On the density of sets of the Euclidean plane avoiding distance 1

Arnaud Pêcher

Univ. Bordeaux (LaBRI / INRIA RealOpt)
Joint work with
Thomas Bellitto (University of Southern Denmark, Denmark)
Antoine Sedillot (ENS Paris-Saclay, France)

ICGCA 2019
National Sun Yat-sen University, Kaohsiung, Taiwan June 18th, 2019

Maximum density of a set avoiding distance 1

- Normed space $E=\left(\mathbb{R}^{n},\|\cdot\|\right)$
- A set $A \in \mathbb{R}^{n}$ avoids distance 1 iff $\forall x, y \in A,\|x-y\| \neq 1$
- (Upper) density of a measurable set A :

$$
\delta=\limsup _{R \rightarrow \infty} \frac{\operatorname{Vol}\left(A \cap[-R, R]^{n}\right)}{\operatorname{Vol}\left([-R, R]^{n}\right)}
$$

- Maximum density of a set avoiding distance 1 :

$$
m_{1}\left(\mathbb{R}^{n},\|\cdot\|\right)=\sup _{A \text { avoiding } 1} \delta(A) .
$$

Lower bounds

- Construction: let Λ be a set of pairwise disjoint balls of radius 1 .

- $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \geqslant 0.9069 / 4 \geqslant 0.2267$

Lower bounds

- Construction: let Λ be a set of pairwise disjoint balls of radius 1 . A set avoiding distance 1 of density $\frac{\delta(\Lambda)}{2^{n}}$:

- $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \geqslant 0.9069 / 4 \geqslant 0.2267$

Lower bounds

- Construction: let Λ be a set of pairwise disjoint balls of radius 1 . A set avoiding distance 1 of density $\frac{\delta(\Lambda)}{2^{n}}$:

- $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \geqslant 0.9069 / 4 \geqslant 0.2267$
- Croft (1967): $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \geqslant 0.229$

Upper bounds

- Best published upper bound : $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \leqslant 0.259$ (Keleti, Matolcsi, de Oliveira Filho, Ruzsa, 2015)
- Erdös' conjecture : $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)<1 / 4$
- Generalization (Moser, Larman, Rogers): $m_{1}\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)<\frac{1}{2^{n}}$

Chromatic number of the unit-distance graph

Chromatic number of a metric space

The chromatic number χ of a metric space (X, d) is the smallest number of colours required to colour each point of X so that no two points at distance 1 share the same colour.

Unit-distance graph

The unit-distance graph associated to a metric space (X, d) is the graph G such that $V(G)=X$ and $E(G)=\{\{x, y\}: d(x, y)=1\}$.

$$
\chi\left(\mathbb{R}^{2}\right)=\chi\left(\text { unit-distance graph of }\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)\right)
$$

The Euclidean plane

- $\chi\left(\mathbb{R}^{2}\right) \leqslant 7$:

- $\chi\left(\mathbb{R}^{2}\right) \geqslant 4$ (Moser's spindle):

- De Grey (April 2018): $\chi\left(\mathbb{R}^{2}\right) \geqslant 5$ (1581 vertices)
- alternative proof/graph by Exoo and Ismailescu

Measurable chromatic number

Measurable chromatic number χ_{m} of a metric space (X, d) : colour classes must be measurable sets.

$$
\chi_{m}\left(\mathbb{R}^{n},\|\cdot\|\right) \geqslant \frac{1}{m_{1}\left(\mathbb{R}^{n},\|\cdot\|\right)}
$$

Euclidean plane: $\chi_{m}\left(\mathbb{R}^{2}\right) \geqslant 5$ (Falconer, 1981)

Discretization Lemma

Set S of density $\delta . X$ at random in $\mathbb{R}^{n}: \mathbb{P}(X \in S)=\delta$.
Unit-distance subgraph $G=(V, E)$ in $\mathbb{R}^{n}: \mathbb{E}(|V \cap S|)=|V| \times \delta$. If S avoids distance $1:|V \cap S| \leqslant \alpha(G) \rightarrow \delta \leqslant \frac{\alpha(G)}{|V|}$.

