
HAL Id: hal-02491175
https://hal.science/hal-02491175

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CSI-MIMO: K-nearest neighbor applied to indoor
localization

Abdallah Sobehy, Eric Renault, Paul Mühlethaler

To cite this version:
Abdallah Sobehy, Eric Renault, Paul Mühlethaler. CSI-MIMO: K-nearest neighbor applied to indoor
localization. ICC 2020: IEEE International Conference on Communications, Jun 2020, Dublin /
Virtual, Ireland. pp.1-6. �hal-02491175�

https://hal.science/hal-02491175
https://hal.archives-ouvertes.fr


CSI-MIMO: K-nearest Neighbor applied to Indoor Localization
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Abstract—Indoor Localization has attracted interest in both
academia and industry for its wide range of applications. In
this paper, we propose an indoor localization solution based on
Channel State Information (CSI). CSI is a fine-grain measure of
the effect of the channel on the transmitted signal. It is computed
for each subcarrier and each antenna in the Multiple-Input-
Multiple-Output (MIMO) antenna case. It is also becoming a
trend for indoor position fingerprinting. By using a K-nearest
neighbor learning method a highly accurate indoor positioning is
achieved. The input feature is the magnitude component of CSI
which is preprocessed to reduce noise and allow for a quicker
search. The euclidean distance between CSI is the criteria chosen
for measuring the closeness between samples. The method is
applied to a CSI dataset estimated at an 8 × 2 MIMO antenna
that is published by the organizers of the Communication
Theory Workshop Indoor Positioning Competition. The proposed
method is compared with three other methods all based on deep
learning approaches and tested with the same dataset. The K-
nearest neighbor method presented in this paper achieves a
Mean Square Error (MSE) of 2.4 cm which outperforms its
counterparts.

I. INTRODUCTION

Location services have attracted much research interest for

the numerous applications that depend on them e.g. routing,

Internet-Of-Things (IOT), military applications, etc. Despite

the importance of localization and the numerous studies that

address it, this problem is not fully resolved due to the

challenges each context present; especially indoors [2]. In an

outdoor environment, the Global Positioning System (GPS)

provides sufficient localization accuracy for many applications

[1]. However, in an indoor environment, GPS cannot be used

due to the building structure that obstruct the signal. Received

Signal Strength Index (RSSI) has been the dominant measure

used to localize nodes indoors [3]. RSSI measures the strength

of the signal as it is received by the receiver. The relative

distance between the transmitter and the receiver is estimated

from the RSSI since the strength of the signal decreases

with distance. The estimated distance to several nodes can

then be used to estimate the position [4], [5]. However,

RSSI exhibits high sensitivity to environmental changes and

multipath fading, leading to erroneous position estimation [9].

Therefore, the community is moving towards a more robust

measure to compute accurate positions indoors.

The advent of 5G and its high data rate requirements

led to the use of Multiple-Input-Multiple-Output (MIMO)

antennas to increase transmission bandwidth. Moreover, by

using Orthogonal Frequency Division Multiplexing (OFDM),

multiple transmissions are sent simultaneously on orthogonal

subcarriers. Channel State Information (CSI) is a fine-grain

information calculated at the physical layer representing the

effect of the channel on the transmitted signal. A transmission

to multiple antennas over multiple subcarriers allows the chan-

nel response per subcarrier and per antenna to be computed

[6].

The CSI indicates the change that the signal experiences

while traversing the channel. This change is dependant on

the position from which the signal is transmitted. This makes

CSI a suitable measure for position estimation. Equation (1)

illustrates the effect of CSI on the transmitted signal, where

Ti,j is the signal transmitted from antenna i on subcarrier j.

Ri,j is the received signal following the changes caused by

channel CSIi,j and noise N .

Ri,j = Ti,j · CSIi,j +N (1)

CSI is a complex number and thus can be represented

in different forms such as Cartesian and Polar forms. The

Cartesian form is made up of real and imaginary Components,

while the Polar form is represented by Magnitude and Phase.

Equations (2) and (3) show the two representations, while

Equation (4) shows the conversion from one form to another.

