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SIGNATURE FOR PIECEWISE CONTINUOUS GROUPS

OCTAVE LACOURTE

Abstract. Let P̂C./ be the group of bijections from [0, 1[ to itself which are
continuous outside a finite set. Let PC./ be its quotient by the subgroup of
finitely supported permutations.

We show that the Kapoudjian class of PC./ vanishes. That is, the quotient
map P̂C./ → PC./ splits modulo the alternating subgroup of even permuta-
tions. This is shown by constructing a nonzero group homomorphism, called
signature, from P̂C./ to Z�2Z. Then we use this signature to list normal sub-
groups of every subgroup Ĝ of P̂C./ which contains Sfin and such that G, the
projection of Ĝ in PC./, is simple.

1. Introduction

Let X be the right-open and left-closed interval [0, 1[. We denote by S(X) the
group of bijections of X to X. This group contains the subgroup composed of
all finitely supported permutations is denoted by Sfin. The classical signature is
well-defined on Sfin and its kernel, denoted by Afin, is the only subgroup of index
2 in Sfin. An observation, originally due to Vitali [10], is that the signature does
not extend to S(X).

For every subgroup G of S(X)�Sfin
, we denote by Ĝ its inverse image in S(X).

The cohomology class of the central extension

0→ Z�2Z = Sfin�Afin
→ Ĝ�Afin

→ G→ 1

is called the Kapoudjian class of G; it belongs to H2(G,Z�2Z). It appears in the
work of Kapoudjian and Kapoudjian-Sergiescu [6, 7]. The vanishing of this class
means that the above exact sequence splits; this means that there exists a group
homomorphism from the preimage of G in S(X) onto Z�2Z which extends the
signature on Sfin (for more on the Kapoudjian class, see [3, §8.C]). This implies
in particular that Ĝ�Afin

is isomorphic to the direct product G × Z�2Z. One
can notice that for G = S(X)�Sfin

we have Ĝ = S(X); in this case the Vitali’s
observation implies that the Kapoudjian class does not vanish.
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The set of all permutations of X continuous outside a finite set is a subgroup
denoted by P̂C./. The aim here is to show the following theorem:

Theorem 1.1. There exists a group homomorphism ε : P̂C./ → Z�2Z that ex-
tends the classical signature on Sfin.

Corollary 1.2. Let G be a subgroup of PC./. Then the Kapoudjian class of G is
zero.

This solves a question asked by Y. Cornulier [4, Question 1.15].

The subgroup of P̂C./ consisting of all permutations of X that are piecewise
isometric elements is denoted by ÎET./ and the one consisting of all piecewise
affine permutations of X is denoted by P̂Aff./. We also consider for each of these
groups the subgroup composed of all piecewise orientation-preserving elements
by replacing the symbol “ ./ ” by the symbol “ + ”.
Let us observe that when G ⊂ PC+ Corollary 1.2 is trivial. Indeed, in this case
G can be lifted inside P̂C+ itself. However, such a lift does not exist for PC./ or
even IET./, as was proved in [4].

The idea of proof of Theorem 1.1 is to associate for every f ∈ P̂C./ and every
finite partition P of [0, 1[ into intervals associated with f , two numbers. The
first is the number of interval of P where f is order-reversing and the second is
the signature of a particular finitely supported permutation. The next step is
to prove that the sum modulo 2 of this two numbers is independent from the
choice of partition. Then we show that it is enough to prove that ε|IET./ is a
group homomorphism. For this we show that it is additive when we look at the
composition of two elements of ÎET./ by calculate the value of the signature with
a particular partition.

In Section 4, we apply these results to the study of normal subgroups of P̂C./

and certain subgroups. More specifically we prove:

Theorem 1.3. Let Ĝ be a subgroup of P̂C./ containing Sfin and such that its pro-
jection G in PC./ is simple nonabelian. Then Ĝ has exactly five normal subgroups
given by the list: {{1},Afin,Sfin,Ker(ε), Ĝ}.

We denote by ÎET+
rc the subgroup of ÎET+ composed of all right-continuous

elements. We know that it is naturally isomorphic to IET+. The same is true
when we replace IET+ by PAff+ or PC+. This allows us to use the work of P.
Arnoux [2] and the one of N. Guelman and I. Liousse [5] where they prove that
IET./, PC+ and PAff+ are simple. From this we deduce:

Theorem 1.4. The groups PC./ and PAff./ are simple.
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This gives us some examples of groups that satisfy the conditions of the The-
orem 1.3.

