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Abstract—In this paper, we propose a new method to simul-
taneously detect and classify symbols in floorplan images. This
method relies on the very recent developments of Graph Neural
Networks (GNN). In the proposed approach, floorplan images
are first converted into Region Adjacency Graphs (RAGS).
Within those graphs, each node corresponds to a white region
in the original image, and each edge indicates an adjacency
relationship between two regions encoded by incident nodes.
Nodes are attributed using Zernike moments, and edges are
characterised using the distance between centers of gravity of
connected components. Then, graphs are fed to a dedicated
neural network which has been learned to classify the nodes
of unknown graphs using both node attributes and topology.
The method is evaluated on the ILPIso dataset and obtains
very promising results. These results show the interest of using
graphs for such a task, especially when input data are noisy.
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I. INTRODUCTION

In pattern recognition community, most of existing ap-
proaches embed images to well-suited euclidean spaces to
profit from efficient pattern recognition methods existing.
These methods use the numerous mathematical properties
associated to euclidean spaces, which allow to solve com-
plex and challenging problems. However, despite euclidean
spaces can encode numerical data, they fail to encode all
the available information when the data include some struc-
tural information such as molecular compounds, networks,
complex patterns, etc.

A nice and efficient way to encode such structural infor-
mation is to use graphs. A graph G is defined as a pair
G = (V,E). The set of nodes v; € V defines a set of
elements which are connected or not through the set of edges
E € V x V. Two elements are said to be connected if
there exists an edge (v;,v;) € E. This set of connections is
used to define the neighbourhood N, of each node v;. This
neighbourhood corresponds to all nodes connected to v;,
ie. v; € N,, & (v;,v;) € E. Note that we talk here about
undirected graphs, where edges have no direction. This leads
to (v;,v;) € E < (vj,v;) € E. Nodes and edges can carry
there own information. This information is carried out by
a node labelling function p : V. — L, which associates
each node of the graph to a particular label of the set L,,.
Similarly, an edge labelling function £ : E — L. associates
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a label to each edge of a graph. Using such structure, we
can now encode topological relationships between elements
of a set. Graphs have been widely used to encode structured
information such as networks, RAG, molecules and shapes.

Floorplans, as the ones included in the dataset ILPIso [10],
[8], are originally encoded as images. These images are
directly extracted from data produced by architects. How-
ever, since they represent a building floor, the underlying
information includes some important structural relationships
between the elements of the floorplan. Each building floor
is composed of rooms and furniture elements which are
interconnected by their topological relationships: A table is
inside a kitchen, a bed is inside a bedroom, and bedroom
and kitchen are connected together by a door. This structural
information is not explicitly encoded within the original
image, but it requires to be extracted from the former. Then,
a graph representation of this floorplan may allow to encode
this structural information.

A particular strength of euclidean based pattern recogni-
tion methods consists in using machine learning framework
to perform the recognition and prediction task. However,
most of machine learning methods are defined on euclidean
spaces, where they benefit from well defined optimisa-
tion problems and efficient mathematical tools. Using such
methods on graph data is not straightforward since graph
space is more general than euclidean spaces, and thus more
complex to manipulate. Using graph based methods, such
as graph edit distance, we often face a complexity problem
due to possible permutations of node order and different
number of nodes. Considering a very basic problem such as
determining if two graphs are an unique and same one is a
NP-Hard problem, which forbids its exact solving in most of
real world applications. To overcome this drawback, many
methods are devoted to compute descriptors from graphs,
and then embed graphs into an euclidean space to benefit
from all machine learning methods. However, selecting and
computing these descriptors reduce the versatility of graph
representation and the encoded structural information. The
set of descriptors is generally defined using an a priori
expert choice, which doesn’t allow to control the loss of
information.

An alternative strategy is neural network based methods.



