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1 Introduction

The problem of constructing interacting theories of higher-spin (HS) gauge fields is notori-

ously difficult, especially at the level of the action (see e.g. [1, 2] for introductory reviews).

In fact, in dimensions four and higher the examples of fully nonlinear actions compatible

with the minimal coupling to the spin-two subsector are pretty scarce although such cubic

interaction vertices are known since a long time [3, 4]. On the one hand, for conformal HS

gravity there exists a perturbatively local action [5, 6] (see also [7]) in any even dimension,

whose low-spin truncation gives Maxwell and Weyl actions. Unfortunately, this action ex-

panded around conformally flat background is higher-derivative and thereby clashes with

pertubative unitary. On the other hand, nonlinear equations [8] of four-dimensional HS

(super)gravity are known since several decades (and their higher-dimensional bosonic ana-

logue [9] since more than a decade) but it was only recently that action functionals were

proposed [10, 11] (see also the review [12]) as an off-shell formulation of minimal bosonic

four-dimensional HS gravity. The action principles from [10, 11] share the unusual prop-

erty of being formulated in terms of differential forms on a base space of higher dimension

than the spacetime manifold itself. Another example of complete HS action is given by

four-dimensional chiral HS gravity (i.e. the HS extension of self-dual Yang-Mills and self-

dual gravity) in the light-cone formulation, both in flat [13, 14] and anti de Sitter [15]

spacetimes. However, note that this action is real only in Euclidean signature.

In dimensions three and two, the situation simplifies drastically because HS gauge fields

become topological. In the frame-like formulation, HS gravity theories without matter are

the smooth generalizations of their spin-two counterparts. In the absence of matter, HS

gauge field are described, on-shell, by a flat connection taking values in the HS algebra and,

off-shell, by either a Chern-Simons (CS) action in three dimensions or by a BF action in two

dimensions. More precisely, the HS extension of CS gravity with a negative cosmological

constant [16, 17] (respectively, of CS conformal gravity [18]) was provided in [19, 20] (re-

spectively, in [21, 22] for the conformal case) while the HS extension of Jackiw-Teitelboim

gravity [23–25] was proposed in [26–28] (see [29, 30] for the (super)conformal case).
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Let us stress that, in three dimensions, the inclusion of matter (in the fundamental

representation of the HS algebra) is known to reinstate the same level of intricacy as in

four dimensions. However, in two dimensions the same degree of simplicity happens to be

preserved if one includes a specific type of matter (motivated by holography): infinitely

many scalar fields with fine-tuned masses spanning the “twisted-adjoint” representation of

the HS algebra.

The HS symmetry in two (or three) dimensions is identified with the Lie algebra hs[λ],

originally introduced in [31, 32] (or, respectively, two copies thereof), where λ is a non-

negative real parameter. For integer values λ = N ∈ N, this HS algebra can be truncated

to the finite-dimensional algebra sl(N,R) and the corresponding spectrum is spanned by

gauge fields of spin 2, 3, . . . , N . However, the holographic duals of such type-N higher-spin

gravity theories appear to be non-unitary conformal field theories (CFT).

In any dimension, the HS algebra completely defines the kinematics of HS gravity

through several of its representations: singleton, adjoint, and twisted-adjoint. In the

two-dimensional case at hand, the singleton module encodes the boundary CFT1 fun-

damental degrees of freedom while the adjoint and twisted-adjoint modules lead, in the

two-dimensional bulk, to topological HS fields and massive scalar fields respectively [33].

Extending the original HS algebra hs[λ], via a product with the group Z2 generated by

an involutive automorphism (called “twist”), allows one to unify the gravity and matter

sector into a single framework. Moreover, the BF-type action associated to this extended

HS algebra provides a natural extension of the HS Jackiw-Teitelboim gravity, the lineariza-

tion of which reproduces the correct equations of motion for topological and local modes

dictated by symmetries. This is our main result. Note that, contrary to standard BF the-

ories, this BF-type higher-spin theory is not purely topological but includes propagating

matter fields. This is possible because the gauge algebra is a subtle smash product of an

infinite-dimensional Lie algebra with a finite group, thereby producing also fields in the

twisted-adjoint representation of hs[λ]. The latter representation decomposes into infinite-

dimensional irreducible representations of AdS2 isometry group corresponding to matter

fields with local degrees of freedom.

Prior to formulating the BF-type approach in the body of the text, it may be instruc-

tive to take a look at the problem of constructing higher-spin interactions in the metric-like

formulation in order to compare the two approaches. In any dimension, there is a wide class

of free gauge theories, including massless (or partially-massless) totally-symmetric fields of

arbitrary spins (and depths). For each corresponding gauge theory, formally valid in any

dimension d, one can try to set d = 2 everywhere in the various formulae (for the action,

for the gauge transformations, etc) and define “massless” (or “partially-massless”) fields

of given “spin” (and “depth”) in two dimensions as the resulting theories. In general, one

may argue that the corresponding free “higher-spin” gauge theories have no local degrees of

freedom, but at the same time, are non-trivial off-shell, i.e. their quadratic Lagrangians are

not total derivatives (see e.g. [34], appendix B).1 In fact, in two dimensions the only prop-

agating degrees of freedom are given by matter fields (either bosonic scalars or fermionic

1However, note the exceptional case of massless spin-2 fields for which the Fronsdal action is a total

derivative in two dimensions, in agreement with the fact that Einstein-Hilbert action is a total derivative.
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spinors) of any mass. In this sense, the issue of building consistent interactions between

higher-spin gauge fields is more natural if one tries to couple them with matter fields.

