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A CLASS FORMULA FOR ADMISSIBLE ANDERSON MODULES

BRUNO ANGLÈS, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Abstract. In 2012 Taelman proved a class formula for Drinfeld Fq [t]-modules.
For an arbitrary coefficient ring A, several deep but partial results in the

direction of a class formula for Drinfeld A-modules have been obtained. In

this paper, using a completely new approach based on the notion of Stark
units, we establish the class formula for Drinfeld A-modules in full generality.

Further we extend this class formula for A-finite or abelian Anderson modules

and more generally for admissible Anderson modules.
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Introduction

The celebrated class number formula relates many important invariants of a
number field (e.g., the ideal class number, the regulator of units) to a special value
of its Dedekind zeta function. By analogy between number fields and function fields,
Carlitz suggested to transport the classical results to the function field setting in
positive characteristic. In 1935, Carlitz [13] succeeded to prove the first instance of
the class formula for special Carlitz zeta values. These zeta values are attached to
the field of rational functions equipped with the infinity place (i.e., when A = Fq[t])
and intimately related to the so-called Carlitz module which is the first example of
a Drinfeld module. In 2010, an important breakthrough was due to Taelman who
gave an elegant and simple conjectural class formula for Drinfeld Fq[t]-modules (see
[28], Conjecture 1). It states that the special value of the Goss L-function attached
to a Drinfeld module at s = 1 is the product of a regulator term that is the covolume
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of the module of units and an algebraic term arising from a certain class module.
Shortly after, Taelman [29] used the trace formula of Anderson [4] and proved this
conjecture.

Following the fundamental work of Taelman, in recent years, the class formula
has been rapidly developed in different directions. Fang [18] and Demeslay [15,
16] proved the class formula for Anderson Fq[t]-modules that are generalizations
of Drinfeld Fq[t]-modules in higher dimensions. For general A, the class formula
for Anderson A-modules is shown in particular cases and we refer the reader to
[7, 8, 14, 31, 33]. Recently, motivated by the works of Böckle-Pink [11] and V.
Lafforgue [21], Mornev [24] developed a theory of shtuka cohomology and proved
the class formula for Drinfeld A-modules having good reduction everywhere.

In the present paper, for an arbitrary coefficient ring A, we prove the class
formula for Drinfeld A-modules in full generality, which generalizes the works of
Taelman [29] and Mornev [24]. Our approach is completely different from the
aforementioned works and based on the notion of Stark units developed in [7, 9, 10].
Further, we extend our proof to establish the class formula for admissible Anderson
modules, in particular for A-finite or abelian Anderson modules.

Let us give now more precise statements of our results.

Throughout this paper, let K be a global function field over a finite field Fq
of characteristic p, having q elements (Fq is algebraically closed in K). We fix a
place ∞ of K of degree d∞ ≥ 1 and denote by A the ring of elements of K which
are regular outside ∞. The ∞-adic completion K∞ of K is equipped with the
normalized ∞-adic valuation v∞ : K∞ → Z ∪ {+∞} and has residue field F∞.
The completion C∞ of a fixed algebraic closure K∞ of K∞ comes with a unique
valuation extending v∞, which will be denoted by v∞. With the valuation v∞, we
can define the following norm on C∞: |x| = q−v∞(x). We define the Frobenius map
τ : C∞ → C∞ as the Fq-algebra homomorphism which sends x to xq.

Let ι : K ↪→ L be a field homomorphism (necessarily injective) such that L/ι(K)
is a finite extension and let OL be the integral closure of ι(A) in L. We set L∞ :=
L⊗KK∞. We recall the definition of Anderson modules of generic characteristic and
refer the reader to Section 2 for the general definition. An Anderson A-module (or
an Anderson module for short) E of dimension d defined over OL is an Fq-algebra
homomorphism E : A→ Md×d(OL){τ} such that E does not take all its values in
Md×d(OL) and for all a ∈ A, if we write Ea =

∑
k≥0Ea,kτ

k with Ea,k ∈Md×d(OL),
then we require

(Ea,0 − ι(a)Id)
d = 0d.

We denote by ∂E : A→Md×d(L) the Fq-algebra homomorphism given by ∂E(a) =
Ea,0 for a ∈ A. By definition, a Drinfeld A-module (of generic characteristic) is
just an Anderson module of dimension 1.

Let R be an OL-algebra. We can define two A-module structures on Rd: the first
one is denoted by E(R) where A acts on Rd via E, and the second one is denoted
by LieE(R) where A acts on Rd via ∂E .

There exists a unique power series called the exponential series expE ∈ Id +
Md×d(L){{τ}}τ such that

expE ∂E(a) = Ea expE , for all a ∈ A.
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The exponential series expE converges on LieE(L∞). Taelman [28] introduced the
unit module attached to E/OL as follows:

U(E/OL) := {x ∈ LieE(L∞) | expE(x) ∈ E(OL)}.
By [28], U(E/OL) is in fact an A-lattice in LieE(L∞). In other words, U(E/OL)
is a finitely generated A-module which is discrete and cocompact in LieE(L∞).

Following the pioneer work of Anderson [3] in which he introduced the analogue of
cyclotomic units for the Carlitz module, the authors have introduced and developed
the theory of Stark units for Anderson modules. Roughly speaking, they are units
coming from the canonical deformation of Drinfeld modules in Tate algebras in the
sense of Pellarin [26]. The germs of the concept of Stark units can be found in
[5, 6]. The notion has been conceptualized in [10] for Drinfeld modules over Fq[t]
and then further developed in the general context in [7, 8, 9].

The notion of Stark units is a powerful tool for investigating log-algebraicity iden-
tities. A log-algebraicity result consists of the construction of a specific unit in con-
nection with special L-values of a Drinfeld module. The notion of log-algebraicity
was first introduced by Thakur (see [31, 32]). It has been notably developed by
Anderson [2] and has become a very active topic in function field arithmetic. We
note that the units obtained by log-algebraicity theorems turn out to be always
Stark units.

More precisely, the Stark units attached to E/OL are units coming from the

canonical z-deformation Ẽ of E. By definition, letting z be an indeterminate with

the rule τz = zτ , we denote by Ẽ the homomorphism of Fq(z)-algebras Ẽ : Fq(z)⊗Fq

A→Md×d(Fq(z)⊗Fq OL){τ} such that

Ẽa =
∑
k≥0

zkEa,kτ
k, for all a ∈ A.

We write expE =
∑
i≥0 eiτ

i with ei ∈Md×d(L) and set expẼ :=
∑
i≥0 z

ieiτ
i. Then

one sees easily that expẼ ∂E(a) = Ẽa expẼ for all a ∈ A. Further, expẼ converges
on LieẼ(Tz(L∞)) where Tz(L∞) is the ∞-adic completion of L∞[z]. Thus we can
define

U(Ẽ/OL[z]) := {x ∈ LieẼ(Tz(L∞)) | expẼ(x) ∈ Ẽ(OL[z])}.
Let ev : LieẼ(Tz(L∞)) → LieE(L∞) be the evaluation at z = 1. We define the
module of Stark units by

USt(E/OL) := ev(U(Ẽ/OL[z])).

One can prove that USt(E/OL) is a sub-A-lattice of U(E/OL) in LieE(L∞). Con-
sequently, we get a regulator term [LieE(OL) : USt(E/OL)]A which is an invertible
A-lattice in K∞.

Next, we introduce the special L-value attached to E/OL. For any prime P in
OL, we define the local factor

ZP(E/OL) :=
FittA (LieE(OL/POL))

FittA (E(OL/POL))

which is an A-lattice in K∞. We would like to deal with the infinite product of
A-lattices in K∞ given by

L(E/OL) =
∏
P

ZP(E/OL)
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where the product runs over the set of primes P in OL. The rough idea is to
reduce this infinite product of A-lattices to an infinite product of elements in K∞.
The precise idea is given in Definition 4.1. In particular, if E is an admissible
Anderson module, then for all except finitely many primes P in OL, the local factor
ZP(E/OL) is a principal lattice generated by an element zP ∈ K∞, and we require
that the infinite product

∏
P zP converges in K∞.

One of our main results is the following theorem:

Theorem A (Theorem 4.7). Let E be an admissible Anderson A-module defined
over OL. Then we have the class formula

[LieE(OL) : USt(E/OL)]A = L(E/OL).

As we mentioned above, the notion of Stark units is conceived to prove log-
algebraicity identities. It is quite unexpected that it can be used to prove the
previous class formula.

As a first application, we prove that all Anderson A-modules are admissible
when A = Fq[t] and recover (see Theorem 5.2) the class formula for Anderson
Fq[t]-modules already proved in [18] and [15, 16]. By reduction from a general
coefficient ring A to Fq[t], we show that admissibility is equivalent to an a priori
weaker condition than that given in Definition 4.1, which is, roughly speaking, that
for almost all primes P in OL, the local factor of the z-deformation of E at P is
principal (see Theorem 5.6 for a precise statement).

We then show that any A-finite or abelian Anderson module is admissible (see
Theorems 6.1 and 6.3). In particular, the class formula holds for A-finite or abelian
Anderson modules (see Theorem 6.4). As an immediate consequence, the class
formula holds for Drinfeld A-modules since Drinfeld A-modules are always A-finite
and abelian. This theorem generalizes the works of Taelman [29] and Mornev [24].

Theorem B (Corollary 6.5). Let φ be a Drinfeld A-module defined over OL. Then
L(φ/OL) is well-defined and is a principal A-lattice in K∞. Furthermore we have
the following class formula

[OL : USt(φ/OL)]A = [OL : U(φ/OL)]A FittA (H(φ/OL)) = L(φ/OL).

Acknowledgments. We would like to express our gratitude to the referee for his
valuable suggestions and comments which helped improve the paper.

The second author (T. ND.) was partially supported by ANR Grant COLOSS
ANR-19-CE40-0015-02.

1. Background

1.1. Notation. We keep the notation in the Introduction. Further, we fix a uni-
formizer π of K∞ and identify K∞ = F∞((π)).

