 36 29 4 4 0 0 6 57.7 0.0 42.3 507 0.9 20.2
184 27 78 15 29 13 2 2 0 0 6 57.1 0.0 42.9 218 0.6 10.4
211 16 93 12 29 22 2 1 0 1 5 100.0 0.0 0.0 233 1.0 15.7
219 27 71 17 65 36 3 2 2 −1 5 72.2 22.2 5.6 279 1.1 14.6
222 15 124 16 84 43 5 2 0 3 4 44.4 0.0 55.6 97 0.2 5.2
223 15 52 18 31 19 2 1 0 1 4 75.0 0.0 25.0 11 0.1 1.4
229 16 116 19 93 44 8 1 1 6 4 37.5 25.0 37.5 32 0.1 1.7
236 32 270 9 124 94 11 7 2 2 18 55.3 8.5 36.2 1600 0.8 18.5
238 26 320 18 215 115 20 6 3 11 6 39.0 10.2 50.8 544 0.4 6.5
248 21 60 20 47 20 3 1 0 2 5 50.0 0.0 50.0 159 0.9 12.6
266 22 44 16 20 12 1 1 0 0 5 71.4 0.0 28.6 132 0.7 13.8
272 16 86 6 14 14 3 2 0 1 8 90.0 0.0 10.0 453 0.9 32.8
277 15 183 11 77 62 6 2 0 4 5 62.5 0.0 37.5 611 1.0 22.2
278 16 495 7 378 256 20 5 1 14 19 58.1 4.7 37.2 2144 1.6 27.1
283 23 101 16 32 21 5 3 0 2 4 44.4 0.0 55.6 263 0.5 11.3
295 14 1022 5 478 398 38 4 5 29 26 43.1 19.6 37.3 2992 1.0 20.9
310 16 768 8 334 273 34 9 7 18 10 52.7 12.7 34.5 2817 1.0 22.9
311 25 211 10 49 37 5 4 0 1 7 43.6 0.0 56.4 1118 0.8 21.2
314 14 40 8 13 7 2 2 0 0 7 50.0 0.0 50.0 112 0.7 20.1
317 15 56 17 56 31 3 2 1 0 5 61.5 15.4 23.1 63 0.5 7.5
323 22 151 16 46 29 5 2 2 1 4 26.3 10.5 63.2 239 0.5 7.2
333 19 104 11 39 28 6 3 1 2 7 45.8 8.3 45.8 282 0.6 14.3
335 23 135 13 108 65 8 3 0 5 8 52.9 0.0 47.1 478 1.1 15.4
343 11 244 7 51 33 5 3 1 1 7 34.5 6.9 58.6 335 0.4 12.5
360 38 58 20 54 23 4 3 0 1 6 47.6 0.0 52.4 218 0.8 9.9
386 9 362 7 165 120 20 4 2 14 9 60.6 12.1 27.3 636 0.7 19.5
407 16 70 18 49 20 3 1 0 2 4 50.0 0.0 50.0 101 0.7 9.0
414 9 1211 6 462 386 47 15 12 20 9 42.4 16.7 41.0 2232 0.8 20.5
419 15 115 11 39 22 5 3 3 −1 5 28.6 17.1 54.3 254 0.3 14.7
422 18 59 19 35 10 1 1 0 0 4 37.5 0.0 62.5 11 0.0 1.0
430 20 80 12 35 22 5 4 1 0 6 58.3 8.3 33.3 186 0.5 11.6
440 15 229 10 56 36 8 1 2 5 5 20.7 13.8 65.5 184 0.2 5.3
454 15 380 6 164 117 15 5 4 6 13 45.9 13.1 41.0 1516 1.2 26.6
457 21 194 9 80 68 7 6 0 1 8 66.7 0.0 33.3 1525 1.9 37.5
460 22 159 14 102 65 6 4 1 1 5 65.9 4.5 29.5 895 1.4 25.6
463 16 529 8 230 183 27 11 8 8 8 47.2 12.8 40.0 2228 1.1 26.3
474 15 495 5 245 209 20 7 3 10 16 48.0 12.0 40.0 1918 0.9 25.8
484 22 60 16 13 9 1 1 0 0 4 44.4 0.0 55.6 109 0.6 8.3

Notes. The columns in the table are as follows: (1) ID of the supercluster in MSCC; (2) segmentation parameter f ; (3) number of detected HC
groups in the supercluster box; (4) linking length (Dmax) used to connect HC groups; (5) number of detected edges; (6) number of filtered links;
(7) number of trees detected after applying MST; (8) final number of filaments, Nske; (9) number of isolated bridges, Nbrid; (10) number of tendrils,
Ntend; (11) minimum richness we considered for GSyF systems to be taken as ends of the bridges; (12) fraction of these systems included in the
GFiF filaments; (13) fraction of these systems included in isolated bridges; (14) fraction of these systems not connected by bridges; (15) number
of galaxies hosted in the GFiF filaments, Ngfil; (16) filling factor calculated as Vfil/V; (17) filling factor calculated as Ngfil/N.

a blue line. The dispersion about the stacked profile is repre-
sented by a blue shaded area. The pure profiles (excluding the
galaxies of the systems) is represented by the red line, and its
corresponding dispersion by a red shaded area. As can be seen,
the mean density contrast along the filament is ∼10, that is, the
filament is about ten times denser than background.

