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 and is based on the dual evolution technique. The idea is to propagate an atom property (i.e. localization and integrability in Lebesgue spaces) under the dual conservation law, when it is coupled with the fractional diffusion operator.

In this article, we are interested in the following transport-diffusion equation:

∂ t θ + (-∆) α/2 θ = (v • ∇)θ θ(0, x) = θ 0 (x). (1) 
We consider this Cauchy problem where θ : [0, T ] × R d → R is unknown. The vector field v is given and is of bounded mean oscillation, i.e. it belongs to the space BMO(R d ). In what follows, we will not assume that div v = 0. We will also consider the periodic problem on T d . We are interested in the whole range of parameters 0 < α < 2 and in particular in the critical non-local diffusion (i.e. α = 1) where diffusion and transport are of similar order. We will, in passing, consider the classical local case α = 2; however, the local case is much better understood and we refer the reader, for exemple, to the recent monograph [START_REF] Bris | Parabolic equations with irregular data and related issues[END_REF] and the references therein.

For α > 1, the equation is called sub-critical because the drift is then of lower order than the diffusion, which means that the diffusion will be stronger at the smallest scales. On the contrary, for α < 1, the drift will be stronger than the diffusion at smaller scales and the equation is called supercritical. However, as the diffusion operator remains invariant under Galilean transforms, one can still expect a mild smoothing effect, as long as α > 0, because putative advected singularities cannot ride along a "defect" of the diffusion operator, simply because the homogeneous and isotropic operator does not have any.

The fractional derivative (-∆) α/2 is the Fourier multiplier by |ξ| α . It admits the following kernel expansion on R d (see e.g. [8, §2]):

(-∆) α/2 θ(x) = -c d,α pv R d θ(y) -θ(x) |y -x| d+α dy (2) 
with c d,α > 0. As (-∆) α/2 is a non-local derivative of order α that does not induce phase-shift, it performs a sort of "graphical" interpolation between the graph of θ and that of -∆θ.

The goal is to establish uniform Hölder regularity estimates of the solution of (1) at a later time t > 0. As demonstrated by A. Kiselev and F. Nazarov [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF] and M. Dabkowski [START_REF] Dabkowski | Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation[END_REF] for α = 1, an elegant but powerful technique consists in using the atomic characterization of Hölder classes (see below). Multiplying the equation by a test-function ψ(t -s) where ψ solves the dual evolution equation, one can then exchange an atomic estimate of θ(t)ψ 0 against an atomic estimate of θ 0 ψ(t). Provided that the dual evolution propagates the atomic property in a controlled way, one then gets the desired Hölder regularity.

Another powerful approach, used e.g. by L.A. Caffarelli and A. Vasseur [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation[END_REF] and L. Silvestre [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF], consists in using the parabolic De Giorgi method. The idea is to first establish a set of energy estimates. Then, one uses the rigidity given by the equation to deduce scalable uniform bounds. More precisely, one computes the energy cost of one oscillation of the solution between its maximum and minimum value. Given that the total amount of energy available is finite, this limits the size of the oscillations that the solution can perform at a given scale, which ultimately translates as regularity in the Hölder classes.

Finally, the method of the modulus of continuity was successfully introduced by A. Kiselev, F. Nazarov and A. Volberg [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasi-geostrophic equation[END_REF] for SQG and later used by L. Silvestre, V. Vicol [START_REF] Silvestre | Hölder continuity for a drift-diffusion equation with pressure[END_REF] to study related PDEs.

The case of a divergence-free transport field in (1) is of particular interest as it closely relates to the quasi-geostrophic equation where d = 2 and u = ∇ ⊥ (-∆) -1/2 θ; see [START_REF] Constantin | On the critical dissipative quasi-geostrophic equation[END_REF], [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation[END_REF], [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasi-geostrophic equation[END_REF]. At a technical level, the computations of [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF], [START_REF] Dabkowski | Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation[END_REF] rely in a crucial way on the assumption that div v = 0. First, as they use the non-conservative form for the dual evolution equation

∂ s ψ + (-∆) α/2 ψ = -(v(t -s) • ∇)ψ
each integration by part requires a divergence-free field. Second, they invoque the maximum-principle and the decay of the L p -norms for this kind of equation, which was established by A. Cordoba, D. Cordoba [START_REF] Cordoba | A maximum principle applied to quasi-geostrophic equations[END_REF], but either for the particular vector field of SQG, or for a divergence-free transport field.

The key of our article is that we allow div v = 0. The sign of div v then becomes crucial because convergent characteristics will tend to create shocks and break down the regularity while divergent characteristics (rarefaction waves) have a natural smoothing effect and tend to reduce steep gradients. The presence of the diffusion operator fixes the issues of either non-existence or non-uniqueness that the pure transport would induce. In that context, the pertinent question is thus to establish quantitative estimates of the regularity norms.

Our main result is the following statement that provides uniform Hölder bounds for solutions of (1).

Theorem 1 We consider either R d or T d as the ambiant space, which is of dimension d > α, and an advection field

v ∈ C 1-α if 0 < α < 1, v ∈ BMO if 1 ≤ α ≤ 2. ( 3 
)
In both cases, one requires:

(div v) -L d/α ≤ S α/2 = sup f ∈ Ḣα/2     |(-∆) α/4 f | 2 f 2 L 2d/(d-α)     (4) 
where (div v) -is the negative part of the divergence (see (8) below) and Ḣα/2 denotes the homogeneous Sobolev space on R d , or the average-free space on T d . There exist β > 0 and C > 0 that depend solely on d, α and respectively either on v BMO or v C 1-α such that, for any θ 0 ∈ L q with 2 ≤ q ≤ ∞, the corresponding solution of (1) satisfies:

∀t ∈ (0, 1], θ(t, •) C β ≤ Ct -(β+ d q )/α θ 0 L q . ( 5 
)
Moreover, if θ 0 ∈ C β , then: ∀t ≥ 0, θ(t, •) C β ≤ C ′ θ 0 C β (6) 
for some constant C ′ .

Among the results quoted in this introduction, that of L. Silvestre [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF] is the only one that allows for non-divergence-free fields, so we will focus on this one. For α ≥ 1, he assumes that v ∈ L ∞ (R d ) but requires no other size constraint on v; for α < 1, he assumes that v ∈ C 1-α in order to compensate for the super-criticality of the equation. In both cases, L. Silvestre proves the Hölder continuity of the solution of (1) at positive times, namely that:

θ(t) C β (R d ) ≤ Ct -β/α θ 0 L ∞ (R d )
and he also establishes a similar C β/α -regularity estimate time-wise.

Our result is complimentary and does not quite compare to that of L. Silvestre when α ≥ 1 because, in that case, we do not assume that v is bounded. Instead, we assume that v belongs to BMO and we require the negative part of its divergence to be small. However, we do not constrain the size of (div v) + and, in particular any BMO divergence-free field is admissible in our result.

It is likely that a "universal" result holds true for a general advection field v = v 1 + v 2 with v 1 ∈ L ∞ and v 2 ∈ BMO with (div v 2 ) -small. Results in this spirit are known for general diffusion operators of order α = 2 (see [START_REF] Bris | Parabolic equations with irregular data and related issues[END_REF]). However, mixing the DeGiorgi and atomic methods is not obvious.