Letting z be an indeterminate, we will consider a field k which is either Fq or
Fq(z). We endow k⊗Fq K with the topology coming from the discrete topology on
k and the v∞-adic topology on K, and consider its completion

k∞ := k⊗̂Fq
K∞.

Note that k∞ = K∞ = F∞((π)) if k = Fq and k∞ = F∞(z)((π)) if k = Fq(z).
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We still denote by v∞ the ∞-adic Gauss valuation on K∞(z). We denote by

Tz(K∞) the completion of K∞[z] for v∞ and K̃∞ the completion of K∞(z) for v∞.

Then the Fq(z)-vector space generated by Tz(K∞) is dense in K̃∞. Observe that
Tz(K∞) = F∞[z]((π)).

1.2. Fitting ideals. We recall basic facts on the theory of Fitting ideals. The
standard references are the appendix to [23] and [17, 22, 25]. We will call here
Fitting ideal what is usually called in the theory the initial or zero-th Fitting ideal.

We consider a commutative ring R and a finitely presented R-module M . Note
that if R is Noetherian, then this is equivalent to M being finitely generated. If

Ra −→ Rb −→M −→ 0

is a presentation of M , and if X is the matrix of the map Ra → Rb, then one defines
FittR (M) to be the ideal of R generated by all the b× b minors of X if b ≤ a, and
FittR (M) = 0 if b > a. This is independent of the choice of presentation for M .
Note that if M is torsion, one always has b ≤ a.

We list below basic properties of Fitting ideals.

(1) If M 'M1 ×M2 is a direct product of finitely presented R-modules, then
FittR (M) = FittR (M1) · FittR (M2).

(2) One always has FittR (M) ⊂ AnnR(M), and if M is generated by b ele-
ments, then AnnR(M)b ⊂ FittR (M).

(3) If 0 → M1 → M → M2 → 0 is exact, then FittR (M1) · FittR (M2) ⊂
FittR (M).

(4) If I ⊂ R is an ideal, then FittR/I (M/IM) is the image of FittR (M) in
R/I.

(5) More generally, ifR→ R′ is a ring homomorphism, then FittR′ (R
′ ⊗RM) =

R′ ⊗R FittR (M).

All the assertions above can be found in [23], except the last one which appears
in [17], Corollary 20.5 as an immediate consequence of the right exactness of the
tensor product.

In the case where R is a Dedekind ring, the structure theorem asserts that if M
is a finitely generated and torsion R-module, then there exist ideals I1, . . . , In of R
such that M ' R/I1×· · ·×R/In. We deduce that FittR (M) =

∏n
i=1 Ii. Moreover,

Fitting ideals are multiplicative in exact sequences. That is, if 0 → M1 → M →
M2 → 0 is exact, then FittR (M1) · FittR (M2) = FittR (M). This can be deduced
from [12], Chapter VII, Section 4 n.5, Proposition 10.

1.3. Ratio of co-volumes. We define the ratio of co-volumes by following the
ideas presented in [12], Chapter VII, Section 4 n.6. The reader can compare this
section with the original construction of [29] or with [7], Section 2.3.

In this section, k is either Fq or Fq(z) and we recall that the field k∞ := k⊗̂Fq
K∞

can be identified with k((π)). If V is a finite dimensional k∞-vector space, then it
is endowed with the natural topology coming from k∞. We set kA := k ⊗Fq A.

Definition 1.1. Let V be a finite dimensional k∞-vector space. A sub-kA-module
M of V is a kA-lattice in V if M is discrete in V and M generates V over k∞.

We recall the following standard fact.
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Lemma 1.2. Let V be a finite dimensional k∞-vector space, and let M be a sub-
kA-module of V . Then M is discrete in V if and only if there exist e1, . . . , en ∈M
which are k∞-linearly independent and such that the quotient M/ ⊕ni=1 kAei is a
finite dimensional k-vector space.

As an immediate consequence, we obtain the following proposition.

Proposition 1.3. Let V be a finite dimensional k∞-vector space, and let M be a
sub-kA-module of V . The following assertions are equivalent:

(i) M is a kA-lattice in V .
(ii) M is discrete in V , finitely generated as a kA-module such that

dimFrac(kA)M ⊗kA Frac(kA) = dimk∞ V.

(iii) There exists a k∞-basis (e1, . . . , en) of V such that for all 1 ≤ i ≤ n,
ei ∈M , and the quotient M

⊕n
i=1kAei

is a finite dimensional k-vector space.

We now introduce the notion of ratio of co-volumes of lattices.

Let us start with the case where V is a k∞-vector space of dimension one. We
write V = k∞e. Let M be a kA-lattice in V . By Proposition 1.3, there exist a
non-zero fractional ideal IM of kA and αM ∈ k×∞ such that M = αMIMe. Letting
M,M ′ be two kA-lattices in V , we define

[M ′ : M ]kA := αMα
−1
M ′IMI

−1
M ′ .

We see that [M ′ : M ]kA is a well-defined kA-lattice in k∞ and does not depend on
the choice of e. Furthermore, if M ⊂M ′, then

[M ′ : M ]kA = FittkA (M ′/M) .

We also observe that, if M1,M2,M3 are three kA-lattices in V , then

[M1 : M3]kA = [M1 : M2]kA [M2 : M3]kA .

Let us deal now with the general case. We put n = dimk∞ V . Then ∧nV is a
k∞-vector space of dimension one, and we denote by ∧n : V n → ∧nV the natural
k∞-multilinear map. Let M,M ′ be two kA-lattices in V . We denote by N and N ′

the respective images of Mn and M ′n in ∧nV via the map ∧n. By Proposition 1.3,
both N and N ′ are kA-lattices in ∧nV . We set

[M ′ : M ]kA := [N ′ : N ]kA .

Remark 1.4. Let us emphasize that [M ′ : M ]kA is a kA-lattice in k∞ and not an
element of k×∞ as it is the case in many previous works, notably those of Taelman
[27, 28, 29].

Since kA is a Dedekind domain, it follows that there exist two k∞-bases (e1, . . . , en)
and (f1, . . . , fn) of V such that

M = ⊕n−1
i=1 kAei ⊕ Ien,

M ′ = ⊕n−1
i=1 kAfi ⊕ Jfn,

where I, J are two non-zero fractional ideals of kA. Let σ : V → V be the k∞-linear
isomorphism of V such that σ(ei) = fi. Then

N = I e1 ∧ · · · ∧ en,
N ′ = det(σ)J e1 ∧ · · · ∧ en.
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Thus we get
[M ′ : M ]kA = det(σ)−1IJ−1.

Note that the set of kA-lattices in k∞ is naturally an abelian group, and

[M : M ′]kA = [M ′ : M ]
−1
kA .

Finally, if M1,M2,M3 are three kA-lattices in V , then

[M1 : M3]kA = [M1 : M2]kA [M2 : M3]kA .

Proposition 1.5. If M and M ′ are two kA-lattices of a finite dimensional k∞-
vector space V with M ′ ⊂M , then M/M ′ is torsion and

[M : M ′]kA = FittkA (M/M ′) .

Proof. It is clear that a quotient of lattices is torsion. By Proposition 1.3, M is
contained in a lattice L which is free over kA. It implies that

0 −→M −→ L −→ L/M −→ 0

is a presentation of L/M . If (e1, . . . , en) is a kA-basis of L, and N is the image of
Mn in

∧n
V , it is equal to Ie1 ∧ · · · ∧ en where I is the ideal of kA generated by

the n×n determinants of elements of M written in the basis (e1, . . . , en). Thus the
definitions of [L : M ]kA and FittkA (L/M) coincide. Moreover, we have an exact
sequence of finitely generated and torsion kA-modules

0 −→M/M ′ −→ L/M ′ −→ L/M −→ 0,

so that

FittkA (M/M ′) = FittkA (L/M ′) FittkA (L/M)
−1

= [L : M ′]kA [L : M ]
−1
kA

= [M : M ′]kA .

The proof is finished. �

We obtain immediately the following corollary.

Corollary 1.6. Let V be a finite dimensional k∞-vector space and let M,M ′ be two
kA-lattices in V . Let σ : V → V be a k∞-linear isomorphism such that σ(M) ⊂M ′.
Then

[M ′ : M ]kA = detσ−1 · FittkA

(
M ′

σ(M)

)
.

2. Anderson modules

Let d ≥ 1 be an integer. For an Fq-algebra R, let M = (ai,j)1≤i,j≤d ∈Md×d(R)

be a d × d matrix with coefficients in R. If k is an integer, we set M (k) to be the

matrix whose ij-entry is given by (ai,j)
(k) := (aq

k

i,j). We denote by Md×d(R){τ}
the non-commutative ring of twisted polynomials in τ with coefficients in Md×d(R)
equipped with the usual addition and the commutation rule

τkM = M (k)τk, for all k ∈ Z.

Now let R be a field extension of Fq equipped with an Fq-algebra homomorphism
ι : A→ R. An Anderson A-module (or an Anderson module for short) of dimension
d over R is an Fq-algebra homomorphism E : A→Md×d(R){τ} such that
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1) For all a ∈ A, if we write Ea =
∑
k≥0Ea,kτ

k with Ea,k ∈ Md×d(R), then we
require

(Ea,0 − ι(a)Id)
d = 0d.

2) There exists a ∈ A such that Ea 6= Ea,0.

We denote by ∂E : A→Md×d(R) the Fq-algebra homomorphism given by ∂E(a) =
Ea,0 for all a ∈ A.

By definition, a Drinfeld module over R is an Anderson module of dimension 1
over R.