In the last decade, these methods helped the community
to break a performance bottleneck by determining and
computing optimal features thanks to deep architectures
and thousands of examples. These particularities bring deep
neural networks to the state of the art on most of pattern
recognition and computer vision datasets. Nonetheless, one
strong limitation of deep neural networks is that they are re-
stricted, in their native definition, to euclidean data encoded
as vectors, these vectors having a fixed and predefined size.
To benefit from the expressive power of graphs, one needs
to connect graph representations and deep neural networks.
This challenge requires to define new architectures, but
it may allow to automatically compute optimal features
according to a particular task.

The recent emergence of different Graph Neural Networks
[71, [12], [11], [6], [3], [17], [16] is dedicated to bridge the
gap between neural networks and graphs. Through different
approaches to tackle dimension and permutation problems,
these methods have shown good prediction performances,
hence proving they are able to exploit the structural infor-
mation included within graphs.

In this paper, we propose to exploit graph neural networks
methods to address the task proposed by ILPIso [8], [10]
dataset. This task consists in identifying the class and
the location of different furniture symbols which appear
regularly within floorplan images. Transforming images to
graphs will allow our prediction model to use the topological
information around each furniture symbol, and thus to in-
clude some contextual information during learning process.
The use of graph neural network approaches avoids the
definition of ad-hoc features, and thus the hard choice of a
predefined set of features. Combining these two approaches
may lead to robust and accurate prediction of symbol classes.

This paper is structured as follows. First, we review in
Section II the different neural network architectures pro-
posed to process graphs within a classification scheme. Sec-
ond, Section III-A details how we pass from floorplan im-
ages to graphs. Then, Section III-B presents our proper graph
neural network model, adapted to the particular classification
task associated to ILPIso dataset. Finally, our contribution
is tested in section IV through some experiments on ILPIso
dataset to evaluate its accuracy and robustness against some
noise.

II. RELATED WORKS
A. Original graph neural network

Graph Neural Networks (GNN) have firstly been theorised
by Gori et al. in [7] and then extended in [12]. In those
papers, authors want to update state of a node by aggregating
information contained in its labelling, its neighbourhoods
labelling and the labelling of the edges linking the node to
its neighbourhood. This defines the very idea of graph neural
network. More specifically, each node in the graph is updated
according to equation 1. In this equation and for the rest of
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Figure 1: Summary of our method. First, a floorplan image
is converted into a Region Adjacency Graph, where each
node corresponds to a connected component. Then, a graph
neural network is used to predict the label of each node.



Figure 2: Example of how a node is updated depending
on its neighbourhood. On the left is the original graph.
On the right, the node h,, is updated depending on its
neighbourhood Ay, , Ry, , R, , R, and the edges between b,
and its neighbour (in bold).

this paper, the following notation are defined : h,, the hidden
state of the node v, [, is still the attributes of node v, €y,
the edge between node v and node w, N (v) is also still the
neighbourhood of v, and thus Iy (,) and ey(,) respectively
the nodes and edges attributes of v neighbourhood. Finally,
f defines an arbitrary function. This function is iterated T’
times, and thus, each h!*! is updated depending on A,

hf;+1 = f(l?)7lN(U)7 hf;; eN(v)) (H

Finally, a decision o, is taken for each node v following
equation 2:

Oy = g(h’f}alv) (2)

where g,, is an arbitrary function which take into account the
actual node state h! and the original node label [,. Figure 2
shows an example of how a node is updated depending on
its neighbourhood.

Finally, both functions f and g are neural network.

B. General graph neural network model

More recently, [6] proposed a more general approach,
where a message m’"! is computed following equation 3
where M, is an arbitrary function.

mit = 3" My(h,, bl evn) 3)
WEN ()

Finally, each node is updated depending on an arbitrary
function Uy, which take as input the actual node state and
the computed message, as expressed in equation 4.

hf)+1 = Ut (hfm mf;Jrl) (4)

As shown in [6], this model generalises multiple models,

such as [5], [11], [2], [9], [13], and both functions M; and
U, are generally neural networks.

