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Abstract

We consider in this paper two-component mixture distributions having one known component. This
is the case when a gold standard reference component is well known, and when a population contains
such a component plus another one with different features. When two populations are drawn from
such models, we propose a penalized χ2-type testing procedure able to compare pairwise the unknown
components, i.e. to test the equality of their residual features densities. An intensive numerical
study is carried out from a large range of simulation setups to illustrate the asymptotic properties of
our test. Moreover the testing procedure is applied on two real cases: i) mortality datasets, where
results show that the test remains robust even in challenging situations where the unknown component
only represents a small percentage of the global population, ii) galaxy velocities datasets, where stars
luminosity mixed with the Milky Way are compared.

Keywords: finite mixture model; semiparametric estimator; Chi-squared test; mortality.

1 Introduction

Let us consider the two-component mixture model with probability density function (pdf) h defined by

h(x) = (1− p)g(x) + pf(x), x ∈ R, (1)

where g is a known pdf and where the unknown parameters are the mixture proportion p ∈]0, 1[ and the pdf
f . This model has been widely investigated in the last decades, see for instance Bordes and Vandekherkove
[3], Matias and Nguyen [23], Cai and Jin [5] or Celisse and Robin [6] among others. Numerous applications
of model (1) can be found in topics such as: i) genetics regarding the analysis of gene expressions from
microarray experiments such as in Broët et al. [4]; ii) the false discovery rate problem (used to assess and
control multiple error rates such as in Efron and Tibshirani [9]), see McLachlan et al. [19]; iii) astronomy,
in which this model arises when observing variables such as metallicity and radial velocity of stars such
as in Walker et al. [29]; iv) biology to model trees diameters, see Podlaski and Roesch [25]; v) kinetics to
model plasma data, see Klingenberg et al. [13].
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In this paper, the data of interest is made of two i.i.d. samples X = (X1, . . . , Xn1) and Y =
(Y1, . . . , Yn2) with respective probability density functions:{

h1(x) = (1− p1)g1(x) + p1f1(x), x ∈ R,
h2(x) = (1− p2)g2(x) + p2f2(x), x ∈ R,

(2)

where p1, p2 are the unknown mixture proportions and f1, f2 are the unknown component densities with
respect to a given reference measure ν. Note that we can also consider discrete measures, as Poisson or
Binomial, extending the notion of probability density function to mass probability function when ν refer
to the counting measure. All our results will be still valid in such setups. Given the above model, our
goal is now to answer the following statistical problem:

H0 : f1 is equal to f2 against H1 : f1 is different from f2 , (3)

without assigning any specific parametric family to the fi’s.
This problem is a natural extension of a recent work by Pommeret and Vandekherkove [26]. Our

contribution here is twofold: we extend their results to the two-samples case, and the proposed method
enables to consider problem (3) without specifying any type of distribution (Pommeret and Vandekherkove
[26] focused their study on the continuous case with symmetric densities). Basically our test procedure
consists in expanding the two unknown densities in an orthogonal polynomial basis, and then in comparing,
with an ad. hoc. method, their coefficients up to a parsimonious rank selected according to a data-driven
technique detailed latter on in the paper.

In our case, the first practical interest of this paper relates to the demography analysis and corre-
sponding applications in actuarial science. Mortality is shown to vary across individuals due to many
factors; including age, sex, education, health and marital status among others. In insurance, the prob-
ability distribution of the age-at-death random variable is of paramount importance. Indeed, this is the
basis for the premium calculations as well as the solvency capital requirement assessment, see Barrieu
et al. [1]. In such a context, we are generally facing some heterogeneity which arises from the adverse
selection effect (caused by the insurance guarantees themselves). Death insurance contracts are thus sold
to people presenting heterogeneous mortality risks: some individuals have a mortality profile similar to
the (average) national population; whereas others have a different risk profile due to anti-selection. In-
surers are therefore concerned with the mitigation of those risks, especially when the latter population
is composed of less healthy lives. Of course, this adverse selection effect may have various impacts on
different portfolios, since the pace of change and level of mortality are highly heterogeneous from one
insurance contract to another. Ordinary life table analyses implicitly assume that the population is ho-
mogeneous, which clearly looks unrealistic in a practical setting. Keyfitz and Littman [15] illustrated the
potential bias due to heterogeneity using a life table model where the age-at-death density follows a dis-
crete mixture of homogeneous subgroups, as in (1). They showed that, in general, ignoring heterogeneity
leads to incorrect assessments of life expectancies. From an insurance risk management viewpoint, the
heterogeneity brings about two main challenges. First, to get an efficient probabilistic representation of
this unobserved heterogeneity is not trivial: given that the first component adjusts to the national pop-
ulation, the statistical estimation of the second component f in (1) can sometimes be tricky. This is the
so-called basis risk, typically arising as a result of the anti-selection effect such as in Salhi and Loisel [28].
Secondly, we are interested in comparing the heterogeneity across different guarantees (portfolios). Since
insurance risk management rests on the pooling of a large number of ideally uncorrelated risks, the main
component of the mortality risk is generally well understood and managed. As a matter of fact, most of
the individuals exhibit a mortality pattern similar to the national population. However, unusual mortality
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profiles pose an issue, as mitigation is made infeasible due to low levels of representation. Therefore, it is
of great interest to develop a hypothesis testing that aims at comparing the heterogeneous component of
two different populations, allowing the insurer to benefit from the pooling of those two populations.

Eventually, our method can be used in many other areas than actuarial science. As illustration we also
consider kinematic datasets from two Milky Way dwarf spheroidal (dSph) satellites: Carina and Sextans,
see for instance Walter et al. [29]. More precisely, we consider the heliocentric velocities (HV) of stars in
these satellites, that is the velocities defined with respect to the solar system. These measurements are
mixed with the HV of stars in the Milky Way. The Milky Way is largely observed, see Robin et al. [27],
and can be assumed perfectly known. One problem is to compare the HV distributions of both satellites
Carina and Sextans through such mixture models with a common Milky Way known component. We
therefore encounter a problem of two sample comparison of mixing components.

The remainder of the paper is organized as follows. We introduce the testing problem and describe
our methodology in Section 2. In Section 3, we state the assumptions and asymptotic results under the
null hypothesis, along with the test divergence under the alternative. Section 4 provides details about the
adequate polynomial decomposition depending on the nature of the distributions support. In Section 5, we
implement a simulation-based study to evaluate the empirical level and power of the test. Finally, Section
6 is devoted to applications on real datasets: first in mortality (with insurance contracts embedding death
guarantees); second in kinematic (with galaxies heliocentric velocities comparisons). A discussion closes
the paper when proofs are relegated in Appendices.

2 Testing problem

Our test procedure is based on the expansion coefficients comparison of the two probability density
functions h1 and h2, defined in (2), in an orthonormal polynomial basis. Such an approach was originally
introduced by Neyman [22] and extended in a data-driven context by Ledwina [16]. Our test procedure
will permit to detect asymptotically any departure between two expansion coefficients, screened pairwise,
along the indices.

Remark 1. For technical reasons, we assume in the sequel that

n1/(n1 + n2)→ a ∈]0, 1[ as n1, n2 →∞. (4)

This condition is not restrictive and is obviously fulfilled when using the technique on real datasets, which
corresponds to finite sample applications.