Finally Section 5 is independent and we study some normalizers and in par-
ticular we show that the behaviour when we look the group inside P̂C./ or PC./

may not be the same. We denote by R ∈ IET./ the map x 7→ 1 − x. Then
we define IET− as the coset R. IET+ and PC− as the coset R.PC+. Then the
groups IET± := IET+ ∪ IET+ and PC± := PC+ ∪PC− are well-defined.

Proposition 1.5. The subgroup ÎET+
rc (resp. P̂C+

rc) is its own normalizer in
ÎET./ (resp. P̂C+

rc). The normalizer of IET+ (PC+ respectively) in IET./ (PC./

respectively) is IET± (PC± respectively).

Acknowledgments. I would like to thank Y. Cornulier, P. de la Harpe and N.
Matte Bon for corrections, remarks and discussions on preliminary versions of
this paper.

2. Preliminaries

For every real interval I we denote by I◦ its interior in R and if I = [0, t[ we
agree that its interior is ]0, t[.

2.1. Partitions associated.
An important tool to study elements in P̂C./ and PC./ are partitions into

intervals of [0, 1[. All partitions are assumed to be finite.

Definition 2.1. For every f in P̂C./, a finite partition P into right-open and
left-closed intervals of [0, 1[ is called a partition into intervals associated with f
if and only if f is continuous on the interior of every interval of P . We denote
by Πf the set of all partitions into intervals associated with f .
We define also the arrival partition of f associated with P , denoted f(P), the
partition of [0, 1[ composed of all right-open and left-closed intervals such that
their interior is equal to the image by f of the interior of an interval of P .

Remark 2.2. For every f in P̂C./ there exists a unique partition Pmin
f associated

with f which has a minimal number of intervals. It is actually minimal in the
sense of refinement: Πf consists precisely of the set of partitions refining Pmin

f .

2.2. Decompositions.
We define a family of elements which plays an important role inside our groups:

Definition 2.3. Let I be a non-empty right-open and left-closed subinterval of
[0, 1[. The element f ∈ P̂C./ which sends the interior of I on itself with slope −1
while fixing the rest of [0, 1[ is called the I-flip. We define a flip as any I-flip for
some I.
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From the definition we deduce a decomposition inside ÎET./ and P̂C./.

Proposition 2.4. Let h be an element of ÎET./. There exist f, g ∈ ÎET+
rc and

r, s finite products of flips and σ, τ finitely supported permutations such that h =
rσf = gτs.

Proof. Let h be an element of ÎET./, n ∈ N and P := {I1, I2, . . . , In} ∈ Πh (§ 2.1).
We denote by h(P) := {J1, J2, . . . , Jn} the arrival partition of h associated with
P . Let g be the map that sends I◦j on J◦j by preserving the order and acts as h
for every left endpoints of Ij for every 1 ≤ j ≤ n. Note that g is bijective and
then belongs to ÎET+. For 1 ≤ j ≤ n let rj be the Jj-flip if h is order-reversing
on Ij otherwise let rj be the identity. Let r be the product of all rj, we can notice
that r fixes all endpoints of Jj for every 1 ≤ j ≤ n. Then it is just a verification
to check that h = rg. Now as g belongs to ÎET+ there exists σ in Sn such that
g = σf with f in ÎET+

rc.
The other decomposition follows by decomposing h−1 under the previous decom-
position. �

Proposition 2.5. For every h in P̂C./ there exist φ and ψ two order-preserving
homeomorphisms of [0, 1[ and f, g in ÎET./ such that h = ψ ◦ f = g ◦ φ.

Proof. Let λ be the Lebesgue measure on [0, 1[. Let h ∈ P̂C./ and P ∈ Πh. Then
there exist φ, ψ ∈ Homeo+([0, 1[) such that for every I ∈ P , λ(φ(I)) = λ(h(I))
and λ(ψ(h(I))) = λ(I). Then h ◦ φ and ψ ◦ h belongs to ÎET./. �

3. Construction of the signature homomorphism

In our case we have X = [0, 1[ and P̂C./ is a subgroup ofS(X). We denote here
Sfin = Sfin(X) and εfin the classical signature on Sfin taking values in (Z�2Z,+).

