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We give a process to construct non-split, three-dimensional simple Lie algebras from involutions of sl(2, k), where k is a field of characteristic not two. Up to equivalence, non-split three-dimensional simple Lie algebras obtained in this way are parametrised by a subgroup of the Brauer group of k and are characterised by the fact that their Killing form represents -2. Over local and global fields we re-express this condition in terms of Hilbert and Legendre Symbols and give examples of three-dimensional simple Lie algebras which can and cannot be obtained by this construction over the field of rationals.

Throughout this paper, the field k is always of characteristic not two.

Introduction

It is well-known that the non-split three-dimensional simple real Lie algebra su(2) can be constructed from sl(2, R) equipped with a Cartan involution. In this article, we generalise this process to fields k of characteristic not two and obtain non-split three-dimensional simple Lie algebras from sl(2, k) equipped with a certain type of involution.

To this end, in Section 3, we start from an involution σ of sl(2, k) such that the linear map ad(x) is not diagonalisable for all fixed points x of σ. We show in Theorem 3.1 that the Lie algebra obtained by our construction is non-split if and only if K(x, x) is not a sum of two squares in k for all fixed points x of σ, where K is the Killing form of sl(2, k). Three-dimensional simple Lie algebras which can be obtained by this construction are characterised by the fact that their Killing form is anisotropic and represents -2 (Proposition 3.7).

In Section 2 we recall how to associate a quaternion algebra to a three-dimensional simple Lie algebra. Quaternion algebras do not define a subgroup of the Brauer group B(k), however, the set of quaternion algebras associated to the non-split three-dimensional simple Lie algebras constructed from involutions of sl(2, k) does (Proposition 3.9 and Theorem 3.10). Finally in Section 4 we characterise which non-split three-dimensional simple Lie algebras are obtainable over local and global fields in terms of Hilbert and Legendre Symbols (Propositions 4.5 and 4.7) and we give explicit rational three-dimensional simple Lie algebras which can and cannot be obtained by this construction in Example 4.12.

Generalities about three-dimensional simple Lie algebras

In this section, we recall some results about three-dimensional simple Lie algebras (see [START_REF] Jacobson | A note on three dimensional simple Lie algebras[END_REF] or [START_REF] Malcolmson | Enveloping algebras of simple three-dimensional Lie algebras[END_REF] for details) and describe their correspondence with quaternion algebras. The algebra L(α, β) is a three-dimensional simple Lie algebra, its Killing form is < -2β, -2α, -2αβ > and we have the following result: Proposition 2.2. If s is a three-dimensional simple Lie algebra, then there exist α, β ∈ k * such that s is isomorphic to L(α, β).

Remark 2.3. A ternary quadratic form q is isometric to the Killing form of a three-dimensional simple Lie algebra if and only if

disc(q) = [-2] ∈ k * k * 2 .
The Lie algebra sl(2, k) is isomorphic to L(-1, 1). We say that a three-dimensional simple Lie algebra s is split if it is isomorphic to sl(2, k). If there exists a non-zero h ∈ s such that ad(h) is diagonalisable then s is split.

Proposition 2.4. Let s be a three-dimensional simple Lie algebra, K be its Killing form and

h ∈ s. The characteristic polynomial of ad(h) is -X(X 2 -K(h,h) 2 ). In particular, ad(h) is diagonalisable if and only if K(h,h) 2 is a non-zero square in k. Proof. Straightforward calculation.
It is well-known that the imaginary part of a quaternion algebra H is a three-dimensional simple Lie algebra for the bracket defined by the commutator. Let α, β ∈ k * . Recall ([Vig80], [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF]) that the quaternion algebra α,β k is the k-algebra on two generators i, j with the defining relations:

i 2 = α, j 2 = β, ij = -ji.
We note that the element ij verifies (ij) 2 = -αβ. Furthermore, {1, i, j, ij} form a k-basis for α,β k and α,β k is a central simple unital four-dimensional associative, non-commutative composition algebra for the norm form

N (a + bi + cj + dij) = (a + bi + cj + dij)(a + bi + cj + dij) = a 2 -αb 2 -βc 2 + αβd 2 , where (a + bi + cj + dij) := a -(bi + cj + dij) for all a + bi + cj + dij ∈ α,β
k . The imaginary part of the quaternion algebra α,β k together with the commutator is isomorphic to the Lie algebra

L(-β, -α) since Im α,β k = Span < i, j, ij > and [ i 2 , j 2 ] = ij 2 , [ j 2 , ij 2 ] = -β • i 2 , [ ij 2 , i 2 ] = -α • j 2 .
Conversely, from a three-dimensional simple Lie algebra s we can reconstruct a quaternion algebra as follows.