The first step in this direction would be to consider Noether cubic interactions between

one spin-s and two spin-0 fields. They are of the form ϕµ1...µsJ
µ1...µs , where ϕµ1...µs is the

rank-s metric-like gauge field and Jµ1...µs is the conserved current built out of two scalars in

the standard fashion. It is well known that one can take any combination of such (s, 0, 0)-

type vertices for any s = 0, 1, 2, . . . without spoiling the consistency of interactions at cubic

order. Note that if the Fronsdal-type theories are concerned then there are possibly also

vertices of type (s, s, 0) and (s, s, 1) at s> 2 which, along with some standard lower-spin

vertices, exhaust all possible types of cubic interactions in this case [34].2 As usual, in

order to go beyond the cubic order one needs to specify the HS multiplets of both gauge

and matter fields. This is where the HS algebra and its representations (see above) become

crucial in the analysis of consistent interactions.

On the one hand, the scalar matter sector is not ambiguous because its spectrum is

completely fixed by HS symmetries [33]. On the other hand, the spectrum of gauge fields to

which one could try to couple this tower of scalar fields does not appear to be fixed in the

metric-like formulation. For instance, one could take a sum of Fronsdal actions and start

adding the above Noether cubic interactions. This is an interesting direction that might be

worth exploring (since it ensures the presence of the minimal coupling and the backreaction

of matter on gravity) but we prefer to stick here to what the frame-like formulation appears

to dictate. In fact, in the frame-like formulation the gauge sector is fixed, in any dimension,

by the HS algebra. One should note that, in two dimensions, the corresponding metric-like

formulation is slightly different from what might be expected (i.e. a sum of Fronsdal actions)

from the standard scenario in higher dimensions and thus calls for some comments. Decom-

posing the adjoint representation of hs[λ] into irreducible representations of AdS2 isometry

algebra so(2, 1), one is led to define spin-s gauge fields as connections which are differential

1-forms taking values in the totally-symmetric rank-(s − 1) representation of so(2, 1). In

higher dimensions, such gauging of HS symmetries would generally lead us to metric-like

fields of the Fronsdal type (for review, see e.g. [35]). However, in d = 2 case the associated

metric-like system can be shown to be different from the Fronsdal-type theories mentioned

above [26, 28]. This is already seen in the spin-2 case without cosmological constant, where

the identically-vanishing Einstein equation Gµν ≡ 0 is replaced by the Jackiw-Teitelboim

equation R = 0. Using the standard cohomological analysis of the unfolded formulation,

one can show that an analogous picture is valid in the higher-spin case: the Einstein-like

equation is replaced with a flatness equation. Moreover, the resulting metric-like gauge

fields can be interpreted as partially-massless fields of maximal depth.3 Note that, in any

dimension, the action for the frame-like maximal-depth partially-massless fields cannot be

2Strictly speaking, the results of [34] apply only to the flat spacetime case, but adding a cosmological

constant should extend possible interaction vertices only by terms proportional to the former.
3In any dimension, in the frame-like formulation, 1-form gauge fields taking values in representations

of the isometry algebra described by one-row Young diagrams correspond, in the metric-like formulation,

to partially-massless fields of maximal-depth [36]. The one-row Young diagrams exhaust all (independent)

possibilities for so(2, 1), thereby suggesting the absence of a conventional frame-like formulation in two

dimensions for higher-spin gauge fields which are massless (or partially-massless ones of non-maximal depth).
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built in terms of exterior products of the field strength 2-forms as in the Lopatin-Vasiliev

type action [37]. Instead, there exists a Maxwell-like action given in terms of particular

Lorentz components of the field strengths built from the gauge field [36]. In this sense, the

BF action in d = 2 is the analogue of the Lopatin-Vasiliev type action (like CS action is in

d = 3). However, the use of the BF action yields kinetic operators which are different from

those obtained by taking d = 2 in the standard metric-like theories [38, 39] of maximal-

depth partially-massless fields. The price to pay for the BF action is that each partially-

massless field comes together with a dilaton-like partner. For an infinite tower of higher-spin

gauge fields, this leads to an infinite collection of dilaton-like fields. The latter collection

forms a single multiplet of the higher-spin algebra (in the adjoint representation). This

tower of extra fields may look unnatural from the point of view of higher-dimensional expec-

tations, but if one looks for a higher-spin extension of Jackiw-Teitelboim gravity then this

multiplet is automatically generated (by HS symmetries) from the dilaton. More generally,

one may argue that the panorama of gravitational theories in two dimensions is of dilaton

gravity type (see e.g. [40]). Accordingly, one may expect that their higher-spin extensions

(if any) must include a dilaton-like multiplet, like HS Jackiw-Teitelboim gravity does.

Instead of pursuing the metric-like view on the Noether program of building interac-

tions, which is interesting on its own, our goal here is twofold: to explore how to bring

together gauge and matter multiplets of the HS algebra in a unified framework inside the

frame-like formulation and to initiate a program of studying their interactions at the level

of BF (or Poisson Sigma model) type actions. As a first step in this direction, the present

paper considers minimal coupling of matter fields to HS gauge fields via an extension of

the HS algebra.

The paper is organized as follows. In section 2, we review the HS symmetry algebra

in two dimensions and its representations. In section 3, we discuss HS-invariant equations

of motion for gauge and matters fields. In section 4 the HS extension of Jackiw-Teitelboim

gravity is reviewed. Section 5 defines the extended HS algebra and considers the corre-

sponding BF-type theory. Concluding remarks are given in section 6.