Let E be an Anderson module of dimension d over R as above and let B be an
R-algebra. We can define two A-module structures on Bd. The first one is denoted
by E(B) where A acts on Bd via E:

a ·

m1

...
md

 =
∑
k≥0

Ea,k


mqk

1
...

mqk

d

 , for all a ∈ A,

m1

...
md

 ∈ Bd.
The second one is denoted by LieE(B) where A acts on Bd via ∂E :

a ·

m1

...
md

 = Ea,0

m1

...
md

 , for all a ∈ A,

m1

...
md

 ∈ Bd.
2.1. Setup. From now on, L will denote a field equipped with a field homomor-
phism ι : K ↪→ L such that L/ι(K) is a finite extension. Let OL be the integral
closure of ι(A) in L. We set L∞ := L⊗K K∞. We view L as contained in L∞ via
the diagonal embedding x 7→ x ⊗ 1. We let the Frobenius map τ act on L or L∞
by x 7→ xq.

We now consider an Anderson module E defined over OL, that means Ea ∈
Md×d(OL){τ} for all a ∈ A. It follows that we have an Fq-algebra homomorphism
∂E : A → Md×d(OL) which extends uniquely to a continuous map ∂E : K∞ →
Md×d(L∞) (see for example [16], Section 2.1.2).

Let Md×d(L){{τ}} be the non-commutative ring of twisted power series in τ
with coefficient in Md×d(L). One can show that there exist unique power series
expE , logE ∈ Id+Md×d(L){{τ}}τ (see [19], Theorem 5.9.6) satisfying the following
equalities in Md×d(L){{τ}}:

expE ∂E(a) = Ea expE , for all a ∈ A,
logE Ea = ∂E(a) logE , for all a ∈ A,

expE logE = logE expE = Id.

These power series expE and logE are called the exponential series and the logarithm
series attached to E. The exponential series expE converges on LieE(L∞) (see for
example [19], Section 5.9, and the original article of Anderson [1]). In particular,
expE induces a homomorphism of A-modules

expE : LieE(L∞)→ E(L∞).

We should stress that the logarithm series logE does not converge everywhere but
only on a neighborhood of 0.
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Following Taelman [28], we introduce the unit module attached to E/OL as
follows:

U(E/OL) := {x ∈ LieE(L∞) | expE(x) ∈ E(OL)}.
By [28], one can easily deduce that U(E/OL) is in fact an A-lattice in LieE(L∞).
Since U(E/OL) = exp−1

E (E(OL)), we deduce that the exponential series expE in-
duces an exact sequence of A-modules

0→ U(E/OL)→ LieE(L∞)→ E(L∞)

E(OL)
→ E(L∞)

E(OL) + expE(LieE(L∞))
→ 0.

One can show (see [28], Theorem 1) that

H(E/OL) :=
E(L∞)

E(OL) + expE(LieE(L∞))

is a finite A-module which is called the class module attached to E/OL.

2.2. The z-deformation of an Anderson module. We keep the previous no-
tation. We recall in particular that z is an indeterminate over K∞ and Tz(K∞) is
the Tate algebra in the variable z with coefficients in K∞. We set

Tz(L∞) := L∞ ⊗K∞ Tz(K∞).

The map τ : L∞ → L∞, x 7→ xq, extends uniquely into a continuous homomorphism

of Fq[z]-algebras τ : Tz(L∞)→ Tz(L∞). Let L̃∞ := L⊗K K̃∞ and ÕL be the Fq(z)-
vector space generated by OL in L̃∞.

Similarly, we set Ã := Fq(z) ⊗Fq A. Then the z-deformation of the Anderson

module E denoted by Ẽ is defined to be the homomorphism of Fq(z)-algebras

Ẽ : Ã→Md×d(ÕL){τ} such that

Ẽa =
∑
k≥0

zkEa,kτ
k, for all a ∈ A.

If R is an OL[z]-module endowed with a semilinear map τ : R→ R with respect to

τ : OL[z]→ OL[z] (e.g., R = Tz(L∞) or R = L̃∞), then we denote by LieẼ(R) the

A[z]-module Rd where a acts via ∂E(a) and by Ẽ(R) the A[z]-module Rd where

a acts via Ẽa. In both cases, if R is an Fq(z)-algebra, then we can extend the

structures of A[z]-modules to structures of Ã-modules by linearity.

Lemma 2.1. There exist unique elements expẼ , logẼ ∈ Id + Md×d(L[z]){{τ}}τ
such that

(1) expẼ ∂E(a) = Ẽa expẼ for all a ∈ A,

(2) ∂E(a) logẼ = logẼ Ẽa for all a ∈ A.

Moreover, if expE =
∑
i≥0 eiτ

i, and logE =
∑
i≥0 liτ

i with ei, li ∈Md×d(L), then

expẼ =
∑
i≥0

zieiτ
i, and logẼ =

∑
i≥0

ziliτ
i.

In particular, expẼ ◦ logẼ = Id = logẼ ◦ expẼ and expẼ converges on LieẼ(Tz(L∞)),
is locally an isometry and induces a homomorphism of A[z]-modules

expẼ : LieẼ(Tz(L∞))→ Ẽ(Tz(L∞)).
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Proof. Let us fix a ∈ A, a /∈ Fq; Then the functional equation expẼ ∂E(a) =

Ẽa expẼ induces a triangular system for the coefficients of expẼ , from which we de-
duce their uniqueness. From the identity expE ∂E(a) = Ea expE , it follows formally
that expẼ =

∑
i≥0 z

ieiτ
i satisfies the desired equation. The same argument can be

used for logẼ . The other statements are standard consequences of the properties
of the coefficients ei of expE and are left to the reader. �

We define

U(Ẽ/OL[z]) := {x ∈ LieẼ(Tz(L∞)) | expẼ(x) ∈ Ẽ(OL[z])},

U(Ẽ/ÕL) := {x ∈ LieẼ(L̃∞) | expẼ(x) ∈ Ẽ(ÕL)}.
We can show (see [10], Proposition 1) that U(Ẽ/OL[z]) is a finitely generated A[z]-

module in LieẼ(Tz(L∞)) and that U(Ẽ/ÕL) is an Ã-lattice in LieẼ(L̃∞). Further,

U(Ẽ/ÕL) is the Fq(z)-vector space generated by U(Ẽ/OL[z]).

We set

H(Ẽ/OL[z]) :=
Ẽ(Tz(L∞))

Ẽ(OL[z]) + expẼ(LieẼ(Tz(L∞)))
,

H(Ẽ/ÕL) :=
Ẽ(L̃∞)

Ẽ(ÕL) + expẼ(LieẼ(L̃∞))
.

Proposition 2.2. The A[z]-module H(Ẽ/OL[z]) is a finitely generated and torsion
Fq[z]-module, with no z-torsion. In particular,

H(Ẽ/ÕL) = 0.

Proof. The proof is similar to that of [9], Theorem 3.3 for Anderson Fq[t]-modules
(see also [10], Proposition 2 and [7], Section 2.2 for Drinfeld modules). We quickly
recall the proof for the convenience of the reader.

Since expẼ is a local isometry, expẼ(LieẼ(Tz(L∞)) contains a neighborhood V

of 0 in LieẼ(Tz(L∞)). Since Ẽ(Tz(L∞))

Ẽ(OL[z])+V
is a finitely generated Fq[z]-module, so is

H(Ẽ/OL[z]).

Since expẼ ≡ Id (mod z), we see that H(Ẽ/OL[z])/zH(Ẽ/OL[z]) vanishes. The
result is then a consequence of the structure theorem for finitely generated Fq[z]-
modules. �

Let ev : LieẼ(Tz(L∞)) → LieE(L∞) be the evaluation at z = 1. Observe that
ev induces a short exact sequence of A-modules

0→ (z − 1) LieẼ(Tz(L∞))→ LieẼ(Tz(L∞))
ev−→ LieE(L∞)→ 0.

We define
USt(E/OL) := ev(U(Ẽ/OL[z])).

We observe that USt(E/OL) ⊂ U(E/OL). The A-module USt(E/OL) is called the
module of Stark units attached to E/OL. One can prove that USt(E/OL) is an A-
lattice in LieE(L∞) and that we have (see [7], Theorem 2.7, [9], proof of Theorem
3.3 or [10], Theorem 1)

(2.1) FittA

(
U(E/OL)

USt(E/OL)

)
= FittA (H(E/OL)) .
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3. Local factors

3.1. Local factors. For all non-zero ideals I of OL, we set

ZI(E/OL) :=
FittA (LieE(OL/IOL))

FittA (E(OL/IOL))
⊂ K∞,

ZI(Ẽ/ÕL) :=
FittÃ

(
LieẼ(ÕL/IÕL)

)
FittÃ

(
Ẽ(ÕL/IÕL)

) ⊂ K̃∞.

If P is a non-zero prime ideal of OL, then ZP will be called the local factor at P.
For an ideal I of A, we will write ZI instead of ZIOL

.

Lemma 3.1. Let I and J be two non-zero coprime ideals of OL. Then we have

ZIJ(E/OL) = ZI(E/OL)ZJ(E/OL),

ZIJ(Ẽ/ÕL) = ZI(Ẽ/ÕL)ZJ(Ẽ/ÕL).

Proof. This is an easy consequence of the Chinese Remainder Theorem. �

Lemma 3.2. Let I be a non-zero ideal of OL and n ≥ 1. Then we have

ZI(E/OL) = ZIn(E/OL),

ZI(Ẽ/ÕL) = ZIn(Ẽ/ÕL).

Proof. We give a proof by induction for the first equality since the second one can
be proved similarly. The case n = 1 is clear. Next, the short exact sequence

0→ In/In+1 → OL/I
n+1 → OL/I

n → 0

gives

FittA
(
LieE(OL/I

n+1)
)

= FittA
(
LieE(In/In+1)

)
FittA (LieE(OL/I

n)) ,

FittA
(
E(OL/I

n+1)
)

= FittA
(
E(In/In+1)

)
FittA (E(OL/I

n)) .