Remark 2

The critical value in (4) can be slightly relaxed but the constants β and C will then also depend on the size of (div v) -; see remark 26. When α = 2, the dimension d = 2 is excluded from our statement (and similarly the case α = d = 1) because the corresponding Sobolev Space H α/2 (R d ) fails to be included in L ∞ .

Our proof is inspired by A. Kiselev and F. Nazarov [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF] and we use the dual evolution technique. Following M. Dabkowski [START_REF] Dabkowski | Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation[END_REF], we also use L p -based atoms for more flexibility. In order to deal with non-divergence-free transport fields, the key is to replace the dual evolution equation by a transportdiffusion equation expressed in a conservative form, i.e. as a conservation law. The presence of a general exponent of diffusion α = 1 also brings about some technicalities that need to be addressed (see the end of §2).

There are many other takes on the question of regularity for transport-diffusion equations. For example, D. Bresch, P.-E. Jabin [START_REF] Bresch | Quantitative regularity estimates for compressible transport equations[END_REF] have studied the regularity of weak solutions to the advection equation set in conservative form. In particular, they investigated the case where both v and div v belong to some Lebesgue space, which allows point-wise unbounded variations of the field and of its compressibility.

Another related study, albeit slightly more distant from [START_REF] Ambrosio | Lecture notes on the DiPerna-Lions theory in abstract measure spaces[END_REF], is that of the kinetic Fokker-Planck equation. On that mater, we refer the reader to C. Mouhot [START_REF] Mouhot | Hörmander theories: new interplay[END_REF] and the references therein, and, e.g., to the regularity result by F. Golse, A. Vasseur [START_REF] Golse | Hölder Regularity for Hypoelliptic Kinetic Equations with Rough Diffusion Coefficients[END_REF].

The role of fractional diffusion operators in physical models is growing (see e.g. J. Vaźquez's book [START_REF] Vázquez | The mathematical theories of diffusion[END_REF]). As for our motivations, we are interested in studying variants of a non-local Burgers equation introduced by C. Imbert, R. Shvydkoy and one of the present authors in [START_REF] Imbert | Global Well-Posedness of a Non-local Burgers Equation: the periodic case[END_REF]. The regularity of the solution for unsigned data remains an open problem that seems to share some nontrivial similarities with hydrodynamic turbulence.

The present article is structured as follows. In §1, we recall how Hölder classes can be characterized in terms of atoms. We draft the general ideas on how regularity can be obtained by studying the dual conservation law in §2. A weak version (i.e. in Lebesgue spaces) of the maximum principle is established in §3. It is then put to use in §4 to quantify how the atomic property is propagated. The proof of theorem 1 and, in particular, how the choices of structural constants should be made, is detailed in §5.

Notations. In this article, one uses the following common notations for a, b, x ∈ R:

a ∧ b = min{a, b}, a ∨ b = max{a, b} (7) 
x + = a ∨ 0,

x -= (-x) + , x = x + -x -, |x| = x + + x -. (8) 
Balls are denoted by B(x

0 , r) = x ∈ R d ; |x -x 0 | < r where | • | denotes the Euclidian distance on R d .

Atomic characterization of Hölder classes

Throughout the article, the constant A ≫ 1 is fixed, but is chosen arbitrarily large and ω ∈ (0, 1). One can check that none of the final estimates actually depend on the particular values of A or ω.

Definition 3 For r > 0 and p ∈ (1, ∞], the atomic class A p r (R d ) is defined as a subset of C ∞ (R d ) by the following three conditions:

R d ϕ(x)dx = 0, (9) 
ϕ L 1 ≤ 1 and ϕ L p ≤ Ar -d(1-1 p ) , (10) 
∃x 0 ∈ R d , R d |ϕ(x)|Ω(x -x 0 )dx ≤ r ω (11) 
where

Ω(z) = |z| ω ∧ 1 ∈ L ∞ (R d ). If λ -1 ϕ(x) ∈ A p r (R d ) for some λ > 0, then one says that ϕ ∈ λ • A p r (R d ). ( 12 
)
Remark 4 A typical example of an atom A p r of radius r < 1 is the function ϕ = ϕ r * ρ ǫ where ρ ǫ is an standard mollifier supported in B(0, ǫ) and

ϕ r (x) =      -Cr -d if |x -x 0 | ≤ r2 -1/d +Cr -d if r2 -1/d < |x -x 0 | ≤ r 0 if |x -x 0 | > r
for small enough constants C < min{|B(0, 1)| -1 ; A|B(0, 1)| -1/p ; |B(0, 1)|/(d + ω)} and ǫ > 0. The volume of the unit ball is |B(0, 1)| = π d/2 /Γ d 2 + 1 .

One can control the L q -norm of atoms for q ∈ [1, p] by a real interpolation estimate.

Proposition 5 If ϕ ∈ A p r (R d ), then for any 1 ≤ q ≤ p:

ϕ L q ≤ A 1-1/q 1-1/p r -d(1-1 q ) . (13) 
Proof. Apply the interpolation inequality

f L q ≤ f 1-θ L 1 f θ L p with θ = (1 -1 q )/(1 -1 p ) ∈ [0, 1].
Atoms are the "poor man's wavelet" and offer a very comfortable characterization of Hölder's classes.

Proposition 6 For 0 < β < 1, a bounded function f belongs to C β (R d ) if and only if sup 0<r≤1 ϕ∈A p r (R d ) r -β R d f (x)ϕ(x)dx < ∞ ( 14 
)
for some p ∈ (1, ∞]. Moreover, the left-hand side of ( 14) is equivalent to the usual semi-norm on

C β (R d ).
Proof. The proof is a classical exercise. See [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF], [START_REF] Dabkowski | Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation[END_REF] (resp. for p = ∞ and p < ∞) for a short proof that relies on the Littlewood-Paley theory [START_REF] Stein | Harmonic Analysis[END_REF]. The key is the equivalent control of sup j∈N 2 βj ∆ j f L ∞ where ∆ j is a smooth projection on the frequency scale of order 2 j .

Regularity through the dual conservation law

As explained in the previous section, in order to obtain estimates of the Hölder regularity of the solution of (1) at a time t > 0, one needs to control

r -β R d θ(t, x)ψ 0 (x)dx
where ψ 0 ∈ A p r (R d ) and this control needs to be uniform in 0 < r ≤ 1. Let us consider the following test function that solves the dual evolution problem, set in a conservative form:

∂ s ψ(s) + (-∆) α/2 ψ(s) = -div (v(t -s)ψ(s)) ψ(0, x) = ψ 0 (x). ( 15 
)
One can then immediately check the following result.