2 Higher-spin symmetries in two dimensions

The kinematics of HS gravity theories in two dimensions is entirely governed by the one-

parameter family of Lie algebras hs[λ] and representations thereof. The key ingredients

are (see table 1 for a summary):

Associative vs Lie algebras. Consider the universal enveloping algebra U
(
so(2, 1)

)
of

the isometry algebra so(2, 1) of two-dimensional anti-de Sitter spacetime AdS2, and its

ideal

I =

(
C2 −

1

4
(λ2 − 1)

)
U
(
so(2, 1)

)
(2.1)

generated by the eigenvalue 1
4(λ2 − 1) (for λ ∈ R) of the quadratic Casimir element C2 ∈

U
(
so(1, 2)

)
. The quotient

Mat[λ] = U
(
so(2, 1)

)
/ I (2.2)
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Algebra Infinite-dim. Finite-dim. Centre Trace

(parameter) (λ ∈ R>0\N) (N ∈ N) (λ ∈ R>0)

associative Mat[λ] Mat(N,R) Z ∼= R projection on Z

reductive Lie gl[λ] gl(N,R) u(1) projection on u(1)

simple Lie hs[λ] sl(N,R) 0 traceless

associative Mat[λ] o Z2 Mat(N,R) o Z2 Z ∼= R projection on Z
quadratic Lie gl[λ] o Z2 gl(N,R) o Z2 u(1) projection on u(1)

centerless Lie ehs[λ] esl(N,R) 0 traceless

Table 1. Relevant algebras.

is an associative algebra which, for generic λ ∈ R, is an infinite-dimensional analogue of

the finite-dimensional associative algebra Mat(N,R) of N ×N matrices, as emphasized by

our choice of notation. Moreover, for integer λ = N ∈ N, the algebra (2.2) contains an

infinite-dimensional ideal JN to be factored out, and Mat[N ]/JN ∼= Mat(N,R). The space

U
(
so(2, 1)

)
/I endowed with the commutator as Lie bracket, is a reductive4 Lie algebra,

which is often denoted gl[λ] because, for generic λ ∈ R, it is an infinite-dimensional analogue

of the general linear algebra gl(N,R) [31]. Note that the enveloping algebra of the so-called

“Wigner deformed oscillator algebra” provides a useful realization of Mat[λ] [32].

Higher-spin algebra. The centre of U
(
so(2, 1)

)
is spanned by the polynomials in the

quadratic Casimir element C2. Accordingly, the centre of Mat[λ] is the one-dimensional

subalgebra Z ∼= R, which is what remains of the centre of U
(
so(2, 1)

)
after quotienting the

ideal (2.1). Its Lie algebra counterpart forms a u(1) ideal of gl[λ]. The Lie algebras of HS

symmetries in two dimensions are traditionally defined by subtracting the one-dimensional

Abelian ideal,

gl[λ] = u(1)⊕ hs[λ] , (2.3)

so that hs[λ] is an infinite-dimensional analogue of sl(N,R). The structure of hs[λ] was

described in the papers [31, 32], from which one may extract the following relevant facts:

the Lie algebra hs[λ] always contains so(2, 1) as a subalgebra. Moreover, hs[λ] is simple if

and only if λ /∈ N. The Lie algebra hs[N ] contains an infinite-dimensional ideal JN to be

factored out and the corresponding quotient is finite-dimensional, hs[N ]/JN ∼= sl(N,R) [31,

32]. Consequently, the family of Lie algebras of HS symmetries in two dimensions that are

simple and that allow for unitary representations, is hs[λ] for λ /∈ N. The other algebras

in the upper half of table 1 are useful auxiliary tools (e.g. the associative algebras) or

illustrative toy models (e.g. the finite-dimensional algebras) but the kinematics of pure

HS gravity theories in two dimensions is determined by the one-parameter family of Lie

algebras hs[λ] and representations thereof.

Twist automorphism. Let us consider basis elements TA = (Pa, L) of the Lie algebra

so(2, 1), where A = 0, 1, 2 and a = 0, 1. They have been split into transvection generators

4A Lie algebra is said reductive if it is a direct sum of an abelian ideal and a semisimple subalgebra.
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Pa and Lorentz generator L. One can introduce the involutive automorphism τ of so(2, 1)

acting as τ(Pa) = −Pa and τ(L) = L. This automorphism can be promoted to the

whole algebra U
(
so(2, 1)

)
by the associativity and by setting τ(1) = 1. The Casimir

element C2 = 1
2TAT

A = P aPa + L2 is left invariant by τ , therefore the automorphism

τ of U
(
so(2, 1)

)
descends to an automorphism of both Mat[λ], gl[λ] and hs[λ], in which

cases it is called “twist” (see e.g. [33, 35] for reviews). Moreover, the ideals JN mentioned

above are also τ -invariant so that the twist consistently descends to the finite-dimensional

algebras Mat(N,R), gl(N,R) and sl(N,R) as well.

Adjoint vs twisted-adjoint representations. Let us review two important represen-

tations of gl[λ] on itself. Firstly, as any Lie algebra gl[λ] acts on itself via the adjoint

action,
∗ady(a) = [y, a]∗ := y ∗ a− a ∗ y , ∀ y, a ∈ gl[λ] , (2.4)

where ∗ stands for the associative product in Mat[λ]. The same holds for its subalgebra

hs[λ]. Secondly, the twisted-adjoint action of gl[λ] on itself is defined as

τady(a) = [y, a]τ := y ∗ a− a ∗ τ(y) , ∀ y, a ∈ gl[λ] . (2.5)

Specifying y ∈ hs[λ] defines the twisted-adjoint action of the higher-spin algebra hs[λ] on

the linear space of gl[λ].

Restricting these two actions to elements y ∈ so(2, 1) ⊂ gl[λ], we obtain the adjoint

and twisted-adjoint actions of so(2, 1) on gl[λ], denoted respectively as T := ∗adT and T :=
τadT . The two corresponding so(2, 1)-modules are infinite-dimensional and reducible. They

can be decomposed into irreducible submodules of so(2, 1) which are finite-dimensional

(“Killing”) modules for the adjoint action and infinite-dimensional (“Weyl”) modules for

the twisted-adjoint action. The latter modules are in fact Verma modules of so(2, 1) with

running weights expressed in terms of λ (see [33] for details).