Definition 2.5. Let s be a three-dimensional simple Lie algebra, K be its Killing form and H(s) be the vector space defined by H(s) := k ⊕ s. Define the product • : H(s) × H(s) → H(s) by:

a) for a, b ∈ k, a • b := ab (the field product on k) ; b) for a ∈ k and v ∈ s, a • v := v • a := av (the scalar multiplication of k on s) ; c) for v, w ∈ s, v • w := K(v, w) 8 • 1 + [v, w] 2 .
We define a norm form on H(s) by

N (x) := x • x = (a 2 - K(v, v) 8 ) • 1 ∀x = a • 1 + v ∈ H(s),
where

x := a • 1 -v.
Proposition 2.6. Let s be a three-dimensional simple Lie algebra. The vector space H(s) = k ⊕s with the product

• above is a quaternion algebra. Furthermore, if s ∼ = L(α, β) then H(s) ∼ = -β,-α k .
Proof. Straightforward calculation using the identity

K([v, w], [v, w]) = 1 2 K(v, w) 2 -K(v, v)K(w, w) ∀v, w ∈ s.
Example 2.7. a) Over R, the Lie algebra su(2) is the imaginary part of the classical quaternion algebra H.

b) The Lie algebra sl(2, k) is the imaginary part of the split quaternion algebra

M 2 (k) ∼ = 1,-1 k .
The following is a résumé of the correspondence between three-dimensional simple Lie algebras, their Killing forms and their associated quaternion algebras. Corollary 2.9. Two three-dimensional simple Lie algebras are isomorphic if and only if their Killing forms are isometric. In particular, a three-dimensional simple Lie algebra is split if and only if its Killing form is isotropic.

Construction of non-split three-dimensional simple Lie algebras from involutions of sl(2,k)

In this section we give a construction of non-split three-dimensional simple Lie algebras from involutions of sl(2, k) and characterise those which one can be obtained in this way. We show that non-split three-dimensional simple Lie algebras constructed from these involutions define a particular subgroup of the Brauer group B(k) of k. We first introduce some notation. Let

k * -1 := {x 2 + y 2 | x, y ∈ k} \ {0}. This is a subgroup of k * and if -1 ∈ k * 2 , then k * k * -1 ∼ = {1} since ( 1 + ∆ 2 ) 2 + ( √ -1 1 -∆ 2 ) 2 = ∆ ∀∆ ∈ k * .
Let s be a split three-dimensional simple Lie algebra, K be its Killing form and σ be a non-trivial involutive automorphism of s such that

[ K(x, x) 2 ] = 1 ∈ k * k * 2 ∀x ∈ s σ .
To this data, we are going to associate another three-dimensional simple Lie algebra s ′ . Let Λ ∈ k * be such that

[Λ] = [ K(x, x) 2 ] ∈ k * k * 2 ∀x ∈ s σ ,
and λ be a square root of Λ in a non-trivial quadratic extension of k. Since σ is involutive we have

s ∼ = l ⊕ p,
where l is the one-dimensional eigenspace for the eigenvalue 1 and p is the two-dimensional eigenspace for the eigenvalue -1. Let s ′ be the three-dimensional simple k-Lie algebra

s ′ := l ⊕ λp
with the Lie bracket extended from s:

[a + λb, c + λd] = ([a, c] + Λ[b, d]) + λ([b, c] + [a, d]) ∀a + λb, c + λd ∈ s ′ .
Theorem 3.1. Let s be a split three-dimensional simple Lie algebra, K be its Killing form and σ be a non-trivial involutive automorphism of s such that

[ K(x, x) 2 ] = 1 ∈ k * k * 2 ∀x ∈ s σ .
The three-dimensional simple Lie algebra s ′ associated to (s, σ) by the construction above is non-split if and only if

[K(x, x)] = 1 ∈ k * k * -1 ∀x ∈ s σ .
Proof. We first prove the following lemma.