8.3. Transversal density profiles

For the calculation of transversal density profiles, we excluded
the galaxies located in systems and within a radius of 1.5 Rvir.

The density profile is calculated as described in Sect. 3.7. The
cylinder radius Rcy was set from 0 up to 10 h−1

70 Mpc in steps of
∆Rcy = 0.5 h−1

70 Mpc.
We computed the galaxy number density profile for filaments

in two ways. First we counted the number of galaxies within
concentric cylinders and divided them by the volume within the
cylinders. We refer to this as the local number density profile.
For the second, we employed the number densities calculated
using the VT di, as described in Sect. 3.1. We then measured
the mean VT number density within concentric cylinders. The
local number density and VT number density profiles are scaled
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Fig. 11. Distribution of filament skeleton length for the 144 filaments
detected by GFiF. The length used corresponds to the longest path
between the systems at the extremity of the filament. See Table A.1.
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1.0.

in density contrast and stacked together. Figure 14 shows the
stacked profile for all filaments detected by GFiF, for local den-
sities (top panel) and VT densities (bottom panel), respectively.
The first aspect to note is that local number density profiles are
smoother, although in general both mean profiles are similar. We
can observe in both local and VT density profiles that overden-
sity extends up to 5 h−1

70 Mpc. At about 3 h−1
70 Mpc, the overden-

sity reaches a value of around 3, while the typical characteristic
density contrast of 10 is reached closer to 2 h−1

70 Mpc.
Finally, we used the density profiles to estimate the mean

radius of the filaments Rfil. This was achieved by considering the
intersection point at which the local density profile crosses the
10 × d line, as indicated in Fig. 14 by the black solid line. The
mean radius as well as the mean density of each filament is noted
in Table A.1.

Figure 15 (top panel) presents the radii distribution for all
the filaments. The filament radii range from 0.6 to 4.5 h−1

70 Mpc
with a mean value of 2.4 h−1

70 Mpc. The bottom panel of the figure
depicts the filament radius as a function of the filament length.
We observe that the filament length does not correlate with the
filament radius. However, it is important to note that the radius
varies slightly around the mean value along the filament path.

9. Properties of galaxies in filaments

9.1. Stellar mass profile

We constructed a galaxy stellar mass profile for all filaments by
using the masses from the MPA-JHU group (Brinchmann et al.
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Fig. 13. Longitudinal VT density distribution for galaxies in all bridges
of filaments detected by GFiF. Profiles are considered from the system
center to the middle of the bridge. The thick blue line depicts the mean
longitudinal profile for bridges including galaxies in systems. The thick
red line corresponds to the mean longitudinal profile for all filaments
excluding galaxies belonging to systems within 1.5 Rvir. Blue and red
shaded areas are the dispersion around the stacked profile.

2004; Kauffmann et al. 2003; Tremonti et al. 2004) described in
Sect. 2.2. First, we weighted the mass by the average mass of the
volume under analysis to remove the redshift dependence of the
stellar mass (Chen et al. 2017). This weighting is equivalent to
a normalization of the stellar mass and allows us to carry out a
stacking procedure in order to increase the signal of the profiles.
This mass profile is extracted as described in Sect. 3.7.

Figure 16 shows the stacked stellar mass profile for all fil-
aments. The variance of the stacked profile is depicted by the
error bars. We observe that, statistically, the stellar masses of
the filament galaxies are larger than the average mass up to
about 2 h−1

70 Mpc, while beyond 3 h−1
70 Mpc they tend to be 10%

smaller. This region, farther than 3 h−1
70 Mpc, probably represents

the dispersed population of the supercluster associated to the
more extended sheet component. Therefore, our results indi-
cate that the stellar mass correlates with the distance to the fil-
ament skeleton, and is greater (up to 25%) near the skeleton
than far from it. These results are in good agreement with the
results presented by Chen et al. (2017) for the MGS sample from
DR7 (Abazajian et al. 2009). Our results are also compatible
with those presented by Alpaslan et al. (2016) and Kraljic et al.
(2018), for the GAMA spectroscopic survey, who find simi-
lar trends for the filaments found at redshifts z < 0.09 and
0.03 ≤ z ≤ 0.25, respectively.