Proposition 7 If θ is a smooth solution of (1) and ψ is a smooth solution of (15), then one has:

∀t ≥ 0, R d θ(t, x)ψ 0 (x)dx = R d θ 0 (x)ψ(t, x)dx. (16) 
Proof. Let us indeed use ψ(t -s) as a test function for [START_REF] Ambrosio | Lecture notes on the DiPerna-Lions theory in abstract measure spaces[END_REF]. One gets:

∂ s θ(s) • ψ(t -s) + ((-∆) α/2 θ(s)) • ψ(t -s) = (v(s) • ∇)θ(s) • ψ(t -s).
Here and below, all double integrals are computed for (s, x) ∈ [0, t] × R d unless stated otherwise and the x-variable is not made explicit unless it is absolutely necessary. Integrating by part time-wise in the first integral and space-wise in the other two gives:

θ(s) • (∂ s ψ)(t -s) + R d θ(s)ψ(t -s) t 0 + θ(s) • ((-∆) α/2 ψ)(t -s) = - θ(s) • div(v(s)ψ(t -s)).
Thanks to [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasi-geostrophic equation[END_REF], the double integrals cancel each other out and one is left with [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF].

Remark 8 In [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF], the authors used the non-conservative dual form -v(t -s) • ∇ψ(s). This choice was harmless and perfectly adapted to their purpose because they assumed v to be divergence-free. Here, on the contrary, it is crucial that the right-hand side of (15) takes the form of a conservation law.

For the sake of the argument, let us assume that one will be able to show subsequently (which is indeed the case if α = 1) the following infinitesimal propagation property for (15):

ψ 0 ∈ A p r =⇒ ∀s ∈ [0, γr], ψ(s) ∈ (1 -h(r)s)A p r+Ks for a given value of p ∈ (1, ∞],
with universal constants γ, K that do not depend on r nor ψ 0 and a universal function h. One can then immediately infer a global propagation property:

ψ 0 ∈ A p r =⇒ ∀s ∈ 0, 1 -r K , ψ(s) ∈ f r (s)A p r+Ks with f ′ r (s) ≥ -h(r + Ks)f r (s). Let us introduce a function H such that H ′ (z) = h(z). Then f r (s) = exp H(r) -H(r + Ks) K
is an acceptable bound for the global propagation property. Coupled with [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF], this means the following: for any solution of (1) and ψ 0 ∈ A p r , one has

R d θ(t, x)ψ 0 (x)dx = R d θ 0 (x)ψ(t, x)dx ≤ θ 0 C β (r + Kt) β f r (t).
One is thus able to propagate

C β (R d ) bounds of θ if f r (s) ≤ C( r r+Ks ) β
. This is the case if, for example, h(r) = δ/r with δ = Kβ. The regularization estimate is obtained in the same fashion.

Dealing with a general exponent α requires a slightly more careful computation. The fundamental idea remains that the dual conservation law propagates atoms and that a small gain on the amplitude of the atoms can be obtained as a tradeoff with a slight increase in the size of the atoms' radii.

The main technical difficulty is that the radii now grow as (r α + Ks) 1/α , which is not linear in s anymore, at least not when s ≫ r α . This non-linear region invades any neighborhood of r = s = 0 and the corresponding correction of amplitude will be h(r) = δ/r α . We found that the simplest workaround is to forfeit the ODE point of view presented here for α = 1 and to use direct estimates on the corresponding rate of change during a finite increment of an Euler scheme (see §4, estimate (51)).

Weak maximum principle for the dual conservation law

In this section, we establish the weak maximum principle i.e. the decay of the L p -norms for a non-local transport-diffusion equation written in a conservative form. In this section, one considers thus the following general problem for 0 < α ≤ 2:

∂ s ψ(s) + (-∆) α/2 ψ(s) = -div (v(s)ψ(s)) ψ(0, x) = ψ 0 (x) (17) 
and we will assume, when necessary, that R d ψ 0 = 0. Subsequently, the results of this section will be applied to (15) at a given time t > 0 by choosing v(s) = v(t -s) ∈ BMO(R d ).

A brief note on the well-posedness theory

For smooth v(s, x), the well-posedness theory of the scalar conservation law

∂ s ψ(s) = -div (v(s)ψ(s))
was established by S.N. Kružkov [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF], in the setting of entropy solutions. The theory was refined and generalized to the non-conservative convective form by R.J. DiPerna and P.L. Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]; their theory ensures that assuming a transport field

v ∈ L 1 ([0, T ]; W 1,1 ) with (div v) -∈ L 1 ([0, T ]; L ∞
) is enough to guarantee the existence, uniqueness and stability in the proper function spaces. The key idea is a celebrated commutation lemma:

ρ ε * (v • ∇)ψ -v • ∇(ρ ε * ψ) → 0 in L 1 ([0, T ]; L β loc ).
On R d , an additional assumption of mild growth at infinity is required, e.g.

v ∈ (1 + |x|) • (L 1 + L ∞ ).
To handle unbounded data, the idea is to use renormalization, i.e. to consider Φ(ψ) for suitable smooth and bounded Φ. For a review of the fundamental ideas and the last developments of the theory, we refer the reader to the monograph [START_REF] Bris | Parabolic equations with irregular data and related issues[END_REF] by C. Le Bris and P.L. Lions, and the references therein. See also the lecture notes by L. Ambrosio and D. Trevisan [START_REF] Ambrosio | Lecture notes on the DiPerna-Lions theory in abstract measure spaces[END_REF] or those of C. De Lellis [START_REF] Lellis | Notes on hyperbolic systems of conservation laws and transport equations[END_REF].

Adding the coercive diffusion term (-∆) α/2 ψ in (17) with 0 < α ≤ 2 obviously does not alter these results. On the contrary, the assumptions on the transport field can even be relaxed. For example, for α = 2 and even with a fully general second-order elliptic operator, one can accept a field v ∈

L 2 + W 1,1 with (div v) -∈ L ∞ , as mentioned in [3, §3.2].
The local well-posedness of ( 17) is thus classical; see e.g. [START_REF] Bresch | Quantitative regularity estimates for compressible transport equations[END_REF].

Remark 9 If the transport term takes the conservative form, the equation is called a conservation law; if not, it is referred to as a general convection. When the Laplace operator has variable coefficients, then the term conservative is preferred to describe the equation with the operator written in divergence form -∂ i (a ij ∂ j ), regardless of whether the transport part is a convection or a conservation law. In our present case, however, the fractional power (-∆) α is obviously a conservative operator so our use of the adjective conservative concerns only the form of the advection term.

Propagation of positivity

The classical positivity result for α = 2 can be generalized for fractional diffusions.

Proposition 10 If ψ is a solution to [START_REF] Mouhot | Hörmander theories: new interplay[END_REF], stemming from ψ 0 ≥ 0, then ψ(s) ≥ 0 for any s ≥ 0.

