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We develop a stochastic description of the topological properties in an interacting Chern insulator. We confirm
the Mott transition’s first-order nature in the interacting Haldane model on the honeycomb geometry from a
mean-field variational approach supported by density matrix renormalization group results and Ginzburg-Landau
arguments. From the Bloch sphere, we make predictions for circular dichroism of light related to the quantum
Hall conductivity on the lattice and in the presence of interactions. This analysis shows that the topological
number can be measured from the light response at the Dirac points. Electron-electron interactions can also
produce a substantial number of particle-hole pairs above the band gap, which leads us to propose a stochastic
Chern number as an interacting measure of the topology. The stochastic Chern number can describe disordered
situations with a fluctuating staggered potential, and we build an analogy between interaction-induced particle-
hole pairs and temperature effects. Our stochastic approach is physically intuitive, easy to implement, and leads
the way to further studies of interaction effects.

DOI: 10.1103/PhysRevB.103.035114

I. INTRODUCTION

Topological phases of matter have attracted a lot of interest
in recent years, including generalizations of the quantum Hall
effect [1] to the Haldane model on the honeycomb lattice
[2]. This gives rise to the quantum anomalous Hall effect,
which has been realized in quantum materials [3], graphene
[4], photonic systems [5–10], and cold atoms in optical lattices
[11,12]. The occurrence of an insulating bulk and a protected
chiral edge mode can be understood through a quantized topo-
logical number, the Chern number, assuming noninteracting
particles. These systems at half filling then behave as Chern
insulators (CIs). While some progress has been made in the
description of interacting Chern systems, in the bosonic case
[13,14], and both for spinless [13,15–17] and spinful [18–22]
fermions, and more generally in the description of interacting
topological systems [23,24], several central questions remain
open. In this paper, we introduce a many-body description
for interacting CIs, taking into account interaction-induced
particle-hole pairs and describing Mott physics.

To describe the effect of particle-hole pairs in the Haldane
model on the honeycomb lattice with a nearest-neighbor inter-
action, we introduce a Hubbard-Stratonovitch transformation
to rewrite the quartic fermionic interaction as Gaussian vari-
ables [25], referring to stochastic variables. One stochastic
variable can be identified as a Semenoff mass [26], which will
produce a sign flip of the mass term at one Dirac point only at
the Mott transition. Within this approach, there is a direct rela-
tion between the creation of particle-hole pairs above the band
gap due to interaction effects and fluctuations of this stochas-
tic variable. By analogy to the studies of the two-dimensional
Hubbard model [27,28], other variables dressing the kinetic
term and referring to the particle-hole channel will also play

an important role. This particle-hole channel will produce
a jump of the charge density wave (CDW) order parameter
at the Mott transition already at a mean-field level from a
variational approach, in agreement with infinite density matrix
renormalization group (iDMRG) results. This particle-hole
channel provides a physical insight behind the Mott transi-
tion’s first-order nature. The phase transition was previously
shown to be first order from exact diagonalization [13,15].
We also analyze the phase transition using a Ginzburg-Landau
approach [29].

Furthermore, circular dichroism of light is related to the
quantized Chern number [30,31] for the noninteracting Hal-
dane model. Shining light induces a population of the states
in the upper band, above the band gap. The associated de-
pletion rates depend on the orientation of the circular drive.
The Chern number is encoded in the difference of rates with
opposite orientation. Through a mathematical formulation on
the Bloch sphere, we show that the topology of the (inter-
acting) system is already described by the depletion rates
that occur at the Dirac points of the Brillouin zone. We also
consider interaction effects that contribute to the formation
of particle-hole pairs and thereby stochastically change the
Chern number as defined through the circular dichroism of
light. We define the stochastic Chern number through an av-
erage on the ensemble of stochastic variables. We study how
the stochastic topological number may be linked to disordered
situations, to stochastic theories and protocols on the Bloch
sphere [32,33], and to the finite-temperature Chern number
[34].

The organization of the paper is as follows. In Sec. II, we
present the interacting Haldane model with a nearest-neighbor
interaction and introduce the definitions both in real and re-
ciprocal spaces. In Sec. III, we derive the formalism related
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to the interacting stochastic topology and we obtain an effec-
tive Hamiltonian. We also present the variational mean-field
approach, discuss results for the phase diagram as well as
observables, and show quantitative agreement with iDMRG.
In Sec. IV, we derive an energetics approach of the transi-
tion and build a Ginzburg-Landau theory of fluctuations to
justify the nature of the Mott transition. In Sec. V, we show
how the topological properties can be revealed from the Dirac
points through circular dichroism of light via a Bloch sphere
quantum formalism and resorting to Stokes’ theorem [33].
Then, we derive an analogy with transport properties on the
lattice and the quantum Hall conductivity from the Bloch
sphere via the Karplus-Luttinger velocity [35] and show the
relevance of this formalism in momentum space in the pres-
ence of interactions beyond the mean-field scheme. We show
that the stochastic approach successfully reproduces the jump
of the topological number at the transition directly from the
light responses. In Sec. VI, we introduce the stochastic Chern
number and show its relevance for disordered situations, e.g.,
in the presence of fluctuations in the underlying lattice poten-
tial. The sampling on stochastic variables here corresponds
to an ensemble average. Then we discuss applications for
the light response and the Mott transition and build an anal-
ogy with temperature effects. In Sec. VII, we summarize
our findings and give further perspectives. The Appendices
are devoted to further details on the iDMRG approach and
temperature effects.

II. MODEL

Here, we introduce the model Hamiltonian H = H0 + HV ,
where H0 is the Haldane honeycomb model for spinless
fermions at half filling [2] and HV is the nearest-neighbor
interaction:

H0 = −
∑
〈i, j〉

t1c†
i c j −

∑
〈〈i, j〉〉

t2e±i�c†
i c j,

HV = V
∑
〈i, j〉

(ni − 1/2)(n j − 1/2). (2.1)

Here, t1 represents the nearest-neighbor hopping strength
which we set to unity hereafter (t1 = 1). Furthermore, t2e±i�

represents the next-nearest-neighbor hopping term where we
fix the Peierls phase to � = π/2 for simplicity. Here, the
positive (negative) sign refers to (counter)clockwise hopping
and the second-nearest neighbors are represented through the
vectors ui. This set of lattice vectors in Fig. 1 is given by

ux = 1
2 (3,

√
3), uy = 1

2 (3,−
√

3). (2.2)

The bond length has been set to unity in order to simplify the
notation. The nearest-neighbor displacements on the honey-
comb lattice are given by the set of vectors

ax = 1
2 (1,

√
3), ay = 1

2 (1,−
√

3), az = (−1, 0). (2.3)

We can then write the next-nearest neighbor displacements on
the honeycomb lattice in terms of the ap as bi = a j − ak where
the tuple (i, j, k) is a permutation of the bond-tuple (x, y, z).
As in Ref. [36], the ap basis does not yield a Hamiltonian
in Bloch form. Rather, we perform a gauge transform on the

FIG. 1. (a) Honeycomb lattice in real space with sublattices A
and B, lattice vectors, and (next-)nearest neighbor displacements.
(b) Honeycomb lattice in momentum space, marking the Brillouin
zone, reciprocal lattice vectors, and high symmetry points.

Hamiltonian to the basis, given by the lattice vectors ui, see
Fig. 1.

We also introduce the definitions in the reciprocal space.
The Brillouin zone of momentum space is visualized in
Fig. 1(b) and shows the high-symmetry M and K points of the
Brillouin zone. Specifically, the high symmetry Dirac-points
are located at

K = 2π

3

(
1,

1√
3

)
, K ′ = 2π

3

(
1,− 1√

3

)
. (2.4)

The energy bands in the Haldane model are represented in
Fig. 2.

III. INTERACTING STOCHASTIC TOPOLOGICAL
APPROACH

Now we introduce our stochastic approach to study inter-
action effects on a topological model. In this paper, we study
the spinless Haldane honeycomb model of Eq. (2.1) at half
filling with nearest-neighbor interactions, which is an impor-
tant model giving rise to topological Bloch energy bands. We
show that our approach describes correctly and quantitatively
interaction effects as well as properties of the Mott transition.
We highlight here that the method may be applied to other
models described by a similar matrix form in the reciprocal
space.

(a) (b)

FIG. 2. (a) Band structure (blue pair of bands) for small t2 < 0.2
with t1 = 1. The low-energy physics is centered around the Dirac
points, where the stochastic approach applies. If we allow for fluc-
tuations at V > 0, the sampling of φz corresponds to the creation
of quasistates that change the band gap at the K and K′ points.
(b) Haldane band structure for large t2 > 0.2 such that the low-energy
regime is located at the M points.
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Previous studies [16,17] have suggested that at a mean-
field level the quartic interaction term can be decoupled into a
CDW order parameter which then acts as a staggered poten-
tial in sublattice space on H0. A straightforward approach,
proposed in Ref. [16], would be to rewrite HV exactly as
HV = −V

2

∑
〈i, j〉 (ni − n j )2 to find a simple mean-field theory

for the CDW order. Crucially, however, this ansatz does not
take into account the fact that the correlator 〈c†

i c j〉, referring to
the particle-hole channel [27,28], is finite in two-dimensional
Hubbard models and therefore contributes to the interaction
energy 〈c†

i cic
†
j c j〉. When particle-hole channels are not in-

cluded, the Mott phase transition would be second order
[16,17], which is not in agreement with exact diagonalization
results (at finite t2) [13].