9.2. Morphological type

In order to decipher whether or not there is some morpholog-
ical trend in the population of filament galaxies (as may be
expected from the morphology–density relation), we also con-
structed morphology profiles based on morphological classifica-
tions by Huertas-Company et al. (2011). These profiles classify
the galaxies into four morphological types. For our analysis,
we used the probability p(Early) = p(E) + p(S0) that classi-
fies galaxies into early type as p(Early) > 0.5 and late type
as p(Early) < 0.5. We then computed the distribution of both
galaxy types as a function of the distance to the filament skele-
ton. The distributions were normalized so that they can be
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Fig. 14. Stacked number density profiles for the 144 filaments iden-
tified by GFiF. Individual profiles are represented by thin gray lines.
Top: the red lines corresponds to the mean local density (stacked)
profile. Bottom: mean VT density stacked profile. The solid line
indicates the mean profile while the shaded area represents the dis-
persion of the profile. Solid black line depicts the density contrast
of 10 × d.

compared and stacked for all filaments in our sample in a similar
way to a profile extraction, again excluding galaxies in systems.
The result is shown in Fig. 17.

Our results show that the fraction of early-type galaxies is
higher than that of late types near the filament skeleton up to
∼2 h−1

70 Mpc. This effect is more discernible when computed as
an early-to-late-type ratio (Fig. 17, bottom panel). We observe
that at distances shorter than 2 h−1

70 Mpc, the fraction of early
types reaches almost twice the fraction of late types. At greater
distances (i.e., towards the dispersed supercluster population)
the fractions tend to be similar (E/S ratio ∼1). A two-sample
Kolmogorov-Smirnov test applied to the distributions of early
and late types in Fig. 17 reveals that, for the first bins, they are
significantly different (p-value lower than 0.1). Our results are
consistent with those presented by Kuutma et al. (2017) for the
Huertas-Company et al. (2011) sample – these latter authors also
observe that early-type galaxies are more abundant near the fila-
ment skeleton.
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Fig. 15. Top: distribution of radius of filaments in our sample. Bottom:
comparison of filament length and radius for the 144 filaments detected
by GFiF. The length used corresponds to the longest path between a pair
of systems, that is, the skeleton length. See Table A.1.
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Fig. 16. Stacked transversal stellar mass profile for the 144 filaments
detected by GFiF. Errors correspond to the variance of the stacked pro-
files.

9.3. Activity type

We used the activity classification from the MPA-JHU group
(Brinchmann et al. 2004; Kauffmann et al. 2003; Tremonti et al.
2004) described in Sect. 2.2 for the analysis with respect
to activity type. We computed the distribution of the differ-
ent galaxy activity populations as a function of the filament
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Fig. 17. Top: stacked transversal morphological type profiles for the 144
filaments detected by GFiF. The error bars correspond to the variance
of the stacked profiles. Bottom: early-to-late-type ratio as a function of
the distance to the filament skeleton.

skeleton distance. All distributions are normalized for all fila-
ments and stacked together.

Figure 18 divides galaxies into four activity groups: active
galactic nuclei (AGNs), star-forming galaxies (SFGs), low-
ionization nuclear emission-line region galaxies (LINERs), and
inactive galaxies (unclassified). The error bars are not displayed
over the lines for the purpose of clarity – note that they are very
large, implying that we have to interpret this figure with cau-
tion. Another effect to take into account is that the fractions are
averaged over all the filaments (at different redshifts). The most
evident tendency we can see in these distributions is a decrease
in the activity as long as the galaxies “approach” the filament,
although the fractions for the dispersed component are particular
noisy. Inside the filaments, the tendency is to have more passive
galaxies, implying again smaller fractions of AGNs and SFGs.
However, the fraction of LINERs also increases towards the fila-
ment skeletons, possibly indicating a post-activity phase for the
galaxies. Deeper analyses are necessary to give a clear picture of
the effect of the filament environment on the activity of galaxies.

10. Conclusions

In this paper we studied the bridges and filaments of galaxies
in the environment of superclusters of galaxies. We developed
two algorithms, the Galaxy System-Finding algorithm, GSyF,
and the Galaxy Filament-Finding algorithm, GFiF, to detect sys-
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Fig. 18. Stacked transversal activity type profiles for the 144 filaments
detected by GFiF. The black bar on the left represents the typical errors
on the stacked profiles, not overlaid for clarity.

tems of galaxies (clusters and groups), aiming especially to cor-
rect for the FoG effect, and to identify the elongated bridges and
filaments mentioned above. These algorithms were applied to a
sample of SDSS galaxies with spectroscopic redshifts in rectan-
gular boxes enclosing 46 superclusters of galaxies selected from
the MSCC catalog in a redshift range from 0.02 to 0.15.