For any x ∈ In and a ∈ A, we know that Ea(x) ≡ ∂E(a)x (mod Iqn). Thus
E(In/In+1) ' LieE(In/In+1) as A-modules. It follows that FittA

(
E(In/In+1)

)
=

FittA
(
LieE(In/In+1)

)
. Thus we get

ZIn(E/OL) = ZIn+1(E/OL)

as desired. �

The following proposition is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.3. Let I be a non-zero ideal in OL. Then

ZI(E/OL) =
∏
P

ZP(E/OL),

ZI(Ẽ/ÕL) =
∏
P

ZP(Ẽ/ÕL),

where the product runs over all the primes P in OL containing I.
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3.2. Elimination of local factors. Let I = (ξ) be a principal ideal of OL. Then
there exists a unique Anderson A-module E′ over OL satisfying for all a ∈ A,

ξE′a = Eaξ. For a ∈ A, if Ea =
∑r
i=0Ea,iτ

i, then E′a =
∑r
i=0 ξ

qi−1Ea,iτ
i. Note

that for all a ∈ A, ∂E(a) = ∂E′(a).

Lemma 3.4. Let I = (ξ) be a principal ideal in OL and E′ be the Anderson
A-module over OL satisfying ξE′a = Eaξ for all a ∈ A. Then IU(E′/OL) is a
sub-A-module of U(E/OL). Further we have

ZI(E/OL) = [U(E′/OL) : U(E/OL)]A
FittA (H(E/OL))

FittA (H(E′/OL))
.

Proof. We denote by d the dimension of E. By the uniqueness of exponential series,
we see that

expE′ = ξ−1 expE ξ.

We deduce that

IU(E′/OL) = ξU(E′/OL) = {x ∈ LieE(L∞), expE(x) ∈ ξOdL}.

Thus IU(E′/OL) is a sub-A-module of U(E/OL). We deduce also that expE in-
duces an injection expE : U(E/OL)/IU(E′/OL) ↪→ OdL/ξO

d
L. We therefore get a

short exact sequence of torsion A-modules

0 −→ U(E/OL)

IU(E′/OL)
−→ E

(
OL
ξOL

)
−→ OdL + expE(LieE(L∞))

ξOdL + expE(LieE(L∞))
−→ 0

where A acts on the third term via E.

We then get

FittA (E(OL/IOL)) = FittA

(
U(E/OL)

IU(E′/OL)

)
FittA

(
OdL + expE(LieE(L∞))

ξOdL + expE(LieE(L∞))

)
.

Since U(E′/OL) et LieE(OL) have the same A-ranks, we obtain

FittA

(
U(E/OL)

IU(E′/OL)

)
= [U(E/OL) : U(E′/OL)]A FittA

(
U(E′/OL)

IU(E′/OL)

)
= [U(E/OL) : U(E′/OL)]A FittA (LieE(OL/IOL)) .

Further, we have

FittA

(
OdL + expE(LieE(L∞))

ξOdL + expE(LieE(L∞))

)
= FittA

(
Ld∞

ξOdL + expE(LieE(L∞))

)
FittA (H(E/OL))

−1
.

Since expE′ = ξ−1 expE ξ and ξLd∞ = Ld∞, we get isomorphisms of A-modules

Ld∞
ξOdL + expE(LieE(L∞))

=
Ld∞

ξOdL + ξ expE′(LieE(L∞))
' H(E′/OL).

The Lemma follows immediately. �
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Corollary 3.5. Let ξ ∈ OL be a non-zero element. Denote by P1, . . . ,Pn the
primes in OL containing ξ. Let E′ be the Anderson A-module over OL satisfying
for all a ∈ A, ξE′a = Eaξ. Then

n∏
i=1

ZPi
(E/OL) = [U(E′/OL) : U(E/OL)]A

FittA (H(E/OL))

FittA (H(E′/OL))
.

Proof. This is an immediate consequence of Proposition 3.3 and Lemma 3.4. �

By similar arguments and Proposition 2.2, we obtain the z-version of Corollary
3.5:

Proposition 3.6. Let ξ ∈ OL be a non-zero element. Denote by P1, . . . ,Pn the
primes in OL containing ξ. Let E′ be the Anderson A-module over OL satisfying
for all a ∈ A, ξE′a = Eaξ. Then we have

n∏
i=1

ZPi
(Ẽ/ÕL) =

[
U(Ẽ′/ÕL) : U(Ẽ/ÕL)

]
Ã
.

We also need the following lemma.

Lemma 3.7. Let ξ ∈ OL be a non-zero element and E′ be the Anderson A-module
over OL satisfying for all a ∈ A, ξE′a = Eaξ. Then for all primes P in OL
containing ξ, we have ZP(E′/OL) = A and ZP(Ẽ′/ÕL) = Ã. Otherwise, we have

ZP(E′/OL) = ZP(E/OL) and ZP(Ẽ′/ÕL) = ZP(Ẽ/ÕL).

Proof. Suppose first that P is a prime in OL containing ξ. By construction E′a ∈
a + ξOL[τ ] for all a ∈ A. Thus for all x ∈ OL and a ∈ A, we have E′a(x) ≡ ι(a)x

(mod POL). We deduce that ZP(E′/OL) = A and ZP(Ẽ′/ÕL) = Ã.

We now consider the case where P does not contain ξ. The desired equality is an
immediate consequence of the fact that the multiplication by ξ is an isomorphism
of OL/POL. �

4. Class formula à la Taelman

We keep the notation of Section 3. Recall that L/ι(K) is a finite extension, OL
denotes the integral closure of ι(A) in L and E is an Anderson module defined

over OL. Then Ẽ denotes the z-deformation of E and we have defined local factors
attached to E and Ẽ in Section 3.

4.1. Admissible Anderson modules.

Definition 4.1. We say that an Anderson module E defined over OL is admissible
if the following conditions are satisfied:

Condition (P ): There exists a finite set S of primes in OL such that for all primes
P in OL with P /∈ S, there exists xP ∈ A[z] such that

FittÃ

(
Ẽ(ÕL/PÕL)

)
= xPÃ,

and
FittA (LieE(OL/P)) = xP(0)A,

FittA (E(OL/P)) = xP(1)A.
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Condition (C): The infinite product∏
P/∈S

xP(0)

xP

converges in K̃∞.

Let E be an admissible Anderson module defined over OL as above. We set

x :=
∏
P/∈S

xP(0)

xP
∈ K̃∞,

y :=
∏
P/∈S

xP(0)

xP(1)
∈ K∞.

Then we define

L(Ẽ/ÕL) := (x)
∏
P∈S

ZP(Ẽ/ÕL) ⊂ K̃∞,

L(E/OL) := (y)
∏
P∈S

ZP(E/OL) ⊂ K∞.

Further, there exists a finite set S′ ⊃ S of primes in OL such that
∏

P/∈S′
xP(0)
xP

converges in Tz(K∞).

Remark 4.2. We shall prove in Theorem 5.6 that the admissibility of an Anderson
module is equivalent to a new condition called Condition (P ′) which is a priori
weaker than Condition (P ). Further we show that Condition (P ′) implies Condition
(C). We would like to thank the referee for suggesting this improvement.

4.2. A partial class formula over Fq(z) for admissible Anderson modules.
This section is devoted to the proof of the class formula over Fq(z) for admissible
Anderson modules.

Theorem 4.3. Let E be an admissible Anderson module defined over OL. Then
we have the partial class formula

(4.1)
[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã
⊂ L(Ẽ/ÕL).

The lattice
[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

is also called the regulator of U(Ẽ/ÕL).

This partial class formula thus states, roughly speaking, that the regulator of the

z-units is a sub-Ã-lattice of the L-series lattice.

Before giving a proof of the above Theorem, we need some preparatory results.
We denote by Fq[z](z) the localization of Fq[z] at the ideal (z).

Lemma 4.4. Let E be an Anderson module of dimension d defined over OL. We
write expE =

∑
k≥0 ekτ

k. Let n ≥ 1 be an integer such that for all 0 ≤ k ≤ n− 1,

the coefficient ek is integral, i.e., ek ∈ Md×d(OL). Then any non-zero element in

U(Ẽ/ÕL) can be written in the form za(α+ znβ) with a ∈ Z, α ∈ (Fq[z](z)OL[z])d

not divisible by z, and β ∈ (Fq[z](z)Tz(L∞))d.

Conversely, for any α ∈ (Fq[z](z)OL[z])d, there exists β ∈ (Fq[z](z)Tz(L∞))d

such that (α+ znβ) ∈ Fq[z](z)U(Ẽ/OL[z]).
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Proof. We write logE =
∑
k≥0 lkτ

k with lk ∈ Md×d(L). Since ek ∈ Md×d(OL) for
all 0 ≤ k ≤ n − 1, and logE ◦ expE = Id, it follows by induction on k that for

0 ≤ k ≤ n − 1, we also have lk ∈ Md×d(OL). Therefore, if u ∈ U(Ẽ/OL[z]), since
logẼ ◦ expẼ = Id, then we have

u ≡
n−1∑
k=0

lkz
kτk(expẼ(u)) (mod znL∞[[z]]d),

and thus

u ∈ OL[z]d (mod znTz(L∞)d).

Moreover, if u ∈ (Fq[z](z)Tz(L∞))d such that zu ∈ (Fq[z](z)U(Ẽ/OL[z]))d, then

u ∈ (Fq[z](z)U(Ẽ/OL[z]))d. Thus, if u ∈ U(Ẽ/OL[z]) is non-zero, then there exists

a ∈ N, α ∈ (OL[z])d not divisible by z, and β ∈ (Tz(L∞))d such that u = za(α +
znβ).

Since U(Ẽ/ÕL) is the Fq(z)-vector space generated by U(Ẽ/OL[z]), we deduce

that any element u ∈ U(Ẽ/ÕL) can be written in the form u = za(α + znβ) with
a ∈ Z, α ∈ (Fq[z](z)OL[z])d not divisible by z, and β ∈ (Fq[z](z)Tz(L∞))d.