A. Stochastic variables

Our objective here is to introduce stochastic or Hubbard-
Stratonovitch variables through the decoupling of the quartic
interaction term, allowing us to derive an effective quadratic
and local theory in momentum space. For this purpose, we
rewrite

HV = V
∑
i,p

(
ni − 1

2

)(
ni+p − 1

2

)

= V
∑
i,p,r

ηr
(
c†

i σ
r
i,i+pci+p

)2

− V

2

∑
i,p

(
c†

i ci + c†
i+pci+p − 1

2

)
, (3.1)

where i denotes a unit cell, p runs over the links (x, y, z), r runs
over (0, x, y, z), and σ r denotes the Pauli matrices acting on
sublattice space with basis (i(A), i + p(B)). The coefficients
ηr need to fulfill the relations

η0 = −ηz, ηx = ηy,
1
4 = η0 − ηx. (3.2)

We need, in principle, to choose ηr such that the decoupling
scheme incorporates particle-hole channels (i.e., ηx,y �= 0) that
contribute to the total energy. A priori, a generic choice of ηr

that will ultimately minimize the total energy of the effective
Hamiltonian correctly, is not obvious. Rather, a choice of
coefficients ηr needs to be justified. We can set our definitions
such that ηz = ηx, in agreement with the variational approach
presented below (the self-consistent Eqs. (3.24) and (3.26)
will show the same normalization prefactors on the right-hand
side of the equal sign). Therefore, we obtain the following
choice of the ηr variables [see also Eq. (5.55)]:

−η0 = ηx = ηy = ηz = − 1
8 . (3.3)

We can now write down the partition function and action
in momentum space as

Z =
∫

D(�,�†)e−S ,

S =
∫ β

0
dτ

∑
k

�
†
k (∂τ + h0(k) · σ )�k + HV , (3.4)

with the spinor basis �
†
k = (c†

kA, c†
kB) such that

hx
0(k) = −t1

∑
p

cos(k · ap),

hy
0(k) = −t1

∑
p

sin(k · ap), (3.5)

hz
0(k) = −2t2

∑
p

sin(k · bp).

Decoupling the quartic interaction term HV via a Hubbard-
Stratonovich transformation for each r ∈ {x, y, z} gives

exp

(
V

8

∑
i,p

(
c†

i σ
r
i,i+pci+p

)2

)
=

∫
Dφr exp

(
−

∑
i,p

2V
(
φr

i+p/2

)2 + V φr
i+p/2

(
c†

i σ
r
i,i+pci+p

))
, (3.6)

and for r = 0,

exp

(
−V

8

∑
i,p

(
c†

i σ
0
i,i+pci+p

)2

)
=

∫
Dφ0 exp

(
−

∑
i,p

2V
(
φ0

i+p/2

)2 + iV φ0
i+p/2

(
c†

i σ
0
i,i+pci+p

))
. (3.7)

Here we introduced for each r an auxiliary field φr
i+p/2 on each link between lattice sites i (on sublattice A) and i + p (on

sublattice B). The fields φx and φy are particle-hole channels, φ0 corresponds to a chemical potential, and φz to a staggered
chemical potential in sublattice space that captures CDW order but at the same time acts as a Semenoff mass term on the
Haldane model and therefore controls the topological Chern number.

We rewrite the decoupled interaction part in Fourier space and obtain the partition function and action

Z =
∫

D(�,�†, φ0, φx, φy, φz )e−S , (3.8)

S =
∫ β

0
dτ

∑
k

�
†
k (∂τ + h0(k) · σ )�k +

∑
k,q,p

�†
q hV (k, q, p)�k +

∑
k,r

6V φr
kφ

r
−k, (3.9)
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where the interaction density matrix reads

hV (k, q, p) = V

(
e− i

2 (k−q)·ap
(
iφ0

k−q + φz
k−q

) − 1
2 e

i
2 (k+q)·ap

(
φx

k−q − iφy
k−q

)
e− i

2 (k+q)·ap
(
φx

k−q + iφy
k−q

)
e

i
2 (k−q)·ap

(
iφ0

k−q − φz
k−q

) − 1
2

)
. (3.10)

In principle, one could also assign an imaginary time vari-
able τ to the stochastic variables. Then this would result
in a frequency dependence of the variables φr

k. Below,
we develop a variational approach to evaluate the stochas-
tic variables within the ground-state properties through an
energy-minimization protocol. Therefore, we consider below
a time-independent, static model and therefore restrict the
analysis to the zero frequency contribution. For ground-state
observables, this stochastic variational approach is in good
agreement with the iDMRG approach. As we also show be-
low, fluctuations of the stochastic variables around their value
for the minimum of energy are well controlled. Furthermore,
we restrict the discussion to leading contribution in k space for
which scattering does not change momentum. Hence, we keep
only the zero momentum contribution, i.e., k − q = 0. It’s an
important reminder that sampling stochastic variables in time
results in the sign problem for the fermionic Haldane model,
which justifies our present approach. It should be emphasized
that to reproduce ground-state properties, one cannot ignore
the particle-hole channel φx.

The action S now takes the form

S =
∑

k

�
†
k

(
h0(k) · σ +

∑
p

hV (k, p)

)
�k +

∑
k,r

6V φr
kφ

r
−k,

(3.11)

where the interaction density matrix now reads

hV (k, p) = V

(−(
φ0 + 1

2

) + φz eik·ap (φx − iφy)

e−ik·ap (φx + iφy) −(
φ0 + 1

2

) − φz

)
.

(3.12)

Here we skipped the zero-momentum index of the fields, i.e.,
φr ≡ φr

0, and redefined the chemical potential −iφ0 → φ0

such that φ0 is now real for the matrix hV (k, p) to be Her-
mitian (where it was imaginary before the substitution, such
that iφ0 was real).

We set Hmf (k) = h0(k) · σ + ∑
p hV (k, p) and finally

arrive at the effective mean field Hamiltonian Hmf =∑
k �

†
kHmf (k)�k where the mean-field Hamiltonian density

in matrix form reads

Hmf (k) =
(

γ (k) − 3V (φ0 + 1
2 ) −g(k)

−g∗(k) −γ (k) − 3V
(
φ0 + 1

2

)),

(3.13)

with the functions γ (k) and g(k) defined as

γ (k) = 3V φz − 2t2
∑

p

sin(k · bp), (3.14)

g(k) = [t1 − V (φx + iφy)]
∑

p

(cos(k · ap) − i sin(k · ap)).

(3.15)

The vectors ap and bp are the ones from Sec. II. The term
3V φz assumes the role of a Semenoff mass term [26] in the
Haldane model, whereas the fields φx and φy renormalize the
nearest neighbor hopping amplitude t1.

The field φ0 can be absorbed in the chemical potential
and will be fixed to φ0 = −1/2 at half filling. The field φz

changes sign in sublattice space and therefore plays the role of
a staggered chemical potential. On the one hand, it measures
the particle density difference between sublattices A and B,
and captures CDW order. Furthermore, it acts as a Semenoff
mass term [26] on the Haldane model and therefore controls
the Chern number of the system [2]. The variables φx and φy

dress the nearest-neighbor hopping term and assuming t1 is
real then this favors φy = 0 while φx �= 0. The φz variable
is also real in the definition of the Hubbard-Stratonovitch
transformation.

B. Self-consistent mean-field equations
from a variational approach

Before deriving the self-consistent equations of the mean-
field Hamiltonian Eq. (3.13), we provide a general remark on
the derivation of self-consistent mean-field equations.

Consider some general Hamiltonian H = Ht + Hint with
a quadratic, kinetic part Ht and a quartic interaction part
of the form Hint = −∑

i, j Ui jc
†
i cic

†
j c j ≡ −∑

i, j niUi jn j with
interaction matrix Ui j . The quartic term can be decoupled by
means of a Hubbard-Stratonovich transformation as [25,37]

exp (niUi jn j ) =
∫

dφ exp(−φiUi jφ
j − 2φiUi jn j ), (3.16)

where we introduced some Gaussian auxiliary variable φ.
From the partition function and action

Z =
∫

D(c, c†, φ) exp (−S ),

S =
∫ β

0
dτ

∑
i, j

c†
i (∂τ + ht )c j + φiUi jφ

j + 2φiUi jn j,

(3.17)

one then usually [37,38] computes the self-consistent mean-
field equations via 〈

δS
δφi

〉
!= 0, (3.18)

which would yield in the above example

0 = 〈Ui jφ
j + 2Ui jn j〉 ⇒ φ j = −2〈n j〉. (3.19)

Now it’s important to highlight that this result is not unique.
The auxiliary field φ can be thought of as a gauge field.
Essentially, we can make a transformation as φi → αφi in
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Eq. (3.16) with some factor α to obtain

S =
∫ β

0
dτ

∑
i, j

c†
i (∂τ + ht )c j + α2φiUi jφ

j + 2αφiUi jn j .

(3.20)
This produces the self-consistent mean-field equation〈

δS
δφi

〉
!= 0, ⇒ φ j = − 2

α
〈n j〉. (3.21)

Hence, the self-consistent mean-field equation depends on α

and is therefore not gauge independent. A problem arises, as
we only minimize the action (or energy) of the decoupled,
φ-dependent Hamiltonian. Instead, we need to minimize the
energy of the decoupled Hamiltonian (which can be seen as
a choice of a trial Hamiltonian) with respect to the original,
quartic Hamiltonian. This can be done in the following way.