GSyF and GFiF employ a set of different classic pattern-
recognition methods. Both of them are probabilistic in the sense
that they define systems and filaments as a function of the rela-
tive position and orientation of the Gaussian groups, which are
detected with a hierarchical clusterization method. For GSyF,
the membership of the Gaussian groups is refined using a virial
approximation, allowing us to discern gravitationally bound sys-
tems of galaxies from misdetections. For GFiF, these measure-
ments are used to define a general tree from which we extract
independent structures based on density criteria. Although the
HC algorithm needs to be optimized for the number of cluster-
ing groups, this can be automatized based on the density function
characterizing the survey. The structures are represented by a fil-
ament skeleton that allows us to measure and quantitatively trace
the filament path.

We show (Sect. 7.1) that the systems detected by our method-
ology are in good agreement with those reported in the literature.
Specifically, our comparisons of the systems sample with other
cluster and group catalogs (Abell, C4, L14, T11 and MSPM)
showed a match rate above 78% for groups with richness above
five galaxies at redshifts z < 0.11. For systems with richness
above ten galaxies the coincidences were slightly higher for the
group catalogs (T11 and MSPM) and were slightly lower for the
cluster catalogs (Abell and C4). Moreover, the richness, velocity
dispersion and virial radius of systems measured by the GSyF
algorithm are in good agreement with those reported in other
system catalogs. Our GSyF algorithm detected a total of 2705
systems in the rectangular boxes enclosing the volumes of 45
of the superclusters in our sample. Of these, 159 systems with
richness above ten galaxies have not yet been reported in the lit-
erature3.

3 Data on these systems are available at the CDS.
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We also compared, in Sect. 7.2, the results of our filament-
finding algorithm with those of Tempel et al. (2014) for the same
regions. We observe that T14 filaments are shorter, more numer-
ous, and describe sparser and finer structures while GFiF detects
larger and denser elongated structures that bridge galaxy sys-
tems. Our filaments, in some sense, link several T14 threads,
forming one larger structure, providing a broader picture of the
filament. The comparison with isolated bridges and tendrils (a
byproduct of our algorithm) shows a match of 80% with T14
filaments and comparable filament lengths.

The GFiF algorithm detected a total of 144 filaments and 63
isolated bridges in the rectangular boxes enclosing the volumes
of 40 of the superclusters in our sample. The supercluster fila-
ments we detected have lengths from 9 up to 130 h−1

70 Mpc (mean
37 h−1

70 Mpc, median 29 h−1
70 Mpc) while the isolated bridges have

lengths of between 5 and 15 h−1
70 Mpc. These values are con-

sistent with the median bridge length value from Kraljic et al.
(2019), 7.9 h−1

70 Mpc, for the horizon-AGN simulation.
For most of the cases, the numerical density inside the fila-

ments was found to be between 5 and 15 times the mean den-
sity. The radii of the filament skeletons range from 0.6 up to
4.5 h−1

70 Mpc, with most being between 2 and 3 h−1
70 Mpc. These

values are consistent with those found by Cautun et al. (2013)
by applying the NEXUS algorithm to an N-body simulation.

We also compared the properties of the galaxies that inhabit
the filament as a function of the distance from its skeleton. Our
conclusions can be summarized as follows: (i) The transversal
local and VT number density profiles for pure filaments show
that, at distances of up to 5 h−1

70 Mpc, the filaments have a pos-
itive overdensity with respect to the background density inside
the boxes. (ii) At distances of about 3 h−1

70 Mpc, the density con-
trast reaches a value of 3, a limit that matches the range where
typically the environmental effects studied in Sect. 9 seem to
apply. (iii) The mean density contrast of the filaments, 10, is
reached closer to 2 h−1

70 Mpc, a limit that we used as reference
for estimating the radius of the filaments.

Our analyses regarding the stellar masses, morphological
type, and activity type show that these galaxy properties cor-
relate with the distance from the filament skeleton. We arrive at
the following conclusions: (i) Inside 3 h−1

70 Mpc from the filament
skeleton the galaxy stellar masses increase up to about 25%. This
result leads to two hypotheses: (a) the mass growth of the galax-
ies is sensitive to the environment, or (b) the dynamical evolu-
tion brings massive galaxies into the potential well of the fila-
ments. This result confirms several analyses which suggest that
stellar masses are sensitive to the environment (Alpaslan et al.
2015, 2016; Poudel et al. 2016; Chen et al. 2017; Malavasi et al.
2017; Kraljic et al. 2018; Musso et al. 2018). (ii) The early-to-
late-type-galaxy ratio has its maximum at the center of the fila-
ment and remains above 1:1 up to a distance of 1.5 h−1

70 Mpc. This
result is in close agreement with a similar study by Kuutma et al.
(2017) for the SDSS. (iii) Concerning the activity type, we
observe that the fractions of AGNs and SFGs seem to be higher
outside the filaments (in the supercluster dispersed component),
showing a decrease as the galaxies approach these structures.
Inside the filaments, the fractions of inactive galaxies and LIN-
ERs increase, indicating a possible post-activity phase. A similar
result for the star-forming galaxies was observed by Kraljic et al.
(2018) for the GAMA spectroscopic survey.