For every unit-distance subgraph $G=(V, E)$ in \mathbb{R}^{n} :

$$
m_{1}\left(\mathbb{R}^{n}\right) \leqslant \frac{\alpha(G)}{|V|}
$$

Weighted version of Discretization Lemma

Weighting of a graph: $w: V \rightarrow \mathbb{R}^{+}$. Weighted independence number $\alpha_{w}(G)$ of a weighted graph G : maximum weight of an independent set.
Optimal weighted independence ratio: $\alpha^{*}(G)=\min _{w} \frac{\alpha_{w}(G)}{w(G)}$

Weighted discretization lemma

For all unit-distance subgraph G in \mathbb{R}^{n} :

$$
m_{1}\left(\mathbb{R}^{n}\right) \leqslant \alpha^{*}(G)
$$

Fractional colouring

Fractional Chromatic number

The fractional chromatic number χ_{f} of a graph G is the smallest fractional number $\frac{a}{b}$ such that a colours are sufficient to assign b colours to each vertex of G in such a way that no two adjacent vertices share a common colour.

$$
\chi\left(C_{5}\right)=3
$$

$$
\chi_{f}\left(C_{5}\right)=\frac{5}{2}
$$

Fractional colouring

Fractional Chromatic number

The fractional chromatic number χ_{f} of a graph G is the smallest fractional number $\frac{a}{b}$ such that a colours are sufficient to assign b colours to each vertex of G in such a way that no two adjacent vertices share a common colour.
\mathscr{S} : set of all independent sets in the graph.

$$
\left\{\begin{array}{l}
\chi=\text { minimize } \sum_{I \in \mathscr{S}} x_{I} \text { subject to } \\
\forall v \in V, \sum_{I \in \mathscr{S}: v \in I} x_{I}=1 \\
\forall I \in \mathscr{S}, x_{I} \text { binary }
\end{array}\right.
$$

Fractional colouring

Fractional Chromatic number

The fractional chromatic number χ_{f} of a graph G is the smallest fractional number $\frac{a}{b}$ such that a colours are sufficient to assign b colours to each vertex of G in such a way that no two adjacent vertices share a common colour.
\mathscr{S} : set of all independent sets in the graph.

$$
\left\{\begin{array}{l}
\chi_{f}=\text { minimize } \sum_{I \in \mathscr{S}} x_{l} \text { subject to } \\
\forall v \in V, \sum_{I \in \mathscr{S}: v \in I} x_{I}=1 \\
\forall I \in \mathscr{S}, x_{I} \geq 0
\end{array}\right.
$$

Fractional clique number

Fractional clique

A fractional clique is a weight distribution such that no independent set has weight more than 1 . The weight of a fractional clique is the total weight of the graph.
The fractional clique number ω_{f} of a graph is the maximum weight of a fractional clique.

$$
\omega_{f}\left\{\begin{array}{l}
\text { maximize } \sum_{v \in V} w_{v} \\
\forall I \in \mathscr{S}, \sum_{v \in l} w_{v} \leqslant 1 \\
\forall v \in V, w_{v} \geq 0
\end{array}\right.
$$

By strong duality,

$$
\chi_{f}=\omega_{f}
$$

Sandwich inequality for m_{1}

By definition, $\alpha^{*}(G)=\frac{1}{\omega_{f}(G)}=\frac{1}{\chi_{f}(G)}$.

$$
\frac{1}{\chi_{m}\left(\mathbb{R}^{n},\|\cdot\|\right)} \leqslant m_{1}\left(\mathbb{R}^{n},\|\cdot\|\right) \leqslant \frac{1}{\chi_{f}\left(\mathbb{R}^{n},\|\cdot\|\right)}
$$

Goals:

- Efficient algorithm for the optimal weighted independence ratio (especially for our geometric instances).
- Method to build graphs of high fractional chromatic number.

Outline of the algorithm

$$
\text { Basic LP for } \alpha^{*}(G)\left\{\begin{array}{c}
\text { minimize } M \\
\sum_{v \in V} w_{v}=1 \\
\forall I \in \mathscr{S}, \sum_{v \in 1} w_{v} \leqslant M \\
\forall v \in V, w_{v} \geq 0
\end{array}\right.
$$

Outline of our algorithm

Start with $\mathscr{S}=\varnothing$ and a uniform weight distribution W :
Step1 Add to \mathscr{S} a max. weight ind. set for W (gives an upper bound)
Step2 Compute W, the weight distribution that minimizes the maximum weight of sets of \mathscr{S} (gives a lower bound)
Iterate until the two bounds coincide.

Step1

Add to \mathscr{S}, a maximum weight independent set for W
Input: $W=\left(w_{1}, \ldots, w_{p}\right)$ a symmetric weigth distribution Output: stable set defined by $\mathbf{x}=\left(x_{v}\right)_{v \in V}$.

$$
\begin{array}{ll}
\text { maximize } & \sum_{v \in V} w_{\text {orbit }(v)} x_{v}, \\
\text { subject to } & x_{u}+x_{v} \leq 1 \quad \forall u v \in E, \tag{Step1}\\
\text { and } & x_{v} \in\{0,1\} \quad \forall v \in V .
\end{array}
$$

Step 1 is slow due to binary variables.