Lemma 3.2. Let x be a non-zero element of a split three-dimensional simple Lie algebra s. Then, there exists h in s such that ad(h) is diagonalisable and which is orthogonal to x.

Proof. Let {h, e, f } be a standard sl(2, k)-triple and K be the Killing form of s. Since Span < e, f > is a hyperbolic plane, there exists x ′ ∈ Span < e, f > such that K(x, x) = K(x ′ , x ′ ). This implies that there exists g ∈ SO(s) such that g(x ′ ) = x. Since h is orthogonal to x ′ , g(h) is orthogonal to x, we have K(g(h), g(h)) = K(h, h) and so the linear map ad(g(h)) is diagonalisable.

By Lemma 3.2, there exist h, e, f ∈ s such that {h, e, f } is a standard basis of s ∼ = sl(2, k) and x ∈ Span < e, f > where x is a non-zero fixed point of σ. Since σ is involutive and σ(h) = -h we obtain that σ is a reflection on the hyperbolic plane Span < e, f > and so there exists a ∈ k * such that σ(e) = af and σ(f ) = 1 a e. The eigenspaces l and p are l = Span < e + af >, p = Span < h, e -af >, and so

s ′ = l ⊕ λp = Span < e + af > ⊕ Span < λh, λ(e -af ) > .
We now calculate the structure constants of s ′ :

[ λh 2 , e + af 2 ] = λ(e -af ) 2 , [ e + af 2 , λ(e -af ) 2 ] = -a λh 2 , [ λ(e -af ) 2 , λh 2 ] = -Λ e + af 2 . Since [Λ] = [ K s (x, x) 2 ] = [ K s ′ (e + af, e + af ) 2 ] = [a] ∈ k * k * 2 it follows that s ′ is isomorphic to L(-Λ, -Λ). The quadratic form < 2Λ, 2Λ, -2Λ 2 > is isometric to < -2, 2Λ, 2Λ >
and so, by Proposition 2.8, the Lie algebra L(-Λ, -Λ) is isomorphic to L(-Λ, 1).

Lemma 3.3. Let ∆, ∆ ′ ∈ k * . The Lie algebras L(-∆, 1) and L(-∆ ′ , 1) are isomorphic if and only if [∆] = [∆ ′ ] in k * k * -1
. In particular, L(-∆, 1) is split if and only if ∆ is a sum of two squares.

Proof. By Proposition 2.8, L(-∆, 1) is isomorphic to L(-∆ ′ , 1) if and only < 1, -∆, -∆ > is isometric to < 1, -∆ ′ , -∆ ′ >. By Witt's cancellation Theorem, < 1, -∆, -∆ > is isometric to < 1, -∆ ′ , ∆ ′ > if and only if < ∆, ∆ > is isometric to < ∆ ′ , ∆ ′ >.
Since they have the same discriminant, they are isometric if and only if they represent a common element (Proposition 5.1 p.15 in [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF]), in other words if and only if

[∆] = [∆ ′ ] ∈ k * k * -1
.

This theorem motivates the following definition.

Definition 3.4. Let s be a split three-dimensional simple Lie algebra, let K be its Killing form and let σ be an automorphism of s. We say that σ is of Cartan type if and only if:

σ = Id, σ 2 = Id, [K(x, x)] = 1 ∈ k * k * -1 ∀x ∈ s σ .
Two automorphisms of Cartan type σ and σ ′ are said to be equivalent if

[K(x, x)] = [K(x ′ , x ′ )] ∈ k * k * -1 ∀x ∈ s σ , ∀x ′ ∈ s σ ′ .
Remark 3.5.

a) The Killing form K of a split three-dimensional simple Lie algebra s represents all the elements of k. Hence for all α ∈ k * such that

[α] = 1 ∈ k * k * -1
, there exists an automorphism of Cartan type

σ of s such that K(x, x) = α ∀x ∈ s σ . b) If k = R, an automorphism σ of sl(2, R) is of Cartan type if and only if σ is a Cartan involution. c) If x ∈ s satisfies to [K(x, x)] = 1 ∈ k * k * -1 then K(x,x)
2 is not a square.