The GSyF and GFiF algorithms can be used to search for
these kinds of structures in different surveys, using spectro-
scopic or photometric redshifts. We plan to apply them to other
galaxy databases, like the ones that are becoming available for

the southern celestial hemisphere, and also, to galaxy surveys
that reach deeper redshifts. Both algorithms and catalogs can be
obtained electronically upon request.
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Appendix A: Additional table

Table A.1. Main properties of the filaments extracted through GFiF.

Fil. Nsfil Ngfil Redshift dfil Rfil Nnod `fil

ID systems gals. [mean, min, max] [h3
70 Mpc−3] [h−1

70 Mpc] Filament Skeleton [h−1
70 Mpc]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MSCC-55-F1 4 119 0.0619 0.0529 0.0706 0.1570 4.31 3 2 10.5
MSCC-55-F2 3 2 0.0585 0.0527 0.0680 0.1911 0.60 2 2 9.7
MSCC-72-F1 5 257 0.0790 0.0722 0.0868 0.5636 3.57 6 6 28.4
MSCC-72-F2 4 217 0.0801 0.0718 0.0866 0.3688 3.46 5 5 24.6
MSCC-72-F3 5 215 0.0777 0.0717 0.0839 0.3043 3.89 6 5 19.5
MSCC-72-F4 3 140 0.0850 0.0787 0.0917 0.2012 3.49 4 4 26.5
MSCC-175-F1 6 156 0.0912 0.0841 0.0996 0.1541 3.08 8 6 41.8
MSCC-175-F2 3 159 0.0978 0.0885 0.1032 0.2260 3.19 3 3 35.0
MSCC-175-F3 3 87 0.0937 0.0883 0.1001 0.1714 1.79 5 4 47.4
MSCC-175-F4 3 105 0.0923 0.0867 0.0995 0.2184 2.86 3 3 37.5
MSCC-184-F1 5 157 0.1071 0.0994 0.1171 0.0488 2.88 8 5 49.3
MSCC-184-F2 3 61 0.0980 0.0911 0.1029 0.0838 3.09 3 3 39.5
MSCC-211-F1 3 233 0.1205 0.1100 0.1297 0.0465 4.46 13 8 27.9
MSCC-219-F1 10 275 0.1125 0.1063 0.1207 0.1169 2.96 17 6 81.8
MSCC-219-F2 3 4 0.1235 0.1183 0.1287 0.0347 0.79 3 3 40.2
MSCC-222-F1 3 89 0.1422 0.1311 0.1522 0.0418 1.87 14 8 70.0
MSCC-222-F2 5 8 0.1349 0.1238 0.1460 0.0461 0.70 11 8 78.8
MSCC-223-F1 3 11 0.1367 0.1286 0.1472 0.0245 0.86 12 8 48.7
MSCC-229-F1 3 32 0.1445 0.1361 0.1514 0.0389 1.96 9 6 63.1
MSCC-236-F1 5 231 0.0324 0.0228 0.0415 0.3382 1.49 16 9 39.3
MSCC-236-F2 4 324 0.0411 0.0361 0.0461 0.2409 2.65 7 6 38.5
MSCC-236-F3 5 286 0.0331 0.0274 0.0399 0.4889 2.62 8 5 20.0
MSCC-236-F4 3 150 0.0296 0.0255 0.0364 0.3971 2.24 5 4 19.6
MSCC-236-F5 3 188 0.0354 0.0286 0.0422 0.4448 2.47 5 5 20.8
MSCC-236-F6 3 318 0.0330 0.0276 0.0373 2.3032 2.66 2 2 16.8
MSCC-236-F7 3 103 0.0333 0.0297 0.0391 0.4359 1.53 4 3 16.4
MSCC-238-F1 5 174 0.1190 0.1075 0.1309 0.0558 2.95 11 7 85.3
MSCC-238-F2 6 201 0.0915 0.0802 0.1010 0.0928 2.98 14 10 76.1
MSCC-238-F3 3 155 0.1054 0.0979 0.1115 0.0782 2.64 11 8 99.0
MSCC-238-F4 3 3 0.0957 0.0896 0.1024 0.1467 0.71 3 3 28.6
MSCC-238-F5 3 4 0.1016 0.0934 0.1099 0.0285 0.67 3 2 32.5
MSCC-238-F6 3 7 0.1096 0.1040 0.1156 0.0398 0.88 4 3 30.4
MSCC-248-F1 3 159 0.1256 0.1161 0.1355 0.0895 3.35 10 7 82.1
MSCC-266-F1 5 132 0.1282 0.1188 0.1344 0.0366 2.94 9 8 75.8
MSCC-272-F1 6 374 0.0752 0.0694 0.0808 0.8405 2.93 6 4 17.5
MSCC-272-F2 3 79 0.0757 0.0714 0.0814 0.1245 2.66 4 3 10.3
MSCC-277-F1 10 384 0.1124 0.1031 0.1208 0.1268 2.99 21 11 89.3
MSCC-277-F2 5 227 0.1053 0.0956 0.1135 0.0805 2.93 16 10 69.0
MSCC-278-F1 7 956 0.0328 0.0251 0.0398 0.9871 2.41 36 14 56.3
MSCC-278-F2 3 292 0.0322 0.0273 0.0361 0.4963 1.70 24 13 20.8
MSCC-278-F3 4 145 0.0319 0.0266 0.0386 0.3810 1.18 14 7 24.4
MSCC-278-F4 8 629 0.0254 0.0221 0.0298 1.0335 1.86 27 10 36.9
MSCC-278-F5 3 122 0.0348 0.0297 0.0387 0.4401 1.76 7 6 11.1
MSCC-283-F1 4 165 0.1339 0.1245 0.1470 0.0701 3.96 7 4 47.7
MSCC-283-F2 5 94 0.1364 0.1284 0.1465 0.0655 3.26 6 5 49.1
MSCC-283-F3 3 4 0.1357 0.1296 0.1496 0.0397 0.96 2 2 24.2
MSCC-295-F1 7 1020 0.0230 0.0160 0.0284 2.1243 1.89 37 28 44.6
MSCC-295-F2 7 1289 0.0228 0.0158 0.0299 2.2694 2.37 34 12 18.2