Let Hmf be (a choice of) a mean-field or trial Hamiltonian
and H the original, full Hamiltonian. Then we can rewrite
formally H = Hmf + (H − Hmf ). On the level of the free
energy, it follows the Bogoliubov inequality [39,40]:

F � Fmf + 〈F − Fmf〉. (3.22)

The right-hand side of the inequality is a function of the mean-
field parameters and we need to minimize it with respect to φ.
In our case, for the full Hamiltonian H in Eq. (2.1) and the
mean-field Hamiltonian in Eq. (3.13), we obtain the following
set of self-consistent mean field equations:

φ0 = − 1
2 (〈c†

i ci〉 + 〈c†
i+pci+p〉), (3.23)

φx = − 1
2 (〈c†

i ci+p〉 + 〈c†
i+pci〉), (3.24)

φy = − 1
2 i(−〈c†

i ci+p〉 + 〈c†
i+pci〉), (3.25)

φz = − 1
2 (〈c†

i ci〉 − 〈c†
i+pci+p〉), (3.26)

or in shorthand notation using Pauli matrices:

φr = − 1
2 〈c†

i σ
r
i jc j〉. (3.27)

The real-space amplitudes are evaluated directly, e.g., as

〈c†
i ci+p〉 = 2

Nsites

∑
k

eik·ap〈c†
kAckB〉

= 2

Nsites

∑
k

∑
μ′,ν ′

eik·apM∗
kAμ′MkBν ′ 〈γ †

kμ′γkν ′ 〉

= 2

Nsites

∑
k

∑
λ

eik·apM∗
kAλMkBλ, (3.28)

and Nsites refers to the number of sites in the system, i.e.,
Nsites/2 refers to the number of unit cells. On the first line, we
performed a Fourier transform of the creation and annihilation
operators in real space. On the second line, we used γk =
M†

kψk, where Mk is a unitary matrix that diagonalizes Hmf .
The new spinor basis fulfills 〈γ †

kμ′γkν ′ 〉 = δμ′ν ′ for occupied
states. In Eq. (3.28), μ′ and ν ′ run over all states, whereas λ in

0.1 0.2
t2/t1
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2.5

V
/t
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0.0

0.1

0.2
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n
A
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n
B

0.5 1.0 1.5 2.0 2.5
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1.00

σ
x
y
(e

2 /
h
)

0.00

0.25

0.50

0.75

1.00

n
A
−

n
B

(a) (b)

(c) (d)

FIG. 3. (a) V − t2 mean-field phase diagram from the method.
The transition marks the condensation of the CDW order parameter
φz. (b) Same phase diagram obtained with iDMRG. (c) Absolute
value of the self-consistent φr variable as a function of V for t2 = 0.1.
(d) Hall conductivity and 〈nA − nB〉 from iDMRG.

Eq. (3.28) only runs over occupied states. The results below
are obtained when solving the coupled equations above.

C. Stochastic and iDMRG results

In Fig. 3(a), we present the two-dimensional t2 − V phase
diagram obtained with a variational approach on the mean-
field theory. We confirm the presence of two phases [13,14], a
CI phase with a perfectly quantized Chern number and a Mott
or CDW phase. The CDW phase is characterized by a nonzero
value of 〈nA − nB〉 or φz; as long as 〈nA − nB〉 is not equal to
unity, then φx can remain finite above the transition as a result
of quantum fluctuations. Figure 3(c) shows the numerical
solution of the mean-field equations for t2 = 0.1. The jump
in the CDW order parameter φz indicates the first-order phase
transition.

Now we give some physical insight on the occurrence of a
jump in φz, which is evaluated at the wave-vector k − q = 0.
At the Mott transition, the gap closes at one Dirac point
such that for the ground state we have 〈nA(K)〉 = 〈nB(K)〉
whereas the gap remains visible at the other Dirac point
such that 〈nA(K′)〉 = 1. In real space, the system behaves
(approximately) as if 〈nA − nB〉 ≈ 1/2 on a given unit cell
and |φz| ≈ 1/4. It’s relevant to highlight that the variable φz

entering in the diagonal terms of the 2 × 2 matrix describing
hV is taken at the wave-vector k − q = 0 instead of a Dirac
point, corresponding then to an average on all the unit cells of
the lattice in real space. This argument implies a jump in the
quantum Hall conductivity at the Mott transition. The closing
of the gap at the K point gives a critical interaction value
Vc ≈ 4

√
3t2 to enter into the Mott regime, suggesting then

a linear relation between Vc and t2 as observed in the phase
diagram. In the stochastic approach, the particle-hole channel
allows us to determine quantitatively 〈nA(K)〉 and 〈nB(K)〉
and the value of φz at wave-vector k − q = 0 according to
Eq. (3.29), which then results in the phase diagram of Fig. 3.
The linear relation between Vc and t2 remains visible for the
range of studied parameters.
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We have compared our mean field calculations with sim-
ulations using the iDMRG by means of the python package
TENPY [41], written in the language of matrix product states.
This numerical method calculates the ground state of the
model Eq. (2.1) in the infinite cylinder geometry, as well as
the expectation of the CDW order parameter, 〈nA − nB〉, the
Hall conductivity σxy, the correlation length ξ , and the entan-
glement entropy S. The bond dimension χ is a measure of the
maximum number of states kept by the algorithm and sets the
accuracy of the calculation. We have performed calculations
up to χ = 1200 for cylinder circumferences of Ly = 6, 12
sites and our results show good convergence for bond dimen-
sions as low as χ � 200, consistent with previous iDMRG
calculations [42]. Additional information on the method can
be found in Appendix A.

The phase diagram for χ = 200 and Ly = 6 is shown in
Fig. 3(b). In Fig. 3(d), we show the CDW order parameter and
the Hall conductivity along a cut at t2/t1 = 0.1, which show
a discontinuity along the transition for all χs. These discon-
tinuities are typical of a first-order phase transition, further
supported by the saturation of the entanglement entropy at
the transition as a function of correlation length. Comparing
iDMRG results with the mean-field variational approach, our
findings agree as long as the smallest band gap (relevant en-
ergy scale for CDW order) is located at the K points (relevant
for topology), which is the case for t2 � 0.2. Therefore, we
focus on this parameter regime.

IV. ENERGETIC ANALYSIS OF THE PHASE TRANSITION

We find at the mean-field level a jump of the CDW order
parameter φz at the phase transition for the choice of pa-
rameters’ regime. In Fig. 4 (top), we show the CDW order
parameter as a function of V for different fixed values of
t2 ranging between t2 = 0.08 and t2 = 0.20. Here, the self-
consistent mean equations were solved for increasing V in
steps of �V = 0.0005 to clearly show the jump in the order
parameter φz. The jump becomes smaller the smaller t2 is.
Therefore, at the mean-field level, a clear indication of a first-
order phase transition can only be given when t2 is sufficiently
large, i.e., at the order of t2. From the Ginzburg-Landau and
mean-field theoretical point of view, a clear analysis of the
nature of the mean-field analysis for t2 < 0.05 is not possible;
the phase transition appears at most rather weakly first order
when t2 is close to zero. This observation seems to be in ac-
cordance with the literature [43], where a second-order phase
transition is predicted for vanishing t2. From our perspective,
the regime of small t2 seems therefore to be the middle ground
between the clear indication of a first-order phase transition in
the range t2 ∈ (0.08, 0.20) and the second-order phase transi-
tion for vanishing t2.

To confirm a first-order transition on the mean-field level
for sufficiently large t2, we evaluate the total energy of system.
Let |�mf〉 denote the mean-field ground state which, in gen-
eral, depends on the self-consistently obtained field φr , i.e.,
|�mf〉 ≡ |�mf〉φ. Then, we compute the energy of the sys-
tem via F (φ) = 〈�mf |H|�mf〉 ≡ 〈H〉 where H = H0 + HV

is the original Hamiltonian Eq. (2.1). This calculation involves
exactly decomposing the quartic term nin j = c†

i cic
†
j c j using

FIG. 4. CDW order parameter from mean-field theory (φz, top)
and iDMRG (Ly = 6, χ = 200, bottom) as a function of the inter-
action strength V/t for different values of the next-nearest-neighbor
hopping amplitude t2. In both cases, the smaller t2 the smaller the
jump in the order parameter (in agreement with known results in
the literature for t2 = 0 [43]). In the mean-field diagram (left), we
computed a solution to the self-consistent equations in small incre-
mental steps of �V = 0.0005 to show clearly the jump in the order
parameter for the values of t2 under investigation.

Wick’s theorem [37] as

〈c†
i cic

†
j c j〉 = 〈c†

i ci〉〈c†
j c j〉 − 〈c†

i c†
j 〉〈cic j〉 − 〈c†

i c j〉〈c†
j ci〉. (4.1)

The amplitudes such 〈c†
i ci〉 are then evaluated similarly to the

computation leading to Eq. (3.29).
Evaluating the energy in both phases around the transition

shows that the energy curves cross at the transition line, see
Fig. 5(a) for t2 = 0.2. This indicates a first-order transition as
the parameter will jump at the transition to the energetically
preferable solution. This can be further confirmed by comput-
ing the energy explicitly for small φz around the saddle-point

FIG. 5. (a) Energy of the CI and CDW Mott phases obtained
from mean-field theory at t2 = 0.2. The curves cut in one point, forc-
ing the CDW order parameter to jump as the system abruptly prefers
to change the phase to minimize energy. (b) Energy landscape around
the mean-field solution at t2 = 0.2 as a function of the CDW order
parameter φz at the phase transition. The coexistence of local min-
ima indicates a first-order transition according to Ginzburg-Landau
theory.
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TABLE I. Ginzburg-Landau coefficients (of the polynomial
Eq. 4.2). The coefficients for different values of t2 are, in general,
difficult to compare since we need for each t2 to fix some V manu-
ally close to the phase transition and the coefficients are subject to
change in magnitude when only moving slightly toward the phase
transition or away from it. Comparing signs is, however, possible,
and the configuration at hand (α > 0, β < 0, and γ > 0) determines
a first-order phase transition [44].