3 Linearized higher-spin equations in two dimensions

Let M2 be a two-dimensional spacetime manifold with local coordinates xµ (µ = 0, 1).

The fields are differential p-forms (p = 0, 1, 2) taking values in the vector space gl[λ]. The

latter will be seen, with a slight abuse of notation, as an associative algebra or as a Lie

algebra depending on the context (see table 1). These differential p-forms will be denoted

accordingly as X[p] ∈ Ωp(M2)⊗ gl[λ]. A differential 1-form X[1] ∈ Ω1(M2)⊗ gl[λ] will be

called a (Cartan) connection 1-form if its so(2, 1) piece XA
[1]TA = ea[1]Pa +ω[1]L is such that

the components ea[1] along the transvection generators define a non-degenerate zweibein, i.e.

eaµ is a non-degenerate 2× 2 matrix. We will refer to this condition as the non-degeneracy

condition.

In particular, let W[1] ∈ Ω1(M2) ⊗ so(2, 1) be an so(2, 1)-valued connection 1-form.

The respective (twisted-)adjoint covariant derivatives read

∇ = d+WA
[1]TA , ∇̃ = d+WA

[1]TA , (3.1)

– 6 –
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where d = dxµ∂µ is the de Rham differential on M2, while TA and TA are basis elements

of so(2, 1) in the (twisted-)adjoint representations (2.4) and (2.5).

Both squared covariant derivatives yield the curvature 2-form R[2] ∈ Ω2(M2)⊗so(2, 1)

as follows

∇2 = RA[2]TA , ∇̃2 = RA[2]TA , (3.2)

where

RA[2] = dWA
[1] +

1

2
εABCW

B
[1] ∧W

C
[1] , (3.3)

and εABC stands for the so(2, 1) Levi-Civita tensor.

From now on, we will assume that the connection 1-form WA
[1] solves the zero-curvature

condition RA[2] = 0, thereby defining AdS2 spacetime (locally). Then, we can introduce the

following covariant constancy equations

∇Ω[1] ≡ (d+WA
[1]TA) ∧ Ω[1] = 0 , (3.4)

for the adjoint-valued 1-form field Ω[1] ∈ Ω1(M2)⊗ gl[λ], and

∇̃C[0] ≡ (d+WA
[1]TA)C[0] = 0 , (3.5)

for the twisted-adjoint-valued 0-form field C[0] ∈ Ω0(M2)⊗ gl[λ].

The first equation, (3.4), describes free topological HS fields that are pure gauge and

thus do not carry local degrees of freedom. The second equation, (3.5), describes an infinite

tower of free massive scalar fields with ascending masses [33]

(
�AdS2 +m2

n

)
ϕn = 0 , m2

n =
(n− λ)(n− λ+ 1)

R2
AdS

, n = 0, 1, 2, . . . , (3.6)

where �AdS2 is the wave operator on the AdS2 spacetime of curvature radius R
AdS

.5 The

space of states of each massive scalar field spans a Verma module of so(2, 1) with lowest

energy ∆n such that m2
n = ∆n(∆n − 1), or, equivalently, spans the particular irreducible

module under the twisted-adjoint action of so(2, 1) discussed above.

4 Higher-spin Jackiw-Teitelboim gravity

The definition of a BF action requires an invariant symmetric bilinear form on the Lie

algebra of symmetries. In other words, the latter algebra must be quadratic.6 Fortunately,

5A single massive scalar on constant curvature spaces is known to be described by such twisted-adjoint

equations (also known as unfolded equations), see e.g. [41].
6A symmetric bilinear form 〈 , 〉 : g⊗ g→ R over a Lie algebra g is (adjoint-)invariant if

〈 [a1, a2] , a3〉 = 〈a1 , [a2, a3] 〉 , ∀a1, a2, a3 ∈ g . (4.1)

Lie algebras endowed with a non-degenerate invariant symmetric bilinear form are called (regular) quadratic

algebras. All finite-dimensional reductive Lie algebras are quadratic. The number of independent such

bilinear forms is equal to the number of abelian and simple algebras summands, e.g. two for gl(N,R) =

u(1) ⊕ sl(N,R). It is remarkable that the infinite-dimensional reductive Lie algebra gl[λ] is quadratic (for

generic λ).

– 7 –
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there exists a trace over Mat[λ] realized either via deformed oscillators [32] or via the

quotient algebra construction [28]. By definition, it is a linear form Tr : Mat[λ] → R
obeying the cyclicity property

Tr
[

[a1, a2]∗
]

= 0 , ∀a1, a2 ∈Mat[λ] . (4.2)

Equivalently, the corresponding linear form Tr : gl[λ] → R on the associated Lie algebra

must be degenerate on the derived Lie algebra gl[λ]′ spanned by Lie brackets.7 Note that

u(1)′ = 0 (since it is Abelian) and hs[λ]′ = hs[λ] for generic λ (since it is simple), hence

gl[λ]′ = hs[λ]. Therefore, the only possibility (up to a multiplicative constant) is that

the trace Tr : gl[λ] → R identifies with the projector on the u(1) ideal, i.e. Tr[a] = 0 if

a ∈ hs[λ] and Tr[a] = a if a ∈ u(1) where the centre u(1) is identified with R (cf. table 1).

Accordingly, the linear form Tr : Mat[λ] → R identifies with the projector on the center

Z ∼= R. An important property follows: the trace is twist-invariant,

Tr
[
τ(a)

]
= Tr

[
a
]
, ∀a ∈Mat[λ] , (4.3)

since τ(a) = a for any a ∈ R.

Note that the trace on Mat[λ] automatically defines an invariant symmetric bilinear

form on gl[λ] (and on its subalgebra hs[λ] as well)

〈a1 , a2〉gl[λ] := Tr
[
a1 ∗ a2

]
, (4.4)

which is non-degenerate for non-integer λ (see below for the case of integer λ). This

parallels the relation between the Killing form on sl(N,R) and the trace on Mat(N,R).