3.1. Definitions.
Definition 3.1. Let h be an element of P̂C./, n ∈ N and P = {I1, I2, . . . , In} ∈
Πh. For every 1 ≤ j ≤ n, let αj be the left endpoint of Ij and βj be the left
endpoint of h(I◦j ). We define the default of pseudo right continuity for h about P
denoted σ(h,P) as the finitely supported permutation which sends h(αj) to βj for
every 1 ≤ j ≤ n (this is well-defined because the set of all h(αj) is equal to the
set of all βj).

Definition 3.2. Let h be an element of P̂C./ and P ∈ Πh. Let k be the number
of interval of P on which h is order-reversing. We called the flip number of h
about P the number k. We denote it by R(h,P).

Definition 3.3. For h ∈ P̂C./ and P ∈ Πh, define ε(h,P) ∈ Z�2Z as R(h,P) +
εfin(σ(h,P)) [mod 2]. We define also ε(h) = ε(h,Pfin

h ).
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Proposition 3.4. For every τ ∈ Sfin and every P ∈ Πτ we have ε(τ,P) = εfin(τ).

Proof. It is clear that for every τ ∈ Sfin and every partition P associated with τ
we have R(τ,P) = 0 and σ(τ,P) = τ . �

We deduce that ε extends the classical signature εfin. Thus we will write ε
instead of εfin.

Proposition 3.5. Every right-continuous element f of P̂C+ satisfies ε(f,P) = 0
for every P ∈ Πf .

Proof. In this case, for every partition P into intervals associated with f we
always have R(f,P) = 0 and σ(f,P) = Id. �

3.2. Proof of Theorem 1.1.
In order to prove that ε is a group homomorphism, it is useful to calculate ε(h)

thanks to ε(h,P) for every h ∈ P̂C./ and P ∈ Πh.

Lemma 3.6. For every h ∈ P̂C./ and every P ∈ Πh we have ε(h) = ε(h,P).

Proof. Let h and P be as in the statement. By minimality of Pmin
h , in term of

refinement, we deduce that there exist n ∈ N and P1,P2, . . . ,Pn ∈ Πh such that:
(1) P1 = Pmin

h ;
(2) Pn = P ;
(3) for every 2 ≤ i ≤ n the partition Pi is a refinement of the partition Pi−1

where only one interval of Pi−1 is cut into two.
Hence it is enough to show ε(h,Q) = ε(h,Q′) where Q,Q′ ∈ Πh such that there

exist consecutive intervals I, J ∈ Q with I∪J ∈ Q′ andQ′r{I ∪ J} = Qr{I, J}.
Let α be the left endpoint of I and let x be the right endpoint of I (x is also

the left endpoint of J). There are only two cases but in both cases, we know that
σ(h,Q) = σ(h,Q′) except maybe on h(α) and h(x):

(1) The first case is when h is order-preserving on I∪J . Then as Qr{I, J} =
Q′ r {I ∪ J} we get R(h,Q) = R(h,Q′). As h is order-preserving on the
interior of I ∪J we know that σ(h,Q′)(h(α)) is the left endpoint of h(I ∪J)
which is the left endpoint of h(I) thus equals to σ(h,Q)(h(α)). With the
same reasoning we deduce that σ(h,Q′)(h(x)) = σ(h,Q)(h(x)) hence σ(h,Q) =
σ(h,Q′). Thus in Z�2Z we have R(h,Q′) + ε(σ(h,Q′)) = R(h,Q) + ε(σ(h,Q)).

(2) The second case is when h is order-reversing on I ∪ J . Then we get
R(h,Q) = R(h,Q′)+1. This time σ(h,Q′)(h(α)) is still the left endpoint of
h(I∪J) which is the left endpoint of h(J) thus equals to σ(h,Q)(h(x)). With
the same reasoning we deduce that σ(h,Q′)(h(x)) = σ(h,Q)(h(α)). Then
by denoting τ the transposition (h(x) σ(h,Q′)(h(α))), we obtain σ(h,Q) =
τ ◦ σ(h,Q′). We must notice that the transposition is not the identity
because h−1(σ(h,Q′)(h(α))) is an endpoint of one of the intervals of Q′ and
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x is not.
In conclusion in Z�2Z we have:

R(h,Q′) + ε(σ(h,Q′)) = R(h,Q′) + 1 + 1 + ε(σ(h,Q′)) = R(h,Q) + ε(σ(h,Q))

I J I J

α α xx

h(x)

h(x)

σ(h;Q0)(h(α))

σ(h;Q)

Figure 1. Illustrations of the two cases appearing in Lemma 3.6.
On the left we assume h order-preserving on I ∪J and see that σ(h,Q)(h(x)) =
σ(h,Q′)(h(x)). On the right we assume h order-reversing on I ∪ J and see that
σ(h,Q)(h(x)) = (h(x) σ(h,Q′)(h(α))) ◦ σ(h,Q′)(h(x)).

�

If φ ∈ Homeo+([0, 1[), then it follows from Proposition 3.5 that ε(φ) = 0. We
improve this, showing that ε is invariant by the action of Homeo+([0, 1[) on P̂C./.

Lemma 3.7. For every h ∈ P̂C./ and every φ ∈ Homeo+([0, 1[) we have ε(hφ) =
ε(h) = ε(φh).

Proof. Let h ∈ P̂C./ and φ ∈ Homeo+([0, 1[) be as in the statement. Let n ∈ N
and P := {I1, I2, . . . , In} ∈ Πh. Then Q := {φ−1(I1), φ−1(I2), . . . , φ−1(In)} is in
Πhφ. We know that φ is order preserving then for every 1,≤ i ≤ n, hφ preserves
(reverses respectively) the order on φ−1(Ii) if and only if h preserves (reverses
respectively) the order on Ii, so R(h,P) = R(hφ,Q). We can notice that the left
endpoint of φ−1(Ii) (denoted by αi) is send on the left endpoint of Ii (denoted by
ai) by φ hence h(ai) = hφ(αi) has to be send on σ(h,P)(h(ai)) so σ(hφ,Q) = σ(h,P).
we deduce that ε(hφ) = ε(h).
The other equality has a similar proof. We denote h(P) the arrival partition
of h associated with P . We know that φ is continuous thus h(P) is in Πφ and
we deduce that P ∈ Πφh. Also φ is order-preserving then R(h,P) = R(φh,P)).
We know that σ(φ,h(P)) = Id then we can notice that φ ◦ σ(h,P) ◦ h send the left
endpoint of Ii to the left endpoint of φh(I◦i ). Then σ(φh,P) = φσ(h,P)φ

−1 and we
deduce that ε(σ(φh,P)) = ε(σ(h,P)). Hence ε(φh) = ε(h). �
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Thanks to Proposition 2.5 it is enough to prove that ε|ÎET./ is a group homo-
morphism.
Lemma 3.8. The map ε|ÎET./ is a group homomorphism.

Proof. Let f, g ∈ ÎET./. Let P ∈ Πf and Q ∈ Πg. For every I ∈ Q (resp. J ∈ P)
we denote by αI (resp. βJ) the left endpoint of I (resp. J). Up to refine P and
Q we can assume that P = g(Q) thus g({αI}I∈Q) = {βJ}J∈P . Then Q ∈ Πf◦g
and for every K ∈ f ◦ g(Q) we denote by γK the left endpoint of K.
In Z�2Z, we get immediately that R(f ◦ g,Q) = R(g,Q) + R(f, g(Q)). Now
we want to describe the default of pseudo right continuity for f ◦ g about Q.
We recall that σ(f◦g,Q) is the permutation that sends f ◦ g(αI) on γf◦g(I) for
every I ∈ Q while fixing the rest of [0, 1[. Furthermore σ(g,Q)(g(αI)) = βg(I) and
σ(f,g(Q))(f(βg(I))) = γf◦g(I). Then σ(f,g(Q))◦f◦σ(g,Q)◦g(αI) = γf◦g(I) and we deduce
that the permutation σ(f,g(Q)) ◦ f ◦ σ(g,Q) ◦ f−1 sends f ◦ g(αI) on γf◦g(I) for every
I ∈ Q while fixing the rest of [0, 1[. Thus σ(f◦g,Q) = σf,g(Q) ◦f ◦σ(g,Q) ◦f−1. Then
ε(σ(f◦g,Q)) = ε(σf,g(Q))+ε(σ(g,Q)) and we conclude that ε(f ◦g) = ε(f)+ε(g). �

Corollary 3.9. The map ε is a group homomorphism. �

4. Normal subgroups of P̂C./ and some subgroups

Here we present some corollaries of Theorem 1.1. For every group G we denote
by D(G) its derived subgroup.
Definition 4.1. For every group H, we define J3(H) as the subgroup generated
by elements of order 3.