F0 α β γ

t2 = 0.20 and V = 1.6250 −2.0913 0.0402 −1.5045 15.6428
t2 = 0.08 and V = 1.2074 −1.8445 0.0001 −0.2575 70.7487
t2 = 0.12 and V = 1.3610 −1.8974 0.0010 −1.5419 31.4482
t2 = 0.14 and V = 1.4250 −1.9232 0.0212 −1.2630 6.7646

solution right before the phase transition (also for t2 = 0.2).
The curve obtained, Fig. 5(b), shows a typical Mexican hat
form [37] with coexisting minima. We build a Ginzburg
Landau theory, i.e., an expansion of the free-energy curve.
Finding appropriately relevant terms until the order (φz )6 is
a difficult task here because V is large as well as φx, and
therefore we perform this task numerically. The free energy
can be approximated by a polynomial of the form

F (φz ) = F0 + α(φz )2 + β(φz )4 + γ (φz )6, (4.2)

where the coefficients fulfill in general [44] α > 0, β < 0,
and γ > 0 to ensure the coexistence of local minima and
that the free energy is bounded from below. We fit such a
polynomial to the energy computed very close to the phase
transition for different values of t2. The results are shown in
Table I. In general, it is difficult to compare these coefficients
for different values of t2. For each value of t2, we need to fix a
V that is close to the phase transition for Eq. (4.2) to be valid.
Varying V in the vicinity of the phase transition slightly, i.e.,
moving either toward the phase transition or away from it may
change the magnitude of the coefficients in Table I. However,
we can make a statement on the signs of the coefficients.
Since we get across all values of t2 a consistent configuration
of α > 0, β < 0, and γ > 0, we can confirm the first-order
nature of the phase transition [44].

Furthermore, note that a plot of the energy landscape
around a mean-field solution such as Fig. 5(b) is an important
tool to check the validity of the mean-field theory. If rele-
vant mean-field parameters are omitted, their weight is not
correctly adjusted (the parameters ηr introduced above) in the
self-consistent equations and the energy curve will not show a
minimum.

Finally, we would like to comment on the stochastic ap-
proach to the interacting CI from the energetic point of view.
Allowing the mean-field parameters φr to fluctuate around
the saddle point solution changes the energy of the quasistate
under consideration. We sample the fields φx,y,z and for each
configuration we can compute the energy of this quasistate
with respect to the wave function |�〉 ≡ |�(φx, φy, φz )〉. Re-
peating this procedure for 103 sampled configurations of the
φx,y,z for each respective V yields Fig. 6. The red line gives
the energy of the mean-field ground state which is the lowest
energy state for each V . Sampling the φp fields will result in

FIG. 6. Energy of the mean-field ground state as function of
V (red line). Also shown is the energy distribution of quasistates
obtained from sampling (φx, φy, φz ) = φ around the saddle point.
This creates quasiexcited states at energies higher than the mean-field
ground state. Each quasistate can be attributed a Chern number C(φ)
which will be either one (green) or zero (blue).

a quasistate at a higher energy. Each quasistate can be asso-
ciated with a Chern number of either one or zero (depending
on φz). For small V , the mean-field ground state (red line) as
well as states close to it have Chern number one. Close to
the phase transition, it then becomes more likely to create a
state with Chern number zero when moving away from the
saddle point. At the phase transition, the ground state acquires
Chern number 0 and for further increasing V it becomes more
and more unlikely to create an excited state with nontrivial
topology. This analysis also shows the occurrence of a jump
in the topological Chern number at the phase transition from
the ground state, as obtained with iDMRG in Fig. 3(d).

V. CIRCULAR DICHROISM OF LIGHT

Here, we address the response of the CI to circularly po-
larized light with different polarizations [30]. We show that
the light response can detect the Mott transition from the
ground state through mathematical arguments and through the
stochastic approach.

For clarity’s sake, this section is organized as follows.
First, resorting to a Bloch sphere argument where the light-
matter coupling is defined through the introduction of a
time-dependent vector potential in Eq. (3.13) above, we show
that topology can be described from the light-matter coupling
at the K and K′ points only. The depletion rates �±

l→u(k =
K, K ′) encode the mass term |m| = 6

√
3t2 which determines

the size of the band gap at the K points. The next-nearest-
neighbor hopping term t2ei� breaks time-reversal symmetry
and leads to different signs of m at the K and K′ points and,
therefore, to nontrivial topology [2]. We find a relation with
the quantum Hall conductivity from the Bloch sphere and the
Karplus-Luttinger velocity [35]. Relating to transport prop-
erties, then we show the relation between the Bloch sphere
arguments and the depletion rates as derived in Ref. [30] from
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Fermi’s golden rule:

�±
l→u(ωk, k) = 2π

h̄

( E

h̄ω

)2

|A±
l→u|2δ

(
εk

u − εk
l − h̄ω

)
(5.1)

and �±
l→u(ωk) = ∑

k∈BZ �±
l→u(ωk, k). Here, the transition am-

plitude is given by A±
l→u = 〈uk| 1

i
∂H0
∂kx

∓ ∂H0
∂ky

|lk〉, E is the
strength of the drive or the electric field in the original basis,
|uk〉 and |lk〉 are the eigenstates corresponding to the lower
and upper bands, εk

l,u their eigenenergies, and ± selects the
polarization orientation. Within Fermi’s golden rule, we show
that it’s equivalent to sum on all the momenta k in the entire
Brillouin zone as in Ref. [30] or just consider the Dirac points
only.

We also check numerically that we can evaluate the Chern
number with the formula at the Dirac points only, and find for
the frequency-integrated rates

1

2

∫ ∞

0
dω

∑
k=K,K ′

(�+
l→u(ωk, k) − �−

l→u(ωk, k)) = ρC, (5.2)

with the constant ρ = 16π3E2
√

3|t1|2m−2. In the noninter-
acting case, C is one in the topological nontrivial phase of
the Haldane model and exactly zero otherwise, and is thus
the (ground state) Chern number. The prefactor 1/m2 comes
from Eq. (5.1) written in terms of E . Then we provide general
arguments related to interactions and transport in momentum
space to show that Eq. (5.1) is also applicable in the presence
of interactions. Through the stochastic approach, we verify
that the light responses can probe the jump in the Chern
number at the Mott transition for the ground state.

A. Poincaré-Bloch sphere formalism

We start our analysis from the 2 × 2 matrix form for the
Hamiltonian

H0(k) =
(

γ (k) −g(k)
−g∗(k) −γ (k)

)
, (5.3)

which is the pure Haldane model with φr = 0. Its energy
eigenvalues read(

εk
u , εk

l

) = ±
√

γ 2(k) + |g(k)|2 ≡ ±εk, (5.4)

where the positive sign refers to the upper band and the minus
sign to the lower band. In analogy with a spin-1/2 Hamilto-
nian described by a polar angle θ and azimuthal angle ϕ, we
can parametrize the Hamiltonian as

γ (k)

εk
= cos θ, −g∗(k)

εk
= eiϕ sin θ. (5.5)

From quantum mechanics and the definition of eigenstates of
a spin-1/2 particle, the two eigenstates |u〉 and |l〉 referring to
upper and lowest bands, respectively, take the form

|u〉 = e−iϕ/2 cos (θ/2)|a〉 + eiϕ/2 sin (θ/2)|b〉,
|l〉 = −e−iϕ/2 sin (θ/2)|a〉 + eiϕ/2 cos (θ/2)|b〉. (5.6)

Here, the kets |a〉 and |b〉 refer to the states acting on sublattice
A and sublattice B, respectively, for a given wave vector. To
define the mass inversion effects associated to the light-matter
response, we introduce the following notations for εu and εl at

the two Dirac points. Starting from the north pole and chang-
ing θ by π , then reaching the south pole, is also equivalent
in Eqs. (5.5) to change εk → −εk and therefore to invert the
definitions of lower and upper bands. Therefore, at the two
Dirac points, we have g(K/K ′) = 0 and we will use below the
definitions εu(K ) = +m/2 = −εu(K ′) in the light response.
Similarly, we have the important mass identifications εl (K ) =
−m/2 = −εl (K ′).

For the light-matter coupling, here we use a formulation
written in terms of the vector potential. Using the spin Pauli
matrix representation, this is then analogous to the modifica-
tion in the Dirac Hamiltonian (p + Ae/c) · σ where we set
e and c to unity. In the circular basis, the vector potential
is defined as A = A0e−iωt (ex ∓ iey) where ex and ey are unit
vectors associated with the x and y directions. The signs
in (ex ∓ iey) refer to right-handed (+) and left-handed (−)
polarizations, respectively. With such definitions, we obtain
the light-matter Hamiltonian:

δH± = A0e±iωt |a〉〈b| + H.c. (5.7)

This is also equivalent to

δH± = A0 cos(ωt )(|a〉〈b| + |b〉〈a|)

∓ A0

i
sin(ωt )(|a〉〈b| − |b〉〈a|). (5.8)

To obtain these equations, we have considered the real parts
of the vector potential components Ax(t ) and Ay(t ) to ensure
that the Hamiltonian is Hermitian. The speed at the Dirac
points is absorbed in A0 assuming that t2 < 0.2t1. Within
this formulation, changing the sense of circulation for light
is equivalent to change ω → −ω, and the subscript ± refers
to a Jones polarization of light. We can then rewrite δH±
in the band basis (which diagonalizes the Hamiltonian), and
we obtain two classes of terms which can be then studied by
mapping the Brillouin zone onto the Bloch sphere:

δH± = A0 sin (θ ) cos (ωt ± ϕ)(|u〉〈u| − |l〉〈l|)
+ [A0(e±iωt eiϕ cos2 (θ/2) − sin2 (θ/2)e∓iωt e−iϕ )

× |u〉〈l| + H.c.]. (5.9)

The first term produces a time-dependent shift of the chemical
potential in the original Haldane model, and therefore to en-
sure the validity of the topological phase, we require that A0

is small such that the chemical potential is in the band gap. At
the poles, the first term is precisely zero. Now, we can apply
Fermi’s golden rule argument for the interband transitions
(at the two poles). The transition rates �+(k) and �−(k) are
defined such that the two terms in δH± proportional to |u〉〈l|,
for a given light polarization, correspond to an absorption of
a light quantum with energy h̄ω and −h̄ω, respectively, and
we assume a sampling on frequencies from −∞ to +∞ as
realized below to define the topological response.