Proof. Let us sketch the argument first. If a solution of ( 17) is smooth and positive, then at a first contact point with zero, say (s 0 , x 0 ), it reaches a global minimum. One thus has ψ(s 0 , x 0 ) = 0 and ∇ψ(s 0 , x 0 ) = 0, and therefore:

div (vψ) = (div v)ψ(s 0 , x 0 ) + (v • ∇)ψ(s 0 , x 0 ) = 0.
Moreover, for 0 < α < 2, by ( 2), there exists a positive kernel K d,α such that:

(-∆) α/2 ψ(s 0 , x 0 ) = - R d (ψ(s 0 , y) -ψ(s 0 , x 0 )) K d,α (y -x 0 )dy ≤ 0
and the inequality is strict, unless ψ(s 0 , •) ≡ 0. The equation ensures that ∂ s ψ(s 0 , x 0 ) ≥ 0 and, in particular, the solution remains positive forever. To make the proof fully rigorous, one proceeds e.g. as in [13, §2.1]: for given T, R > 0 and ψ 0 > 0, one considers the approximation ψ R where the kernel K d,α is restricted to B(0, R) and

s 0 = inf {s ∈ (0, T ) ; ∃x 0 ∈ B(0, R), ψ R (s, x 0 ) = 0} .
By compactness, s 0 is attained and s 0 > 0. As ψ R (s, •) is not identically zero, the previous computation ensures that ∂ s ψ R (s 0 , x 0 ) > 0 and thus ψ R had to be negative in the neighborhood of x 0 a short time before s 0 , which is contradictory. For a general ψ 0 ≥ 0, the data can be approximated by a strictly positive mollification, whose strict positivity propagates downstream. Passing to the limit at a later time s > 0 ensures therefore that ψ(s) ≥ 0.

Propagation of the L 1 norm and conservation of momentum

The simple structure of ( 17) inherited from the underlying conservation law plays in our favor.

Proposition 11 Let ψ be a solution to [START_REF] Mouhot | Hörmander theories: new interplay[END_REF]. Then

ψ(s, •) L 1 ≤ ψ 0 L 1 ( 18 
)
and

R d ψ(s, x)dx = R d ψ 0 (x)dx. ( 19 
)
Proof. For the first statement, let us decompose ψ 0 = ψ + 0 -ψ - 0 where both ψ + 0 and ψ - 0 are positive and have disjoint supports. Let ψ + and ψ -be the solutions to the equation with initial data ψ + 0 and ψ - 0 correspondingly. Then, by linearity, ψ(s) = ψ + (s) -ψ -(s) and therefore

ψ(s, •) L 1 ≤ ψ + (s, •) L 1 + ψ -(s, •) L 1 .
Equation ( 17) and an integration by part ensure that:

d ds R d ψ ± (s, x)dx = - R d (-∆) α/2 ψ ± - R d div(vψ ± )dx = 0.
As the propagation of positivity yields that ψ ± ≥ 0, one gets ψ ± (s, [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF]. The identity [START_REF] Silvestre | Hölder continuity for a drift-diffusion equation with pressure[END_REF] is immediate.

•) L 1 = ψ ± 0 L 1 and finally ψ(s, •) L 1 ≤ ψ + 0 L 1 + ψ - 0 L 1 = ψ 0 L 1 , hence
Remark 12 Note that, because of the diffusion, the functions ψ ± of the previous proof will not coincide, in general, with the positive and negative parts ψ ± of ψ.

Estimate of the L p norm

For h < d/2 let us introduce the constant in the Sobolev embedding Ḣh (R d ) ⊂ L 2d/(d-2h) (see e.g. [START_REF] Talenti | Best Constant in Sobolev Inequality[END_REF]):

S h (R d ) -1 = sup f 2 L 2d/(d-2h) ; f ∈ Ḣh (R d ), R d |(-∆) h/2 f | 2 = 1 > 0. ( 20 
)
The idea is to relax the uniform control given by the maximum principle for ( 17) into a weaker one in the scale of Lebesgue spaces.

Proposition 13 For any α ∈ (0, 2] and any dimension d > α, if the transport field satisfies

(p -1) (div v) -L ∞ t L d/α x ≤ S α/2 (R d ) ( 21 
)
for some p ≥ 2 (eventually restricted to p = 2 n with n ∈ N if α < 2), then any solution of (17) satisfies

ψ(s) p L p + S α/2 (R d ) s 0 ψ(τ ) p L σ dτ ≤ ψ 0 p L p with σ = dp d -α (22) 
and in particular ∀q ∈

[1, p], ∀s ≥ 0, ψ(s) L q ≤ ψ 0 L q (23)
for any ψ 0 ∈ L 1 ∩ L p . In particular, when div(v) ≥ 0, the estimate (23) holds for 1 ≤ q ≤ ∞.

Remark 14

The following proof also establishes that all solutions of (17) satisfy:

ψ(s) L p ≤ ψ 0 L p e t(1-1 p ) (div v) -L ∞ t,x (24) 
regardless of the diffusion term and independently of [START_REF] Talenti | Best Constant in Sobolev Inequality[END_REF]. For what follows, we are however interested in getting a better (i.e. non-increasing) control of the L p -norm as given by ( 22)-(23).

Proof. Using p|ψ| p-2 ψ as a multiplier for the equation leads to:

d ds R d |ψ(s, x)| p dx + p R d |ψ| p-2 ψ • (-∆) α/2 ψ = -p R d div (vψ) |ψ| p-2 ψ.
For the integral on the right-hand side, an integration by part gives:

R d div (vψ) |ψ| p-2 ψ = -(p -1) R d |ψ| p-2 ψ(v • ∇)ψ = -(p -1) R d div (vψ) |ψ| p-2 ψ + (p -1) R d |ψ| p div v.
One thus has this identity:

R d div (vψ) |ψ| p-2 ψ = 1 - 1 p R d |ψ| p div v (25) 
and thus

d ds R d |ψ(s, x)| p dx + p R d |ψ| p-2 ψ • (-∆) α/2 ψ = -(p -1) R d |ψ| p div v. ( 26 
)
For the integral on the left-hand side of (26) and when α = 2, the following identity holds:

p R d |ψ| p-2 ψ • (-∆)ψ = p(p -1) R d |ψ| p-2 |∇ψ| 2 = 4 1 - 1 p R d |∇(|ψ| p/2 )| 2 ≥ 0. ( 27a 
)
For 0 < α < 2, one needs to replace (27a) because the Leibniz formula is no longer valid; instead, one follows the ideas of [START_REF] Cordoba | A maximum principle applied to quasi-geostrophic equations[END_REF]. The key is the point-wise inequality [8, Prop. 2.3]:

2ψ • (-∆) α/2 ψ ≥ (-∆) α/2 (|ψ| 2 )
which follows immediately from the kernel representation (2) of (-∆) α/2 . Applied recursively n -1 times when p = 2 n and n ≥ 1 is an integer, it provides for 1 ≤ k ≤ n -1 (or without intermediary k if n = 1):

p R d |ψ| p-2 ψ • (-∆) α/2 ψ ≥ p 2 k R d |ψ| p-2 k (-∆) α/2 (|ψ| 2 k ) ≥ 2 R d |(-∆) α/4 (ψ p/2 )| 2 . ( 27b 
)
Compared to [8, Lemma 2.4], the inequality (27b) is improved by a factor of 2. Overall, for p ≥ 2 (restricted to exact powers of 2 if 0 < α < 2), the evolution of the L p -norm of smooth solutions of ( 17) obeys the following inequality:

d ds ψ p L p + 2 R d |(-∆) α/4 (ψ p/2 )| 2 ≤ -(p -1) R d |ψ| p div v. (28) 
Obviously, only the focusing zones (i.e. regions where div v < 0) of the transport field can contribute to an increase of the L p norm; the other just tends to spread ψ out. Using the notation (8) for the negative part, one thus has the following estimate:

d ds ψ p L p + 2 R d |(-∆) α/4 (ψ p/2 )| 2 ≤ (p -1) R d |ψ| p (div v) -. (29) 
In dimension d ≥ 2 and for 0 < α < 2, one uses the Sobolev embedding [START_REF] Stein | Harmonic Analysis[END_REF]. For σ = dp/(d -α), one thus has:

ψ p L σ = ψ p/2 2 L 2d/(d-α) ≤ 1 S α/2 (R d ) R d |(-∆) α/4 ψ p/2 | 2 .
The estimate (29) becomes:

d ds ψ p L p + 2S α/2 (R d ) • ψ p L σ ≤ (p -1) R d |ψ| p (div v) -. (30) 
Finally, as the conjugate exponent of q = d/α > 1 satisfies pq ′ = σ, one splits the right-hand side in the following way:

R d |ψ| p (div v) -≤ ψ p L σ (div v) -L d/α .
Thanks to the smallness assumption [START_REF] Talenti | Best Constant in Sobolev Inequality[END_REF], it is then possible to bootstrap the Lebesgue norm into the left-hand side. In that case, (30) ensures that d ds ψ L p + S α/2 (R d ) • ψ p L σ ≤ 0, which gives [START_REF] Vázquez | The mathematical theories of diffusion[END_REF]. One can then interpolate with [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF] to control all L q norms for 1 ≤ q ≤ p.

Remark 15 If C α,p (v) = 2S α/2 (R d ) -(p -1) (div v) -L ∞ t L d/α x > 0 then (22) still holds, but with the constant S α/2 (R d ) replaced by C α,p (v), which is not uniform in v anymore.
Remark 16 An improved version of (27b) valid for average-free functions is found in [START_REF] Constantin | Unique ergodicity for fractionally dissipated, stochastically forced 2d-Euler equations[END_REF] or [7, Prop. 2.4]:

R d |ψ| p-2 ψ • (-∆) α/2 ψ ≥ 1 p (-∆) α/2 (ψ p/2 ) 2 L 2 + C ψ p L p .
However, in our case, using a Sobolev embedding for ψ p/2 provides some additional integrability and in particular a control of the L σ -norm with σ > p. This gain will be crucial in what follows. It also allows us to put a restriction on the L d/α -norm of (div v) -, instead of requiring smallness in L ∞ .

Note that on T d , the Sobolev embedding Ḣh (T d ) ⊂ L 2d/(d-2h) (20) is only valid for average-free functions. However, ψ p/2 is not average-free in general (i.e. p = 2), even if ψ is so. For the periodic case, one will use the following simpler result, whose proof is also contained above.

Proposition 17 If ψ is an average-free solution of (17) on T d with α ∈ (0, 2] and d > α and

(div v) -L ∞ t L d/α x ≤ S α/2 (T d ), then ψ(s) 2 L 2 + S α/2 (T d ) s 0 ψ(τ ) 2 L σ dτ ≤ ψ 0 2 L 2 with σ = 2d d -α •

Propagation of the atom property by the dual conservation law

As long as the advection field has mildly convergent characteristics (expressed precisely by ( 57)), the weak maximum principle implies that the (non-local) diffusion propagates the properties of atoms. It is possible to trade a slow increase in each atomic radius to gain some decay in amplitude.

Local propagation

Proposition 18 Let us assume that 1 ≤ α ≤ 2 and d > α and that the velocity field v ∈ BMO satisfies

(p -1) (div v) -L ∞ t L d/α x ≤ S α/2 (R d ) ( 31 
)
for some p ≥ 2 (eventually restricted to p = 2 n with n ∈ N if α < 2) such that p > d d -(α -ω) with 0 < ω < α ∧ 1.
Then there exist constants δ, K and γ, depending only on d, p, α and v BMO , such that for all r ∈ (0, 1], the following implication holds:

ψ 0 ∈ A p r =⇒ ∀s ∈ [0, γr α ], ψ(s, •) ∈ 1 - δs r α A p (r α +Ks) 1/α (32)
where ψ denotes the solution of the Cauchy problem [START_REF] Mouhot | Hörmander theories: new interplay[END_REF]. The constant A, which is implicit in the definition of A p r , has to be chosen large enough. The admissible threshold for A, which also depends only on d, p, α and v BMO , is specified in remark 21.

Remark 19

The proposition holds with p = 2 if d > 2(α -ω), which is always possible if one chooses ω such that α -1 < ω < 1 when α < 2 (and ω > 1/2 when α = 2 and d ≥ 3); in this case (57) is also the least restrictive. Thanks to proposition 17, the result then also holds, mutatis mutandis, on T d .

Proof. The proof of proposition 18 is inspired by [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF] and [START_REF] Dabkowski | Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation[END_REF], though the fractional derivative requires some additional care. Thanks to [START_REF] Silvestre | Hölder continuity for a drift-diffusion equation with pressure[END_REF], the zero-average property of atoms is obviously propagated by [START_REF] Mouhot | Hörmander theories: new interplay[END_REF]. Let x(s) be the solution to the following ODE, which tracks the average flow on a ball of size r. It is obviously well defined for v ∈ L 1 loc (R + × R d ):

x ′ (s) = vB(x(s),r)

x(0) = x 0 where vB(x,r) (s) = 1 |B(x, r)| B(x,r) v(s, y)dy. ( 33 
)
Step 1. Strict decay of the L 1 -norm. One introduces S = ψ(s) -1 ({0}) and D ± = supp ψ ± (s). Arguing as in [14, §4] and taking advantage of the conservative form of ( 17):

d ds ψ(s) L 1 = - D ± ψ |ψ| (-∆) α/2 ψ + S |(-∆) α/2 ψ|.
The kernel formula (2) allows us to improve [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF] and gives

d ds ψ(s) L 1 ≤ - c d,α 2 
D 2 ± ψ(y) |ψ(y)| - ψ(x) |ψ(x)| ψ(y) -ψ(x) |y -x| d+α dydx (34) because (if S is a set of strictly positive measure) S |(-∆) α/2 ψ(y)|dy ≤ c d,α x∈D ± y∈S |ψ(x)| |y -x| d+α dydx.
The right-hand side of (34) is negative:

d ds ψ(s) L 1 ≤ -c d,α D + D - dy |x -y| d+α ψ + (s, x)dx + D - D + dy |x -y| d+α ψ -(s, x)dx .
Obviously, the domains of integration D ± can be reduced to D ± ∩ B(x(s), 100r). Provided that most of the L 1 -mass of ψ is localized in B(x(s), 100r), which, as explained in [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF], is ensured by the 3rd part of the proof, it ends up giving:

d ds ψ(s) L 1 -r -α
i.e. for δ and γ > 0 small enough

∀s ∈ [0, γr α ], ψ(s) L 1 ≤ 1 - δs r α • (35)
Step 2. Strict decay of the L p norm. We have already proven that, under the smallness assumption (57), the right-hand side of (30) can be resorbed within the elliptic term, i.e.