Let us denote by Q = {Qk; k ∈ N}, an ν-orthonormal basis satisfying Q0 = 1 and such that∫
R
Qj(x)Qk(x)ν(dx) = δjk,

with δjk = 1 if j = k and 0 otherwise.
We assume that the following integrability conditions are satisfied∫

R
h21(x)ν(dx) <∞ and

∫
R
h22(x)ν(dx) <∞.
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Then, for all x ∈ supp(ν), we have for i = 1, 2

hi(x) =
∑
k≥0

hi,kQk(x) with hi,k =

∫
R
Qk(x)hi(x)ν(dx),

gi(x) =
∑
k≥0

gi,kQk(x) with gi,k =

∫
R
Qk(x)gi(x)ν(dx),

fi(x) =
∑
k≥0

fi,kQk(x) with fi,ks =

∫
R
Qk(x)fi(x)ν(dx),

and, from (2), we deduce that
hi,k = (1− pi)gi,k + pifi,k.

Note that there is no restriction on the support of f1 and f2, excepted it must be known. The null
hypothesis can be rewritten as f1,k = f2,k, for all k ≥ 1. Or equivalently

H0 : p2(h1,k − (1− p1)g1,k) = p1(h2,k − (1− p2)g2,k), k ≥ 1. (5)

Since the pdfs g1 and g2 are known, the coefficients gi,k, i = 1, 2, are automatically known. For all k ≥ 1,
the coefficients hi,k can be estimated empirically by:

ĥ1,k =
1

n1

n1∑
i=1

Qk(Xi) and ĥ2,k =
1

n2

n2∑
i=1

Qk(Yi). (6)

The estimation of the proportions pi, i = 1, 2, involved in model (2) will depend on some technical
assumptions. In fact, we can distinguish the following cases.

• Semiparametric conditions: the following assumptions allow to semiparametrically identify
model (2) and to estimate the parameters p1 and p2 of crucial importance in our testing method,
see expression (10).

(A1) The regularity and identifiability conditions required in Bordes and Vandekerkhove [3] and
Bordes et al. [2] are satisfied. Regarding specifically the identifiability conditions we will
suppose either:

a) The densities gi and fi (i=1,2) are respectively supposed to be odd and symmetric about a
location parameter µi, i.e. there exists µi ∈ R such that for all x ∈ R fi(x + µi) = fi,s(x) =
fi,s(−x), with 2nd order moments supposed to satisfy

m(gi) 6= m(fi,s) + µi
2± k

3k
, for k ∈ N∗, and i = 1, 2, (7)

where m(f) generically denotes the 2nd order moment according to the f density.

b) The densities gi and fi (i=1,2) are respectively supposed to be strictly positive over R and
symmetric about a location parameter µi, both having first order moments and satisfying the
following tail conditions:

for all β ∈ R : lim
x→+∞

fi,s(x− β)

gi(x)
= 0, or lim

x→−∞

fi,s(x− β)

gi(x)
= 0, i = 1, 2.
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The central role of the above conditions in the semiparametric literature are detailed in the recent
and very well documented survey by Xiang et al. [31].

(A2) The regularity and identifiability conditions required in Patra and Sen [24] are satisfied.

Note that in Patra and Sen [24] the estimation of the proportion p in model (1) is based on the fact
that the correct p should be defined as

p0 = inf {p ∈ (0, 1] : [H − (1− p)G]/p is a cdf} .

where we recognize the inversion formula H = (1 − p)G + pF ⇔ F = [H − (1 − p)G]/p under
p ∈ (0, 1] when G is known and H can be estimated from the data. This second semiparametric
method is more flexible than Bordes and Vandekerkhove [3] since it can be basically used on any
sort of distribution support, i.e. continuous, discrete or a combination of both, as described in Patra
and Sen [24, Lemmas 2-4]. However, they do not obtain a central limit theorem for their estimators
and therefore a bootstrap technique is required to calibrate the distribution of the test statistics.

• Parametric condition:

(A3) For i = 1, 2, there exists known functions `i and intervals Ii such that the quantities F `i =∫
Ii
`i(x)fi(x)ν(dx) are known.

Under parametric condition (A3) parameters pi can be estimated by

p̄i =
Ĥ`
i −G`i

F `i −G`i
, (8)

where G`i =
∫
Ii
`i(x)gi(x)ν(dx) 6= Fi and Ĥi is an estimator of H`

i =
∫
Ii
`i(x)hi(x)ν(dx), typically:

Ĥ`
i =

1

ni

ni∑
j=1

`i(Xj)IXj∈Ii . (9)

Remark 2. Assumption (A3) can be reduced to the knowledge of a restricted mean when `i(x) = x,
or a value of a distribution function when `(x) = 1. In the case where Ii is not in the support of gi,
we could estimate Ii from the sample. The sole knowledge of Gi instead of gi is also possible. Other
various parametric assumptions are studied in the literature (see for instance Celisse and Robin [6] and
the references given there)

Henceforth, we will denote by p̂ the estimator of p, whatever the considered assumption among (A1-
3), i.e. p̂ will be equal to p̃ under (A1-2), and to p̄ under (A3). Finally, to answer the H0 testing
problem (3), we consider the following double-sourced differences

R̂k := p̂2(ĥ1,k − (1− p̂1)g1,k)− p̂1(ĥ2,k − (1− p̂2)g2,k), k ≥ 1, (10)

allowing to detect any possible departure from the null hypothesis.

For all k ≥ 1, we define Ûk = (R̂1, . . . , R̂k), and

T̂k =
n1n2
n1 + n2

Û>k D̂
−1
k Ûk, (11)
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where D̂k = diag(d̂1, . . . , d̂k) is a consistent estimator of diag(V(R̂1), . . . ,V(R̂k)).
To avoid instability in the evaluation of D̂−1k , we add a trimming term e(n1, n2) satisfying e(n1, n2)→ 0

as n1, n2 tend to infinity, and we finally consider

d̂j = max (ŵj , e(n1, n2)) , 1 ≤ j ≤ k, (12)

where ŵj is an estimator of V(R̂j).
Following Ledwina [16] and Kallenberg and Ledwina [14], we suggest a data-driven procedure to select

automatically the number of coefficients needed to answer the testing problem. Formally, we introduce
the following penalized rule to select the rank k of the statistic T̂k:

S(n1, n2) = min

{
argmax

1≤k≤d(n1,n2)
(s(n1, n2)T̂k − βkpen(n1, n2))

}
, (13)

where d(n1, n2) → +∞ as n1, n2 → +∞, pen(n1, n2) is a penalty term such that pen(n1, n2) → +∞ as
n1, n2 → +∞, the βk’s are penalization factors, and s(n1, n2) is a normalization factor which depends
on the convergence rate of the estimators of p1 and p2. In practice, we will consider βk = k, k ≥ 1, and
pen(n1, n2) = log(n1n2/(n1 + n2)), n1, n2 ≥ 1. The rate s(n1, n2) will depend on the assumptions made
about the densities f1 and f2 and is related to the rate of convergence of the parameter estimators.

• Under Assumptions (A1-2), we fix s(n1, n2) =

(
n1n2
n1 + n2

)s−1
, with 0 < s < 1/2.

• Under Assumption (A3), we fix s(n1, n2) = 1.