Conversely, let α ∈ OL[z]d. By the assumption on the coefficients ek (0 ≤ k ≤
n − 1) of expE , there exist x ∈ OL[z]d and y ∈ Tz(L∞)d such that expẼ(α) =

x+ zny. By Proposition 2.2, there is f ∈ Fq[z] not divisible by z, y1 ∈ OL[z]d and

y2 ∈ Tz(L∞)d such that fy = y1 + expẼ(y2). Therefore, fα− zny2 ∈ U(Ẽ/OL[z]).
This concludes the proof. �

Proposition 4.5. We keep the hypothesis of Lemma 4.4. Then any non-zero el-

ement in
[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

can be written in the form za(α + znβ) with

a ∈ Z, α ∈ Fq[z](z)A not divisible by z, and β ∈ Fq[z](z)Tz(K∞).

Proof. The lattice
[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

can be computed in the following way.

We fix a K-basis B of LieE(L) in LieE(OL). If we set M := AB, then M is a
sub-A-lattice of LieE(OL). It follows that[

LieẼ(ÕL) : U(Ẽ/ÕL)
]
Ã

=
[
LieẼ(ÕL) : M̃

]
Ã

[
M̃ : U(Ẽ/ÕL)

]
Ã
.

Since [
LieẼ(ÕL) : M̃

]
Ã

= Fq(z) [LieE(OL) : M ]A ,

we are reduced to computing
[
M̃ : U(Ẽ/ÕL)

]
Ã

, that is, determinants of vectors of

elements of U(Ẽ/ÕL) in the basis B.

First we remark that by Lemma 4.4, the reduction map modulo zn induces a
surjective homomorphism of A-modules

Fq[z](z)U(Ẽ/OL[z])→ LieE(OL)⊗Fq Fq[z]/(zn).

Since LieE(OL)⊗Fq
Fq[z]/(zn) is finitely generated and torsion free over the Dedekind

domain A, it is projective. This implies that there exists a section to the above re-
duction map. By restriction to LieE(OL), we obtain a homomorphism of A-modules

µ : LieE(OL)→ Fq[z](z)U(Ẽ/OL[z]) such that for all m ∈ LieE(OL),

µ(m) ≡ m (mod znFq[z](z)Tz(L∞)).
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We see that µ extends to a K̃∞-linear map LieẼ(L̃∞) → LieẼ(L̃∞) so that its
determinant detµ is well-defined. For all m = (m1, . . . ,ms) ∈ LieE(OL)s where s
is the rank of OdL over A, we have detB(µ(m)) = detµdetB(m). We also note that

(4.2) detµ ∈ 1 + znFq[z](z)Tz(K∞).

By induction, we can prove that for all b ∈ N, u ∈ Fq[z](z)U(Ẽ/OL[z]), there
exist m0, . . . ,mb−1 ∈ LieE(OL) such that

u ≡
b−1∑
j=0

zjµ(mj) (mod zb).

We now compute sums of determinants. We consider r vectors ui = (ui,1, . . . , ui,s) ∈
U(Ẽ/ÕL)s, and compute

∑r
i=1 detB(ui). Since U(Ẽ/ÕL) is the Fq(z)-vector space

generated by U(Ẽ/OL[z]), we can suppose that all the coefficients ui,j belong to

Fq[z](z)U(Ẽ/OL[z]). We also suppose that
∑r
i=1 detB(ui) is not zero and let a be

the biggest integer such that za divides
∑r
i=1 detB(ui).

By the previous discussion, for 1 ≤ i ≤ r and 1 ≤ j ≤ s, there existmi,j,0, . . . ,mi,j,a+n−1 ∈
LieE(OL) such that

ui,j ≡
a+n−1∑
k=0

zjµ(mi,j,k) (mod za+n).

We set u′i,j :=
∑a+n−1
k=0 zjµ(mi,j,k) ∈ Fq[z](z)U(Ẽ/OL[z]) and u′i := (u′i,1, . . . , u

′
i,s).

It follows that

(4.3)

r∑
i=1

det
B

(ui) ≡
r∑
i=1

det
B

(u′i) (mod za+n),

and
r∑
i=1

det
B

(u′i) =

a+n−1∑
k=0

zk
r∑
i=1

∑
k1+···+ks=k

det
B

(µ(mi,1,k1), . . . , µ(mi,s,ks)) (mod za+n).

For 0 ≤ k < a, we put

Σk :=

r∑
i=1

∑
k1+···+ks=k

det
B

(µ(mi,1,k1), . . . , µ(mi,s,ks))

= (detµ)

r∑
i=1

∑
k1+···+ks=k

det
B

(mi,1,k1 , . . . ,mi,s,ks).

By (4.2), (4.3) and the assumption that za divides
∑r
i=1 detB(ui), we get by in-

duction on k that for all 0 ≤ k < a, Σk = 0.

We obtain
r∑
i=1

det
B

(u′i) = (detµ)

a+n−1∑
k=a

zk
r∑
i=1

∑
k1+···+ks=k

det
B

(mi,1,k1 , . . . ,mi,s,ks) (mod za+n).

Thus, by (4.2) again, if a ≤ j < a + n, the coefficient of zj of this determinant
belongs to [M : LieE(OL)]A, as desired. �

We are now ready to prove the main theorem of this Section.
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Proof of Theorem 4.3. We divide the proof into two steps.

Step 1. We first show that Theorem 4.3 holds for any admissible Anderson module
E defined over OL satisfying the following condition: for all primes P in OL,

ZP(Ẽ/ÕL) is principal.

In fact, we claim that there exists a sequence ξn ∈ OL\{0}, n ≥ 0 such that:

(i) for all n ∈ N, ξn+1 divides ξn,
(ii) for all primes P in OL, there exists n ∈ N such that ξn ∈ P,

(iii) for all n ∈ N, E[n] denotes the Anderson module such that ξnE
[n]
a = Eaξn

for all a ∈ A, we denote expE[n] =
∑
k≥0 e

[n]
k τk, then for all 0 ≤ k ≤ n− 1,

the coefficient e
[n]
k is integral, that means e

[n]
k ∈Md×d(OL).

Recall that expE =
∑
k≥0 ekτ

k. Then we have

expE[n] = ξ−1
n expE ξn =

∑
k≥0

ξq
k−1
n ekτ

k,

that is, e
[n]
k = ξq

k−1
n ek. Thus we can choose ξn ∈ OL\{0}, n ≥ 0 such that

Conditions (i) and (iii) are satisfied. Condition (ii) is verified by requiring ξn ∈ P
for all primes P in OL of degree smaller than n.

We now write[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

=
[
LieẼ(ÕL) : U(Ẽ[n]/ÕL)

]
Ã

[
U(Ẽ[n]/ÕL) : U(Ẽ/ÕL)

]
Ã
.

By Proposition 3.6, we have[
U(Ẽ[n]/ÕL) : U(Ẽ/ÕL)

]
Ã

=
∏
ξn∈P

ZP(Ẽ/ÕL)

so that[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

=
[
LieẼ(ÕL) : U(Ẽ[n]/ÕL)

]
Ã

∏
ξn∈P

ZP(Ẽ/ÕL).

Let yn ∈ Tz(K∞) denote the generator of
∏
ξn∈P ZP(Ẽ/ÕL) given by the admis-

sibility condition and y its limit, which generates
∏

P ZP(Ẽ/ÕL). For all non-zero

u ∈
[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

, there exists xn ∈
[
LieẼ(ÕL) : U(Ẽ[n]/ÕL)

]
Ã

such

that u = xnyn. Since yn converges to y, xn converges to x = u
y . By Proposition

4.5, xn is of the form zan(αn + znβn) with an ∈ Z, αn ∈ Fq[z](z)A not divisible
by z, and βn ∈ Fq[z](z)Tz(K∞). It implies that the sequence (an)n∈N becomes
stationary. Moreover, for all n0, the sequence (xn (mod zn0))n≥n0

converges to x
(mod zn0) in Fq[z](z)A/(zn0), which is discrete. Thus, the coefficients of x must

belong to A, and this implies that the limit x belongs to Ã. Thus we obtain the

proof of Theorem 4.3 for E verifying ZP(Ẽ/ÕL) is principal for all primes P in OL.

Step 2. We now deal with the general case. Let E be an admissible Anderson
module defined over OL. Then there exists a finite set S of primes in OL such that

ZP(Ẽ/ÕL) is principal for all primes P in OL with P /∈ S. We choose a non-zero
element ξ of OL such that ξ belongs to all primes P in OL with P ∈ S.
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Let E′ be the Anderson A-module over OL satisfying ξE′a = Eaξ for all a ∈ A.

By Lemma 3.7, for any prime P in OL containing ξ, we have ZP(Ẽ′/ÕL) = Ã.

Otherwise, we have ZP(Ẽ′/ÕL) = ZP(Ẽ/ÕL). In particular,

L(Ẽ/ÕL) = L(Ẽ′/ÕL)
∏
P

ZP(E/OL),

where the product runs over the primes P in OL containing ξ.

Further, E′ is admissible and for all primes P in OL, ZP(Ẽ′/ÕL) is principal.
By Step 1, Theorem 4.3 holds for E′ and we get[

Lie
Ẽ′

(ÕL) : U(Ẽ′/ÕL)
]
Ã
⊂ L(Ẽ′/ÕL).

Therefore, by Proposition 3.6, we deduce[
LieẼ(ÕL) : U(Ẽ/ÕL)

]
Ã

=
[
Lie

Ẽ′
(ÕL) : U(Ẽ′/ÕL)

]
Ã

[
U(Ẽ′/ÕL) : U(Ẽ/ÕL)

]
Ã

=
[
Lie

Ẽ′
(ÕL) : U(Ẽ′/ÕL)

]
Ã

∏
P

ZP(E/OL)

⊂ L(Ẽ′/ÕL)
∏
P

ZP(E/OL) = L(Ẽ/ÕL)

as required. �

4.3. A class formula for admissible Anderson modules. We now apply the
class formula over Fq(z) to deduce a class formula for admissible Anderson modules.

We will need the following lemma due to Taelman:

Lemma 4.6. Let t ∈ A \Fq, then there exists αt ∈ Fq[t] with v∞(αt) = 0 such that

[LieE(OL) : U(E/OL)]Fq [t] FittFq [t] (H(E/OL)) = αtFq[t].