d ds ψ p L p ≤ -S α/2 (R d ) • ψ p L σ < 0.
Next, as σ = dp d-α > p, one can use an elegant idea of [8, p. 517], which is to combine the interpolation inequality ψ L p ≤ ψ 1-θ L 1 ψ θ L σ for θ = (p-1)d (p-1)d+α with the propagation of the L 1 -norm [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF]. As ψ 0 is an atom A p r , it ensures that:

d ds ψ p L p ≤ -S α/2 (R d ) • ψ 0 -αp (p-1)d L 1 ψ p/θ L p ≤ -S α/2 (R d ) • ψ p/θ L p . ( 36 
)
This is a Riccati-type ODE that can be solved explicitly:

ψ(s) p L p ≤ ψ 0 -αp (p-1)d L p + αS α/2 (R d ) (p-1)d • s -(p-1)d α .
Using the atom property ψ 0 L p ≤ Ar -d(1-1 p ) and rearranging the terms, one gets:

ψ(s) L p ≤ Ar -d(1-1 p ) 1 + αS α/2 (R d ) (p-1)d • A αp (p-1)d r -α s -d α (1-1 p ) i.e. ψ(s) L p ≤ Ar(s) -d(1-1 p ) with r(s) = (r α + C d,p,α A µ s) 1/α and µ = α d(1 -1 p ) • (37) 
One chooses δ > 0 small enough, then

0 < K < C d,p,α A µ - 2δ d α 1 -1 p • (38) 
Thanks to the reversed Bernoulli inequality (1

-x) -1/β ≤ 1 + 2x/β for β > 1 and x ∈ [0, 1/2], this choice ensures that ∀t ∈ [0, γ], 1 + C d,p,α A µ t 1 + Kt ≥ 1 + 2δt d α (1 -1 p ) ≥ (1 -δt) -1/[ d α (1-1 p )] with γ = d α (1-1 p ) 2δ C d,p,α A µ -2δ/[ d α (1-1 p )] K
-1 and thus, after substituting t = s/r α :

ψ(s) L p ≤ A 1 - δs r α (r α + Ks) -d α (1-1 p ) (39) 
for s ∈ [0, γr α ].

Step 3. Propagation of the concentration. With x(s) defined by (33), one considers

χ(s) = R d ψ(s, x)Ω(x -x(s))dx. (40) 
Using the equation ( 17) and the fact that (-∆) α/2 is self-adjoint, the derivative of χ satisfies:

χ ′ (s) = R d (v -vB(x(s),r) ) • ∇Ω(x -x(s))ψ(s, x)dx - R d ψ(s, x) • (-∆) α/2 Ω(x -x(s))dx. (41) 
Let us collect obvious estimates for the derivatives of Ω:

|∇Ω(z)| |z| -(1-ω) • 1 B(0,2) (z), (42a) 
|(-∆) α/2 Ω(z)| |z| -(α-ω) + • 1 B(0,2) (z) + |z| -2-α • 1 B(0,2) c (z). (42b) 
They follow easily from the scaling properties of the Fourier transform (and thus of (-∆) α/2 ) and from the kernel representation [START_REF] Bresch | Quantitative regularity estimates for compressible transport equations[END_REF]. Recall that we assume ω < min{α, 1} throughout the proof.

3a. Transport term in χ ′ . Let us introduce E k (s) := {x ∈ R d : |x-x(s)| ∈ [2 k-1 r, 2 k r)} to estimate I 1 = T d (v -vB(x(s),r) ) • ∇Ω(x -x(s))ψ(s, x)dx .
One has

I 1 J 0 + ∞ k=1 J k with J 0 = B(x(s),r) |v -vB(x(s),r) ||x -x(s)| -(1-ω) |ψ| and J k = E k (s) |v -vB(x(s),r) ||ψ| r -(1-ω) 2 -k(1-ω) .
For J 0 , we use the Hölder inequality with a -1 + b -1 + c -1 = 1 and the BMO property

J 0 ≤ v -vB(x(s),r) L a (B(x(s),r)) ψ 0 L b |x -x(s)| -(1-ω) L c (B(x(s),r)) v BMO • r d/a • A b * r -d(1-1 b ) • r d c -(1-ω) r -(1-ω) A b * v BMO with b * = 1 -1 b 1 -1 p = p ′ b ′ • (43) 
Here, one should comment on the choice of the powers a, b, c. Obviously, we have to take c < d/(1 -ω) for local integrability reasons. Second, as we used the decay of the L b norm of ψ given by proposition 13 followed by proposition 5 on ψ 0 , one needs

p ≥ b > d/(d -(1 -ω))
. Since a can be chosen arbitrary large, it is always possible to find a proper triplet (a, b, c) as soon as

p > d d -(1 -ω) • (44) 
For J k with k ≥ 1, we apply the Hölder inequality with a pair of conjugate powers q 1 and q ′ 1 , with q 1 > d/(1 -ω). Thanks to (44), one thus has q ′ 1 < d d-(1-ω) < p, which ensures again that we have propagation of the L q ′ 1 norm of ψ and that proposition 5 may be used liberally on ψ 0 . One also uses that for BMO functions, the averages of adjacent dyadic balls are comparable and that

ψ L 1 (E k ) ≤ 2 kd/q 1 ψ L q ′
1 (E k ) uniformly for r ∈ (0, 1]. One thus gets:

E k (s) |v -vB(x(s),r) ||ψ| ≤ E k (s) |v -vB(x(s),2 k r) ||ψ| + E k (s) |v B(x(s),2 k r) -vB(x(s),r) ||ψ| v -vB(x(s),2 k r) L q 1 (B(x(s),2 k r)) ψ 0 L q ′ 1 + k v BMO ψ L 1 (E k ) (1 + k)2 kd/q 1 A p ′ /q 1 v BMO .
As we choose d/q 1 < 1 -ω, the geometric series in k ≥ 1 is convergent and p ′ /q 1 < b * , and thus:

I 1 r -(1-ω) A b * v BMO . (45) 
Let us observe that, due to the admissible range for b, the value of b * can be chosen arbitrarily within the interval

1 -ω d(1 -1 p ) < b * ≤ 1.
In the next part of this proof, we will chose b * to be as close as possible to the lowest bound.

Remark 20 As supp ∇Ω ⊂ B(0, 2) the series of J k terms is limited to k | log r|. However, this upper bound becomes arbitrarily large when r → 0. Our previous estimate is uniform for r ∈ (0, 1].