We now study the non-split three-dimensional simple Lie algebras which can be obtained by the construction above.

Definition 3.6. A non-split three-dimensional simple Lie algebra s ′ is said to be obtainable if there exists an automorphism of Cartan type σ of a split three-dimensional simple Lie algebra s such that s ′ is isomorphic to the Lie algebra associated to (s, σ) by the construction above.

We now summarise various conditions for a non-split three-dimensional simple Lie algebra to be obtainable in the following proposition. Proposition 3.7. Let s ′ be a non-split three-dimensional simple Lie algebra and K be its Killing form. The following are equivalent: 

a) s ′ is obtainable, b) there exist x, h ∈ s ′ such that h⊥x, [K(x, x)] = 1 ∈ k * k * -1 and [K(h, h)] = [K(x, x)] ∈ k * k * 2 , c) s ′ is isomorphic to L(-∆, -∆) for some ∆ ∈ k * , d) the Killing form of s ′ represents -2.
* such that K is isometric to < -2, δ, γ >. Since disc(K) = [-2] ∈ k * k * 2 and disc(< -2, δ, γ >) = [-2δγ] ∈ k * k * 2 we have [γ] = [δ] ∈ k * k * 2
and then K is isometric to the quadratic form < -2, δ, δ > which is isometric to the Killing form of L( -δ 2 , -δ 2 ). Hence s is isomorphic to L( -δ 2 , -δ 2 ). Conversely, the Killing form of L(δ, δ) is isometric to < -2δ, -2δ, -2 > and hence represents -2.

Consider the Brauer group B(k) of k. The elements of B(k) are in 1 : 1 correspondence with the isomorphism classes of central division algebras over k (for details see Chap.IV of [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF]). Non-isomorphic quaternion algebras represent different elements of B(k) and, we now consider the elements of B(k) represented by the quaternion algebras constructed from obtainable non-split three-dimensional simple Lie algebras (see Section 2): Definition 3.8. Let B(k) be the Brauer group of k. Define

H(k) := [H(sl(2, k))] ∪ [H(s)] ∈ B(k) | s

is an obtainable non-split three-dimensional simple Lie algebra .

A quaternion algebra is of order 2 in the Brauer group but, in general, the set of classes of quaternion algebras in B(k) is not a subgroup. However, the set H(k) of classes of quaternion algebras associated to obtainable non-split three-dimensional simple Lie algebra s is a subgroup of B(k). . By Linearity (see Theorem 2.11 p.60 in [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF]) we have

-1,∆ k ⊗ -1,∆ ′ k ∼ = -1,∆∆ ′ k ⊗ M 2 (k).
Hence, in the Brauer group we have

[ -1,∆ k ] • [( -1,∆ ′ k ] = [( -1,∆∆ ′ k ] and so H(k) is a subgroup of B(k). Furthermore the map [ -1,∆ k ] → ∆ defines a group isomorphism between H(k) and k * k * -1
.

We can summarise the correspondences between automorphisms of Cartan type of sl(2, k), obtainable non-split three-dimensional simple Lie algebras,

k * k * -1
and H(k) as follows.

Theorem 3.10. We have the following correspondences

   equivalence classes of automorphisms of Cartan type of sl(2, k)    ⇔    isomorphism classes of obtainable non-split three- dimensional simple Lie algebras    ⇔      elements in k * k * -1      ⇔    elements in the subgroup H(k) of the Brauer group B(k) of k    .

Criteria to be obtainable over local and global fields

In this section, after recalling definitions, we characterise which non-split three-dimensional simple Lie algebras are obtainable over local and global fields in terms of the Hilbert symbol and the Legendre symbol (see [START_REF] Vignéras | Arithmétique des algèbres de quaternions[END_REF] for details about quaternions algebras over local and global fields). We also give examples of obtainable and unobtainable non-split three-dimensional simple Lie algebras over the field of rationals.