Notes. (1) ID of the filament; (2) number of systems detected by GSyF linked by the filament; (3) number of galaxies attributed to the filament;
(4)–(6) mean, min. and max. redshift of the filament; (7) mean galaxy number density inside the filament; (8) mean transversal radius of the
filament measured at 10× d; (9) and (10) number of nodes that constitute the filament and its central skeleton; (11) length of the filament skeleton.
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Table A.1. continued.

Fil. Nsfil Ngfil Redshift dfil Rfil Nnod `fil

ID systems gals. [mean, min, max] [h3
70 Mpc−3] [h−1

70 Mpc] Filament Skeleton [h−1
70 Mpc]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MSCC-295-F3 4 497 0.0232 0.0189 0.0283 0.5824 1.36 44 17 26.5
MSCC-295-F4 4 186 0.0218 0.0188 0.0255 0.6254 1.83 10 9 30.8
MSCC-310-F1 10 499 0.0609 0.0518 0.0689 0.4180 2.81 18 11 61.6
MSCC-310-F2 8 523 0.0502 0.0443 0.0588 0.5210 2.84 22 11 51.8
MSCC-310-F3 7 407 0.0481 0.0427 0.0528 0.3486 2.50 19 10 49.0
MSCC-310-F4 8 313 0.0656 0.0585 0.0710 0.4263 2.46 14 10 59.0
MSCC-310-F5 7 325 0.0700 0.0642 0.0774 0.5303 2.60 13 7 47.6
MSCC-310-F6 6 243 0.0725 0.0651 0.0791 0.2986 1.97 12 9 39.3
MSCC-310-F7 4 219 0.0551 0.0479 0.0619 0.4062 2.76 7 5 20.7
MSCC-310-F8 4 164 0.0546 0.0485 0.0617 0.2118 2.22 9 7 33.7
MSCC-310-F9 4 124 0.0464 0.0437 0.0528 0.1464 1.13 9 6 17.9
MSCC-311-F1 13 607 0.0813 0.0753 0.0892 0.2812 3.54 14 9 74.5
MSCC-311-F2 5 254 0.0847 0.0769 0.0937 0.3235 3.69 4 3 23.5
MSCC-311-F3 3 138 0.0888 0.0821 0.0937 0.1900 4.32 2 2 15.3
MSCC-311-F4 3 119 0.0826 0.0746 0.0901 0.2447 3.58 2 2 19.5
MSCC-314-F1 4 46 0.0819 0.0769 0.0893 0.1201 1.88 4 4 29.6
MSCC-314-F2 3 66 0.0777 0.0715 0.0844 0.1610 2.78 2 2 12.3
MSCC-317-F1 4 55 0.1331 0.1224 0.1417 0.0282 1.73 15 10 71.7
MSCC-317-F2 4 8 0.1187 0.1102 0.1264 0.0528 0.69 10 7 75.5