Finally the associated data-driven test statistic is T (n1, n2) = T̂S(n1,n2).

3 Additional assumptions and main results

To test consistently (3), based on the statistic T (n1, n2), we will suppose the following conditions:

(A4) The coefficient order upper bound d(n1, n2) involved in (13) satisfies

d(n1, n2) = o(log(n1n2/(n1 + n2))e(n1, n2)).

(A5) There exist nonnegative constants M1,M2 such that for all k ≥ 1, under H0

1

k

k∑
j=1

E(Q2
j (X)) < M1, and

1

k

k∑
j=1

E(Q2
j (Y )) < M2.

The next two theorems state respectively the asymptotic behavior of the selected rank S(n1, n2)
defined in (13) under nonparametric, resp. parametric, conditions.

Theorem 3. If one of these three assumptions is satisfied: (A1), or (A2), or (A3), and if (A4) and
(A5) hold, then, under H0, S(n1, n2) converges in probability towards 1 as n1, n2 → +∞.

From Theorem 3, T (n1, n2) and T̂1 have the same limiting distribution in both parametric or nonpara-
metric cases. Under (A1) or under (A3), the estimators p̂1 and p̂2 are asymptotically Gaussian under
the null and then we deduce the limit distribution of the test statistic from the previous theorems.
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Proposition 1. Assume that the estimators p̂1 and p̂2 are asymptotically Gaussian with convergence rate√
n1 and

√
n2, respectively. Then T1 converges in law towards a χ2-distribution with one degree of freedom

as n1, n2 → +∞.

Corollary 4. Assume that (A1),(A4-5) hold, or (A3-5) hold, then, under H0, T (n1, n2) converges in
law towards a χ2-distribution with one degree of freedom as n1, n2 → +∞.

Under (A2) we do not have such an asymptotic results. Nevertheless, based on our numerical studies
we conjecture that we are very close, in practice, to a normal asymptotic behavior for p̂1 and p̂2. We
give a numerical illustration in Fig.7 Appendix B where the variance of these estimators is obtained by
a bootstrap procedure. We used Patra and Sen [24] estimators instead of those proposed in [3] in our
simulation study when the known density was not symmetric. In case of symmetry, both estimation
methods yield very similar results, going into the direction of the above conjecture.

We consider now the collection of H1-type alternatives defined as follows: there exists q ∈ N∗ such
that

H1(q) : f1,j = f2,j , j = 1, . . . , q − 1, and f1,q 6= f2,q,

which describes a departure between the q-th order coefficients of h1 and h2. Writing

δ(k) := p2(h1,k − (1− p1)g1,k)− p1(h2,k − (1− p2)g2,k), k ≥ 1, (14)

the alternative hypothesis H1(q) tells that δ(q) is the first non null coefficient along this series. We can
now state the following proposition that describes the asymptotic drift of the test statistics under H1(q).

Proposition 2. Assume that (A1),(A4-5) hold, or (A3-5) hold, then, under H1(q), we have S(n1, n2)→
s ≥ q and T (n1, n2)→ +∞, when n1, n2 →∞, that is, for all ε > 0, P(T (n1, n2) < ε)→ 0.

4 Choice of the reference measure and test construction

4.1 Choice of the adequate reference measure

We propose in this section to advice on the most relevant reference measure ν to be used for the compu-
tation of coefficients hi,k, gi,k and fi,k given in Section 2.

i) Real line support: the Gaussian measure. When the support of both unknown mixture components
is the real line, we can chose for ν the standard normal distribution. The set {Qk, k ∈ N} = {Hk, k ∈ N}
is constructed from the orthogonal Hermite polynomials, defined for all x ∈ R by:

H0 = 1, H1(x) = x, Hk+1(x) = 2xHk(x) + 2nHk−1(x), k ≥ 1. (15)

ii) Real line support: the Lebesgue measure. When the support is the real line, another choice for ν
is the Lebesgue measure on R. In that case we can choose for {Qk, k ∈ N} = {Hk, k ∈ N} the set of
orthogonal Hermite functions, defined for all x ∈ R by:

Hk(x) = Hk(x)
√
fN (0,1)(x), k ≥ 0.

where Hk is the k-th Hermite polynomial defined in (15).

7



iii) Positive real line support: the Gamma measure. When the support of both unknown mixture
components is the positive real line, we can chose for ν a gamma distribution Γ(1, α), with α > −1. The
set {Qk, k ∈ N} is then constructed from the orthogonal Laguerre polynomials defined for all x ∈ R by:

Lα0 (x) = 1, Lα1 (x) = −x+ α+ 1,

−xLαk (x) = (k + 1)Lαk+1(x)− (2k + α+ 1)Lαk (x) + (k + α)Lαk−1(x), k ≥ 1.

iv) Discrete support: the Poisson measure. If the common support is the set of integers then the
choice of ν can be the Poisson distribution with mean α > 0 and with associated orthogonal Charlier
polynomials defined by:

Cα0 = 1, Cα1 (x) = (α− x)/α, xCαn (x) = −αCαn+1(x) + (n+ α)Cαn (x)− nCαn−1(x), k ≥ 1.

v) Bounded support. If the supports are a bounded interval (a, b), a < b, we can use a uniform measure
for ν and its associated Legendre polynomials. For instance, when (a, b) = (−1, 1) these polynomials are
defined for all x ∈ R by:

L0 = 1, L1(x) = x, (k + 1)Lk+1(x) = (2k + 1)xLk(x)− kLk−1(x), k ≥ 1.

vi) Wavelets. Another approach is to consider an orthogonal basis of wavelets, say {φi, ψi,j ; i, j ∈ Z},
see Daubechies [7]. Note here that the measure ν is the Lebesgue one and we can change φi, ψi,j into
φi/h, ψi,j/h to keep our assumptions (A4). Then the density expansions would take the following generic
form:

f =
∑
i∈Z
〈f, φi〉φi +

∑
i∈N,j∈Z

〈f, ψij〉ψij ,

with a double sum, heavier to implement in practice.

4.2 Construction of the test statistic

The computation of the test statistic T (n1, n2) = T̂S(n1,n2), requires the estimation of the variances

V(R̂1), . . . ,V(̂Rk). To overcome the complex dependence between the estimators of p1, p2 and the estima-
tors of the coefficients associated to h1 and h2, we split each sample into two independent sub-samples of
size n′1, n

′′
1 for X and n′2, n

′′
2 for Y , with n′1 +n′′1 = n1 and n′2 +n′′2 = n2. Then we use the first sub-samples

to estimate the proportions p1 and p2, and the second sub-samples to estimate the coefficients of h1 and
h2.

Under (A1) or (A3), Corollary 4 gives the asymptotic distribution of the test statistic. Under (A2),
there is no result on the asymptotic distribution of the estimators proposed in Patra and Sen [24]. We
conjecture that a central limit theorem occurs for p̂. To verify empirically this assumption, we use a
bootstrap procedure. By doing so, we estimate the asymptotic variance of the test statistic, and we
consider numerically the distribution of our test statistic for different cases detailed in Appendix B.