Note that u(1) and hs[λ] are orthogonal to each other with respect to (4.4) since Tr[a1∗a2] =

a1Tr[a2] = 0 for a1 ∈ R and a2 ∈ hs[λ].8

The HS extension [26, 28] of Jackiw-Teitelboim gravity is described in the frame-like

formulation by the BF action

SHS JT [A,B] =

∫
M2

Tr[B[0] ∗ F[2] ] , (4.5)

where:

• B[0] is an adjoint-valued 0-form, i.e. B[0] ∈ Ω0(M2)⊗ gl[λ] and δεB[0] = [ε[0], B[0]]∗ is

a gauge transformation with 0-form gauge parameter ε[0] ∈ Ω0(M2)⊗ gl[λ].

• D = d + A[1] is the covariant derivative of the adjoint-valued connection 1-form

A[1] ∈ Ω1(M2)⊗ gl[λ], such that δεA[1] = Dε[0] under a gauge transformation.

• F[2] = dA[1] +A[1] ∧∗A[1] is the curvature 2-form of the connection 1-form A[1], thus

F[2] ∈ Ω2(M2) ⊗ gl[λ]. Under gauge transformations, it transforms homogeneously:

δεF[2] = [ε[0], F[2]]∗.

7A derived Lie algebra of a Lie algebra g is an ideal denoted g′ ⊆ g and defined as g′ = [g, g]. For

instance, gl(N,R)′ = [gl(N,R), gl(N,R)] = sl(N,R) and sl(N,R)′ = [sl(N,R), sl(N,R)] = sl(N,R).
8More generally, in any quadratic Lie algebra g the centre z ⊂ g and the derived algebra g′ ⊂ g are the or-

thogonal complements of each other, as follows from the invariance condition (4.1). Therefore, any quadratic

Lie algebra decomposes into the direct sum g = z⊕ g′ of its center and its derived algebra (see e.g. (2.3)).
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The equations of motion following from the action (4.5),

F[2] = 0 , DB[0] = 0 , (4.6)

impose flatness and covariant constancy conditions, respectively. It is clear that AdS2

spacetime, i.e. (3.3) with RA[2] = 0, provides a solution of the equations (4.6) by setting

A[1] = W[1] ∈ Ω1(M2)⊗ so(2, 1) and B[0] = 0. Let us linearize the above equations around

AdS2 solution by setting

A[1] = W[1] + Ω[1] , (4.7)

i.e. Ω[1] is seen as the fluctuation of the connection 1-form A[1] over the AdS2 background

W[1]. The linearization of (4.6) yields, respectively,

∇Ω[1] = 0 , ∇B[0] = 0 , (4.8)

where the covariant derivative ∇ is defined in (3.1) (for more details see [28]). The first

equation in (4.8) reproduces (3.4) while the second one determines the gl[λ]-valued scalar

B[0](x) everywhere on the base manifoldM2 in terms of its value B[0](x0) at any given point

x0 (through parallel transport by the flat so(2, 1)-connection 1-form W[1]). These global

degrees of freedom are the HS generalization of the dilaton solutions in Jackiw-Teitelboim

gravity and they are in one-to-one correspondence with the (maximal-depth) Killing tensor

fields of the AdS2 background (see [28] for more details). They span an irreducible so(2, 1)-

module of dimension 2s− 1, where s is the spin of the corresponding gauge field.

Two comments are in order. Firstly, the above construction of the BF action applies

exactly in the same way if one replaces gl[λ] by hs[λ] according to (2.3) everywhere in this

section. Since u(1) and hs[λ] are orthogonal, the only effect is in subtracting the BF action

of the u(1) subsector: this u(1) term describes on-shell a constant scalar field together with

a topological spin-one gauge field. Secondly, for λ ∈ N the algebra hs[λ] is not simple

and contains an infinite-dimensional ideal JN so that sl(N,R) = hs[N ]/JN . The bilinear

form (4.4) is then degenerate [32] so that the fields taking values in the ideal JN do not

contribute to the action. The only non-vanishing contributions are identified with sl(N,R)-

valued differential forms. It follows that the resulting higher-spin BF action (4.5) then

reduces to sl(N,R) BF action [26]. At N = 2 we reproduce the original Jackiw-Teitelboim

theory in the BF form [25].

5 Extended higher-spin BF-type theory

There exists an extension of the previous HS Jackiw-Teitelboim gravity where the higher-

spin algebra hs[λ] is replaced with an extended HS algebra, denoted ehs[λ], based on the

trick9 of replacing gl[λ] by two copies of itself endowed with a subtle product between them.

9Note that a similar trick was also used in [41] for a distinct proposal of two-dimensional HS gravity.

The matter spectrum in [41] is made of a single massive scalar with a fixed mass, so this proposal appears

very different.
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More precisely, the corresponding extension of Mat[λ] is defined via a smash product of

the original associative algebra and a finite group Z2 of its automorphisms.10

Let Z2 = {1, τ} be the group of automorphisms generated by the twist τ . Then, the

associative algebra denoted Mat[λ] o Z2 is the vector space spanned by elements that can

be written as a1+ b τ , where a, b ∈Mat[λ], endowed with the smash product ? defined as

follows

(a1 1 + b1 τ ) ? (a2 1 + b2 τ ) =
(
a1 ∗ a2 + b1 ∗ τ(b2)

)
1 +

(
a1 ∗ b2 + b1 ∗ τ(a2)

)
τ , (5.1)

where ∗ denotes the product in Mat[λ].