MSCC-323-F1 7 223 0.1380 0.1262 0.1540 0.0436 3.73 14 11 129.3
MSCC-323-F2 3 16 0.1383 0.1309 0.1535 0.0261 1.66 5 4 29.4
MSCC-333-F1 3 82 0.0760 0.0723 0.0833 0.1205 2.36 5 4 29.8
MSCC-333-F2 4 117 0.0803 0.0752 0.0880 0.1519 2.83 5 4 24.5
MSCC-333-F3 4 83 0.0794 0.0729 0.0835 0.2052 2.46 5 5 34.6
MSCC-335-F1 10 345 0.0779 0.0705 0.0843 0.1260 2.60 21 11 105.0
MSCC-335-F2 4 22 0.0665 0.0613 0.0731 0.0650 0.75 9 8 83.8
MSCC-335-F3 4 111 0.0762 0.0712 0.0814 0.1113 2.45 6 4 45.9
MSCC-343-F1 4 115 0.0822 0.0786 0.0874 0.1394 2.51 7 6 28.7
MSCC-343-F2 3 95 0.0798 0.0733 0.0876 0.2638 2.50 3 3 19.3
MSCC-343-F3 3 125 0.0824 0.0738 0.0876 0.1991 2.65 6 5 15.6
MSCC-360-F1 4 182 0.1050 0.0967 0.1159 0.1367 2.95 9 6 60.8
MSCC-360-F2 3 31 0.1074 0.1004 0.1152 0.0870 1.52 6 4 49.3
MSCC-360-F3 3 5 0.1033 0.0973 0.1093 0.0416 1.46 3 2 29.9
MSCC-386-F1 7 346 0.0734 0.0657 0.0805 0.4163 2.91 18 10 34.0
MSCC-386-F2 4 115 0.0708 0.0636 0.0765 0.1969 1.92 10 8 39.6
MSCC-386-F3 5 129 0.0627 0.0591 0.0705 0.1760 1.56 13 10 43.2
MSCC-386-F4 4 46 0.0617 0.0594 0.0664 0.1703 0.92 7 6 21.3
MSCC-407-F1 5 101 0.1388 0.1254 0.1468 0.0177 3.61 10 6 59.2
MSCC-414-F1 4 420 0.0626 0.0537 0.0691 0.6269 2.51 19 9 38.1
MSCC-414-F2 6 243 0.0628 0.0548 0.0667 0.3793 2.54 12 7 34.0
MSCC-414-F3 6 240 0.0750 0.0688 0.0809 0.5198 2.53 12 7 27.1
MSCC-414-F4 5 196 0.0641 0.0585 0.0675 0.3705 2.52 10 5 13.5
MSCC-414-F5 4 243 0.0748 0.0684 0.0810 0.4251 2.53 10 8 22.1
MSCC-414-F6 3 126 0.0657 0.0613 0.0701 0.3368 2.01 7 6 22.9
MSCC-414-F7 3 118 0.0616 0.0576 0.0647 0.2329 1.97 10 5 14.1
MSCC-414-F8 3 72 0.0657 0.0603 0.0722 0.1197 1.82 7 6 29.9
MSCC-414-F9 4 116 0.0663 0.0594 0.0726 0.3001 2.50 5 5 22.9
MSCC-414-F10 4 107 0.0546 0.0518 0.0590 0.4163 1.99 6 6 29.9
MSCC-414-F11 5 147 0.0616 0.0589 0.0657 0.1262 1.64 14 8 35.1
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Table A.1. continued.