The computation of the test statistic first requires the choice of d(n1, n2), e(n1, n2) and s(n1, n2). A
previous study (see Pommeret and Vandekherkove [26]) showed us that the empirical levels and powers
were overall weakly sensitive to d(n1, n2) for d(n1, n2) large enough. From that preliminary study we
decided to set d(n1, n2) equal to 10. The trimming e(n1, n2) is calibrated equal to (log(max(n1, n2)))

−1.
The power of the normalization s(n1, n2) = (n1n2/(n1 + n2))

s−1 is setup close enough to (−1/2), with s
equal to 2/5, which seemed to provide good empirical levels.
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5 Monte-Carlo simulations

Recall that X and Y respectively follow mixture densities h1 and h2, given as in (2), where p1, p2 are
the unknown mixing proportions and f1, f2 are the unknown component densities with respect to some
reference measure ν. Hereafter, simulations are performed to evaluate the empirical level of the test. This
level corresponds to the probability of rejecting H0 when H0 is true (f1 = f2). In practice, this level
is expected to asymptotically reach 5%, since one compares our test statistic to the 95-percentile of the
χ2-distribution (Corollary 4). We also assess the power of the test, i.e. the probability to reject H0 given
that H0 is false, which gives an idea of the ability of the test to detect departures from the null hypothesis.

Usually, statisticians initially check for low levels of the test in many frameworks before analyzing its
power. To have a deeper understanding of the strengths and weaknesses of the test, various simulation
schemes are considered including finite mixture models with different component distributions and weights.
Also, to check whether the test quality remains acceptable in diverse settings, we make the parameters
of component distributions vary. Basically, we introduce two opposite situations. In the former, the two
component densities are in close proximity; whereas component densities are far apart in the latter. In
the sequel, for each case of the simulation study, the test is performed one hundred times to evaluate the
empirical level (or power). We also fix n = n1 = n2 for conciseness when presenting the results (the case
where n1 6= n2 naturally arises with real datasets, see Section 6).

5.1 Test empirical levels

Firstly, our objective is to check whether the results significantly differ when changing the component
weights and the component distributions of the mixture models. About the weights, we focus on values
ranging from 10% to 70%. Such weights are typical in most of applications, where the unknown mixture
component can be prevalent or not (see Section 6). One of the challenges is that the test remains effective
when the unknown component proportions are low, meaning that few observations would be assigned to
them in practice.

To begin with, consider two-component mixtures of Gaussian distributions. Recall that, under the
null hypothesis, f = f1 = f2. The test is conducted in the following cases: a) g1 = g2 with g1 far from
(ff) f ; b) g1 = g2 with g1 close to (ct) f ; c) g1 6= g2 with g1 ff g2 and g1, g2 ff f ; d) g1 6= g2 with g1 ct f
and g2 ff f (the case where g1 6= g2 with g1 ct g2 is similar to b)). As an illustration, Fig. 1 shows the
densities obtained for each of the aforementioned situations (see Tab. 7 in Appendix C.1 for associated
parameters), with n = 4, 000 observations. Notice that it is sometimes not obvious that hi follows a
mixture distribution (due to component proximity, see cases b) and d)), which is all the more interesting
when testing H0.

Table 1 summarizes the empirical level of the test depending on the situation. Globally, the test
results are rather satisfactory, since empirical levels roughly equal 5% whatever the context. Worst cases
correspond to situations where at least one mixture component has low weight. This is not surprising,
since it is tricky to get accurate estimates of the mixture weights in this situation, thus impacting the
quality of the test because very few observations relates to the component density to test. Despite being
sensitive to the component weights, our test procedure does not seem to be highly sensitive to the number
of observations. As expected, empirical levels tend to asymptotically decrease.

Let us now study the level of the test, based on the Patra and Sen [24] estimator of the weights,
when working with other supports and other distributions. In this view, Tab. 2 shows the results for
distributions on various supports; namely R+, N and [0, 1]. The idea is to check whether using different
polynomials when decomposing the mixture densities affect the quality of our procedure. For one given
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Figure 1: Under H0: densities of X (solid) and Y (dashed) in various settings: a) g1 = g2 with g1 far
from (ff) f ; b) g1 = g2 with g1 close to (ct) f ; c) g1 6= g2 with g1 ff g2 and g1, g2 ff f ; d) g1 6= g2 with g1
ct f and g2 ff f .

Table 1: Empirical level (in %) of the test with two-component Gaussian mixtures in various settings.
Mixture parameters are listed in Tab. 7, see Appendix C.1.

Case a) Case b) Case c) Case d)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 4 8 2 2 6 4 5 7 7 7 5 3
n = 1, 000 p1 0.25 3 7 6 5 3 6 2 7 4 6 3 9

0.7 4 3 5 5 3 9 5 5 6 13 6 6

0.1 11 6 6 6 6 8 1 4 5 7 5 7
n = 4, 000 p1 0.25 7 5 5 4 7 7 1 8 4 1 6 4

0.7 5 3 4 3 6 3 7 6 5 8 6 5

0.1 5 6 9 4 7 7 8 3 5 9 3 5
n = 10, 000 p1 0.25 3 4 4 6 3 3 4 8 7 4 3 9

0.7 4 3 4 8 3 5 5 7 1 7 6 4

support, Tab. 2 stores the worst case (in terms of empirical level) associated to the aforementioned
situations a), b), c) and d). This leads to an interesting conclusion: the worst case stands for situation d)
whatever the support. As in case b), the mixture weight p1 (see the distribution of X, plain curve in case
d), in Fig. 1) may be tricky to estimate. However, contrary to case b), there is no compensation effect
here since p2 is very likely to be well estimated. This asymmetric behavior, when estimating the mixture
parameters related to X and Y , deteriorates the quality of the test. On the other hand, this effect tends
to vanish when increasing the sample size, which is rather reassuring. Provided that there are enough
observations, the type of distribution involved in the mixture densities does not seem to affect the test
quality (note that other distributions than those presented in this paper were also tested, with similar
results).

Nevertheless, the bad results sometimes observed when the sample size is too small, are likely to
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come from the choice of the distributions themselves (see the associated mixture parameters in Tab. 8 of
Appendix C.1). Indeed, it seems that high variances of the components distributions cause troubles when
estimating the weights p1 and p2. Again, this issue diminishes when increasing the sample size, thanks to
the asymptotic properties of the estimators used in our procedure.

Table 2: Empirical level (in %) of the test corresponding to case d), identified as the situation providing
the worst results whatever the support. Parameters are given in Tab. 8 of Appendix C.1.

Support: R+? N [0, 1]

p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 12 10 15 6 8 9 6 10 9
n = 1, 000 p1 0.25 13 19 10 8 9 9 9 8 4

0.7 22 26 21 7 7 8 5 4 4

0.1 8 3 8 9 12 3 4 2 5
n = 4, 000 p1 0.25 3 2 1 12 8 3 4 2 7

0.7 18 12 11 5 11 6 4 2 5

0.1 5 8 6 6 3 6 5 4 3
n = 10, 000 p1 0.25 3 6 5 4 3 6 4 2 7

0.7 7 3 6 2 1 4 7 5 7

5.2 Test empirical powers

We now evaluate the ability of our test to detect departures from the null hypothesis. As a starting point,
consider the situations where f1 and f2 belong to same distribution family, but have different moments. In
our study, the difference can originate from the expectation (case e)) or the variance. When the variances
of f1 and f2 differ, we are interested in two separate cases: either the difference is big (case f)) or small
(case g)). Lastly, we analyse the behaviour of the test when f1 and f2 belong to distribution families,
with same two first order moments (case h)).