Remarks

- "guided" exploration of stable set polytope
- maximal clique constraints instead of edge constraints
- Moser spindles rank constraints are helpful

Step2

Compute W, the weight distribution that minimizes the maximum weight of sets of $\mathscr{S}=\left\{S_{1}, \ldots, S_{k}\right\}$.

Input: O_{1}, \ldots, O_{p} the orbits of the graph, $n_{i, j}=\left|S_{i} \cap O_{j}\right|$. Output: $\mathbf{W}=\left(w_{1}, \ldots, w_{p}\right)$.

$$
\begin{array}{ll}
\operatorname{minimize} & M, \\
\text { subject to } & \sum_{j=1}^{p} n_{i, j} w_{j} \leq M \quad \forall i \in\{1, \ldots, k\} \\
& \sum_{j=1}^{p} w_{j}\left|O_{j}\right|=1 \\
\text { and } & w_{1}, \ldots, w_{p}, M \geq 0
\end{array}
$$

Step2 is fast as k is small in practice

Constructing unit-distance graph with high fractional chromatic number

Rough steps to get unit-distance graph with higher fractional chromatic number
(1) Start from a "promising" unit-distance graph
(2) Apply graph operations in order to decrease α^{*} (but makes the graph bigger)
(3) Compute α^{*} and an optimal weight function
(9) (cleaning) Remove some vertices with small weight
(5) Repeat from step 2.

Graph operation: Minkowski sum

Let G and G^{\prime} be two unit-distance graphs. The Minkowski sum of G and G^{\prime} is a geometric variant of the Cartesian product of G and G^{\prime}.

Graph operation: spindling

Let $u, v \in V$. The spindling between u and v is the graph obtained by taking the union of G and a rotated copy of G around u such that v and its copy are at distance 1 .

Möser's graph as a spindling of the left graph

Results

- We started from a 31-vertex unit-distance graph.
- We applied the operations in order to lower the α^{*} of the obtained graph.

$n=31, \alpha^{*}=0.33333 \ldots$

$$
n=278, \alpha^{*}=0,26175 \ldots
$$

$n=301, \alpha^{*}=0,26620 \ldots$

$n=166, \alpha^{*}=0,26225 \ldots \quad n=415, \alpha^{*}=0,25773 \ldots$

Results

Graph	Number of vertices	α^{*}	χ_{f}
W415	415	$0,25773 \ldots$	$3,8800 \ldots$
W283	283	$0,25800 \ldots$	$3,8758 \ldots$
W384	384	$0,25723 \ldots$	$3,8874 \ldots$
W282	282	$0,25807 \ldots$	$3,8749 \ldots$
W487	487	$0,25682 \ldots$	$3,8936 \ldots$
W313	313	$0,25775 \ldots$	$3,8796 \ldots$
W420	420	$0.257071 \ldots$	$3.89776 \ldots$
W286	286	$0,258127 \ldots$	$3,87405 \ldots$
W565	565	$0.256557 \ldots$	$3.8977 \ldots$
W607	607	$0.25646 \ldots$	$3.8992 \ldots$

Going on

authors	date	χ_{f}	m_{1}	vert.	method
Keleti et al.	2015	-	$\leqslant 0.259$	-	analysis
Cranston, Rabern	2017	$\geqslant 3.619$	$\leqslant 0.277$	-	discharg.
Exoo, Ismailescu	2017	$\geqslant 3.754$	$\leqslant 0.267$	73	graph
Ambrus, Matolsci	2018	-	$\leqslant 0.257$	-	analysis
Bellitto, P., Sedillot	2018	$\geqslant 3.899$	$\leqslant 0.257$	607	our alg.
Jaan Parts	2019	$\geqslant 3.962$	$\leqslant 0.253$	625	our alg.

Going on

authors	date	χ_{f}	m_{1}	vert.	method
Keleti et al.	2015	-	$\leqslant 0.259$	-	analysis
Cranston, Rabern	2017	$\geqslant 3.619$	$\leqslant 0.277$	-	discharg.
Exoo, Ismailescu	2017	$\geqslant 3.754$	$\leqslant 0.267$	73	graph
Ambrus, Matolsci	2018	-	$\leqslant 0.257$	-	analysis
Bellitto, P., Sedillot	2018	$\geqslant 3.899$	$\leqslant 0.257$	607	our alg.
Jaan Parts	2019	$\geqslant 3.962$	$\leqslant 0.253$	625	our alg.

Thank you!