Let Ĝ be a subgroup of P̂C./ containing Sfin. We denote by G its projection on
PC./. We recall that Afin is a normal subgroup of Ĝ, and has a trivial centraliser.
We deduce that for every nontrivial normal subgroup H of Ĝ contains Afin.

From the short exact sequence:
1 −→ Sfin −→ Ĝ −→ G −→ 1

we deduce the next short exact sequence which is a central extension:

1 −→ Z�2Z −→
Ĝ�Afin

−→ G −→ 1.

This short exact sequence splits because the signature ε|Ĝ : Ĝ → Z�2Z con-

structed in § 3 is a retraction. Then we deduce that Ĝ�Afin
is isomorphic to the

direct product Z�2Z×G.

Corollary 4.2. The projection Ĝab → Gab extends in an isomorphism Ĝab ∼
Gab × Z�2Z. Furthermore D(Ĝ) = Ker(ε) ∩ D̂(G) is a subgroup of index 2 in
D̂(G). In particular, if G is a perfect group then Ĝab = Z�2Z.
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Corollary 4.3. Let Ĝ be a subgroup of P̂C./ containing Sfin and such that its
projection G in PC./ is simple nonabelian. Then Ĝ has exactly 5 normal subgroups
given by the list: {{1},Afin,Sfin,Ker(ε), Ĝ}.

Proof. Let Ĝ as in the statement. First we immediately check that the subgroups
in the list are distinct normal subgroups of Ĝ. In the case of Ker(ε), there exists
g ∈ Ĝ r Sfin thus either g ∈ Ker(ε) r Sfin or σg ∈ Ker(ε) r Sfin for any
transposition σ.
Second let H be a normal subgroup of Ĝ distinct from {1}. Then it contains
Afin. Also H�Afin

is a normal subgroup of Ĝ�Afin
' Z�2Z×G. Furthermore G is

simple then there are only four possibilities for H�Afin
. As two normal subgroups

H,K of Ĝ containing Afin such that H�Afin
= K�Afin

are equal, we deduce that
Ĝ has at most 5 normal subgroups. �

Corollary 4.4. Let Ĝ be a subgroup of P̂C./ containing Sfin and such that its
projection G in PC./ is simple nonabelian. If there exists an element of order 3
in Gr Afin then J3(Ĝ) = Ker(ε) = D(Ĝ). �

Remark 4.5. In the context of topological-full groups, the group J3(G) appears
naturally (with some mild assumptions) and is denoted by A(G) by Nekrashevych
in [9]. In some case of topological-full groups of minimal groupoids (see [8]) we
have the equality A(G) = D(G) thanks to the simplicity of D(G). In spite of the
analogy, it is not clear that the corollary can be obtained as particular case of
this result.

Remark 4.6. A lot of groups satisfy the conditions of Corollary 4.4. When Ĝ

contains ÎET+ there is an element of order 3 in G r Afin. We recall that IET./,
PC+ and PAff+ are simple (see [2, 5]). Thus these groups satisfy the conditions
of Corollary 4.4. The next theorem add PC./ and PAff./ to the list of examples.

Theorem 4.7. The groups PC./ and PAff./ are simple.

Lemma 4.8. The group IET./ is generated by flips (=images of flips from ÎET./).

Proof. By Proposition 2.4 it is enough to show that IET+ is generated by flips.
For every consecutive, right-open and left-closed subintervals I and J of [0, 1[,
we define RI,J the map that exchanges I and J . They are elements of ÎET+

rc and
they formed a generating set. Then their image rI,J in IET./ is a generating set of
IET+. For every right-open and left-closed subinterval I of [0, 1[, we define sI the
I-flip. Take I and J be two consecutive, right-open and left-closed subintervals
of |0, 1[. Then rI,J = sIsJsI∪J . �

Proof of Theorem 4.7 (sketched).
Since the argument in [2] could also be adapted, we only provide a sketch.