For the + polarization, then

�+(k) = 2π

h̄
|〈u|δH±|l〉|2δ(εk

u − εk
l − h̄ω

)
. (5.10)

This results in

�+(k) = 2π

h̄
A2

0
1

2
(1 + cos2(θ ))δ

(
εk

u − εk
l − h̄ω

)
, (5.11)
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corresponding to a rotating wave approximation. The time-
dependent corrections average to zero if one considers
a time-Floquet average of the rates or if one goes to
the rotating-wave basis. The energy conservation can be
equivalently rewritten in terms of a given band δ(εk

u − εk
l −

h̄ω) = δ(−εk
l − h̄ω/2) = δ(εk

u − h̄ω/2).
The important point within this simple argument is that if

we change the polarization of light, only the sign of h̄ω is
changing in the energetic conservation law since by definition
H+(ω) = H−(−ω). Therefore,

�−(k) = 2π

h̄
A2

0
1

2
(1 + cos2(θ ))δ

(
εk

u − εk
l + h̄ω

)
. (5.12)

One can already anticipate that the poles play a special role
in the topological response as 1/2(1 + cos2(θ )) is quantized
to unity for each light polarization. We show below the pre-
cise relation with the topological number and then with the
quantum Hall conductivity.

B. Application of Stokes theorem

Here, we relate the light responses with topological prop-
erties of the spin-1/2 particle applying the Stokes theorem as
in Ref. [33], with the introduction of smooth fields. The Chern
number is defined in terms of the Berry curvature as

C = − 1

2π

∫
S2

∇ × A · d2n, (5.13)

where d2n = dϕdθn with n being the unit vector perpen-
dicular to the surface, A = 〈ψ |i∇|ψ〉 with |ψ〉 = |l〉 or |u〉
and ∇ = (∂/∂ϕ, ∂/∂θ ). The Berry connection A introduced
in Eq. (5.13) should be distinguished from the vector potential
introduced precedingly. In the literature, both quantities refer
to the letter A. We decompose the sphere into north and south
hemispheres such that

C = − 1

2π

∫
north

∇ × AN · d2n − 1

2π

∫
south

∇ × AS · d2n,

(5.14)

C = − 1

2π

∫ 2π

0
dϕA′

Nϕ (ϕ, θc) + 1

2π

∫ 2π

0
dϕA′

Sϕ (ϕ, θc),

(5.15)

and θc refers to the boundary. Here, to create a link with the
circular dichroism of light we will set θc = π/2. The smooth
fields are defined as [33]

A′
Nϕ (ϕ, θ ) = ANϕ (ϕ, θc) − Aϕ (0), (5.16)

A′
Sϕ (ϕ, θ ) = ASϕ (ϕ, θc) − Aϕ (π ), (5.17)

with curlA′ = curlA. The smooth fields are uniquely defined
on the surface of the sphere, where Aϕ (0) = limθ→0A(ϕ, θ )
and Aϕ (π ) = limθ→πA(ϕ, θ ). The poles require special care
because the ϕ angle is not uniquely defined. The smooth fields
satisfy A′

Nϕ (ϕ, θ ) → 0 when θ → 0 and A′
Sϕ (ϕ, θ ) → 0 when

θ → π .
For the lowest band |l〉, we have

Aϕ (ϕ, θ ) = −cos θ

2
. (5.18)

At the equator, Aϕ (ϕ, π/2) = 0 = ANϕ (ϕ, π/2) =
ASϕ (ϕ, π/2), and

A′
Nϕ (ϕ, θ = π/2) = 1

2 = −A′
Sϕ (ϕ, θ = π/2). (5.19)

The topological number has then two simple interpretations:

C = Aϕ (0) − Aϕ (π ) = −1 (5.20)

and

C = A′
Sϕ (ϕ, θ = π/2) − A′

Nϕ (ϕ, θ = π/2) = −1. (5.21)

In addition, we have the identities

A′
Nϕ (ϕ, θ ) = 1

2
(− cos θ + 1) = sin2 θ

2
(5.22)

and

A′
Sϕ (ϕ, θ ) = 1

2
(− cos θ − 1) = − cos2 θ

2
. (5.23)

These formulas show that one can perform closed circles with
ϕ → ϕ + 2π for any angle θ ∈]0; π [ and measure the Chern
number. This is in accordance with Stokes theorem, since θc

can be defined arbitrarily.
This equatorial plane representation seems justified since

we introduce the vector potential with (real) components
in the XY plane Ax = A0 cos(ωt ) and Ay = ∓A0 sin(ωt ) such
that the azimuthal angle can be redefined as ϕ = ϕ0 ∓ ωt for
the ± polarizations of light. Averaging on angles ϕ is similar
to perform a Floquet average on a time period. A closed path
involving a change of the angle ϕ ∈ [0; 2π ] in the equatorial
plane corresponds to perform a similar circular closed path in
the wave-vector space. This situation is similar to the nuclear
magnetic resonance where we obtain a signal 1

2 sin2 θ when
performing a Floquet average of the signal.

At the equator, for θ = π/2, to reveal the topological prop-
erties in the light response we use the identity

sin θ = 2 sin(θ/2) cos(θ/2) =
√

2 sin(θ/2). (5.24)

Then, we rewrite

�+(k, ω) = 2π

h̄
A2

0(1 − A′
Nϕ (ϕ, θ ))δ

(−εk
l − h̄ω/2

)
(5.25)

and

�+(k, ω) = 2π

h̄
A2

0(−A′
Sϕ (ϕ, θ ))δ

(−εk
l − h̄ω/2

)
. (5.26)

This term then probes the first circle at the equator in the
definition of C:∫ +∞

−∞
dω

1

2π

∫ 0

2π

dϕ�+(θ = π/2, ϕ, ω)

= 2π

h̄
A2

0A′
Sϕ (θ = π/2). (5.27)

For the + light polarization, since ϕ = ϕ0 − ωt , we have
defined here the angle ϕ going from 2π to 0. For the − light
polarization,

�−(k, ω) = 2π

h̄
A2

0(−A′
Sϕ (ϕ, θ ))δ(εk

l − h̄ω/2), (5.28)

and under parity transformation, this is equivalent to

�−(−k, ω) = 2π

h̄
A2

0A′
Nϕ (ϕ, θ )δ

(
ε−k

l − h̄ω/2
)
. (5.29)
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At the equator ε−k
l = εk

l . Then, we obtain∫ +∞

−∞
dω

1

2π

∫ 0

2π

dϕ(�+(θ = π/2, ϕ, ω) + �−(π − θ = π/2,−ϕ, ω)) = 2π

h̄2 A2
0(A′

Sϕ (θ = π/2) − A′
Nϕ (θ = π/2)). (5.30)

If we change + into − and also change ϕ → −ϕ, the two signals are additive. We also have∫ +∞

−∞
dω

1

2π

∫ 0

2π

dϕ(�+(π − θ = π/2, ϕ, ω) + �−(θ = π/2,−ϕ, ω)) = 2π

h̄2 A2
0(A′

Sϕ (θ = π/2) − A′
Nϕ (θ = π/2)). (5.31)

The right-hand side is invariant under a change of θ and can be equivalently rewritten as

2π

h̄2 A2
0(A′

Sϕ (θ ) − A′
Nϕ (θ )) = 2π

h̄2 A2
0(Aϕ (0) − Aϕ (π )). (5.32)

For θ → 0, from Eqs. (5.30) and (5.31), then we find∫ +∞

0
dω

1

2π

∮
dl

∑
k=K,K′

(�+(k, ω) − �−(−k, ω))

2
= 2π

h̄2 A2
0C. (5.33)

The integration on frequencies can be equivalently rewrit-
ten as an integration from 0 to +∞ and dl encodes the
trajectories on circles. We introduce a vector representation
�+(ϕ) = �+(ϕ)∇ϕ such that �−(−ϕ) = −�−(−ϕ)∇ϕ. See
also discussion below Eq. (5.48) for another definition of the
light responses related to the definitions in the paper. It’s
important to note that here C measures topological properties
of the lowest occupied band and therefore of the ground state.

C. Force and relation to transport properties

On the sphere, the topological number C = Aϕ (0) − Aϕ (π )
for a spin-1/2 can also be written in terms of the pseudospin
response at the poles [33]. In the present calculation, since for
the lower band 〈σ z〉 = − cos θ , we verify

C = −1

2

∫ π

0
dθ

∂

∂θ
〈σ z〉 = 〈σ z(0)〉 − 〈σ z(π )〉

2
, (5.34)

which can be interpreted as a pumped charge when driving
from the north to south pole and changing the polar angle
linearly in term θ = vt , v being the speed of the protocol.
Then we have

C = −1

2

∫ T

0
dt

∂

∂t
〈σ z〉 = −1

2

∫ T

0
dt

j(t )

e
. (5.35)

Within our definitions, the final time is T = π/v and σ z =
σ z(k) is the Pauli matrix with eigenvalue +1 when project-
ing on |a(k)〉 and eigenvalue −1 when projecting on |b(k)〉.
In the many-body representation, this is also equivalent to
σ z(k) = c†

kAckA − c†
kBckB. The current density comes from the

polarization of a dipole formed by the A and B sites when
driving from the north to south pole. Note that within this
definition, the current density j(t ) is defined in the reciprocal
space assuming the formation of Bloch energy bands. In the
protocole, it is as if one charge e moves in one direction and
a charge −e in the opposite direction such that 〈σ z〉 changes
by +2 in the protocole. On the lattice, this is equivalent to say
that in a unit cell i in real space formed with two sites A and
B we have the relation dn̂a/dt = −dn̂b/dt from the hopping
term between nearest neighbors. This can be verified through
the identity dn̂/dt = (i/h̄)[H, n̂], and since the light-matter

coupling δH± enters equivalently as a t1 term because the
associated vector potential has x and y components, then this
also ensures this correspondence. Then, by Fourier transform
we check that the term t2 does not affect this reasoning be-
cause it commutes with each particle-density operator. Now,
we also have n̂a = 1/2(1 + σ z ) and n̂b = 1/2(1 − σ z ) such
that dn̂a/dt = (1/2)dσ z/dt and in the reciprocal space, then
from the lattice we can simply define the current density as

j(t ) = d

dt
(n̂a(k) − n̂b(k)) = d

dt
σ z(k). (5.36)