Definition 4.1. Let α, β ∈ k * . We define the Hilbert symbol (α, β) ∈ {±1} as follows:

(α, β) := 1 if the binary form < α, β > represents 1, -1 otherwise. Proposition 4.2. Let α, β ∈ k * . The Lie algebra L(α, β) is split if and only if (-α, -β) = 1.
Proof. By Corollary 2.9 the Lie algebra L(α, β) is split if and only < -2β, -2α, -2αβ > is isotropic. Since the norm form of the imaginary part of the quaternion algebra -β,-α k is isometric to < -(-β), -(-α), (-α)(-β) >, then by Theorem 2.7 p.58 of [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF] we have that L(α, β) is split if and only if (-α, -β) = 1.

We now introduce the Legendre symbol. Definition 4.3. For an odd prime p and a ∈ Z, the Legendre symbol is defined by:

a p :=    0 if p divides a, 1
if a is a square modulo p, -1 otherwise.

Remark 4.4.

There is a formula for the Legendre symbol:

a p = a p-1 2 (mod p).
If k P is a non-dyadic local field, we denote by k P its residue class field and denote by v P its valuation. Recall that for any prime p, the fields Q p and F p ((t)) are examples of local fields whose residue class field is isomorphic to F p . The Hilbert symbol over a local field can be re-written in terms of the Legendre symbol as follows. Let α, β ∈ k * P . We note a = v P (α) and b = v P (β). By Corollary p.211 of [START_REF] Serre | Corps locaux. Hermann[END_REF] we have

(α, β) = (-1) ab α b β a |k P |-1 2 .
In particular if |k P | is prime, we have

(α, β) = (-1) ab α b β a |k P | . ( 1 
)
By Proposition 2.8 and by Theorem 2.2 p.152 of [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF], there is up to isomorphism only one non-split three-dimensional simple Lie algebra over k P . The standard model is L(-u, -π) where u, π ∈ k P , v P (u) = 0, ū / ∈ k P * 2 and v P (π) = 1.

Proposition 4.5. Let k P be a non-dyadic local field and k P be its residue class field. A non-split three-dimensional simple Lie algebra over k P is obtainable if and only if |k P | ≡ 3 (mod 4).

Proof. We first need the following Lemma Lemma 4.6. We have -1 ∈ k * 2 P if and only if |k P | ≡ 1 (mod 4) if and only if

k * P k * P -1 = {1}.
Proof. We have -1 ∈ k * 2 P if and only if |k P | ≡ 1 (mod 4) by Corollary 2.6 p.154 of [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF]. We have

k * P k * P -1 = {1} if and only if the quadratic form < 1, 1, -∆ > is isotropic for all ∆ ∈ k * P . The quadratic form < 1, 1, -∆ > is isotropic for all ∆ ∈ k *
P if and only if (-1, ∆) = 1 for all ∆ ∈ k * P . However, since k P is a local field, (-1, ∆) = 1 for all ∆ ∈ k * P if and only if -1 is a square by Proposition 7 p.208 of [START_REF] Serre | Corps locaux. Hermann[END_REF].

Let s be a non-split three-dimensional simple Lie algebra. If |k P | ≡ 1 (mod 4), then by the previous lemma and the proposition 3.7 there is no automorphism of Cartan type of sl(2, k). If |k P | ≡ 3 (mod 4), then by Lemma 4.6, there exists an automorphism of Cartan type σ of sl(2, k P ). Let s ′ be the non-split three-dimensional simple Lie algebra associated to (sl(2, k P ), σ) by the construction of Section 3. Since there is up to isomorphism one non-split three-dimensional simple Lie algebra over k P , the Lie algebras s and s ′ are isomorphic and so s is obtainable.

Recall that the global fields are the number fields and the finite extensions of the function fields F q (t). Using the Hasse-Minkowski theorem ([Lam05] p.170) and the previous proposition we obtain the following characterisation of obtainable non-split three-dimensional simple Lie algebras over global fields. If | • | P is an archimedean absolute value on k then k P is either R or C. If k P = C, the quadratic form K ⊥< 2 > is isotropic and if k P = R, the signature of K ⊥< 2 > is indefinite and then isotropic.