CSIi,j = |Mag| 6 φ (2)

CSIi,j = Re+ iIm (3)

Mag =
√

Re2 + Im2

φ = arctan(Re, Im)
(4)

The contribution of this paper is summarized as follows:

1) A statistical analysis of a publicly available CSI dataset

that shows the temporal stability of the magnitude

component compared to the other three components.

2) A method to reduce the CSI magnitude values to allow

for a faster learning process for position estimation.

3) Position estimation using k-nearest neighbor method.

The rest of the paper is organized as follows. Sec. II includes

some state-of-the-art solutions to the indoor positioning prob-

lem. It also includes a brief description of the experiment

devised by the authors of [7] to create the dataset. In Sec. III,

we present the analysis that led to the choice of the magnitude

as the input feature, the noise reduction of magnitude values

using polynomial regression, and the k-nearest neighbor step.

In Sec. IV a comparison with the results of other state-of-the-

art methods applied to the same dataset is presented. Finally,

the conclusion and future work are discussed in Sec. V.



II. RELATED WORK

A. CSI-based Solutions

FIFS [10] and FILA [6] are examples of the early attempts

to use CSI-based indoor localization. The former utilizes

MIMO antennas from several access points to build an offline

radio map of CSI fingerprints to user position. This is followed

by an online prediction phase where the input CSI readings are

compared to the map using a probabilistic method [8] which

was originally designed for RSSI fingerprinting. In FILA

[6], the authors process the CSI readings over the subcarrier

spectrum and reduce it to an effective value CSIeffective.

The effective CSI is then used to estimate the distance from

the antenna to the transmitter using a parametric equation

whose parameters are estimated using supervised learning.

Finally, using triangulation [11], the position of the transmitter

is calculated from distances to multiple antennas. In [14], a k-

nearest neighbor method is used on a fingerprinting database

based on the magnitude of CSI. Their estimation results

outperforms FILA [6] and FIFS [10].

Various studies have attempted to exploit different compo-

nents of CSI. In [7], the authors propose a channel sounder

and utilize both real and imaginary components of CSI with

a Convolutional Neural Network (CNN) to achieve position

fingerprinting. Their main contribution is the flexible channel

sounder architecture that allows for CSI estimation at var-

ious frequency bands and environments. More importantly,

the dataset collected from their experimentation is publicly

available to the scientific community. This makes it possible

to make fair comparison between different methods using the

same testbed. The use of a CNN with real and imaginary

components as input features yields an estimation error of

32 cm in a Line-Of-Sight (LOS) scenario. This accuracy can

be greatly improved using other CSI components. One of

the very first attempts to use the phase component is [12].

The authors use linear transformation to calibrate the phase

component estimated at thirty subcarriers and three antennas

of Intel’s WiFi Link 5300 NIC. The calibrated phase is then

used as input to a three-layer Neural Network to achieve

position fingerprinting. The authors that localization using CSI

with commodity hardware is more accurate than using RSSI.

The mean error in the Line-Of-Sight experiment is ≈ 1 m.

It is difficult to make a direct comparison with our results

given the differences in the experiment area, the number of

subcarriers, and the antennas. However, an important point

of comparison with our method is the choice of the phase

component. Their reasoning in choosing the phase over the

magnitude is that it is less sensitive to obstacles and that

it is more stable in general. Nevertheless, we show that the

magnitude is more stable through a statistical analysis of the

dataset. The authors in [13] also concluded on the stability of

the magnitude component and chose it as their input feature

over the phase.

NDR [15] is a deep learning solution that is tested on the

same data set. NDR stands for Noise and Dimensionality Re-

duction of magnitude values which are then used as input to a

Multi Layer Perceptron Neural Network (MLP). A polynomial

regression method is used to describe the magnitudes over

the subcarrier spectrum and only a subset of the magnitude

along the lines is used as input. The method estimates an

accurate polynomial line across the magnitude value but this

is computationally expensive. We propose a computationally

lighter method to reduce noise and dimensionality with a

negligible loss in polynomial estimation accuracy. Another

approach tested on the same dataset uses the difference

between adjacent magnitude values [16] as the input to a

Neural Network Ensemble. In addition, a data augmentation

step is used to improve estimation accuracy.