The associated Lie algebra will be denoted gl[λ] o Z2. It is spanned by elements

a1 + b τ , where a, b ∈ gl[λ], endowed with the ?-commutator

[ a1 1 + b1 τ , a2 1 + b2 τ ]? =

=
(

[a1, a2]∗ +
(
b1 ∗ τ(b2)− b2 ∗ τ(b1)

) )
1 +

(
[a1, b2]τ − [a2, b1]τ

)
τ ,

(5.2)

where [a, b]∗ = a ∗ b− b ∗ a is the ∗-commutator and [a, b]τ = a ∗ b− b ∗ τ(a) is the twisted

∗-commutator. This implies that the ?-adjoint action of gl[λ] on its extension gl[λ] o Z2

unifies the adjoint and twisted-adjoint actions of gl[λ] on itself,

?ady(a1 + b τ ) := [y 1, a1 + b τ ]? = ∗ady(a)1 + τady(b) τ , ∀y, a, b ∈ gl[λ] , (5.3)

where we used (2.4)–(2.5). One can show that the center Z of the associative algebra

Mat[λ] o Z2 is the one-dimensional subalgebra Z = R1 := {c1 | ∀c ∈ R}.
The projection to the center Z leads to a natural trace over Mat[λ]oZ2. Let us denote

by Tr the trace over Mat[λ] o Z2, defined as the restriction to the trace Tr over Mat[λ],

that is to say

Tr[a1 + b τ ] = Tr[a] , ∀a, b ∈Mat[λ] . (5.4)

The cyclicity property,

Tr
[

[a1 1 + b1 τ , a2 1 + b2 τ ]?

]
= Tr

[
[a1, a2]∗ + b1 ∗ τ(b2)− b2 ∗ τ(b1)

]
= 0 , (5.5)

follows from the commutation relation (5.2), the definition (5.4), the involution and au-

tomorphism properties τ2 = 1 and τ(a ∗ b) = τ(a) ∗ τ(b) of the twist, together with the

properties (4.2), (4.3). Note that although the extended trace Tr is degenerate along the

10The smash product (also sometimes called crossed product) can be defined as follows (see e.g. the section

3.9 of [42]). Let H be a group. Consider an H-module algebra A and let π denote the corresponding action

of H on A. The so-called skew group ring of H over A is denoted as A#H and consists of pairs (a, h),

where a ∈ A and h ∈ H, endowed with the smash product (a1, h1)#(a2, h2) =
(
a1 πh1(a2), h1h2

)
, where πh

denotes the action of an element h ∈ H on A. In our case, A = Mat[λ] and H = Z2, and the smash product

is realized on Mat[λ]#Z2 as in (5.1). With a slight abuse of the standard mathematical notation, we will

denote the smash product algebra as Mat[λ]oZ2. In the higher-spin theory, skew group rings of various finite

groups (sometimes called outer Kleinians) over associative algebras were extensively used in constructing

non-linear equations of motion, see e.g. [43, 44] for earlier literature and [45, 46] for recent studies.
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direction of the extra generator τ , the symmetric bilinear form that it defines,

〈a1 1 + b1 τ , a2 1 + b2 τ 〉gl[λ]oZ2
:=

:= Tr[(a1 1 + b1 τ ) ? (a2 1 + b2 τ )] = Tr
[
a1 ∗ a2 + b1 ∗ τ(b2)

]
,

= 〈a1 , a2〉gl[λ] + 〈b1 , τ(b2)〉gl[λ] ,

(5.6)

is non-degenerate (we used (5.1) and (4.4) to obtain the last two lines). The cyclicity of the

extended trace and the Jacobi identity of the ?-commutator ensures that this symmetric

bilinear form is also invariant with respect to the ?-adjoint action of gl[λ] o Z2 on itself.

In other words, the infinite-dimensional algebra gl[λ] o Z2 is a quadratic Lie algebra. And

these two properties (non-degeneracy and adjoint-invariance) are enough to define a proper

BF action. Moreover, it also implies that this Lie algebra decomposes into the direct sum

(cf footnote 8):

gl[λ] o Z2 = u(1)⊕ ehs[λ] , (5.7)

where the centre is the Abelian ideal u(1) = R1 and the derived algebra, denoted ehs[λ] =

(gl[λ] o Z2)
′, is the extension of the hs[λ] algebra (2.3) (see table 1) spanned by elements

a1+b τ where a ∈ hs[λ] and b ∈ gl[λ]. This extended HS algebra ehs[λ] is an ideal of gl[λ]o
Z2 and, in particular, the ?-adjoint action (5.3) can be consistently restricted to ehs[λ].

A smash-product extension of the higher-spin BF-type action (4.5) is

SEHS JT [A,B] =

∫
M2

Tr[B[0] ? F[2] ] , (5.8)

where

• B[0] = B[0] 1+C[0] τ is a 0-form valued in gl[λ]oZ2 , with δεB[0] = [ε[0],B[0]]? as gauge

transformation, where ε[0] = ε[0] 1+κ[0] τ is the gauge parameter valued in gl[λ]oZ2.

• D = d+A[1] is the extended HS covariant derivative of the connection 1-form A[1] =

A[1] 1 + Z[1] τ valued in the ?-adjoint representation, with δεA[1] = Dε[0] as gauge

transformation. Note that the non-degeneracy condition (cf. the first paragraph in

section 3) on the connection 1-form A[1] is equivalent to the non-degeneracy condition

of the connection 1-form A[1] introduced in the previous section. Let us stress there

is no such condition on the 1-form Z[1].

• F[2] = dA[1] + A[1] ∧?A[1] is the extended curvature gl[λ] o Z2-valued 2-form with

δεF[2] = [ε[0],F[2]]? as gauge transformation.