III. MODEL

A. From images to graphs

Region Adjacency Graphs are well suited for representing
symbols and technical drawings since they enable to model
the adjacency relations between the regions extracted by
a segmentation process. Working on technical documents,
the digital images are mainly binary images where white
components denote the background while black components
stand for the drawings. Segmenting such kind of images can
be achieved using component labelling [4]. However, aiming
at finely modelling adjacency relations between two regions,
a binary image can be firstly thinned [1]. The obtained image
is then morphologically the same than the initial image of
the document but the thickness of the drawing components
is reduced to a single pixel. Using this image, each white
component is mapped to a vertex of the graph. Then, the
skeleton branches represent frontiers and adjacency relations
between two regions. An edge is then build between two
vertices representing regions separated by a skeleton branch.
Figure 3 illustrates the overall process on an extract of a
document image.

To enrich such a description, attributes have to be as-
signed to each vertex and edge. Many features have been
proposed to characterize shapes and spatial relations [15].
Among them, Zernike Moments (ZM) [14] yield interesting
results for pattern recognition tasks when invariance to affine
transforms and robustness to degradations are required.
Hence, a feature vector corresponding to a set of ZM is
assigned to each vertex in order to characterize shapes.
Concerning the edges, a single attribute is used : the relative
distance between gravity centers of adjacent regions which is
computed with respect to the overall area of the two regions.

de (gsource7 gtarget)
V/A(source) + A(target)

where d. denotes the Euclidean distances between gravity
centers.

We finally get a graph-based representation G =
(V,E, u1,&) of a document where V' stands for the set of
vertices (regions) and £ C V x V stands for the edges
(adjacency relations). p and £ are mapping functions :

e p:V — R?* describing the morphology of a region (a
vertex),

e £: F — R expressing the geometrical properties of an
adjacency relation (an edge).

B. Graph Neural Network Model

As stated in introduction, our method relies on the recent
graph neural network developments which have been intro-
duced in the literature. In section 2, we presented a general
model of a GNN. In this subsection, we focus our definition
on the particular GNN we use.
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Figure 3: Raster to Region Adjacency Graph.

One of the simplest way to compute a GNN is probably
the one defined in equation 5, where a node and its neigh-
bourhood are updated independently. In this equation, W is
a neural network.

WY =ml = (hh+ Y bh)-W )
UIEN(U)

More particularly, this GNN is interesting by the way it
is computed when working with tensors (equation 6). One
can notice the similarity with neural networks.

HY = (A+TI)-H' W (6)

One problem with this simple way comes with the fact
that it makes no difference between the central node and
its neighbourhood. For example, in Figure 4, the simplest
GNN will update the node v similarly in both cases, while
intuitively, one would probably update them in a different
way.

To tackle this limitation, one solution could be to use
two different neural networks, one for the central node,
and another one for the neighbourhood. This is defined by
equation 7.

WU =hL - Wo+ () BL) WA (7)
wEN(v)

This last equation defines our general model. However, it
does not use the possible edges attributes. For this case, we
use the edge network proposed in [6], which is defined by
equation 8, where W, is a neural network applied to the
edges attributes which computes a matrix.

Case 1 Case 2

Figure 4: During the hidden state update of vertex h,, the
simplest GNN that considers the central node the same way
as neighbouring node can not distinguish Case 1 and Case
2 since this update is based on 3 orange nodes and 1 green
node in both cases. These two cases can be distinguished
when the central node is considered differently from the
neighbouring nodes

=l Wo+ (Y0 (Rl eww - Wa) - Wi (®)
WEN (4)

In our experiments, models defined by equation 7 and 8
are both tested.

IV. EXPERIMENTS
A. Dataset presentation

To evaluate our model, we experiment it on the ILPIso
dataset, a dataset made of 200 floorplans like the plan of
Figurel. We apply our graph conversion strategy to each
of the floorplan images, and thus get 200 graphs. After this
conversion, we count 24281 nodes and 105110 edges, which
give us a mean of 121 nodes and 525 edges per graph. Each
node is labelled with the 24 first Zernike moments of the
connected component he represents. Each edge is labelled
with the distance between the center of gravity of the two
nodes the edge is linking. Finally, each node is associated to
one of the 17 classes corresponding to the different objects
in the original floorplan images. The 17 classes are the 16
kinds of symbols to be found in floorplans (Figure 5), plus a
dummy class, for the case where the node do not correspond
to any of the 16 symbols.