In particular, we have

[LieE(OL) : USt(E/OL)]Fq [t] = αtFq[t].

Proof. By restriction, we can consider E as an Anderson Fq[t]-module. The first
part is proved in [28], Theorem 2 in the case of the Carlitz module. However, the
same arguments apply for all Anderson Fq[t]-modules. Combining with (2.1), we
obtain the second part. �

Theorem 4.7. Let E be an admissible Anderson module defined over OL. Then
we have the class formula

[LieE(OL) : USt(E/OL)]A = L(E/OL).

Proof. By Corollary 3.5 and Lemma 3.7, we can suppose that for all primes P in

OL, there exists an element xP ∈ A[z] such that
xP(0)
xP(1) generates ZP(E/OL) and

xP(0)
xP

generates ZP(Ẽ/ÕL). Further, we have

x(z) =
∏
P

xP(0)

xP
∈ Tz(K∞).

First we show that we have an inclusion

(4.4) [LieE(OL) : USt(E/OL)]A ⊂ L(E/OL).
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We now fix a basis B of LieE(L∞) over K∞. This is still a basis of LieẼ(L̃∞) over

K̃∞, and a basis of LieẼ(Tz(L∞)) over Tz(K∞). Therefore we can use this basis to

compute both [LieẼ(ÕL) : U(Ẽ/ÕL)]Ã and [LieE(OL) : U(E/OL)]A. To simplify
the notation, we identify here A and ι(A). We obtain[

ÃB : LieE(ÕL)
]
Ã

= Fq(z) [AB : LieE(OL)]A .

Recall that U(Ẽ/ÕL) = Fq(z)U(Ẽ/OL[z]). It implies that if we consider a
determinant of elements of USt(E/OL) in the basis B, it comes by evaluation

at z = 1 from the determinant of elements in U(Ẽ/OL[z]) and thus belong to

[AB : LieE(OL)]
−1
A x(1). It follows immediately that [LieE(OL) : USt(E/OL)]A ⊂

L(E/OL).

Next we claim that the inclusion (4.4) is in fact an equality. We write L(E/OL) =
uA where u is a unit in K×∞. By (4.4), we have

1

u
[LieE(OL) : USt(E/OL)]A ⊂ A.

Thus there exists an integer h ≥ 1 such that

1

uh
[LieE(OL) : USt(E/OL)]

h
A = αA, α ∈ A \ {0}.

Let t ∈ A \ Fq. By Lemma 4.6, we have

[LieE(OL) : USt(E/OL)]Fq [t] = αtFq[t], with v∞(αt) = 0.

It follows that NK/Fq(t)(α) ∈ F×q . Thus α ∈ F×q and we get

[LieE(OL) : USt(E/OL)]A = L(E/OL)

as required. �

Remark 4.8. We can generalize [28], Theorem 2 to the Fq(z)-context. In fact, the
proof of this theorem carries over without modification. By the same arguments as
above, we deduce that the inclusion (4.1) is also an equality, i.e., the class formula
over Fq(z) holds for admissible Anderson modules.

5. Admissible Anderson modules

In this section, we first prove that all Anderson modules are admissible if A is a
polynomial ring. Then we use this result to show that the admissibility criterion is
equivalent to an a priori weaker condition.

5.1. Anderson Fq[t]-modules. The proof of the following lemma is inspired by
that of [30], Lemma 7.1.

Lemma 5.1. Let F/Fq be a finite extension of degree m and let d ≥ 1 be an integer.
Let f ∈Md×d(F[z]){τ} such that

f =

r∑
i=0

Aiz
iτ i, Ai ∈Md×d(F), r ≥ 1.

We put χ(X, z) = detFq(z)(XId− f |F(z)d) ∈ Fq[X, z]. Then

(i) χ(X, z) ∈ Fq[X, zm],
(ii) degX(χ(X, z)− χ(X, 0)) ≤ degX(χ(X, z))− m

r .
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Proof. Let V = F(z)d and W = F(z)⊗Fq(z) V . We let τ act on W via 1⊗ τ , and f
act on W via 1⊗ f . Thus we get

χ(X, z) = det
F(z)

(XId− f |W ).

Let us write V m = V1 ⊕ . . .⊕ Vm, where Vi = V as an Fq(z)-vector space and F
acts on Vi by

l.v = lq
i−1

v, for all l ∈ F, v ∈ Vi.
We also denote by σ : V m → V m the map given by

(5.1) σ(v1, . . . , vm) := (τ(vm), τ(v1), . . . , τ(vm−1)).

Note that σ is an isomorphism of F(z)-vector spaces. Let g : V m → V m be the
map defined by

g(v1, . . . , vm) :=
r∑
i=0

Aiz
iσi(v1, . . . , vm),

where forA ∈Md×d(F), (v1, . . . , vm) ∈ V m, we putA(v1, . . . , vm) = (Av1, . . . , Avm).
We observe that g is F(z)-linear.

Now, let ψ : W → V m be the Fq(z)-linear map defined by

ψ(l ⊗ s) := (ls, lqs, . . . , lq
m−1

s), for all l ∈ F, v ∈ V.
Then ψ is an isomorphism of F(z)-vector spaces. Further, we have

ψ ◦ τ = σ ◦ ψ,
ψ ◦ f = g ◦ ψ.

We deduce
χ(X, z) = det

F(z)
(XId− g |Vm) .

Let (e1, . . . , ed) be the canonical F(z)-basis of V . For 1 ≤ i ≤ d, 1 ≤ j ≤ m, let
eij be the following element of V m: (0, . . . , 0, ei, 0 . . . , 0) where ei appears in the
jth position. Then B := (e11, . . . , ed1, . . . , e1m, . . . , edm) is an F(z)-basis of V m. We
observe that

σk(eij) = ei(j+k),

so that

g(eij) =

r∑
k=0

zkAkei(j+k).

Thus the matrix of g in the basis B is given by the block matrix: ∑
k≡i−j (mod m)

zkA
(1−i)
k


1≤i≤m,1≤j≤m

where for B = (bij) ∈ Md×d(F) and h ∈ Z, we recall that B(h) = (bq
h

ij ). Thus, by
expanding the determinant of the matrix of XId− g in the basis B, we deduce that
χ(X, z) ∈ Fq[X, zm]. Note also that the degree in z of the coefficients of the matrix
of XId − g in the basis B are bounded by r. Thus, since χ(X, z) ∈ Fq[X, zm], we
get

degX(χ(X, z)− χ(X, 0)) ≤ degX(χ(X, z))− m

r
.

�
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Theorem 5.2. We suppose that A = Fq[t]. Let E be an Anderson A-module
defined over OL. Then E is admissible.

Proof. Since A = Fq[t], we have Ã = Fq(z)[t]. Let P be a non-zero prime in OL.
We put FP = OL/P. Then

FittÃ

(
Ẽ(FP(z))

)
= det

Fq(z)[X]

(
XId− Et

∣∣
FP(z)[X]

)∣∣X=t
Ã.

Since FP[z,X] is a finitely generated and free Fq[z,X]-module, we deduce that

det
Fq(z)[X]

(
XId− Et

∣∣
FP(z)[X]

)∣∣X=t
∈ Fq[z,X].

It follows that

FittÃ

(
Ẽ(FP(z))

)
= xPÃ,

where xP is a monic polynomial in t with coefficients in Fq[z]. We observe that

FittA (LieE(FP)) = xP(0)A,

FittA (E(FP)) = xP(1)A.

It remains to prove that the infinite product
∏

P
xP(0)
xP

converges in Fq(z)
((

1
t

))
which is a consequence of Lemma 5.1, Part (ii). �

As an immediate consequence of the above theorem combined with Theorem 4.7,
we recover the class formula for Anderson Fq[t]-modules which was already proved
in [18] and [15, 16].

5.2. Reduction from A to Fq[t]. In this section we use the result of the previous
section on Anderson Fq[t]-modules to show that the admissibility conditions (P )
and (C) from Definition 4.1 can be weakened by a new condition close to (P ). In
particular, under this condition, the convergence (i.e., Condition (C)) is automatic,
which was suggested by the referee.

To do so, we start by proving the following technical result which, as in the proof
of Lemma 5.1, uses an idea from [30], Lemma 7.1. For m ≥ 1, we will denote by

AFq(zm) the Fq(zm)-submodule of Ã generated by A.

Proposition 5.3. Let F/Fq be a finite extension of degree m and let E/F be an

Anderson A-module of dimension d. Let Ẽ : A → Md×d(F[z]){τ} be the canonical
z-deformation of E. Then, there exists an ideal I of AFq(zm) such that

FittÃ

(
Ẽ(F(z))

)
= IÃ.

Proof. Let V = F[z]d which is an A[z]-module via Ẽ. Let AF := F⊗Fq
A. We set

W := F⊗Fq
V,

which is an AF[z]-module. As in the proof of Lemma 5.1, we have an isomorphism
of F-vector spaces ψ : W → V m and an automorphism σ of V m defined by (5.1)

satisfying ψ ◦ (1 ⊗ τ) = σ ◦ ψ. If a ∈ A and Ẽa =
∑ra
i=0Aiz

iτ i, then we define
Fa : V m → V m the homomorphism of F[z]-algebras given by

Fa(v1, . . . , vm) :=

ra∑
i=0

Aiz
iσi(v1, . . . , vm).
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We deduce that ψ is an isomorphism of AF[z]-modules.

We now set

U :=
V {τ}

(τm − 1)V {τ}
,

which is a free Fq[z]-module of rank m2d. We view U as an F-vector space via

l.

m∑
i=1

viτ
i−1 :=

m∑
i=1

vil
qi−1

τ i−1, for all l ∈ F, v1, . . . , vm ∈ V.

We also let A act on U via F[z]-linear maps given by

a.u ≡ Ẽau (mod τm − 1), for all a ∈ A, u ∈ U.

Thus, we have an isomorphism of AF[z]-modules

ρ : V m → U

(v1, . . . , vm) 7→
m∑
i=1

viτ
i−1.