The equations of motion following from the BF-type action (5.8) impose the on-shell

flatness and covariant constancy conditions

F[2] = 0 , DB[0] = 0 , (5.9)

which are natural extensions of (4.6). In components, using (5.1) and (5.2) we obtain

F[2] + Z[1] ∧ ∗ τ(Z[1]) = 0 , (5.10)

dZ[1] +A[1] ∧ ∗Z[1] + Z[1] ∧ ∗ τ(A[1]) = 0 , (5.11)
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and

DB[0] + Z[1] ∗ τ(C[0])− C[0] ∗ τ(Z[1]) = 0 , (5.12)

D̃C[0] − [B[0], Z[1] ]τ = 0 , (5.13)

where we used F[2] = dA[1] + A[1] ∧ ∗A[1] and D = d + [A[1], · ]∗ which are respectively

the gl[λ] curvature and the ∗-adjoint covariant derivative (as defined in section 4) and also

introduced the twisted-adjoint covariant derivative D̃ = d + [A[1], · ]τ . In this way, we

emphasize that gl[λ]oZ2 BF-type theory contains gl[λ] BF standard theory as a subsector

provided that all fields are truncated to gl[λ] ⊂ gl[λ] o Z2, i.e.

A[1] = A[1] 1 , B[0] = B[0] 1 . (5.14)

Thus, the extended HS action (5.8) can be reduced to the HS Jackiw-Teitelboim action (4.5)

through the truncation (5.14).

We note that, upon imposing an appropriate gauge choice on-shell, the 1-form Z[1] can

be set to zero. Indeed, the equation (5.11) implies that, locally, Z[1] = D̃K[0] for some

0-form K[0] provided A[1] satisfies the equation (5.10). Then, writing down the component

form of the gauge transformations in the 1-form sector,

δA[1] = Dε[0] + Z[1] ∗ τ(κ[0])− κ[0] ∗ τ(Z[1]) , (5.15)

δZ[1] = D̃κ[0] − [ ε[0], Z[1] ]τ , (5.16)

we can see that making use of the gauge parameter κ[0] the field Z[1] can be set to zero,

on-shell. Such a gauge condition does not constrain the other gauge parameter ε[0] , since

[ε[0], Z[1]]τ = 0 if Z[1] = 0. In particular, we are left with δεA[1] = Dε[0] for any ε[0] ∈
Ω0(M2) ⊗ gl[λ]. Note that such the gauge condition Z[1] = 0 is accessible, except if one

imposes by hand a non-degeneracy condition on Z[1] similar to the one on A[1]. However, we

do not see presently any clear motivation for introducing such a second zweibein-like field,

so this partial gauge is indeed accessible here. When Z[1] = 0, note that the equation (5.10)

reduces to F[2] = 0.

To summarize, the flatness condition for the 1-form A[1] in (5.9) implies that, locally,

the extended 1-form connection describes AdS2, i.e. A[1] = W[1] 1 in a suitable gauge.

Then, due to the property (5.3), the covariant constancy condition for the 0-form B[0] (5.9)

decomposes as

∇B[0] = 0 , ∇̃C[0] = 0 . (5.17)

In this sense, the equations of motion (5.8) of the extended BF-type theory can be thought

of as a higher-spin covariantization of the twisted-adjoint equation (3.5) on the extra 0-form

C[0], together with the adjoint equation (4.8) on the 0-form B[0] already present in the HS

Jackiw-Teiteboim theory.

Let us consider another consistent truncation of the equations of motion (5.9),

A[1] = A[1] 1 , B[0] = C[0] τ , (5.18)
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that leads to the system

F[2] = 0 , D̃C[0] = 0 . (5.19)

The linearization of these equations around AdS2 solution W[1] (3.3) via the decomposi-

tion (4.7) of the connection 0-form A[1] are respectively

∇Ω[1] = 0 , ∇̃C[0] = 0 , (5.20)

which perfectly reproduces the linear equations (3.4) and (3.5).

Let us add a few summarising remarks on the field content, both off-shell and on-shell.

Off-shell we have the following fields:

1. The field A[1] is the usual HS connection, on-shell it describes locally the AdS2
solution W[1] (as it does for spin-two Jackiw-Teitelboim gravity) because A[1] is non-

degenerate.

2. The field B[0] is the HS extension of the dilaton of Jackiw-Teitelboim gravity. It plays

the role of Lagrange multiplier for the flatness equation on A[1] and is thereby crucial

in order to have an action principle for exactly the same reason as in the spin-two case

(for which the Einstein-Hilbert action is a pure boundary term in two dimensions,

hence spin-two gravity theories in two dimensions require the addition of a dilaton

field). On-shell, this 0-form will describe the infinite collection of maximal-depth

Killing tensor fields for all spins. For instance, the dilaton in Jackiw-Teitelboim-

gravity carries the fundamental representation of so(2, 1). More generally, these 0-

forms are topological in the sense that each of them is described on-shell by a finite-

dimensional representation of so(2, 1).

3. The field Z[1] can be thought as the Lagrange multiplier for the twisted-adjoint

equation but its true role is more than that.11 In fact, in any dimension d the

twisted-adjoint equation (alone) can be obtained from a BF-type action principle by

introducing a Lagrange multipler which is a (d − 1)-form taking values in the same

representation. In general, the question is then whether this additional set of fields

introduces new degrees of freedom and whether it fits in a natural way within the

remaining set of fields. In the present case, the field Z[1] is pure gauge on-shell (dis-

tinctly from A[1] which is topological but not pure gauge, since A[1] is non-degenerate

while Z[1] is degenerate) and it allows to make gauge symmetry manifest with respect

to the extended HS algebra that unifies the gauge and matter sector. Note that, al-

though Z[1] is pure gauge on-shell, it is not pure gauge off-shell and actually plays a

crucial role in the action.

4. The field C[0] is the dynamical field, since this 0-form carries on-shell the local degrees

of freedom of an infinite tower of scalar fields with fine-tuned mass.