B. Evaluated models

We evaluated 3 different models: the first model, which
corresponds to our baseline, is a neural network which takes
as input and classify each node independently and only using
its original features. The neural network is made of two
dense layers, with the second one used for decision. Thus,
with this instance, no topological relationships between any
node is taken into account (see Figure 6).

The second model is a graph neural network (GNN), made
of two layers. Similarly to the baseline, the second layer is
used for decision. With this model, we are only able to use
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Figure 5: Symbol models

Model |  Result

Base 95.2+1.4
GNN 99.8+£0
EN 100.0£0

Table I: Results obtained (in percentage of accuracy of nodes
classification) by the different experimented models.

the existence of an edge between a pair of nodes, but not
the labels associated to this edge (see Figure 6).

The third experimented model uses the edge network (EN)
defined in section III-B. This model uses both the existence
of an edge and its labels (see Figure 6).

To be able to compare the three models, we make them
as similar as possible. Thus, both the neural networks of the
baseline and the two GNN produce 200 features for each
node.

C. Experimental protocol and results

In this section, we describe the protocol used to conduct
our experiments. First, our 200 graphs are randomly divided
into 3 sets. 160 graphs are used in training, 20 in validation
and 20 in test. Each node’s and edge’s attribute is normalized
to have a value either between 0 and 1 or -1 and 1, depending
on the minimum value of the attribute. Each model is then
trained using the Adam optimizer with an initial learning rate
of 5.10~3. Each model is trained for 100 epochs using the
crossentropy loss and the best model in validation is used for
test. We run this experiment 10 times per model and compute
the mean and standard deviation for the node classification
of those 10 experiments. We computed the results obtained
in table I.

As one can see, results for both GNN and EN are pretty
similar and close to 100%. The difference between the two
results comes from one run which failed on GNN, while the
9 others obtained perfect scores, as for EN.

Gaussian noise of variance 0.05

Base 68.3 £2.44
GNN 99.7£0

EN 97.4+1
Gaussian noise of variance 0.10
Base 46.4 £ 3.7
GNN 98.9+0

EN 94.8 £ 2.2
Gaussian noise of variance 0.20
Base 27.2 +2.44
GNN 81.3+3.8

EN 89.1 +2.2

Table II: Results obtained with noised test data.

To be able to compare the methods more rigorously, and
evaluate their ability to generalize, we decided to add some
noise on the tested data. We added a Gaussian noise centered
in O with different variances. We tried 3 different values for
this variance : 0.05, 0.1 and 0.2. Results are given in table II.
First thing we notice is that results for the baseline collapse
quickly. This shows how useful the structural information
is in decision. Second is that GNN behave better than EN
with low variance (0.05 and 0.1), but are dropping quickly
when the variance becomes higher (0.2), while EN results
are dropping in a more regular way. This can be explained
by the fact that at first, the existence or not of edges are not
influenced by the noise, but when the noise on nodes is too
important, the presence of attributes on edges, even if they
are noised, helps the network for the decision.

V. CONCLUSION

In this paper, a new approach for floorplans segmentation
is proposed. The approach firstly transform the floorplans
images into Region Adjacency Graphs. Graph Neural Net-
work are then applied on those graphs to take a decision on
each node.

Two different models of graph neural networks are stud-
ied. Both of them presents great results on the evaluated
dataset, and improve results obtained without structural
information. Especially, we show that this structural infor-
mation is really important with noised data. Future works
will explore more flexible ways to convert images to graphs
and try different GNN models on new data. Another outlook
would be to find subgraph symbols inside the floorplans,
instead of classifying nodes.
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