SIGNATURE FOR PIECEWISE CONTINUOUS GROUPS 9

We work with elements of PC./; all intervals below are meant modulo finite
subsets. Let N be a nontrivial normal subgroup of PC./ (resp. PAff./). Let g be
a nontrivial element of N . There exists a subinterval I of [0, 1[ such that:

(1) g is continuous (resp. affine) on I,
(2) g(I) ∩ I = ∅ (modulo finite subsets),
(3) I ∪ g(I) 6= [0, 1[ (modulo finite subsets).

Let f be the I-flip. If g is affine on I then h = gfg−1f−1 is the product of the
I-flip with the g(I)-flip. Observe that h is conjugate to a single flip by a suitable
element of IET+. If g is only continuous then h is still of order 2 and it is conjugate
in PC./ to a single flip. Conjugating by elements of PAff+, one obtains that N
contains flips of intervals of all possible lengths, and hence contains all flips.
Thanks to Lemma 4.8 we know that IET./ is generated by the set of flips thus
N contains IET./, in particular N intersects PC+ (resp. PAff+) nontrivially. By
simplicity of PC+ (resp. PAff+) we deduce that N contains PC./ = 〈PC+, IET./〉
(resp. PAff./ = 〈PAff+, IET./〉). �

5. About some Normalizers

Here we show that computing normalizers inside P̂C./ and PC./ may leads to
different behaviour. We look the case of PC+, IET+ and P̂C+

rc and ÎET+
rc.

Proposition 5.1. The normalizer of IET+ in IET./ is reduced to IET±.

Proof. Let f ∈ IET+ and g ∈ IET±. If g ∈ IET+ then gfg−1 ∈ IET+. We
assume g ∈ IET− then gfg−1 = (g ◦ R) ◦ (R ◦ f ◦ R) ◦ (R ◦ g) ∈ IET+.
For the inclusion from left to right, let g ∈ IET./r IET± and let ĝ be a represen-
tative of g in ÎET./. Hence we can find I, J,K, L four right-open and left-closed
intervals of the same length such that their image by ĝ are intervals and such
that ĝ is order-reversing on I and order-preserving on J,K and L. We define
f̂ ∈ ÎET+ as the element which exchanges ĝ(I) with ĝ(J) and ĝ(K) with ĝ(L)
while fixing the rest of [0, 1[. Then the image f of f̂ in IET+ is not trivial and
ĝf̂ ĝ−1 /∈ ÎET+ implies gfg−1 /∈ IET+. �

A similar argument stands for the case of PC thus we obtain:

Proposition 5.2. The normalizer of PC+ in PC./ is reduced to PC±. �

We now take a look to inside P̂C./:

Proposition 5.3. The normalizer of ÎET+
rc in ÎET./ is ÎET+

rc.

Proof. Let g be an element of ÎET./ which is not the identity. There are two
cases:
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(1) If g ∈ ÎET+ r ÎET+
rc then g = σg′ with σ ∈ Sfin r {Id} and g′ ∈ ÎET+

rc.
Then for every f ∈ ÎET+

rc we have gfg−1 = σg′fg′−1σ−1. Thus it is enough
to treat the case of Sfin. Let us assume g ∈ Sfin then let x in the support
of g. There exist two consecutive right-open and left-closed intervals I
and J of the same length such that x is the right endpoint of I (and the
left endpoint of J). Up to reduce I and J we can assume that I does not
intersect the support of g. Then let f ∈ ÎET+

rc which exchanges I and J
while fixing the rest of [0, 1[. Then gfg−1 exchanges the interior of I with
the interior of J but gfg−1(x) is not equal to f(x) because f(x) is the left
endpoint of I and I does not intersect the support of g. Then we deduce
that gfg−1 is not right-continuous on J .

(2) If g ∈ ÎET./ r ÎET+. Then we can find two consecutive subinterval I
and J where g is continuous and order-reversing on I ∪ J . Let a be the
right endpoint of J . Let f be the element in ÎET+

rc which exchanges I
and J . Then gfg−1 exchanges the interior of g(J) with the interior of
g(I). However the left endpoint of g(J) is send by g−1 on a which is
fixed by f . Then gfg−1 fixes the left endpoint of g(J), thus gfg−1 is not
right-continuous on g(J).

�

A similar argument stands for the case of PC thus we obtain:

Proposition 5.4. The normalizer of P̂C+
rc in P̂C./ is P̂C+

rc. �
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