B. Experimental Setup

As previously mentioned, the dataset used to test our

method was published during the Indoor Positioning Competi-

tion organized during the IEEE CTW (Communication Theory

Workshop). The transmission occurs between a transmitter

and an 8 × 2 MIMO antenna. The channel sounder described

in [7] is used to estimate the CSI values. They are then

matched with the ground truth position from which the trans-

mission occurred. The ground truth position is computed using

a tachymeter with a 1 cm error. The transmitter is mounted on

a robot that traverses a 4 × 2 meter table while transmitting

to the MIMO antenna. The published dataset includes around

17k CSI samples together with their ground truth positions.

The frequency of transmission is 1.25 GHz with a 20 MHz

bandwidth over which 1024 subcarriers are used. Of the 1024

subcarriers, 10 % are used as guard bands. The remaining 924

subcarrier readings are available for processing along with

their corresponding positions. Figure 1 shows the setup with

a sketch of the MIMO antenna illustrating the position of its

center in the coordinate system.

Fig. 1: Environmental setup [7].

III. METHODOLOGY

A. Feature selection

The first step consists of selecting the input feature for the

k-nearest neighbor learning model. To this end, a statistical



Fig. 2: CSI readings of reference sample and the sample of the closest position for Real, Imaginary, Magnitude and phase components.

analysis was performed to determine the most stable compo-

nent of the CSI. The stability of a component is defined as

the correlation between the values of CSI readings estimated

from approximately the same or a very close position. In

other words, the higher the stability of the component, the

lower the change in its values when estimated from the same

or a very close position. This reflects temporal robustness.

Assume two transmissions occurred from positions p1 and p2
where the distance between p1 and p2 is a small value dp. The

correlation between the CSI components from both positions

at a given antenna for each of the 924 subcarriers is given by:

Corrp1,p2
=

Cov (CSIp1, CSIp2)

αp1
× αp2

(5)

CSIp1 and CSIp2 are two vectors of one of the four

CSI component values estimated at p1 and p2 respectively.

The stability analysis is implemented by picking a position

randomly from the dataset along with the corresponding CSI

component values. Let’s call this a reference sample. Next,

the dataset is searched for the closest position to the refer-

ence position. The correlation between the reference and the

closest samples is computed as depicted in Equation (5). This

process is repeated for approximately 1000 reference samples.

The average correlation coefficient over all the sample pairs

is computed for the real, imaginary, magnitude, and phase

components. Figure 2 shows an example of real, imaginary,

magnitude, and phase components for a reference sample and

its closest sample. The correlation coefficient value is written

at the top of each sub figure. It can be noted that the magnitude

conserves its trend better than the other components. This

conclusion is further supported by the statistical results of the

correlation mean over the 1000 pairs shown in Fig. 3.

The correlation for the magnitude component estimated at

close positions is the highest among all the components. Also,

the 95% confidence interval is the smallest, meaning that most

of the correlation values are around 0.92. As a result of this

analysis, the magnitude component is chosen to be the input

feature for our learning model.

B. Magnitude Reduction using Least-Squares Polynomial Re-

gression

Since the k-nearest neighbor technique requires a sweep of

the training set for each prediction, we propose a method to

Fig. 3: Average Correlation for Real, Imaginary, Magnitude and Phase components.

reduce the 924 magnitudes to 33 values for a quicker and more

accurate search. In [15], the subcarrier spectrum is divided

into four overlapping batches. A polynomial regression with

various degrees is performed on the points within each batch.

The polynomial with the least error to points is chosen. Then,

the polynomial lines of each batch are merged using a linear

weighted averaging method. This results in an accurate repre-

sentation of the component values. In our case, a polynomial

degree is fixed and a least squares regression [17] is performed

over the full subcarrier spectrum. Consequently, a gain in the

computation time for a negligible loss in regression accuracy

is achieved. The proposed k-nearest neighbor method is tested

with both the regression method in [15] and our method. The

experiment shows that the loss in regression accuracy does

not affect the k-nearest neighbor estimation.