Similarly to Section 5.1, Tab. 3 provides the empirical power of the test related to Gaussian mixtures

Table 3: Empirical powers of the test in two-component Gaussian mixtures in various settings. Mixture
parameters are listed in Tab. 9 of Appendix C.2).

Case e) Case f) Case g) Case h)
E[f1] 6= E[f2] V(f1) 6= V(f2) V(f1) ' V(f2) N (µ, σ) vs L(θ, ν)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 51 62 70 41 59 72 13 6 12 4 2 8
n = 1, 000 p1 0.25 69 93 100 62 97 100 9 18 34 2 6 6

0.7 83 100 100 83 100 100 14 41 97 3 5 5

0.1 100 99 100 96 100 100 17 21 39 1 7 2
n = 4, 000 p1 0.25 100 100 100 100 100 100 28 69 93 2 6 3

0.7 100 100 100 100 100 100 36 96 100 1 3 5

0.1 100 100 100 100 100 100 31 58 68 3 5 5
n = 10, 000 p1 0.25 100 100 100 100 100 100 63 98 100 8 5 4

0.7 100 100 100 100 100 100 88 100 100 8 10 4
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Table 4: Empirical power of the test (n = 1, 000); depending on the support, the weights and the order
of the moment differentiating f1 from f2. Parameters are stored in Tab. 10, Appendix C.2.

Case e) Case f) Case g) Case h)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 58 75 85 29 28 33 9 7 5 8 7 9
R+ p1 0.25 82 100 100 60 92 98 3 6 7 11 5 10

0.7 84 100 100 61 100 100 8 14 17 9 4 6

0.1 22 26 27 14 22 43 5 11 7 14 5 5
N p1 0.25 30 73 94 18 76 96 6 6 19 5 10 6

0.7 43 97 100 16 91 100 12 11 78 12 4 14

0.1 16 22 30 19 45 43 6 5 10 10 7 8
[0, 1] p1 0.25 26 72 95 45 100 100 16 33 62 9 20 20

0.7 37 90 100 38 100 100 7 60 100 12 34 83

in the four aforementioned cases. Then, Tab. 4 summarizes the results when making the support and
distribution change. As it can be noticed, the power of the test is very strongly influenced by the number
of observations, and is much more sensitive to the sample size than when considering empirical levels
performances. Indeed, detecting some differences between f1 and f2 sometimes requires a lot of data and
is more conservative. Concretely, as soon as the difference lies in the skewness, the kurtosis, or higher
order moments of the distributions, it becomes very hard to get high powers (except when the size of the
data becomes huge). As an example, our trials show that at least 25, 000 observations are needed to reach
acceptable powers (70%) in case h) of Tab. 3 (with p1 = p2 = 0.1 and other parameters listed in Tab. 9 of
Appendix C.2). Of course, for the same reason, the weights also play a key role. Indeed, they somewhat
represent the exposure of the unknown component: the bigger they are, the higher the power of the test
is. Table 4 shows that the same conclusions apply when changing the support and the distributions of
the mixture components. Differences are very likely to come from the choice of the parameters and the
types of the component distributions (see Tab. 10 in Appendix C.2), but results are in line with our
expectations. Moreover, Tab. 4 gives an additional information about some kind of lower bound for the
powers in the cases studied. Indeed, the number n of observations was set to 1, 000, which is clearly the
worst case in our simulations.

Apart from these statements, those simulations also enable to verify empirically Proposition 2. Under
the alternative hypothesis, the selected order of the test statistic should be greater or equal than the
moment order differentiating them. Among the 100 times the test was performed (with n = 10, 000),
more than 80% of the tests have selected the right order following the penalization rule (13); i.e. k = 1
in case e), k = 2 in case f) or g), and k ≥ 3 in case h). Let us mention that more than 90% of the tests
selected the first rank (k = 1) in the decomposition when testing under the null hypothesis. This is good
news that confirms our theoretic results.

6 Real datasets applications

6.1 Mortality Dataset

In order to understand the heterogeneity of insured populations, we propose an application of the hy-
pothesis testing developed so far on real-world datasets of insured populations gathering information on
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the age-at-death random variable. These datasets come from studies conducted by the French Institute
of Actuaries and cover the period 2007-2011.

Here, we consider three populations of female individuals holding death guarantees. The portfolios
characteristics are reported in the left panel of Tab. 5 and the pdfs of the age-at-death for each population
are depicted in Fig. 2. In Tab. 5, we report the life expectancy, i.e. E(X) and E(Y ), estimated over the
populations. It is stable over the three considered populations and would suggest a comparable mortality
profiles for the three of them. However, when looking at the pdfs in Fig. 2 the comparison between these
three populations is not straightforward.

Table 5: Left panel: The characteristics of the age-at-death random variable over the three portfolios as
well as the estimated proportion p of the unknown component (bottom panel). Right panel: The test
statistics (upper triangle) and the test p-value (lower triangle) for the insured population age-at-death
unknown mixture component.

Size (n) Life expectancy Proportion p̂ P1 P2 P3

P1 1,251 75.42 0.4603 — 23.28 0.717
P2 7,356 74.91 0.7003 1.4e-06 — 18.48
P3 3,456 75.56 0.6281 0.397 1.7e-05 —

Population 2 Population 3

National Population 1

0 25 50 75 100 125 0 25 50 75 100 125

0.00

0.02

0.04

0.00

0.02

0.04

Figure 2: The probability density estimations of the age-at-death for the French (female) national popu-
lations together with the considered populations (portfolios).

Before proceeding to the hypothesis testing, we need to specify the known densities in model (2). In
fact, each population should encompass individuals whose mortality profile is described by the (mother)
national one. Formally, we assume that the densities g1 and g2 are identical and calibrated using the na-
tional French mortality observations. Although, various parametric forms are usually used in demographic
application, we choose the well-celebrated Gompertz law [20], i.e. g(x) = b exp(ax) exp(−b/a(exp(ax) −
1)), with shape a and rate b. We calibrate these parameters on the basis of the mortality records of the
French female population over the aforementioned period using data of the Human Mortality Database
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P1 vs P2 P1 vs P3
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Figure 3: Decontaminated density estimations of the age-at-death. The left panel depicts the pdf of the
population P1 (dashed) against P2 (solid) and the right panel compares the pdf of P1 (dashed) to P3
(solid).

(HMD)1. This gives the following estimated shape and rate a = 0.125 and b = 2.182 × 10−6. In Fig. 2,
we depicted the Gompertz law for the national population (top left panel). Hence, using this density, we
reported the estimated proportion p̂ in model (1) for each population using the estimator by Patra and
Sen [24]. In the right panel of Tab. 5, we summarize the outputs of the hypothesis testing for pairs of
portfolios. In the upper triangle we reported the test statistics in (11) as well as the p-values in the lower
triangle. The heterogeneous part of the portfolios is tested on the pairs and the p-values of the test does
accept the equality for populations 1 and 3, suggesting a similar behaviour of the heterogeneous compo-
nent, see also the decontaminated (unknown) densities fi in Fig. 3. Here, we use a natural estimator of
the density functions

f̂i(x) =
ĥi(x)− (1− p̂i)gi(x)

p̂i
, i = 1, 2, (16)

where ĥi denotes a classical kernel density estimator of hi. In this figure, we can see that the remaining
subgroup in each portfolio is also a mixture of two (or more) components, which is coherent with the
demographic literature [20]. In order to understand the outputs, we should look at the main determinants
that can drive the heterogeneity of such populations. In fact, a significant factor that can explain this is
the level of underwriting, which depends on the insured sums. For populations 1 and 3, a medical exam
at underwriting took place as the insured sums are relatively high. We should note that this cannot be
the sole explanation for the comparable behaviour of the two populations as the test suggested. Indeed,
these portfolios come from two different insurers, and the underwriting strategy and level is obviously not
the same from one to another. From a risk management point of view, a re-insurer can benefit from a
mitigation effect by grouping these two populations in order to reduce the uncertainty, together with the
cost of capital.