3b. Nonlocal viscous term in χ ′ . Let us now consider the second term of (41):

I 2 = R d ψ(s, x) • (-∆) α/2 Ω(x -x(s))dx .
Recall that we assume α > ω. Thanks to (42b), for any 0 < ρ ≤ r < 1, one has:

I 2 B(x(s),ρ) |x -x(s)| -(α-ω) |ψ(s, x)|dx + ρ -(α-ω) ψ 0 L 1 .
We apply the Hölder inequality with another pair of conjugate powers q 2 and q ′ 2 , with 1 ≤ q 2 < d α-ω , which is always possible. One also needs q ′ 2 ≤ p to ensure the propagation of the L q ′ 2 norm by proposition 13, i.e. 1 q 2 ≤ 1 -1 p . Such a choice is possible if

p > d d -(α -ω) • (46) 
As α ≥ 1, this restriction on p supersedes (44). One gets

I 2 ≤ |x -x(s)| -(α-ω) L q 2 (B(x(s),ρ)) ψ 0 L q ′ 2 + ρ -(α-ω) ψ 0 L 1 i.e. I 2 ρ d q 2 -(α-ω) A p ′ /q 2 r -d/q 2 + ρ -(α-ω) .
The optimal choice for ρ is given by ρ = rA -p ′ /d , which belongs indeed to (0, r] as A ≫ 1. Substituting this value in the previous estimate of I 2 gives:

I 2 r -(α-ω) A µ * with µ * = α -ω d(1 -1 p ) • (47) 
3c. Conclusion. Putting together (41) with ( 45) and (47), one gets:

|χ ′ (s)| ≤ I 1 + I 2 r -(1-ω) A b * v BMO + r -(α-ω) A µ * .
After integration and considering that χ(0) ≤ r ω and 1 ≤ r -1 ≤ r -α because α ≥ 1:

χ(s) ≤ r ω 1 + C ′ d,p,α A b * v BMO + A µ * s r α .
Provided A is large enough, one may amend the previous choice (38) of δ and K to ensure that

K ≥ α ω δ + C ′ d,p,α A b * v BMO + A µ * , (48) 
which, in turn, ensures that

∀t ∈ [0, γ], 1 + C ′ d,p,α A b * v BMO + A µ * t ≤ (1 -δt)(1 + Kt) ω/α
i.e. , with t = s/r α :

∀s ∈ [0, γr α ], χ(s) ≤ 1 - δs r α (r α + Ks) ω/α . ( 49 
)
This concludes the proof of ψ(s) ∈ 1 -δs r α A p (r α +Ks) In turn, this condition is satisfied by choosing b * as small as possible and because α > ω ∨ (1 -ω).

Remark 22 It could be tempting to discard the L 1 -property from the atom definition and use proposition 28 from the appendix to control this norm a-posteriori. In this case, instead of (38) and (48), one is led to choose δ and K such that

α ω δ + C ′ d,p,α A b v BMO + A μ ≤ K < C d,p,α A μ - 2δ d α 1 -1 p with b = ω+d(1-1 b ) ω+d(1-1 p ) ∈ (μ/α, 1] and μ = α ω+d(1-1 p )
. As both sides are order A μ, it is not clear anymore that the choice can be resolved for some large value of A. This alternate path is thus a subtle deadlock.

Global propagation

Proposition 23 In the conditions of Proposition 18, the constants δ, K are such that

ψ 0 ∈ A p r =⇒ ∀s > 0, ψ(s, •) ∈ r α r α + Ks δ/K A (r α +Ks) 1/α ( 50 
)
where ψ denotes the solution of the Cauchy problem [START_REF] Mouhot | Hörmander theories: new interplay[END_REF].

Proof. We keep the assumptions and notations of proposition 18. Let us split the time-line in consecutive intervals [ℓγr α , (ℓ + 1)γr α ] with ℓ ∈ N. For ℓ = 0, one has

∀s ∈ [0, γr α ], 1 - δs r α ≤ 1 + Ks r α -δ/K = r α r α + Ks δ/K .
Let us assume that, for some integer ℓ ∈ N, one has:

ψ(ℓγr α , •) ∈ (1 + Kℓγ) -δ/K A r(1+Kℓγ) 1/α .
Then for any s ∈ [ℓγr α , (ℓ + 1)γr α ], proposition 18 gives:

ψ(s, •) ∈ (1 + Kℓγ) -δ/K 1 + KS R α -δ/K A (R α +KS) 1/α
with S = s -ℓγr α and R = r(1 + Kℓγ) 1/α . The new radius is an exact match:

(R α + KS) 1/α = (r α + Ks) 1/α . (51) 
Similarly, the amplitude satisfies:

(1 + Kℓγ) 1 + KS R α = 1 + Ks r α •
The proposition thus follows by induction on ℓ ∈ N.

4.3 Modifications in the case 0 < α < 1

Throughout §4, the assumption α ≥ 1 has only been used in the third step of the proof of proposition 18, i.e. to ascertain the propagation of the concentration. Let us investigate in this subsection how to deal with the case 0 < α < 1.

When dealing with the super-critical case, L. Silvestre [START_REF] Silvestre | Hölder estimates for advection fractional-diffusion equations[END_REF] assumes a higher regularity for the advection field. We will do the same here and assume respectively that v ∈ C 1-α (R d ) or C 1-α (T d ). The identity (41) still holds. To deal with the transport term, one uses

v(x) -vB(x(s),r) ≤ 1 |B(x(s), r)| B(x(s),r) |v(x) -v(y)|dy ≤ v C 1-α B(x(s),r) |x -y| 1-α dy, which gives v(x) -vB(x(s),r) ≤ (|x -x(s)| + r) 1-α v C 1-α . (52) 
For J 0 , one takes a = ∞ and the same constraints for the exponents b and c, thus

J 0 r -(α-ω) A b * v C 1-α .
Similarly, for J k , one takes q 1 = ∞:

E k (s) |v -vB(x(s),r) ||ψ| 2 k(1-α) r 1-α v C 1-α thus J k 2 -k(α-ω) r -(α-ω) v C 1-
α and as ω < α, the geometric series in k is convergent. The estimate (45) can therefore be replaced by

I 1 r -(α-ω) A b * v C 1-α with b * = 1 -ω d(1 -1 p ) + ε, ε > 0. (53) 
For the non-local viscous term, the estimate (47) remains valid. The sole difference is that now

d d -(1 -ω) > d d -(α -ω)
and, consequently, the requirement (44) trumps (46).

Putting together (41) with ( 53) and (47), one gets:

|χ ′ (s)| r -(α-ω) A b * v C 1-α + A µ * and χ(s) ≤ r ω 1 + C ′ d,p,α A b * v C 1-α + A µ * s r α .
The conclusion is identical, provided that A is large enough and that the choice of K and δ ensures

K ≥ α ω δ + C ′ d,p,α A b * v C 1-α + A µ * (54) 
instead of (48). Note that to reconcile (54) with (38) for large A, one needs α > ω ∨ (1 -ω), which is always possible if α > 1/2. However, when α ≤ 1/2, one needs one final modification, which is to replace the average vB(x(s),r) by the point-wise value v(x(s)), where:

x ′ (s) = v(x(s)), x(0) = x 0 . (55) 
In this case, estimate (52) is improved one step further into the following one:

|v(x) -v(x(s))| ≤ |x -x(s)| 1-α v C 1-α . (56) 
This changes J 0 into

J 0 = B(x(s),r) |x -x(s)| -(α-ω) |ψ|,
which is then estimated in an identical manner to I 2 . Note that this modification also allows us to drop all requirements concerning b * and in particular (44), which is beneficial for any α ∈ (0, 1). Let us finally point out that, in the other parts of the proof, the requirement d > α now allows for any dimension d ≥ 1. We have thus established the following statement:

Proposition 24 Let us assume that 0 < α < 1 and d ≥ 1 and that the velocity field v ∈ C 1-α satisfies

(p -1) (div v) -L ∞ t L d/α x ≤ S α/2 (R d ) (57) 
for some p = 2 n with n ∈ N such that

p > d d -(α -ω) with 0 < ω < α.
Then there exist constants δ, K and γ (and a lower threshold for A), depending only on d, p, α and v C 1-α , such that for all r ∈ (0, 1], the following implication holds:

ψ 0 ∈ A p r =⇒ ∀s > 0, ψ(s, •) ∈ 1 + Ks r α -δ/K A (r α +Ks) 1/α ( 58 
)
where ψ denotes the solution of the Cauchy problem [START_REF] Mouhot | Hörmander theories: new interplay[END_REF].