The first step consists of fixing a degree for the regression

process. The degree should not be too low to be able to

represent the variations in magnitude values. It also should not

be too high to avoid computational complexity. Figure 4 shows

the average fitting error and standard deviation (std) over all

dataset samples along with the 95% confidence interval for

degrees from 3 to 8. The confidence interval in the figure

is very small which is a good indication of the stability of

regression accuracy. It can be viewed that the error stabilizes

from degree 6 onward. Hence, degree 6 is chosen for the



polynomial regression step.

Fig. 4: Average fitting error for various polynomial degrees.

Using the estimated polynomial line, the magnitude values

are reduced from 924 points to 33 equidistant points on the

line. Value 33 was chosen empirically to hit a sweet-spot

between computational cost and accuracy. When attempting

to make predictions with number of points less than 33, the

accuracy deteriorates. Figure 5 shows an example of the result

of the polynomial regression with degree 6. The line in red is

the regression outcome along which the 33 equidistant points

are selected to represent the magnitude component.

Fig. 5: Polynomial fitting example with degree 6

C. K-nearest neighbor

With the input feature chosen and pre-processed, the final

step aims to build the k-nearest neighbor model. Two main

parameters have to be chosen: the criteria to define closeness

and the number of neighbors (k). For one position, there are

16 × 33 magnitude values which correspond to the number of

reduced magnitudes at each antenna. A reasonable comparison

criterion should be computationally light in order to avoid

a long processing time. More importantly, it should be able

to capture a meaningful difference between samples. Let

M1, M2 be two sets of 33×16 magnitude values for all 16

antennas. We propose three criteria:

1) The Absolute Difference between corresponding magni-

tude values, which is averaged over all magnitude values

for all antennas.

∣

∣diffM1,M2

∣

∣ =
1

16

16
∑

a=1

1

33

33
∑

n=1

∣

∣M1

a,n −M2

a,n

∣

∣ (6)

2) The Euclidean Distance between two sets of 33 mag-

nitude values averaged for all antennas.

distM1,M2 =
1

16

16
∑

a=1

√

√

√

√

33
∑

n=1

(

M1
a,n −M2

a,n

)2

(7)

3) The Correlation Coefficient between two sets of 33

magnitude values averaged over all antennas.

CorrM1,M2 =
1

16

16,33
∑

a=1,n=1

Cov
(

M1

a,n,M
2

a,n

)

αM1
a,n

× αM2
a,n

(8)

Figure 6 shows the localization accuracy using these three

closeness criteria. The x-axis represents the number of anten-

nas used. The best performance for all criteria is when all the

16 antennas are used. The absolute difference and Euclidean

distance yield higher accuracy than the correlation coefficient.

The Euclidean distance has a slightly lower error than the

absolute difference. Using all 16 antennas, the Mean Square

Error (MSE) is 2.5 cm with the absolute difference and 2.4

cm with the Euclidean distance. Consequently, we choose the

Euclidean distance as the closeness criteria since it gives the

highest accuracy.

Fig. 6: Mean Square Error using different closeness criteria.

After choosing the comparison criterion, the next step

consists of choosing the number of closest neighbors (the k

value) from which the prediction is to be computed. Various k



values are tested where the position prediction is the average

of the closest k neighbors’ positions. Figure 7 shows the effect

of the k value on the estimation accuracy. It appears that the

larger the k value, the higher the error. This is due to the nature

of CSI where the magnitude readings tend to experience

abrupt changes from one position to another position that

is not very close [13]. Thus, by adding more neighbors, the

distances to some of the added neighbors are larger and it

becomes difficult to relate the training CSI to the test CSI

sample.

Fig. 7: Mean Square Error using different k values.

IV. EXPERIMENTAL EVALUATION

Based on the analysis presented in the previous section, the

k-nearest neighbor model is used with the value of k to equal

one. For a fair comparison, estimation results are compared to

solutions tested using the same dataset. The 17k samples are

split into a 90% training set and a 10% test set. For each test

set sample, the whole training set is traversed and the position

corresponding to the test sample with the smallest distance is

chosen to be the predicted position. The distance is computed

using Equation (7).