Here, we show that C in Eq. (5.35) is related to the quantum
Hall conductivity. For this purpose, we discuss the effect of a
constant electric field such that Newton’s law gives h̄k̇ = eE.
We introduce the vector associated to the topological number

C = − 1

2π

∫
dk × R, (5.37)

with R = ∇ × A and R is a function of time. We identify a
parallel and perpendicular wave-vector components k‖ and k⊥
on the unit sphere S2 related to the direction of the electric
field. We define the electric field E along the azimuthal angle
ϕ. From Newton’s equation, we have k‖ = eEt

h̄ = ϕ such that
k‖ is a function of time and therefore in this protocol R can
be viewed as a function of k‖(t ) only. Our goal is to show
that the electric field along the azimuthal angle direction plays
a similar role as a force driving the particle from the north
to south pole producing a current. The integration on k⊥ = θ

here gives π and from h̄k̇ = eE or, equivalently, h̄k‖ = eEt ,
we obtain

C = −1

2

∫ T

0
dt

eE
h̄

× R, (5.38)

with R = R(k‖(t )). The vector C is perpendicular to the direc-
tion of the electric field, so along the direction of the current
density j(t ). If we would measure the charge −e instead,
then we find that C would take the opposite direction. From
Eq. (5.35), we obtain the usual form of the Karplus-Luttinger
[35] anomalous velocity:

v = + e

h̄
E × R. (5.39)
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The current density for a given k state reads

j(k) = e2

h̄
E × R, (5.40)

related to the quantum Hall conductivity. The importance
of the term t2 is hidden in the integer topological Chern
number C.

At this stage, from the Karplus-Luttinger velocity, we
can evaluate the conductivity directly in the two-dimensional
graphene plane for a general situation where R = R(k) on the
lattice. The quantum Hall conductivity σxy is obtained when
integrating the current density on all possible k states in the
Brillouin zone,

j =
∫

dkxdky

(2π )2
j(k), (5.41)

and the factor 1/(2π )2 now takes into account the symmetry
between the two wave-vector components [45]. Then, the
amplitude of the current satisfies

|j| =
∫

dkxdky

(2π )2
|j(k)| = e2

h

∫
dkxdky

2π
|E × R|. (5.42)

We measure the total current density which is perpendicular
to the electric field along the y direction, so

| jx| = e2

h
|C|Ey = σxyEy. (5.43)

Therefore, we verify that the definition of the current density
in Eq. (5.35) reproduces σxy = e2/h.

Now, writing equations of motion for the spin observables,
we will then show the relation with the light response. Devel-
oping the tight-binding model close to the Dirac points, we
have the identification

d

dt
σ z(k) = 2

h̄

(
(px + Ax )

∂H
∂ py

− (py + Ay)
∂H
∂ px

)
. (5.44)

We also have the relations px = h̄kx and py = h̄ky, and within
our notations px and py go to zero at the Dirac points. If we
build a Fermi’s golden rule argument in this current density,
to second order in A0, all the wave-vectors equally contribute.
Therefore, to evaluate the light response within this approach,
this is equivalent either to take an average on all the wave
vectors or simply to assume the Dirac point limit with px =
py = 0. Selecting a given light polarization, we will then
probe one Dirac point only through the energy conservation.
The current density operator in Eq. (5.35) normalized to the
electric charge e satisfies

j̄(k) = 2

h̄

(
Ax

∂H
∂ py

− Ay
∂H
∂ px

)
. (5.45)

This justifies why we can reproduce the same response for the
present Dirac Hamiltonian when considering K and K′ only.
The current density here is written in terms of the Pauli matrix
σ z and the commutation relations for the spin-1/2 then allows
us to bridge with transport.

Now, to make an identification with Eq. (5.1) we can in-
clude the forms of Ax and Ay for the two polarizations and
therefore we obtain

j̄(k) = j̄(k, t ) = 2

h̄
A0

(
cos(ωt )

∂H
∂ py

± sin(ωt )
∂H
∂ px

)
. (5.46)

This is equivalent to

j̄(k) = 1

h̄
A0eiωt

(
∂H
∂ py

∓ i
∂H
∂ px

)
+ 1

h̄
A0e−iωt

(
∂H
∂ py

± i
∂H
∂ px

)

= 1

h̄
A0eiωt

(
∂H
∂ py

∓ i
∂H
∂ px

)
+ H.c. (5.47)

We verify here that j̄(k) measured close to a Dirac point is
related (proportional) to the Hamiltonian H± in Eq. (5.7),
implying that from Fourier transform of the current density
in real space, one can just consider the dynamics at the Dirac
points. One can then equally perform Fermi’s Golden rule
with the current density j̄, which then gives

�± = 2π

h̄

∑
k=K,K′

A2
0

h̄2

∣∣∣∣
〈
u

∣∣∣∣
(

∂H
∂ py

± i
∂H
∂ px

)∣∣∣∣l
〉∣∣∣∣

2

δ
(
εk

u − εk
l − h̄ω

)
.

(5.48)

One Dirac point only contributes for a given light polarization
when ω > 0.

From the definitions of Pauli matrices, these relations are
also identical to the ones written with the light-matter Hamil-
tonians in Eqs. (5.33). The light responses are the ones in
Eq. (5.1) where we use the electric field strength E through
A0 = E/ω and the additional (1/h̄)2 factor comes from the
definition of the current density. A similar formula was previ-
ously derived in Ref. [30] but including the summation on all
the wave-vectors in the first Brillouin zone. In that paper, the
relation between this formula and the quantum Hall conduc-
tivity [46] was shown with a different approach. We deduce
that the Bloch sphere is useful to show why one can just per-
form a sum at the two Dirac points and reproduce the quantum
Hall conductivity. In particular, Eq. (5.48) can also be written
with an average on all the vectors k. In Eq. (5.48), the left-
and right-handed light polarizations give contributions with
different signs. This justifies why �+ and �− enter with a
relative minus sign in Eq. (5.2); evaluating Eq. (5.48) directly
at the Dirac points, we find a prefactor ρ proportional to
t2
1 /m2 in front of the topological number. One can equivalently

introduce the velocity components as dx/dt = ẋ = σ x and
dy/dt = ẏ = σ y. The velocity components are in agreement
with the definition of the circular basis in terms of the vectors
ex and ∓iey such that r = (x,±iy) in this coordinate system
and r = xex + yey in the plane. Therefore, ṙ = (σ x,±iσ y)
such that �± involves the group velocity components.

D. Topological number and interaction effects

In our description of the interactions, the V term is rewrit-
ten self-consistently in terms of the stochastic φx, φy and
φz variables. For the ground-state properties, we can then
show that a jump of the Chern number should be observed at
the Mott transition both with the quantum Hall conductivity
and with the light response. More precisely, the stochastic
variables φx and φy describing the particle-hole channel com-
mute with σ z and φz = 0 for the ground-state properties in
the topological phase. The arguments shown above leading
to Eq. (5.48) then ensure that the same topological response
should be observed for ground-state properties in the topolog-
ical phase through the light response or through the quantum
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Hall conductivity. Fluctuations in the stochastic variables then
do not affect the current or light responses but could affect the
noise properties. In the Mott phase, the CDW order becomes
finite in real space, implying here a jump in 〈 j̄〉. In agreement
with iDMRG calculations, the Chern number jumps to 0 since
〈σ z

i 〉 becomes polarized (fixed) in real space.
Here, we highlight that these arguments remain, in fact,

correct beyond the formulated mean-field arguments within
our approach. For this purpose, related to the mean-field
Eqs. (3.23)–(3.26), we may define operators

φ̂0 = − 1
2 (c†

i ci + c†
i+pci+p), (5.49)

φ̂x = − 1
2 (c†

i ci+p + c†
i+pci ), (5.50)

φ̂y = − 1
2 i(−c†

i ci+p + c†
i+pci ), (5.51)

φ̂z = − 1
2 (c†

i ci − c†
i+pci+p). (5.52)

Each operator is defined on a link at the position i + p/2.
Fixing φ0 = 〈φ̂0〉 = −1/2, which is ensured through the half-
filling condition, then we obtain two equivalent manners to
write the interaction terms

HV = V
∑
i,r

((φ̂0)2 − (φ̂z )2) (5.53)

and

HV = −V
∑
i,r

((φ̂x )2 + (φ̂y)2), (5.54)

modulo a constant term. Therefore, respecting all the symme-
tries of the model, we can then add these two lines which then
reproduce Eq. (3.1),

HV = V
∑
i,p,r

ηr
(
c†

i σ
r
i,i+pci+p

)2
, (5.55)

with the same η values as in Eq. (3.3). Now, we can perform a
Hubbard-Stratonovitch transformation similar as in Eq. (3.6)
with the bosonic Hubbard-Stratonovitch quantum field vari-
ables φi associated to the operators φ̂i, with i = 0, x, y, z.
Then, we obtain a similar Hamiltonian as in Eq. (3.12), which
is then justified beyond the mean-field approximation. In the
topological phase, φz = 0 by symmetry and therefore the
equations of motion show that the result of Eq. (5.48) is robust
toward interaction effects as long as there is no gap closing.
The k-space pseudospin magnetization, measuring here the
difference of populations between A and B sublattices, is then
a good and simple marker of topological properties and of
the Mott transition which can be applied to other models de-
scribed by similar matrix Hamiltonians, then complementing
the analysis from the Green’s function formalism [47].