11Strictly speaking, the field Z[1] is not a mere Lagrange multiplier since the action contains a term

(necessary for gauge invariance) which is quadratic in Z[1] (and linear in B[0]).
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The on-shell physical spectrum is as follows:

Topological sector: an infinite tower of dilaton-like scalar fields χ(s), describing as

a whole the adjoint representation of the higher-spin algebra gl[λ] and decomposing

under so(2, 1) into the infinite collection of maximal-depth Killing tensors for the

gauge fields of spin s = 1, 2, 3, . . . . Each dilaton-like field carries a finite-dimensional

representation of so(2, 1).

Dynamical sector: an infinite tower of dynamical scalar fields ϕn, describing as a

whole the twisted-adjoint representation of the higher-spin algebra gl[λ] and decom-

posing under so(2, 1) into the infinite collection of massive scalars satisfying (3.6)

for n = 0, 1, 2, . . . Each scalar field carries an infinite-dimensional representation of

so(2, 1).

Finally, let us make two comments similar to the ones at the end of the previous section.

First, to construct the BF-type action one may consider differential forms taking values in

the subalgebra ehs[λ] (instead of gl[λ]oZ2) in order to get rid of the u(1) subsector. More

explicitly, this means that A[1] and B[0] are restricted to hs[λ], as in HS Jackiw-Teitelboim

gravity, while Z[1] and C[0] still take values in the whole algebra gl[λ]. For instance, in

the truncation (5.18) the u(1)-connection decouples from the adjoint sector, while scalar

components are still present in the twisted-adjoint sector that keeps the equations (5.20)

consistent. Second, we note that at integer values of the parameter (i.e. λ = N ∈ N), the

extended HS algebra gl[N ] o Z2 contains an infinite-dimensional ideal denoted JN o Z2,

where JN are infinite-dimensional ideals in gl[N ] (see section 4). The resulting quotient

gl[N ] o Z2

JN o Z2
= {a1 + b τ | ∀ a, b ∈ gl(N,R)} (5.21)

is a finite-dimensional Lie algebra which will be denoted as gl(N,R) o Z2. Its centerless

part is defined from the decomposition (see table 1):12

gl(N,R) o Z2 = u(1)⊕ esl(N,R) . (5.22)

One may consider a BF theory with the gauge algebra gl(N,R) o Z2 which yields a topo-

logical system of equations of motion which are (twisted-)adjoint covariant constancy con-

ditions on finite-dimensional field spaces. In particular, for (5.18) the equations of motion

are reduced to the standard gl(N,R) BF equations along with new topological equations in

the sector of 0-forms. The latter are analogous to those discussed in three-dimensional HS

theory [44, 47] as a topological subsystem decoupled from the original dynamical twisted-

adjoint equations at integer λ = N .

12Our notation esl(N,R) is introduced by analogy with the notation ehs[λ] for the infinite-dimensional

extended HS algebra. It simply means that esl(N,R) is an extension of sl(N,R) obtained by factoring out

the u(1) center from the quotient gl(N,R) o Z2. It would be interesting to study its structure to clarify

whether it is (semi)simple or not. An explicit realization of the twist on gl(N,R) and respective equations

will be considered elsewhere.
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6 Concluding remarks

To summarize, the non-Abelian BF-type action (5.8) provides a natural extension of the

action (4.5) of HS Jackiw-Teitelboim gravity via the addition of a matter multiplet. The

corresponding equations of motion describe an infinite tower of scalar fields with fine-tuned

increasing masses (3.6), coupled to the topological gauge fields of HS Jackiw-Teitelboim

gravity. In particular, their linearization around AdS2 background reproduces the correct

equations fixed by the HS symmetries in two dimensions. Let us stress that our construction

of the extended HS gravity action (5.8) with the above properties relies only on the existence

of a twist-invariant trace on the HS algebra, not on its explicit form (though the latter

would become important to write down the expression of the action in components).

The existence of the BF-type action (5.8) is remarkable and contrasts with the situ-

ation in three-dimensional HS gravity where the inclusion of matter in the fundamental

representation of the HS algebra in three dimensions (hence in the “bifundamental” repre-

sentation of hs[λ], since the latter algebra comes in two copies) is known to reinstate the

same level of intricacy as in dimension four.13

The nonlinear equations (5.9) are the two-dimensional analogues of the equations con-

sidered in the approach of [46] (and references therein) to the Noether procedure in the

unfolded formulations of higher-dimensional HS gravity theories. More precisely, following

the same logic as [46], applied to two dimensions, one should consider a deformation of the

extended HS algebra considered above.14 Note that if this deformed extended HS algebra

admits a trace, then the present BF-type construction would generalize to this deformed

case as well.

BF-type HS theories in two dimensions obviously require further study. In particular,

the physical content of the untruncated spectrum in the above model should be analyzed

further for several reasons. For instance, there seems to be no genuine non-linearity in the

matter fields (the field equations are linear in the 0-forms) nor backreaction on the gauge

fields from the presence of matter (the 0-form sector does not source the 1-form sector).

This feature might be improved by making use of the interactions generated from a defor-

mation of the extended HS algebra. Let us point out that, since any BF-type action takes

the form of a topological-like15 Poisson Sigma model, a reasonable expectation is that the

fully interacting action still takes the form of a Poisson Sigma model, whose Poisson bivec-

tor field is a nonlinear deformation of the undeformed linear one. Last but not least, for

holography one should add some right boundary terms and check whether the correspond-

ing total action may capture correlators of single-trace operators in some suitable CFT1.

13For instance, the two action principles [48, 49] which have been proposed for the nonlinear equations

of motion in [44] are not usual CS actions (in particular, the action in [48] has no base space while the base

space of the action in [49] is of higher dimension than the spacetime manifold).
14We thank A. Sharapov and E. Skvortsov for discussions on this point.
15Note that here the target space is the dual of the extended HS algebra. The latter involves a smash

product of an infinite-dimensional algebra. This is the reason why this BF-type action can (and does)

describe local degrees of freedom.
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