Thus

FittAF[z]W = FittAF[z]V
m = FittAF[z]U.

Let (e1, . . . , ed) be an F[z]-basis of V = F[z]d. Then

U =

d∑
i=1

m−1∑
j=0

AF[z]eiτ
j .

Thus we get a surjective homomorphism of AF[z]-modules

π : AF[z]md → U.

Let R = Kerπ. We see that

R = {(α1,0, . . . , αd,0, . . . , α1,m−1, . . . , αd,m−1) ∈ AF[z]md
∣∣∑
i,j

αi,j .eiτ
j = 0}.

By definition of Fitting ideals (see Section 1.2),

FittAF[z]U =
∑

a1,...,amd∈R
det(a1, . . . , amd)AF[z].

We now set

R0 := {(α1,0, . . . , αd,0, . . . , α1,m−1, . . . , αd,m−1) ∈ R | ∃0 ≤ j0 ≤ m−1, αi,j ∈ zj+j0AF[zm]}.

We claim that

R = R0AF[z].

In fact, we work in V {τ} and view V {τ} as an F-vector space via

l.x := xl, for all l ∈ F, x ∈ V {τ},

and as an A-module via

a.x := Ẽax, for all a ∈ A, x ∈ V {τ}, .

We naturally extend Ẽ to a homomorphism of F-algebrasAF → F⊗Fq
Md×d(F[z]){τ}.
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For A =
∑
i li ⊗ Ai ∈ F ⊗Fq

Md×d(F), we set A(k) :=
∑
i l
qk

i ⊗ Ai. Let
(α1,0, . . . , αd,0, . . . , α1,m−1, . . . , αd,m−1) ∈ R. We write

αij =

sij∑
k=0

αijkz
k, αijk ∈ AF,

and

Ẽαijk
=

rijk∑
l=0

Aijklz
lτ l, Aijkl ∈ F⊗Fq

Md×d(F).

We have ∑
i,j

αij .eiτ
j =

∑
i,j,k,l

A
(j)
ijklz

k+leiτ
j+l ∈ (τm − 1)V {τ}.

Thus, for 0 ≤ l0 ≤ m− 1, we get∑
i,j,k

l≡l0−j (mod m)

A
(j)
ijklz

k+lei = 0.

It implies that for 0 ≤ k0 ≤ m− 1,∑
i,j

k≡k0+j (mod m),
l≡l0−j (mod m)

A
(j)
ijklei = 0.

For 0 ≤ k0 ≤ m− 1, and for any integers i, j, we put

αk0ij :=
∑

k≡k0+j (mod m)

αijkz
k.

Then

αij =

m−1∑
k=0

αk0ij .

Now, for k0 fixed, by our previous computations we get that
∑
i,j α

k0
ij .eiτ

j is equal
to ∑

i,j,l
k≡k0−j (mod m)

A
(j)
ijklz

k+leiτ
j =

m−1∑
l0=0

∑
i,j

l≡l0−j (mod m),
k≡k0−j (mod m)

A
(j)
ijklz

k+leiτ
j ∈ (τm−1)V {τ}.

Thus (αk0ij ) ∈ R0. We conclude that R = R0AF[z].

Now let (a1, . . . , amd) ∈ R0 then there exist integers j1, . . . , jmd such that the ma-
trix whose lines are (zj1a1, . . . , z

jmdamd) is a block matrix of the form (Aij)1≤i,j≤m
where each Aij ∈ Md×d(AF[z]) is such that the degrees of the monomials of their
entries as polynomials in z are congruent to j − i (mod m). Thus, as in the proof
of Lemma 5.1, we get

zj1+···+jmd det(a1, . . . , amd) ∈ AF[zm].

Let ÃF := F ⊗Fq
Ã and AFFq(zm) be the Fq(zm)-submodule of ÃF generated

by AF. We deduce from the previous computations that there exists an ideal J of
AFFq(zm) such that

FittÃ

(
Ẽ(F(z))

)
ÃF = JÃF.
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Observe that if I is an ideal of Ã and IF = IÃF ⊂ ÃF then if we choose an Fq-basis
of F, we can recover the elements of I as the coefficients in the chosen basis of the
elements of IF. As a consequence, we obtain that there is an ideal I of AFq(zm)
such that

FittÃ

(
Ẽ(F(z))

)
= IÃ.

�

Lemma 5.4. The natural map Pic(A)→ Pic(Ã) is injective, and we have

Pic(Ã)tors = Pic(A).

In particular, for any integer m ≥ 1, the natural map Pic(AFq(zm)) → Pic(Ã) is
injective.

Proof. Let I be a non-zero ideal of A such that IÃ is principal. Then there exists
F (z) ∈ A[z] without roots in Fq such that

IÃ = F (z)Ã.

Let n ≥ 1 be any integer such that In is a principal ideal of A. We deduce that
there exist a ∈ A and δ ∈ Fq(z) such that

a = F (z)nδ.

This implies that F (z)n ∈ A and δ ∈ F×q . Thus, since A is integrally closed in

Ã, we deduce that F (z) ∈ A and I = F (z)A. We conclude that the natural map

Pic(A)→ Pic(Ã) is injective.

Let X/Fq be the projective non-singular curve associated to K/Fq and let J/Fq
be the jacobian variety associated to X. Then we have isomorphisms of groups

Cl0(K) ' J(Fq),

Cl0(K(z)) ' J(Fq(z)).
By the Mordell-Weil Theorem we know that J(Fq(z)) is finitely generated and
therefore J(Fq(z))tors is a finite abelian group. Let P ∈ J(Fq(z))tors and let φ(P )
be the point obtained by elevating to its qth power every coordinate of P . Since
J(Fq(z))tors is a finite group, there exist integers n 6= m such that φm(P ) = φn(P ).

Thus P ∈ J(Fq) ∩ J(Fq(z)) = J(Fq). Therefore J(Fq(z))tors = J(Fq). Then the

natural map Cl0(K)→ Cl0(K(z)) is injective and we have Cl0(K(z))tors = Cl0(K).
We have two compatible exact sequences

0→ Cl0(K)→ Pic(A)→ Z
d∞Z

→ 0,

0→ Cl0(K(z))tors → Pic(Ã)tors →
Z

d∞Z
→ 0.

Thus

Pic(Ã)tors = Pic(A).

Let m ≥ 1 be an integer and let I be an ideal of ÃFq(zm) such that IÃ is principal.

We deduce that Im is a principal ideal of ÃFq(zm) by taking the ideal norm map

from K(z) to K(zm). Thus I = JδÃFq(zm) for some ideal J of A, and δ ∈ K(zm).

But JÃ is principal, thus J must be a principal ideal of A. Therefore I is a principal
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ideal of ÃFq(zm). We conclude that the natural map Pic(ÃFq(zm)) → Pic(Ã) is
injective. �

Lemma 5.5. Let F (z) ∈ K∞[z] \ {0} be a polynomial of degree less than some
integer r ≥ 1. We suppose that F (0) = 1 and that there exists C ≥ 1 with v∞(F (z)−
1) ≥ C. Then

F (z) =

r∏
i=1

(1− αiz), αi ∈ C∞, v∞(αi) ≥
C

r
.

Proof. Let α ∈ C×∞ such that F (α−1) = 0. We write F (z) = 1 +
∑r
i=1 aiz

i with
ai ∈ K∞, v∞(ai) ≥ C. Then

r∑
i=1

ai
αi

= −1.

Then there exists an integer i, 1 ≤ i ≤ r, such that

v∞

( ai
αi

)
≤ 0.

It follows that

v∞(α) ≥ v∞(ai)

i
≥ C

r
.

�

We are now ready to prove the main result of this section.

Theorem 5.6. Let E/OL be an Anderson A-module where L/ι(K) is a finite
extension. We suppose that E satisfies the following condition:

Condition (P ′): There exists a finite set S of primes in OL such that for all

primes P in OL with P 6∈ S, FittÃ

(
Ẽ
(
OL

P (z)
))

is principal.

Then E is admissible.

Proof. We first show that E satisfies Condition (C). In fact, we choose t ∈ A \ Fq
such that K/Fq(t) is a finite separable extension. We then write

Ẽt =

r∑
i=0

Aiz
iτ i, Ai ∈Md×d(OL).

Let P be a prime in OL with P 6∈ S. We put FP = OL/P and mP = [FP : Fq]. By
Lemmas 5.1 and 5.5,

FittFq(z)[t]

(
Ẽ(FP(z))

)
= GP(z)Fq(z)[t],

where

GP(z)

GP(0)
=

r∏
i=1

(1− αizmP), αi ∈ C∞, v∞(αi) ≥
mP

r
.

By Condition (P ′), Proposition 5.3 and Lemma 5.4, there exists xP(z) ∈ A[zmP ]

without roots in Fq such that

FittÃ

(
Ẽ (FP(z))

)
= xP(z)Ã.
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Since FittFq(z)[t]

(
Ẽ(FP(z))

)
= NK(z)/Fq(t)(z)(xP(z))Fq(z)[t], we get

GP(z)

GP(0)
= NK(z)/Fq(t)(z)

(
xP(z)

xP(0)

)
= NK̃∞/Fq(z)(( 1

t ))

(
xP(z)

xP(0)

)
.

Thus there exists an integer r′, 1 ≤ r′ ≤ r, such that

xP(z)

xP(0)
=

r′∏
i=1

(1− βizmP), αi ∈ C∞, v∞(βi) ≥
mP

r
.

We deduce that E satisfies Condition (C), that is, the following infinite product
converges ∏

P6∈S

xP(z)

xP(0)
∈ Tz(K∞)×.

To conclude, we will show that Condition (P ) is satisfied with the xP’s as above.
We observe that

FittÃ

(
Ẽ (FP(z))

)
= FittA[z]

(
Ẽ (FP[z])

)
Ã,

FittA (E (FP)) = FittA[z]

(
Ẽ (FP[z])

)
|z=1,

FittA (LieE (FP)) = FittA[z]

(
Ẽ (FP[z])

)
|z=0 .