Here, we present numerical evaluations of Eq. (5.2). Com-
puting the circular dichroism of light for the entire Brillouin
zone gives the numerical result of Figs. 7(a)–7(d). Although
both Figs. 7(a) and 7(b) show the same ground-state Chern
number, the difference between the two reveals the effect of
the particle-hole channel φx. Increasing V renormalizes t1.
Considering Fig. 7(c), the sign flip of the mass term at one
K point at the CDW transition is reflected by regions of blue
curve (�+) turning light red (�−).

(a) (b)

(c) (d)

FIG. 7. (a)–(c) Ground-state depletion rate �± ≡∑
k∈BZ �±

l→u(ωk, k) as a function of frequency for t2 = 0.1
and different fixed values of the interaction strength
V . (d) Stochastic frequency-integrated depletion rate
�± ≡ 1

2 ρ−1
∫

dω
∑

k=K,K′ �±
l→u(ωk, k) as a function of V .

VI. STOCHASTIC CHERN NUMBER

Here, we introduce the stochastic Chern number which
accounts for the production of particle-hole pairs in the topo-
logical phase due to deviations of the stochastic variables from
their ground-state values and, more precisely, when sampling
on the whole distribution of stochastic variables. First, we
show that this formalism can, e.g., describe randomness in
the nearest-neighbors’ interaction induced by a fluctuating
staggered lattice potential and include the effect of an inter-
acting environment [32,48]. Then we apply the methodology
to study the light response and the Mott transition. We also
show an analogy with temperature effects in the production
of particle-hole pairs. This formalism then allows us to clas-
sify different mechanisms creating particle-hole pairs due to
interaction effects, regarding their topological response.

A. Stochastic topological number and interpretation
as a disordered situation

Here we show that the sampling on the stochastic variable
φz can be equally understood as a sampling on the inter-
action strength V . These arguments below then show that
the stochastic topological number corresponds to situations
with a slightly disordered interaction strength. Since we also
have nAnB = φ̂2

0 − φ̂2
z , we deduce that fluctuations in the in-

teraction V between nearest-neighbor sites can be produced
either by a fluctuating mean density or a fluctuating staggered
potential on the lattice corresponding to a Semenoff mass with
zero mean and a Gaussian distribution.

We define the stochastic topological number as

C =
∫ +∞

−∞
dφP(φ)C(φ), (6.1)

with φ = φz and the Gaussian distribution

P(φ) = 1√
2πξ (V )

e− 1
2 (φ−φmf )2ξ−1(V ), (6.2)
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with ξ (V ) = 1/(12V ). Since C can be equally measured
through the pseudospin magnetizations 〈σ z〉 at the poles via
Eq. (5.34), this is equivalent in this calculation of C as if
φx = φy = 0 since g(k) = 0 at the poles in the Hamiltonian
hV of Eq. (3.10). For a given value of V , we can insert the
precise value of φmf obtained from the variational mean-field
approach with simply φmf = 0 in the topological phase. From
statistical physics arguments, then we have

〈σ z(φ)〉 = 1

Z Tr(e−βhV σ z ), (6.3)

assuming θ values equal to 0 and π . Therefore, Eqs. (5.34)–
(6.1) are then equivalent to define the ensemble-averaged
variable:

〈σ z〉 =
∫ +∞

−∞
dφP(φ)〈σ z(φ)〉. (6.4)

Now, hV is symmetric under the variables φ and V . Therefore,
we equivalently have

〈σ z〉 =
∫ +∞

−∞
d ṽP(ṽ)〈σ z(ṽ)〉, (6.5)

with

P(ṽ) = 1√
2πξ (V )

e− 1
2 ṽ2ξ−1(V ), (6.6)

where ṽ = (Ṽ − V )/V = φ − φz
mf measures deviations from

the mean value V for the interaction strength between sublat-
tices A and B. Including fluctuations, the diagonal term in Hmf

in Eq. (3.13) now involves 3V ṽ + 3V φz
mf showing the relation

with a fluctuating staggered potential equal to 3V ṽ and with
a Gaussian distribution P(ṽ). From the formulation of C as a
current density, we infer that the stochastic topological num-
ber can be measured through the quantum Hall conductivity
and the circular dichroism of light corresponding, e.g., to an
average on different samples.

Equation (6.1) is therefore useful to describe lattice effects
or the effect of an interacting environment. As the term 3V φz

plays the role of a Semenoff mass term acting on the Haldane
model in Eq. (3.14), we can also define—for a given V —φz

c

such that 3V |φz
c| = 3

√
3t2. Then, all states with |φz| < |φz

c|
produce a Chern number C(φ) = 1 to Cst while all other |φz|
contribute zero. When V approaches the smallest band gap
around the K points in Fig. 2(a), particle-hole pairs will start
to form and this leads to the formation of a mixed state. The
stochastic topological number is equivalent to

Cst = 1 − 2
∫ +∞

|φz
c |

dφP(φ). (6.7)

The integral goes to zero when V → 0, corresponding to a
pure (ground) state, justifying that in this case Cst = Cgs = 1.
For small interactions, C can be approximated as

Cst = 1 − 2
∫ +∞

|φz
c |

dφP(φ)δ(φ ∼ |φz
c|) ≈ 1 − 2P(φ ∼ |φz

c|),
(6.8)

keeping the dominant term in the series development of the
erfc function, referring to the usual complementary error func-

(a) (b)

FIG. 8. (a) Evaluation of the ground-state Chern number Cgs and
stochastic Chern number Cst as a function of V . The grey curve comes
from the analytical formula in Eq. (6.8). (b) Cth from Eq. (6.11) at
V = 0 as a function of kBT .

tion, this leads to

Cst − 1 ∝ e−m2/(kBTeff )2
, (6.9)

with kBTeff ∝ √
V . This argument then shows that deviations

from unity of the topological number come from the creation
of particle-hole pairs. This implies that fluctuations in the in-
teraction strength or fluctuations in the charge environment on
the lattice is equivalent to produce a finite probability to reach
the upper band. In this sense, the definition of the stochastic
Chern number can describe the effect of interaction-induced
particle-hole pairs in the topological phase. We also observe
that Ṽ plays a similar role as a Landau-Zener mechanism on
the sphere [33]. In this sense, the stochastic Chern number
may find various applications.

The parameter kBTeff above leads to an analogy with tem-
perature effects that we study below in Sec. VI C.

B. Light-matter response and Mott transition

To evaluate the light response in a mixed state, we begin
with Eq. (5.2), substitute H0 → Hmf , and here sample all
the stochastic variables with a distribution P(φr ) according
to Eq. (6.2). Importantly, φz acts as a Semenoff mass term on
the Haldane model modifying the band gap at the Dirac points.
Sampling φz generates excited states with smaller energy band
gaps, see the light red bands in Fig. 2(a). Here we sample the
fields (φx, φy, φz ) = φ according to P(φr ) while keeping the
chemical potential constant at half filling, i.e., φ0 = −1/2. In
Fig. 7(d), we show the evolution of the ensemble-averaged
rates �+ and �− as a function of V , when sampling on the
variables φ. These variables are now hidden in the eigenener-
gies in Eq. (5.1).

For each configuration, we can also associate a φ-
dependent Chern number C(φ) via Eq. (5.2) that will be either
one or zero. Then, for completeness, we evaluate

Cst ≡
∫ +∞

−∞
dφP(φ)C(φ), (6.10)

which can take noninteger values when it refers to a mixed
state. Computing Cst for 105 random configurations, as a
function of V , then we obtain the result in red in Fig. 8(a),
which can be compared to the ground-state Chern number Cgs

in blue obtained when φz = φz
mf . The quantity Cgs determines

the quantum Hall conductivity, in agreement with iDMRG
[see Fig. 3(d)] and with the Bloch sphere arguments. Hence,
we can also write Cst via Eq. (6.8), which results in the grey
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curve in Fig. 8(a). This highlights the correspondence between
the ensemble-averaged values of �+ − �− in Fig. 7(d), and
Cst as a function of V . It’s interesting to observe that Cst still
reveals the first-order Mott transition through a small jump in
Fig. 8(a).

C. Analogy with temperature effects

Here, we formulate an analogy with the finite-temperature
version of the Hall conductivity [34] and introduce a finite-
temperature version of Eq. (5.2),

1

2

∫ ∞

0
dω

∑
α,k

(
pk�+

α (ωk, k) − pk�−
α (ωk, k)

) = ρCth, (6.11)

where pk = (1 + exp(εk
u,l/kBT ))−1 is the Fermi distribution,

kB is the Boltzmann constant, and the variable α here refers to
{l → u, u → l} such that pk effectively mixes the states of the
lower and upper bands. We then allow in Eq. (6.11) for heating
of the bulk to contribute to Cth [34]. From Eq. (6.11), we find
that at low temperatures (kBT � m), the finite-temperature
Chern number Cth decreases smoothly as 1 − e−m/kBT in
Fig. 8. For further information, see Appendix B. In the pres-
ence of interactions, we observe an analogy with heating in the
sense that the probability to create a particle-hole pair in the
topological phase will be dominated by values of |φz| ∼ |φz

c|,
producing a reduction of Cst evolving as P(|φz| ∼ |φz

c|) ∝
e−m2/(kBTe f f )2

from Eq. (3.13), with an effective temperature
such that kBTeff ∝ √

V in Fig. 8. We also observe a similar
behavior of C in the presence of band-crossing effects on
the Bloch sphere [33], which then suggests various possible
further applications of this formalism.