6.2 Galaxies Dataset

We consider here two datasets from the SIMBAD Astronomical Database (Observatoire Astronomique
de Strasbourg). They are made of stars heliocentric velocities evolution measurements coming from two
dwarf spheroidal (dSph) galaxies: Carina and Sextans. These dSph galaxies are low luminosity galaxies
that are companions of the Milky Way. In Lokas [18] it is noted that these two dwarfs are highly dark
matter dominated and similar in this respect to the so called Draco dwarf.

1The dataset was downloaded from http://www.mortality.org on September 2019.
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These models are contamination models in the sense that both stars measurements from Carina and
Sextans are mixed with stars from the Milky Way in the stellar landscape. Since the Milky Way is very
largely observed, see Robin et al. [27], it is commonly accepted that its heliocentric velocity (HV) can
be viewed as a random variable with known probability density function g = g1 = g2 as in (2). Then
we can assume that our two datasets are drawn from (2), where f1 and f2 stand respectively for the
unknown density of Carina and Sextans galaxies. Figure 4 shows the probability densities estimations of
the heliocentric velocity associated to Milky Way and its companions Carina and Sextans. It is based
on n = 170, 601 observations without contamination for Milky Way obtained by Magellan telescope [30],
n1 = 2, 400 contaminated observations from Carina and n2 = 1, 488 contaminated observations from
Sextans. It is similar to the Fig. 1 shown in [30] where Gaussian assumptions on the densities were done.
Such assumptions are not necessary with our method, and only the knowledge of the moments of the
Milky Way HV allows us to implement our test.

We aim here to test if both Carina and Sextans heliocentric velocities have the same distribution (H0).
Using the semiparametric estimation procedure in Bordes and Vandekherkove [3] we obtain p̂1 = 0.4446
and p̂2 = 0.5693, which means that 44.46% of the Carina HV and 56.93% of the Sextans HV are captured
through these datasets. In addition the corresponding location estimators for Carina and Sextans are
respectively: µ̂1 = 224.5 and µ̂2 = 226.4. Our testing procedure selects the first rank, that is S(n1, n2) = 1,
and provide a test statistic value T̂1 = 0.02567 with a p-value equal to 0.87. The meaning of this is that
there is no reason to reject the null hypothesis, or more practically, that we can reasonably decide that
the Carina and Sextans HV distributions are similar. Note that this conclusion can be visually validated
by looking at the decontaminated Carina and Sextans HV densities (see Fig. 3), where only very slight
bumps on the left tails do not fit exactly. These tiny differences are possibly artefacts due to the inversion
formula (16) applied on the approximate p̂i and kernel density estimates ĥi, i = 1, 2.

Carina Sextans Milky−Way

−200 0 200 400 −200 0 200 400 −200 0 200 400

0.000

0.003

0.006

0.009

Heliocentric Velocities (HV)

Figure 4: The probability density estimations of the heliocentric velocities of the Carina (contaminated),
Sextans (contaminated) and Milky Way galaxies.

Conclusion

In this work we both theoretically and numerically addressed the two-sample comparison testing of the
unknown component in the contamination model (2). We implemented our methodology, with satisfactory
results, on a large range of situations, as summarized in Tables 1- 4, including Gaussian distributions but
also more challenging distributions supported on R+, N or [0, 1] which are considered as very non-standard
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Figure 5: Decontaminated density estimations of the heliocentric velocities of the Carina (dashed) and
Sextans (solid) galaxies using Bordes and Vandekerkhove [3] with (p̂1, p̂2) = (0.44, 0.56).

in the semiparametric mixture models literature. We then used our testing procedure on two real-life
problems: i) age-at-death distribution testing in actuarial science and ii) heliocentric velocity comparison
for Carina and Sextan galaxies. These two real datasets applications successfully demonstrate the utility
and interpretability of our testing procedure validated by the features comparison of the decontaminated
densities, see Fig. 5.

We think that this work could be extended in many interesting ways. First we could consider the case
where the two samples are paired, with n1 = n2, as in Ghattas et al. [10]. We could probably adapt our
testing procedure to obtain results similar to those in Proposition 2 when Corollary 4 could be extended
to the paired case by considering the Central Limit Theorem applied on n−1

∑n
j=1(Q1(Xj) − Q1(Yj)).

This would particularly be interesting for time-varying models consideration. Another interesting prob-
lem would be the K-sample version of this procedure, which would enable us to deal with time series
applications. Coming back to mortality, this would allow us to consider a longevity model integrating
future improvements of mortality rates, for instance the prospective Lee and Carter model [17]. Concern-
ing galaxy data, this would allow us to compare the heliocentric velocities from more than two galaxies
simultaneously. Moreover, extensions to censored and truncated data would also be interesting, especially
for insurance applications where it is frequent to retrieve incomplete observations. In the same spirit, we
could also extend our applications in various fields to compare the heterogeneity of populations when a
gold standard is established. All these works are also intended to be included in a package in progress.
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A Proofs

Proof of Theorem 3. For simplicity matters, let us write ñ = n1n2/(n1 + n2). We need to prove that
P(S(n1, n2) ≥ 2) vanishes as n1, n2 → +∞. By definition of S(n1, n2), using the positivity of T̂1, we have

P(S(n1, n2) ≥ 2) = P
(

max
2≤k≤d(n1,n2)

{ñs−1T̂k − k log ñ} ≥ ñs−1T̂1 − log ñ

)
,

= P
(
∃k, 2 ≤ k ≤ d(n1, n2) : ñs−1T̂k − k log ñ ≥ ñs−1T̂1 − log ñ

)
,

≤ P

∃k, 2 ≤ k ≤ d(n1, n2) :
k∑
j=2

ñs(Rj)
2/D̂[j] ≥ (k − 1) log ñ

 ,

≤ P
(
∃k, 2 ≤ k ≤ d(n1, n2) : ñs(Rk)

2 ≥ e(n1, n2) log ñ
)
,

≤ P

d(n1,n2)∑
k=2

ñs(Rk)
2 ≥ e(n1, n2) log ñ

 .
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We decompose now Rk as follows:

Rk = ĥ1,kp̂2 − ĥ2,kp̂1,

= (ĥ1,k − p1α1,k)p̂2 − (ĥ2,k − p2α2,k)p̂1 + α1,kp1(p̂2 − p2) + α2,kp2(p̂1 − p1),

where αi,k =
∫
RQk(z)hi(z)ν(dz). Combining two times the inequality (a + b)2 ≤ 2(a2 + b2), for all

(a, b) ∈ R2, with P(X2 + Y 2 ≥ z) ≤ P(X2 ≥ z/2) + P(Y 2 ≥ z/2), for all random variable X and Y , we
deduce that

P(S(n1, n2) ≥ 2) ≤ P

d(n1,n2)∑
k=2

ñs(ĥ1,k − p1α1,k)
2p̂22 ≥ e(n1, n2) log ñ/16


+ P

d(n1,n2)∑
k=2

ñs(ĥ2,k − p2α2,k)
2p̂21 ≥ e(n1, n2) log ñ/16


+ P

d(n1,n2)∑
k=2

ñsα2
1,kp

2
1(p̂2 − p2)2 ≥ e(n1, n2) log ñ/16


+ P

d(n1,n2)∑
k=2

ñsα2
2,kp

2
2(p̂1 − p1)2 ≥ e(n1, n2) log ñ/16

 .