Note that there exist G1(z), . . . , Gs(z) ∈ xP(z)A[z] such that

FittA[z]

(
Ẽ (FP[z])

)
=

s∑
i=1

Gi(z)A[z].

It follows that

FittA (E (FP)) ⊂ xP(1)A,

FittA(LieE (FP)) ⊂ xP(0)A.

If I is a non-zero ideal of A (resp. Ã), then we set deg I = dimFq
(A/I) (resp.

deg I = dimFq(z)(Ã/I)). Observe that if I = aA (resp. I = aÃ), then deg I =

−d∞v∞(a). Furthermore if I ⊂ J are non-zero ideals of A (resp. Ã) such that
deg I = deg J , then I = J . We know that

deg FittA(E (FP)) = deg FittA(LieE (FP)) = deg FittÃ

(
Ẽ (FP(z))

)
.

We note that

v∞(xP(z)) = v∞(xP(1)) = v∞(xP(0)).

Putting altogether yields

FittA(E (FP)) = xP(1)A,

FittA(LieE (FP)) = xP(0)A.

This proves Condition (P ) for E. We conclude that E is admissible. �
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6. A-finite and abelian Anderson A-modules

In this section we prove that the Anderson A-modules which are either A-finite
or abelian are admissible.

Let L/ι(K) be a finite extension and let F = Lperf . Let OF be the integral
closure of ι(A) in F . Then for any prime P in OL there exists a unique prime Q in
OF over P and the inclusion OL ⊂ OF induces an isomorphism OL/P ' OF /Q.

Let τ : F → F, x 7→ xq and σ : F → F, x 7→ x
1
q . Let AF = A ⊗Fq

F and let
AF {σ} be the skew polynomial ring

σ(a⊗ 1) = (a⊗ 1)σ, σ(1⊗ α) = (1⊗ α
1
q )σ, for all a ∈ A.

6.1. A-finite Anderson modules. Let E be an Anderson A-module of dimension
d defined over OL. We recall the construction of the dual A-motive M(E/F )
attached to E. We refer the reader to [20], Sections 2.5.1-2.5.2 for more details. We
setM(E/F ) = F{τ}d. We considerM(E/F ) as a free F{σ}-module where F acts
onM(E/F ) via right multiplication and σ acts onM(E/F ) via right multiplication
by τ . Also we view M(E/F ) as an A-module via left multiplication by E. Thus
M(E/F ) is a left AF {σ}-module such that

(1) (a⊗ 1− 1⊗ a)dM(E/F ) ⊂ σM(E/F ) for all a ∈ A.
(2) M(E/F ) is a free F{σ}-module of rank d.

Following [20], Definition 2.5.9, we say that E is A-finite if M(E/F ) is a finitely
generated AF -module. Note that this definition does not depend on the choice of
F . In that case M(E/F ) is a projective AF -module by [19], Lemma 5.4.10.

If E is A-finite, then there exists an integer m(E) such that for any prime P
in OL such that

∣∣FP

∣∣ ≥ m(E) where FP = OL/P, we have that E (mod P) is
A-finite .

Theorem 6.1. Let E be an Anderson module defined over OL which is A-finite.
Then E is admissible.

Proof. Let P be a prime in OL such that E (mod P) is A-finite. Let V (E/FP) =
M(E/FP) ⊗A K which is a finite dimensional K-vector space. We still denote
by σ the K-linear map induced by σ which is the right multiplication by τ . Let
PP(X) = detK(XIdV (E/FP) − σ). Then clearly PP(X) ∈ A[X].

By a direct computation, the right multiplication by τ − z gives rise to an exact

sequence of Ã-modules

(6.1) 0→M(E/FP(z))
τ−z−−−→M(E/FP(z))→ Ẽ(FP(z))→ 0.

Thus by Corollary 1.6, we get

FittÃ

(
Ẽ(FP(z))

)
= PP(z)Ã.

Consequently, the Theorem follows from Theorem 5.6. �

6.2. Abelian Anderson modules. Let E be an Anderson A-module of dimen-
sion d defined over OL. We now recall the construction of the A-motive M(E/F )
attached to E. We refer the reader to [20], Section 2.5.1 for more details. We set
M(E/F ) = F{τ}1×d, that is, elements of M(E/F ) are row vectors of length d.
We consider M(E/F ) as a free F{τ}-module where F acts on M(E/F ) via left
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multiplication and τ acts on M(E/F ) via left multiplication by τ . Also we view
M(E/F ) as an A-module via right multiplication by E. Thus M(E/F ) is a left
AF {τ}-module such that

(1) (a⊗ 1− 1⊗ a)dM(E/F ) ⊂ τM(E/F ) for all a ∈ A.
(2) M(E/F ) is a free F{τ}-module of rank d.

Following [20], Definition 2.5.5, we say that E is abelian if M(E/F ) is a finitely
generated AF -module. Note that this definition does not depend on the choice of
F . In that case M(E/F ) is a projective AF -module by [19], Lemma 5.4.10.

If E is abelian, then there exists an integer m(E) such that for any prime P
in OL such that

∣∣FP

∣∣ ≥ m(E) where FP = OL/P, we have that E (mod P) is
abelian.

Lemma 6.2. Let k be a field and R be a Dedekind domain which is a k-algebra. If
M is an R-module which is finite dimensional over k, then there exists an isomor-
phism of R-modules

Homk(M,k) 'M.

Proof. By the structure theorem of finitely generated torsion modules over Dedekind
rings, we can suppose that M is of the form M = R/Pn where P is a non-zero
prime in R and n ≥ 1. But then M and Homk(M,k) have the same dimension
over k and we have both PnHomk(M,k) = {0} and Pn−1Homk(M,k) 6= {0}. The
result then follows again by the structure theorem. �

Theorem 6.3. Let E be an Anderson module defined over OL which is abelian.
Then E is admissible.

Proof. Let P be a prime in OL such that E (mod P) is abelian. We put FP =

OL/P and m = [FP : Fq]. We define M̃(E/FP) = FP(z)d equipped with the

following action of A: if a ∈ A and Ẽa =
∑k
i=0Aiz

iτ i, and X ∈ M̃(E/FP), then

a.X =
k∑
i=0

tAiXz
iτ i.

We extend this action to an action of Ã by Fq(z)-linearity. Here we consider
M(E/FP) with column vectors instead of row vectors and twist the Frobenius
map τ with z as before.

We define Kz to be the cokernel of the left multiplication by τ −z on M̃(E/FP):

0 −→ M̃(E/FP)
τ−z−→ M̃(E/FP) −→ Kz −→ 0

Similarly to (6.1), a direct computation shows that Kz ' FP(z)d with the action

of a given by left multiplication by Ẽ∗a =
∑k
i=1 z

iσi(tAi)σ
i.

We now fix an Fq-basis B = (e1, . . . , em) of FP and define for all 1 ≤ i ≤ m and
1 ≤ j ≤ d the vector eij = (0, . . . , ei, 0 . . . , 0) where ei appears on the jth position.
The family (eij)ij forms an Fq(z)-basis B′ = (e11, . . . , e1m, e21, . . . , e2m, . . . , edm)
of FP(z)d. Let us remark that we can, and will, choose B so that for all i < m,



A CLASS FORMULA FOR ADMISSIBLE ANDERSON MODULES 29

ei = τ i−1e1, and τme1 = e1. Then the matrix of τ in B is the permutation matrix

T =


1

1
. . .

1



and in the basis B′ of FP, it is the block matrix T ′ =

T . . .

T

. If A =

(aij)1≤i,j≤d ∈ Md×d(FP), then its matrix in the basis B′ becomes a block matrix
A′ = (Aij)1≤i,j≤d ∈Mdm(Fq) where the Aij are the matrices of the action of aij in
B. We see that the matrix of the action of σi(tAi)σ

i in B′ is then T ′−i tA′i.

Since T−1 = tT , it follows that T ′−1 = tT ′. Therefore T ′−i tA′i = t(A′iT
′i). We

deduce that the action of AFq(z) on Kz is, in the basis B′, the transposition of that

of FP(z)d via Ẽ.

By Corollary 1.6 and Lemma 6.2,

det(τ − z) = FittÃ(Kz)

= FittÃ

(
HomFq(z)(Ẽ(FP(z)),Fq(z))

)
= FittÃ(Ẽ(FP(z))).

Then the Theorem follows immediately from Theorem 5.6. �

6.3. Class formulas. As a direct consequence of Theorems 4.7, 6.1 and 6.3, we
obtain the following theorem.

Theorem 6.4. Let E be an Anderson module defined over OL which is either
abelian or A-finite. Then we have the class formula

[LieE(OL) : USt(E/OL)]A = L(E/OL).

Since any Drinfeld module is both abelian and A-finite (see [20], Corollary
2.5.17), by Theorem 6.4 and Equation (2.1), we obtain the class formula à la Tael-
man for Drinfeld modules, which extends known results [7, 14, 24, 29, 31, 33].

Corollary 6.5. Let φ be a Drinfeld A-module defined over OL. Then L(φ/OL) is
well-defined and is a principal A-lattice in K∞. Furthermore we have the following
class formula

[OL : USt(φ/OL)]A = [OL : U(φ/OL)]A FittA (H(φ/OL)) = L(φ/OL).
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function fields. In G. Böckle, D. Goss, U. Hartl, and M. Papanikolas, editors, t-motives: Hodge

structures, transcendence and other motivic aspects”, EMS Series of Congress Reports, pages
31–182. European Mathematical Society, 2020.
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Université de Lyon, CNRS - Université Claude Bernard Lyon 1, Institut Camille Jor-

dan, UMR 5208, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Email address: ngodac@math.univ-lyon1.fr
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UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France.

Email address: floric.tavares-ribeiro@unicaen.fr


	Introduction
	1. Background
	2. Anderson modules
	3. Local factors
	4. Class formula à la Taelman
	5. Admissible Anderson modules
	6. A-finite and abelian Anderson A-modules
	References