VII. CONCLUSION

We have introduced a stochastic theory to describe in-
teraction effects in the fermionic Haldane model with
nearest-neighbor interactions. We have shown that the method
accurately gives quantitative results on the Mott transition
and on its nature already from a variational mean-field ap-
proach, in agreement with iDMRG. We have studied the
effect of light-matter coupling and we have shown that the
Mott transition can be probed through circular dichroism
of light. We have also derived general relations linking the
Bloch sphere, the force due to a constant electric field and
transport properties on the lattice, from the momentum or
reciprocal space, and in the presence of interactions through
the stochastic approach formalism. We have introduced a
stochastic Chern number which corresponds to sample the
ground-state Chern number on the whole ensemble of stochas-
tic variables. Physically, this situation can describe disorder
effects in the interaction strength resulting, e.g., from fluctua-
tions in the lattice potential and producing a mixed state. We
have shown that such fluctuations result in the production of
particle-hole pairs, which then engender a nonquantized topo-
logical response. We have built analogies with temperature
effects and protocols on the Bloch sphere. The method can
be generalized in various directions, such as bilayer systems
[36] and the Kane-Mele [49–52] model, and lead to further
insight on probing particle-hole pairs’ responses in interacting
topological systems.
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APPENDIX A: DMRG COMPUTATIONAL DETAILS

In this Appendix, we give further details of our iDMRG
results. All our results are computed using the open source
package TENPY [41], which implements the iDMRG algo-
rithm [53] in the language of matrix-product states. The bond
dimension χ sets the maximum linear dimension of the ma-
trices that are stored to represent a given ground state and
determines the accuracy of the method. For a given χ , the vari-
ational algorithm determines the ground state of the system in
the infinite cylinder geometry, which uses translational invari-
ance to reach system sizes of [Ly,∞]. Our conclusion and the
following discussion are based on simulations with cylinder
circumferences Ly = 6, 12 and χ ∈ [50, 1200], which we find
sufficient to reach convergence.

1. Finite bond dimension effects and order
of the phase transition

For the interacting Haldane hamiltonian, we provide rep-
resentative results in Fig. 9. They are obtained for a cut in
the phase diagram for Ly = 6 lattice sites and t2/t1 = 0.1
as a function of V/t1. We show the CDW order parameter,
the Hall conductivity σxy, the entanglement entropy S, and
correlation length ξ/a in units of the lattice constant a of the
ground-state wave function with different χ ∈ [50, 1200]. We
compute the CDW order parameter through the ground-state
expectation values of the difference of the two sub-lattice
densities 〈nA − nB〉. The entanglement entropy S is computed
by cutting the system in real space and computing the Schmidt
decomposition of the ground state, and relating the corre-
sponding Schmidt eigenvalues to the entanglement entropy
[41]. The correlation length ξ is defined as the largest decay
of correlation functions, which is set by the second largest
eigenvalue of the transfer matrix [41]. Finally, to obtain the
Hall conductivity σxy, we use the method of adiabatic flux in-
sertion implemented numerically as detailed in Refs. [42,54].
It consists of threading a magnetic flux through the axis of
the cylinder by twisting the boundary conditions by a phase
�y [see inset in Fig. 9(b)]. As the flux is threaded from 0 to
2π in units of the flux quantum �0, we monitor the pumped
charged through a given real-space cut of the cylinder. One
charge pumped in such a cycle is equivalent to σxy = e2/h
while no charge pumped amounts to σxy = 0 [42].

In Fig. 9, we observe that all quantities within the CI and
CDW phases do not change significantly above χ ∼ 200, a
size for the bond dimension that is consistent with previous
work [42]. The topological origin of the Hall conductivity
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FIG. 9. iDMRG convergence. In (a), the figure shows the charge-density-wave order parameter. (b) shows the Hall conductivity calculated
by adiabatically threading a flux �y/�0 ∈ [0, 2π ] in units of the flux quantum �0 through the cylinder geometry (inset). Within the Chern
insulator or CDW phase, one or zero charges are pumped, leading to σxy = e2/h or σxy = 0, respectively. (c) shows the entanglement entropy
S and (d) shows the correlation length ξ/a in units of the lattice constant a. (d) the charge-density-wave order parameter. Except for σxy which
converges at χ = 100, these quantities are calculated for bond dimensions χ ∈ [50, 1200] and convergence is achieved for χ ∼ 200.

allows it to converge faster even close to the phase transition,
and we find it fully converged at χ ∼ 100. The inverse gap in
the CDW and CI phases determines the largest length scale up
to which correlations spread. Thus the convergence is better as
the parameters are chosen deeper in these phases, where the
gap is expected to be larger, and the correlation length shorter,
consistent with Fig. 9(a).

In Fig. 10, we show the CDW and σxy phase diagrams for
χ = 200. The two phase boundaries coincide for this range
of parameters; we find no intermediate phase. Although ex-
tracting the nature of the phase transition is a subtle issue in
iDMRG data, there are hints that this transition is first order.
First, both the CDW order parameter and σxy show a clear
discontinuity, which can be interpreted as a first-order phase
transition, consistent with mean-field theory. Interestingly, the
correlation length ξ does not show such an evident discontinu-
ity. We remind the reader that a second-order phase transition
presents a divergent correlation length ξ at the transition as a
function of increasing bond dimension χ [55]. Furthermore,
the entanglement entropy of a critical system is expected to
scale as S = c/6 ln(ξ/a) + s0, where c is the central charge
and s0 is a constant [55]. A first-order phase transition, on
the other hand, presents either a discontinuity in χ [42,56]
or a saturating behavior of the maximal or critical correlation
length, ξc, as a function of χ at the phase transition [57]. Our
iDMRG results shown in Fig. 9 point to the latter scenario
since the correlation length at the critical point seems to sat-
urate as a function of bond dimension. This is supported by
a more careful analysis, shown in Fig. 11, where we plot the
maximum correlation length ξc as a function of χ (a), and
the maximum entanglement entropy Sc as a function of ξc in

semilogarithmic scale (b). Both ξc and Sc show an increasing
yet saturating behavior, supporting the absence of a critical
state with divergent correlation length. Such an increasing but
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FIG. 10. Phase diagrams. (a) CDW order parameter and (b) σxy

calculated in iDMRG for Ly = 6, χ = 200. The phase boundary
for both order parameters fall on top of each other, indicating that
there is no coexistence of a finite CDW order with a nonzero Hall
conductivity.
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FIG. 11. Order of the phase transition in iDMRG. (a) shows the
correlation length at the transition ξc in units of the lattice constant a.
A second-order phase transition would show a divergent correlation
length at the transition. Instead the correlation length seems to sat-
urate with increasing χ . (b) Entanglement entropy at the transition
Sc plotted as a function of the correlation length at the transition
ξc in units of lattice constant a. The entanglement saturates as a
function of correlation length, deviating from the critical scaling law
Sc = c/6 ln(ξc/a) + s0.

nondivergent correlation length at the transition is sometimes
referred to as a weak first-order transition.

2. Finite-size effects

To address the robustness of our results, we have performed
the calculations for Ly = 12 with χ up to χ = 1200 (see
Fig. 12) for t2/t1 = 0.1. The results are shown in Fig. 12.
Figure 12(a) shows that the CDW transition is still abrupt
and occurs at the same value of V/t1 for larger system sizes.
For Ly = 12, the correlation length ξ close to the transition
presents the same peaked structure but is smaller in magnitude
than that of Ly = 6 [see Fig. 9(d)]. The decrease in magnitude
of ξ can be interpreted as a sign of an increase in the gap size
of both the CDW and CI phases.

APPENDIX B: FINITE TEMPERATURE VERSION
OF THE TOPOLOGICAL NUMBER

A finite-temperature version of the Hall conductivity was
introduced in Ref. [34] as

σxy(kBT )h/e2 =
∑

α∈{u,l}

∫
k∈BZ

dk pk(kBT )Fα
x,y(k), (B1)
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FIG. 12. Fine-size effects. We show the CDW order parameter
(left) and correlation length in units of the lattice constant (ξ/a, right)
calculated in iDMRG for Ly = 6 and Ly = 12, and χ = 1200. The
phase boundary for the CDW order parameter does not change and
the correlation length drops when increasing the system size. These
indicate that large system sizes lead to qualitatively the same results.

with the Fermi distribution pk(εk
u,l ) = (exp(εk

u,l/kBT ) + 1)−1.
Here, the factor pk effectively mixes upper and lower band
states. Hence, Eq. (B1) will show a topological number one
for zero temperature and a many-body topological index that
approaches zero in the limit of large temperatures, see Fig. 13.
Furthermore, note that Eq. (B1) takes heating effects from the
bulk into account such that even in a zero-temperature trivial
phase, Eq. (B1) will show a many-body Hall conductivity
larger than zero for T > 0 [34].

For the circular dichroism of light, we can produce a sim-
ilar finite-temperature version as in Ref. [34] such that the

FIG. 13. Finite-temperature version of the topological index.
Green: Definition from Ref. [34] as in Eq. (B1). Blue: Based on
Eq. (B2). Red: Circular dichroism of light as presented in Ref. [30],
with a momentum-integral over the entire Brillouin zone.
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finite temperature version of Eq. (5.33) reads∫ +∞

0
dω

∑
k=K,K ′

∑
α=l→u,u→l

pk�+
α (k) − pk�−

α (k)

2
. (B2)

Note that Eqs. (B1) and (B2) give, in principle, the same re-
sult, however, the finite-temperature topological index scales
slightly differently with kBT . Also, a finite temperature ver-
sion of the circular dichroism that integrates over the entire
Brillouin zone shows a different scaling behavior, see Fig. 13.

Taking into account that at very low temperatures

(1 + exp(−εk/kBT ))−1 ≈ 1 (B3)

and

(1 + exp(εk/kBT ))−1 ≈ exp(−εk/kBT ), (B4)

then we obtain that in the formula above, C would acquire
O(e−|m|/kBT ) corrections in agreement with the Arrhenius law
for the distribution of particle-hole pairs in the upper band at
finite temperature. We then check that combined interaction
and drive effects studied in the preceding Appendix have a
similar effect as heating in the sense that they produce an
effective temperature effect scaling as

√
V .
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