We study these four quantities separately. First, by Markov inequality, we obtain

P

d(n1,n2)∑
k=2

ñs(ĥ1,k − p1α1,k)
2p̂22 ≥ e(n1, n2) log ñ/16

 ≤ 16ñs

e(n1, n2) log ñ

d(n1,n2)∑
k=2

n1∑
j=1

V(Qk(Xj))

n1
,

≤ 16M1d(n1, n2)n1
s−1

e(n1, n2) log ñ

(
n2

n1 + n2

)s
,

which tends to zero as n1, n2 tend to infinity. Similarly,

P

d(n1,n2)∑
k=2

ñs(ĥ2,k − p2α2,k)
2p̂21 ≥ e(n1, n2) log ñ/16

→ 0,

as n1, n2 tend to infinity. We now consider the two last quantities. Since

p2iα
2
i,k ≤ p2i

∫
R
Qk(z)

2hi(z)ν(dz),

= pi

(∫
R
Qk(z)

2fi(z)ν(dz)− (1− pi)
∫
R
Qk(z)

2gi(z)ν(dz)

)
,

≤
∫
R
Qk(z)

2fi(z)ν(dz ≤M1,
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we have

P

d(n1,n2)∑
k=2

ñsα2
1,kp

2
1(p̂2 − p2)2 ≥ e(n1, n2) log ñ/16


≤ P

(
(p̂2 − p2)2 ≥

e(n1, n2) log ñ

16M1d(n1, n2)ñ2
s

(
n1

n1 + n2

)−s)
,

which tends to zero since (p̂2 − p2)2 = oa.s.(n
1/2+α
2 ) for all α > 0 (see Bordes and Vandekerkhove [3] or

Patra and Sen [24]). The same conclusion holds for the last quantity, that is,

P

d(n1,n2)∑
k=2

ñsα2
2,kp

2
2(p̂1 − p1)2 ≥ e(n1, n2) log ñ/16

→ 0,

and we finally get P(S(n1, n2) ≥ 2)→ 0 as n1, n2 → +∞.

Proof of Proposition 1. We give the proof under Assumption (A1). The proof under (A3) is very
similar. Recall that n1/n2 → a as n tends to infinity. From Theorem 3, TS(n1,n2) has the same limiting

distribution as T̂1. Combining the independence of p̂1, p̂2, ĥ1,1 and ĥ2,1 with their asymptotic normality
we have the following convergence in law:

√
n1n2
n1 + n2


p̂1 − p1
p̂2 − p2
ĥ1,1 − h1,1
ĥ2,1 − h2,1

 → N (0, D),

with D = diag((1 − a) v1, a v2, (1 − a) v3, a v4), where v1 and v2 are the asymptotic variances of p̂1 and
p̂2, v3 = V(Q1(X)) and v4 = V(Q1(Y )). Write L(x, y, z, w) = y(z − (1− x)g1 − x(w − (1− y)g2). Under
the null, (5) implies that L(p1, p2, h1,1, h2,1) = 0 and then we have

R̂1 = L(p̂1, p̂2, ĥ1,1, ĥ2,1) = L(p̂1, p̂2, ĥ1,1, ĥ2,1)− L(p1, p2, h1,1, h2,1).

From the delta method we get the following convergence in law√
n1n2
n1 + n2

(
L(p̂1, p̂2, ĥ1,1, ĥ2,1)− L(p1, p2, h1,1, h2,1)

)
→ N (0, w1),

where w1 = V ′DV , with V the gradient vector of L. We obtain

V ′ = (p2g1 − (h2,1 − (1− p2)g2),−p1g2 − (h1,1 − (1− p1)g1), p2, p1),
w1 = (p2g1 − (h2,1 − (1− p2)g2))2(1− a) v1 + (p1g2 − (h1,1 − (1− p1)g1))2a v2 + p22(1− a) v3 + p21a v4,

that we can estimate, replacing p1, p2, v1, v2, v3, v4, h1,1, h2,1 by their consistent estimators. Finally we get

T̂1 =
n1n2
n1 + n2

R̂2
1/d̂1

L−→ N (0, 1),

where d̂1 is given by (12).
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Proof of Corollary 4. The proof follows from the asymptotic normality of both estimators p̂1 and
p̂2 under (A1) and (A3).

Proof of Proposition 2. We first prove that under H1(q) we have P(S(n1, n2) < q)→ 0 when n1 and
n2 tend to infinity. We write ñ = n1n2/(n1 + n2) and we distinguish the following two cases.
i) Parametric case. We have for all k < q:

P (S(n1, n2) = k) ≤ P
(
T̂k − k log(ñ) ≥ T̂q − q log(ñ)

)
,

= P
(
T̂q − T̂k ≤ (q − k) log(ñ)

)
,

= P

ñ q∑
j=k+1

R̂2
j/d̂j ≤ (q − k) log(ñ)

 ,

≤ P
(
ñR̂2

q/d̂q ≤ (q − k) log(ñ)
)
,

= P

 √
ñ|R̂q|√
d̂q log(ñ)

≤
√

(q − k)

 .

We can decompose
√
ñR̂q√

d̂q log(ñ)
=

1√
log(ñ)

×
√
ñ√
d̂q

(
R̂q − δ(q)

)
+

√
ñ

d̂q log(ñ)
δ(q),

= A+B,

where δ(q) is defined in (14) and d̂q is a consistent estimator given by (12). Mimicking the proof of

Proposition 2 we can show that
√
ñ
(
R̂q − δ(q)

)
is asymptotically Gaussian and then A converges to a

Dirac at point zero. Moreover B converges to +∞ since δ(q) > 0. Then for all k < q, we have

P (S(n1, n2) = k)→ 0,

along with Tq > ñR̂2
q/d̂q → +∞ as n1, n2 tend to infinity.

ii) Nonparametric case. Mimicking the parametric case we obtain for all k < q:

P (S(n1, n2) = k) ≤ P

 √
ñs|R̂q|√
d̂q log(ñ)

≤
√

(q − k)

 ,

with 0 < s < 1/2. Again, we have the following decomposition
√
ñsR̂q√

d̂q log(ñ)
=

1√
ñ1−s log(ñ)

×
√
ñ√
d̂q

(
R̂q − δ(q)

)
+

√
ñs

d̂q log(ñ)
δ(q).

= A′ +B′.