Using Propositions 3.7 and 4.5 we have that over every non-archimedean completion k P of k such that |k P | ≡ 3 (mod 4) the quadratic form K ⊥< 2 > is isotropic. Finally, using again Proposition 4.5 we have that over every non-archimedean completion k P of k such that |k P | ≡ 1 (mod 4) the quadratic form K ⊥< 2 > is isotropic if and only if K is isotropic. This complete the proof of the proposition. In particular, if v p (α) = 0 and v p (β) = 0, then the condition (2) is automatically satisfied.

Here are some examples of obtainable and unobtainable non-split three-dimensional simple Lie algebras over the field of rationals using Proposition 4.10. b) Using Proposition 2.8 and Example 2.17 p.63 of [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF] we have that the Lie algebra L(3, -5) is non-split. Since for the prime p = 5, we have v 5 (3) = 0, v 5 (-5) = 1 and   3 v 5 (-5) (-5) v 5 (3) 5   = 3 2 = -1 (mod 5), then L(3, -5) is unobtainable. c) Let p be an odd prime. We know from Example 2.14 p.62 of [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF] [START_REF] Yuen | Introduction to quadratic forms over fields[END_REF]).

Definition 2. 1 .

 1 Let {x, y, z} be the canonical basis of k 3 and let α, β ∈ k * . Define an antisymmetric bilinear bracket [ , ] : k 3 × k 3 → k 3 by [x, y] := z, [y, z] := αx, [z, x] := βy and denote the algebra (k 3 , [ , ]) by L(α, β).

Proposition 2. 8 .

 8 For α, β, α ′ , β ′ ∈ k * the following are equivalent: a) the Lie algebras L(α, β) and L(α ′ , β ′ ) are isomorphic ; b) the quaternion algebras -α,-β k and -α ′ ,-β ′ k are isomorphic ; c) the quadratic forms < β, α, αβ > and < β ′ , α ′ , α ′ β ′ > are isometric.

Proof.

  Conditions a) and b) are equivalent by construction. As we saw in the proof of Theorem 3.1, conditions a) and b) imply condition c). Conversely, if s ′ ∼ = L(-∆, -∆) for some ∆ ∈ k * , we have [∆] = 1 ∈ k * k * -1 since s ′ is non-split. By Remark 3.5, L(-∆, -∆) is obtainable and so Conditions a), b) and c) are equivalent. We now show that Conditions a), b) and c) are equivalent to Condition d). If the Killing form K of s represents -2, there exists δ and γ in k

Proposition 3. 9 .

 9 The set H(k) is a subgroup of the Brauer group B(k) isomorphic to k * k Let s and s ′ be obtainable non-split three-dimensional simple Lie algebras. By Proposition 3.7, there exist ∆ and ∆ ′ in k * such that s ∼ = L(-∆, 1) and s ′ ∼ = L(-∆ ′ , 1) and by Proposition 2.6 the quaternion algebras H(s) and H(s ′ ) are isomorphic respectively to -1,∆ k and -1,∆ ′

  k

Example 4. 12 .

 12 Suppose that k = Q. a) If α, β > 0, then (-α, -β) = -1 and so L(α, β) is non-split by Proposition 4.2. In particular, the Lie algebras L(2, 3), L(2, 5) and L(3, 25) are non-split. The Lie algebra L(2, 3) is obtainable since there is no prime p ≡ 1 (mod 4) such that v p (2) or v p (3) is non-zero. The Lie algebra L(2, 5) is unobtainable since for the prime p = 5, we have v 5 (2) = 0, v 5 (5) = 1 and2 v 5 (5) 5 v 5 (2) 5 = 2 2 = -1 (mod 5).The Lie algebra L(3, 25) is obtainable since for the prime p = 5, we have v 5 (3) = 0, v 5 (25) = 2 and 3 v 5 (25) 25 v 5 (3) 5 = 9 2 = 1 (mod 5).