Fil. Nsfil Ngfil Redshift dfil Rfil Nnod `fil

ID systems gals. [mean, min, max] [h3
70 Mpc−3] [h−1

70 Mpc] Filament Skeleton [h−1
70 Mpc]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MSCC-414-F12 3 14 0.0762 0.0696 0.0801 0.1126 0.66 4 4 9.8
MSCC-414-F13 4 66 0.0640 0.0614 0.0674 0.1692 1.94 4 4 19.2
MSCC-414-F14 4 93 0.0727 0.0686 0.0758 0.4275 1.78 7 6 23.6
MSCC-414-F15 3 31 0.0607 0.0563 0.0640 0.1070 1.80 3 3 9.0
MSCC-419-F1 3 130 0.1139 0.1084 0.1210 0.1849 4.03 2 2 12.8
MSCC-419-F2 3 88 0.1099 0.1044 0.1182 0.1816 3.20 2 2 18.1
MSCC-419-F3 4 36 0.1127 0.1080 0.1191 0.0693 1.79 5 4 25.2
MSCC-422-F1 3 11 0.1424 0.1321 0.1528 0.0291 0.95 8 6 45.0
MSCC-430-F1 4 151 0.0975 0.0880 0.1066 0.1391 2.78 7 4 39.2
MSCC-430-F2 4 23 0.0937 0.0867 0.0999 0.1684 1.50 5 4 41.1
MSCC-430-F3 3 12 0.0942 0.0891 0.1015 0.0691 1.89 2 2 21.2
MSCC-430-F4 3 104 0.1024 0.0973 0.1041 0.0225 3.24 2 2 18.3
MSCC-440-F1 6 184 0.1173 0.1074 0.1284 0.1550 2.93 8 6 50.2
MSCC-454-F1 13 687 0.0389 0.0334 0.0466 2.7338 2.39 23 13 63.5
MSCC-454-F2 6 498 0.0446 0.0377 0.0500 2.3032 2.57 20 9 29.1
MSCC-454-F3 3 146 0.0520 0.0464 0.0557 4.0214 2.48 3 3 9.3
MSCC-454-F4 3 146 0.0490 0.0425 0.0551 1.5093 2.42 3 3 12.8
MSCC-454-F5 3 39 0.0438 0.0424 0.0460 1.1194 0.83 3 3 8.6
MSCC-457-F1 19 908 0.0786 0.0709 0.0877 0.4021 3.37 23 11 78.4
MSCC-457-F2 8 256 0.0758 0.0673 0.0830 0.1594 2.69 12 8 52.5
MSCC-457-F3 6 179 0.0846 0.0768 0.0896 0.2454 2.48 7 5 30.6
MSCC-457-F4 3 92 0.0829 0.0757 0.0881 0.1691 2.80 3 3 22.2
MSCC-457-F5 3 77 0.0756 0.0676 0.0785 0.0982 1.97 3 3 16.8
MSCC-457-F6 3 13 0.0816 0.0779 0.0872 0.0649 0.74 3 3 23.3
MSCC-460-F1 12 536 0.1142 0.1067 0.1242 0.1862 3.61 17 9 69.3
MSCC-460-F2 6 214 0.1139 0.1043 0.1237 0.1195 3.62 9 6 57.9
MSCC-460-F3 6 82 0.1080 0.1003 0.1159 0.0695 2.55 6 5 59.7
MSCC-460-F4 5 63 0.1218 0.1155 0.1304 0.0522 2.51 7 5 27.6
MSCC-463-F1 9 489 0.0722 0.0652 0.0788 0.3732 2.77 16 10 57.4
MSCC-463-F2 6 352 0.0765 0.0699 0.0839 0.3129 2.67 15 10 39.0
MSCC-463-F3 11 313 0.0768 0.0696 0.0842 0.2787 2.27 13 11 73.6
MSCC-463-F4 3 234 0.0657 0.0585 0.0743 0.4589 2.77 5 4 20.8
MSCC-463-F5 5 192 0.0655 0.0600 0.0730 0.4039 2.08 10 8 41.9
MSCC-463-F6 7 233 0.0837 0.0775 0.0894 0.2868 2.56 7 6 36.9
MSCC-463-F7 4 8 0.0688 0.0654 0.0739 0.0878 0.68 8 7 26.8
MSCC-463-F8 4 119 0.0663 0.0628 0.0698 0.4765 2.59 6 4 12.5
MSCC-463-F9 4 99 0.0706 0.0660 0.0764 0.2416 1.87 6 5 31.9
MSCC-463-F10 3 83 0.0701 0.0651 0.0754 0.3595 2.05 4 3 12.7
MSCC-463-F11 3 106 0.0802 0.0748 0.0861 0.1864 2.64 4 4 14.8
MSCC-474-F1 3 881 0.0369 0.0300 0.0444 2.7548 2.63 13 5 10.5
MSCC-474-F2 5 407 0.0340 0.0296 0.0387 1.3043 2.06 13 7 23.4
MSCC-474-F3 3 147 0.0368 0.0318 0.0412 0.2423 1.98 9 8 16.5
MSCC-474-F4 3 176 0.0321 0.0284 0.0388 0.7372 1.75 7 5 16.5
MSCC-474-F5 3 114 0.0337 0.0292 0.0372 0.3332 1.51 10 6 17.2
MSCC-474-F6 4 193 0.0365 0.0324 0.0423 0.5697 1.90 6 6 15.3
MSCC-474-F7 3 330 0.0379 0.0328 0.0406 0.1777 2.54 10 7 28.3
MSCC-484-F1 4 109 0.1361 0.1243 0.1501 0.0130 3.89 7 6 54.6
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