As previously, the random variable A′ converges to a Dirac at point zero and the random variable B′

converges to +∞ since δ(q) > 0. Then for all k < q, we have

P (S(n1, n2) = k) → 0.

Finally Tq > ñR̂2
q/d̂q → +∞ as n1, n2 tend to infinity.
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B Behaviour of the test statistics using Patra and Sen estimator

In addition to the fact that the estimator by Patra and Sen [24] is based on non-restrictive assumptions,
we highlight here the interest to use it instead of the classical parametric approach (i.e. the EM algo-
rithm) when fitting non-standard finite mixture models (like in our simulation study). Indeed, although
this estimator tends to slightly underestimate the true parameter in practice, it is consistent in all the
settings studied in this paper. Moreover, this estimator is adapted to study real datasets, where the true
distribution of some components is unknown and thus requires a semiparametric approach.

Under H0, consider that X and Y have the same mixture density:

h1(x) = h2(x) = (1− p)g(x) + pf(x) = 0.75 g(x) + 0.25 f(x), x ∈ R,

where g ∼ N (0, 1), and f(x) = 0.5 k(x) + 0.5 l(x) with k ∼ N (2, 0.5) and l ∼ N (6, 0.5).
On the contrary, under the alternative hypothesis H1, consider the following framework:{

h1(x) = 0.75 g(x) + 0.25 f(x), x ∈ R,
h2(x) = 0.75 g(x) + 0.25 f2(x), x ∈ R,

where f2 ∼ N (6, 0.5), and the other component densities were defined previously.
Such mixture densities are depicted in Fig. 6.

Under (H0) Under (H1)

-5 0 5 -5 0 5

0.0

0.1

0.2

0.3

Figure 6: Mixture densities of X (solid) and Y (dashed), under H0 (left panel) and under H1 (right
panel).

Performing 100 times the testing procedure with n = 20, 000 observations, we compare the estimates
of the weight p given by both the EM algorithm and the Patra and Sen estimator. Table 6 sums up the
results obtained, and gives meaningful conclusions. In particular, under H0, the empirical level of the
test does not seem to be affected by the bad estimation of p given by the EM algorithm. On average,
p̂EM ' 13.5%, which means that this three-component mixture was understood as a two-component
one. More precisely, the second component (N (2, 0.5)) has been “merged” with the first one (N (0, 1)).
This issue occurs when estimating the parameters related to the two densities of X and Y , and thus
some compensation operates when making the difference that defines the test statistics (10). However, in
the case of the alternative hypothesis, such a compensation does not apply. Indeed, under H1, the EM
algorithm is expected to provide bad estimates of p for the distribution of X, but good results for the
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estimation of the parameters related to the distribution of Y . The test has therefore a very low power
when using the EM estimators in this case, since the third component density of X is understood as
the second component of the mixture distribution, which is to be compared with the second component
density of Y . Of course f and f2 strongly differ in reality, which is easily detected by our test procedure
based in Patra and Sen estimator, but is not seen when using the parametric estimation procedure.

Table 6: Empirical level and power of the test depending on the estimator used for the weight p.

EM algorithm Patra and Sen
Under H0 Under H1 Under H0 Under H1

Empirical level (H0) / power (H1) 8 4 6 100
Mean of p̂1 0.1356 0.1255 0.249 0.2463
Median of p̂1 0.1255 0.1252 0.249 0.2465
Mean of p̂2 0.1394 0.2502 0.245 0.2513
Median of p̂2 0.1248 0.2508 0.244 0.251
Mostly selected S(n1, n2) 1 1 1 10

Finally, some of the theoretic results given in this paper rely on the asymptotic normality of the
estimator of pi (i = 1, 2). Using Bordes and Vandekerkhove, this is guaranteed. However, there is no
such result when using the estimator by Patra and Sen. We thus decided to plot in Fig. 7 the behaviour
of the centered and scaled version of this estimator, based on 2, 000 bootstrap samples (with n = 1, 000
observations, still within the same framework as above). Despite the fact that the asymptotic normality
does not hold for this estimator, its behaviour is close to a Gaussian one, which explains why our test
procedure remains powerful using this estimator in practice.

Comparison of densities

-2.5 0.0 2.5 5.0
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0.1
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0.4

Figure 7: Density of p̂1 when using Patra and Sen estimator, based on 2, 000 bootstrap samples.

C Additional tables for Monte-Carlo experiments
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C.1 Empirical levels

Table 7: Parameters corresponding to Fig. 1.

Case a) Case b) Case c) Case d)
f N (1, 1) N (1, 1) N (1, 1) N (1, 1)
g1 N (5, 0.5) N (2, 0.5) N (−2, 0.5) N (2, 0.5)
g2 N (5, 0.5) N (2, 0.5) N (3, 0.5) N (5, 0.5)
p1 50% 50% 50% 50%
p2 50% 50% 50% 50%

Table 8: Parameters corresponding to Tab. 2, in case d). Notations used for the distributions: G =
Gamma, E = Exponential, P = Poisson, BN = Negative Binomial, and U = Uniform.

Support R+ Support N Support [0, 1]
distribution E Var distribution E Var distribution E Var

f G(16, 4) 4 1 BN (1, 10) 1 1.1 Beta(1.2, 5) 0.2 0.02
g1 E(1/4) 4 16 P(1) 1 1 U(0, 0.4) 0.2 0.013
g2 E(2) 0.5 0.25 P(4) 4 4 U(0.05, 1) 0.55 0.075

C.2 Empirical powers

Table 9: Parameters corresponding to Tab. 3, for cases e), f), g) and h).

e) 6= means f) very 6= variances g) 6= variances h) 6= distributions

f1 N (1, 1) N (1, 1) N (1, 1) N (1,
√

2)
g1 N (5, 0.5) N (5, 0.5) N (5, 0.5) N (5, 0.5)

f2 N (2, 1) N (1, 3) N (1,
√

2) Laplace(1, 1)
g2 N (5, 0.5) N (5, 0.5) N (5, 0.5) N (5, 0.5)

Table 10: Parameters corresponding to Tab. 4. Notations: G = Gamma, E = Exponential, P = Poisson,
BN = Negative Binomial, and U = Uniform, LogN = Logit Normal, Go = Gompertz.

Support R+ Support N Support [0, 1]
e) f) e) f) e) f)

f1 G(16, 4) G(8, 2) BN (1, 10) BN (2, 10) Beta(0.8, 5) Beta(12, 50)
g1 E(1/1.1) E(1/1.1) P(5) P(5) U(0, 1) U(0, 1)
f2 G(16, 5) N (32, 8) BN (2, 10) BN (2, 0.5) Beta(1.2, 5) Beta(1.2, 5)
g2 E(1/1.1) E(1/1.1) P(5) P(5) U(0, 1) U(0, 1)

g) h) g) h) g) h)

f1 G(8, 2) G(1.47, 0.56) BN (2, 10) BN (3, 100) Beta(1.2, 5) Beta(5, 2)
g1 E(1/1.1) E(1/1.1) P(5) P(3) U(0, 1) U(0, 1)
f2 G(10, 2.5) Go(0.1, 0.3) BN (2, 2) B(50, 0.06) Beta(2.4, 10) LogN (0.9, 0.8)
g2 E(1/1.1) E(1/1.1) P(5) P(3) U(0, 1) U(0, 1)
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