The experiments were carried out on a PC with Ubuntu

14.04 operating system and a 3.8-GHz Intel(R) Xeon(R) quad

core CPU E3-1270 v6 with 32 GB of RAM. The GPU is a

2-GB RAM NVIDIA Quadro K420. The time consumed to do

the data preprocessing step with the least square optimization

is 2.6 ms per antenna per position. The inference time to

predict one position is ≈ 1.1 s. The estimation accuracy is

compared with three solutions:

1) CNN [7]: The real and imaginary components are the

input features of a CNN.

2) NDR [15]: The magnitude component is reduced using

a polynomial regression and used as an input to an MLP.

3) Ensemble [16]: The differences between magnitude

values are fed into an MLP Neural Network ensemble

with data augmentation.

Figure 8 presents the position estimation accuracy of

the proposed k-nearest neighbors solution and the previ-

ously mentioned comparable methods. The k-nearest neighbor

method outperforms its counterparts when four or more anten-

nas are used. This shows that the k-nearest neighbor technique

is more sensitive to the number of training samples. However,

when the number of training samples is sufficient, it is able

to localize with lower error. When all the 16 antennas are

used, the k-nearest neighbor solution achieves a 2.4 cm MSE

compared to 3.1 cm for the Ensemble NN technique [16].

This represents a 16% improvement over the closest error.

Fig. 8: Comparison between K-nearest neighbors and state-of-the-art methods.

Figure 9 shows the error distribution of the 1.7k estimated

positions using the k-nearest neighbor method. The frequency

is log-scaled to allow the scarce large errors to be visible since

most errors are very close to zero. Outliers with large errors

are scattered over the table length. These outliers are possibly

due to some Non-Line-Of-Sight (NLOS) transmissions that

were not possible to relate to the training set.

Fig. 9: Error distribution for 1.7k test samples.

Another point that is worth studying is the relation between

the smallest euclidean distance to the selected training sample

and the resulting prediction error. Figure 10 shows the relation



between the euclidean distance from the test magnitude values

to the selected closest sample in the training set and the result-

ing prediction error. The x-axis shows the euclidean distance

between the test and the closest training sample magnitude

values. The y-axis represents the resulting prediction errors.

Since most prediction errors are concentrated very close to

0, two sub-figures to the right and top are added to give a

clearer insight by showing the distribution of points on both

axes. The right sub-figure is actually a rotated version of figure

9 which is also log-scaled. The top sub-figure illustrates the

distribution of the magnitude distances to the closest training

sample which appears like a biased normal distribution. Most

of the distances are very small and fewer cases have large

distances to the closest training sample. When the distances

are greater than 0.03, the outlier predictions begin to appear

with prediction error higher than 20 cm, which is far from

the average error. Hence, it can be concluded that a smaller

euclidean distance leads to a better prediction in general. This

is an interesting insight that can be used to detect outliers

before making the prediction. In other words, if the euclidean

distance to the closest training sample is larger than a certain

threshold, there is a high probability that the estimation is

far from the true position. It is difficult to reach a precise

probabilistic analysis for the outliers since the number of

outliers is small. However, it might be possible to reach a

concrete probabilistic description with more data in the NLOS

scenario.

Fig. 10: Relating the Euclidean distance between the test and closest training sample to

the prediction error.

V. CONCLUSION

In this paper, we presented a k-nearest neighbor method

to estimate positions from CSI in indoor environments. The

first step consisted of choosing the input feature from the

CSI components: real, imaginary, magnitude, or phase. We

used a statistical analysis to show that the magnitude is

the most stable component, therefore, we selected it as the

input feature. Magnitude values are then reduced using a

polynomial line of degree 6 and least-squares optimization.

Out of the 924 magnitude points, 33 equidistant points were

chosen to represent the magnitude component. The Euclidean

distance has then been used to represent the closeness between

magnitude samples. With a k value equal to one, a k-nearest

neighbor search was conducted over the training set for

each test sample. With an MSE of 2.4 cm, the presented

method outperforms three state-of-the-art methods, all based

on deep learning techniques. Extension of this study includes

an analysis to estimate a localization accuracy upper bound

for the dataset. Also, detection of outliers might be possible

with more data in NLOS scenarios.
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