Remark 25 Note that we can take p = 2 in the previous statement (and thus, using remark 19, claim a similar one in the case of

T d ) if d 2 > α -ω.
Such a choice is always possible.

Proof of Theorem 1

The proof of theorem 1 is now straightforward.

Given d ≥ 2 and 1 ≤ α ≤ 2 (with d ≥ 3 when α = 2), one chooses ω ∈ (0, 1) such that α -1 < ω < 1 if α < 2, or ω > 1/2 if α = 2. One checks immediately that ω < α < d and d > 2(α -ω). Let us now consider an advection vector field v ∈ BMO with

(div v) -L d/α ≤ S α/2 .
One takes p = 2. One chooses the constant A, which is implicit in the definition of atoms, according to the threshold mentioned in remark 21; this threshold depends solely on d, α and v BMO . One considers the constants γ, δ and K given by propositions 18 and 23 and sets

β = αδ/K.
The value of β depends on d, α and v BMO .

For d ≥ 1 and 0 < α < 1, one chooses ω such that (α -d 2 ) + < ω < α and p = 2. In this case, the BMO norm is replaced by the C 1-α -norm in all computations.

Remark 26 When (div v) -L d/α < 2S α/2 , one can still run the following proof. However, the choice of A and of all constants then depends not only on v BMO but also on C(v) = 2S α/2 -(div v) -L d/α > 0 and degenerates as C(v) → 0. See remark 15.

Propagation of the Hölder regularity

For any solution θ of (1) stemming from θ 0 ∈ C β and for ψ 0 ∈ A 2 r , identity [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF] implies that: where ψ is solution of the dual equation [START_REF] Kiselev | Global well-posedness for the critical 2D dissipative quasi-geostrophic equation[END_REF], which, by proposition 23, is an atom of calibrated size. Using [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF] for θ 0 , one gets:

r -β R d θ(t, x)ψ 0 (x)dx r -β 1 + Kt r α -δ/K (r α + Kt) β/α θ 0 C β = θ 0 C β .
A second application of ( 14) then ensures that θ(t) ∈ C β and that

θ(t) C β ≤ C θ 0 C β .
The constant C is the implicit one in [START_REF] Kiselev | Variation on a theme of Caffarelli and Vasseur[END_REF].

Remark 27 The same argument also gives θ(t) C β ′ ≤ C θ 0 C β ′ for any 0 ≤ β ′ ≤ β.

Gain in Hölder regularity

One can use the Hölder inequality and proposition 5 with p = 2 to control R d θ 0 (x)ψ(t, x)dx ≤ θ 0 L q ψ(t) L q ′ ≤ A 2/q r β θ 0 L q (r α + Kt)

(β+ d q )/α r β t -(β+ d q )/α θ 0 L q
for any Lebesgue exponent q such that 2 ≤ q ≤ ∞. One thus gets a regularization estimate:

θ(t, •) C β ≃ sup 0<r≤1 ψ 0 ∈A 2 r r -β R d
θ(t, x)ψ 0 (x)dx ≤ Ct -(β+ d q )/α θ 0 L q with a constant C that depends on q and A and thus ultimately on d, α and v BMO .

A Appendix: on the L 1 -control of atoms

Even without the a-priori constraint ψ L 1 ≤ 1, one can control the L 1 -norm of atoms (or any L q norm for q ≤ p) by a real interpolation estimate. 

and, more generally, for any 1 ≤ q ≤ p, one has ϕ L q ≤ C d,p,q A ω+d(1-1/q) ω+d(1-1/p) r -d(1-1 q ) . (60)

Remark 29 Compared to proposition 5, these estimates "lose" powers of A, which would provoke a critical collision of exponents in the previous proof (see remark 22). |B(0, 1)| 1-1 p + r ρ ω and (59) follows from choosing the optimal value ρ = r A|B(0, 1)| 1-1 p -1/(ω+d(1-1 p )) . For the second estimate, one proceeds similarly with τ ∈ [0, r]; for clarity, we do not track the constant related to |B(0, 1)|:

R d |ϕ| q ≤ B(x 0 ,τ ) |ϕ| q + R d \B(x 0 ,τ ) |ϕ| q R d |ϕ| p q p τ d(1-q p ) + τ -ω R d \B(x 0 ,τ ) |ϕ(x)|Ω(x -x 0 )dx p-q p-1 R d |ϕ| p q-1 p-1
, thanks to the Hölder inequality (with p/q ≥ 1) for the first term, and the interpolation inequality f L q ≤ f 1-θ L 1 f θ L p with θ = (1 -1 q )/(1 -1 p ) ∈ [0, 1] for the second. We now use the fact that ϕ ∈ A p r and deduce that

R d |ϕ| q Ar -d(1-1 p ) q τ d(1-q p ) + r τ ω( p-q p-1 )
(A p r -(p-1)d ) q-1 p-1 .

The optimal choice for τ is the one that balances the weight of both terms; it is τ = rA -p/(d(p-1)+ωp) . The computation then boils down to R d |ϕ| q r -(q-1)d A dp(q-1)+ωpq d(p-1)+ωp i.e. ϕ L q A ω+d(1-1/q) ω+d(1-1/p) r -d(1-1 q )

and the lemma is proven.

  x)ψ 0 (x)dx = R d θ 0 (x)ψ(t, x)dx

Proposition 28

 28 If ϕ satisfies ϕ L p ≤ Ar -d(1-1 p ) ,and∃x 0 ∈ R d , R d |ϕ(x)|Ω(x -x 0 )dx ≤ r ω for some 0 < r ≤ 1 and p ∈ (1, ∞], then ϕ L 1 ≤ C d,p A ω/(ω+d(1-1 p ))

Proof.

  For any ρ ∈ [0, r], one hasϕ L 1 ≤ B(x 0 ,ρ) |ϕ| + ρ -ω R d \B(x 0 ,ρ) |ϕ(x)|Ω(x -x 0 )dx ≤ A ρ r d(1-1 p )

  1/α . Remark 21 Our conditions (38) and (48) generalize respectively the conditions 4.6 -4.15 of [14]. Both conditions are compatible, provided A is chosen large enough, because µ > b * ∨ µ * .