  Proposition 4.7. Let k be a global field. A non-split three-dimensional simple Lie algebra s is obtainable if and only if it satisfies the following conditions: a) over every non-archimedean completion k P of k such that |k P | ≡ 1 (mod 4), the Killing form of s is isotropic, b) the Killing form of s represents -2 over all dyadic completions. Using Proposition 3.7, the Lie algebra s is obtainable if and only if its Killing form K represents -2. Moreover, K represents -2 if and only if the quadratic form K ⊥< 2 > is isotropic. By the Hasse-Minkowski theorem ([[START_REF] Yuen | Introduction to quadratic forms over fields[END_REF] p.170) we know that K ⊥< 2 > is isotropic over k if and only if K ⊥< 2 > is isotropic over every completion k P of k (including the dyadic completions). We now show that this condition is automatically satisfied for archimedean completions and non-archimedean completions k P such that |k P | ≡ 3 (mod 4).

	Remark 4.8. Condition b) is automatically satisfied if k is of characteristic not two and a finite extension of a
	function field.
	Proof.

  This result can be re-expressed as follows. Let k be a global field. Let L(α, β) be a non-split three-dimensional simple Lie algebra, where α, β ∈ k * . The Lie algebra L(α, β) is obtainable if and only if it satisfies the following conditions: a) over every non-archimedean non-dyadic completion k P of k such that |k P | ≡ 1 (mod 4) and such that v By Remark 4.2, the quadratic form K is isotropic over a nonarchimedean completion k P of k such that |k P | ≡ 1 (mod 4) if and only if (-α, -β) k P = 1. But since -1 is a square in k P by Lemma 4.6 this is equivalent to have (α, β) k P = 1. For fixed α, β ∈ Q * , the number of primes p such that v p (α) or v p (β) is non-zero is finite.Proof. The dyadic completion of Q is Q 2 and Q2 is isotropic by Lemma 2.6 p.59 of[START_REF] William | Rational quadratic forms[END_REF] and so the Killing form of L(α, β) represents -2 over Q 2 . We know that the non-archimedean completions of Q are the p-adic fields Q p and the residue class field of Q p is isomorphic to F p . Then, |Q p | ≡ 1 (mod 4) if and only if p ≡ 1

	disc(< α, β, αβ, -1 > Q2 ) = -1 / ∈ Q 2 * 2
	by Corollary p.40 in [Cas78]. Hence, < α, β, αβ, -1 > (mod 4). If p ≡ 1 (mod 4), from Equation (1), we have			
			α vp (β)	
	(α, β) k P =		β vp (α) p	 .
	Corollary 4.9. Over Q this implies the following result:			
	Proposition 4.10. Let L(α, β) be a non-split three-dimensional simple Lie algebra over Q, where α, β ∈ Q * . The Lie algebra L(α, β) is obtainable if and only if for every prime p ≡ 1 (mod 4) such that v p (α) or v p (β) is non-zero we have  α vp (β)
	β vp(α)			
				

P (α) or v P (β) is non-zero we have (α, β) k P = 1 (2)

where v P is the valuation associated to k P .

b) the quadratic form < α, β, αβ, -1 > is isotropic over all dyadic completions.

Proof. Let K be the Killing form of L(α, β).

p   = 1 (mod p)

where v p is the p-adic valuation associated to the prime p.

Remark 4.11.

  and Proposition 2.8 that L(1, -p) is non-split if and only if p ≡ 3 (mod 4). If p ≡ 3 (mod 4), then the non-split Lie algebra L(1, -p) is obtainable since there is no prime p ′ ≡ 1 (mod 4) such that v p ′ (1) or v p ′ (-p) is non-zero. d) Let p be an odd prime. We know from Example 2.15 p.62 of[START_REF] Yuen | Introduction to quadratic forms over fields[END_REF] and Proposition 2.8 that L(2, -p) is non-split if and only if p ≡ 5 (mod 8) or p ≡ 7 (mod 8). If p ≡ 7 (mod 8), then the non-split Lie algebra L(2, -p) is always obtainable since there is no prime p ′ ≡ 1 (mod 4) such that v p ′ (2) or v p ′ (-p) is non-zero. If p ≡ 5 (mod 8), the non-split Lie algebra L(2, -p) is always unobtainable since for the prime p, we have v

p (2) = 0, v p (-p) = 1 and 2 p = -1 (mod p) by the Quadratic Reciprocity Law (see p.181 in
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