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ABSTRACT 

Engineers and computational scientists often study the behavior of their simulations by repeated 
solutions with variations in their parameters, which can be for instance boundary values or initial 
conditions. Through such simulation ensembles, uncertainty in a solution is studied as a function 
of the various input parameters. Solutions of numerical simulations are often temporal functions, 
spatial maps or spatio-temporal outputs. The usual way to deal with such complex outputs is to 
limit the analysis to several probes in the temporal/spatial domain. This leads to smaller and more 
tractable ensembles of functional outputs (curves) with their associated input parameters: 
augmented ensembles of curves. This article describes a system for the interactive exploration and 
analysis of such augmented ensembles. Descriptive statistics on the functional outputs are 
performed by Principal Component Analysis projection, kernel density estimation and the 
computation of High Density Regions. This makes possible the calculation of functional quantiles 
and outliers. Brushing and linking the elements of the system allows in-depth analysis of the 
ensemble. The system allows for functional descriptive statistics, cluster detection and finally for 
the realization of a visual sensitivity analysis via cobweb plots. We present two synthetic examples 
and then validate our approach in an industrial use-case concerning a marine current study using 
a hydraulic solver. 
 
 

  

https://www.bing.com/local?lid=YN2000x15903014689856492731&id=YN2000x15903014689856492731&q=EDF+Lab+Paris-Saclay&name=EDF+Lab+Paris-Saclay&cp=48.7149543762207~2.19807910919189&ppois=48.7149543762207_2.19807910919189_EDF+Lab+Paris-Saclay&FORM=SNAPST


2 

 

INTRODUCTION 
 

 In this article, simulation refers to the 
application of computational models to the study 
and prediction of physical events or the behavior 
of engineered systems. In this context, the 
modern usage of simulation tools has improved 
and grown to a point that has far exceeded many 
expectations. That remarkable change has come 
about mainly because of developments in the 
computational sciences and the rapid advances in 
computing equipment. Computer models help 
engineers to forecast the behavior of the system 
under investigation in conditions that cannot be 
reproduced in physical experiments (e.g. 
accidental scenarios), or when physical 
experiments are theoretically possible but at a 
very high cost. To improve and have a better hold 
on these tools, it is crucial to be able to analyze 
them under the scopes of sensitivity and 
uncertainty analysis [1-3]. In particular, sensitivity 
analysis aims at identifying the most influential 
parameters for a given output of the computer 
model and at evaluating the effect of uncertainty 
in each uncertain input variable on model output 
[4, 5]. 

A probabilistic uncertainty study consists 
of evaluating the computer model on a large size 
statistical sample of model inputs (which follow a 
joint probability distribution), then analyzing all 
the results (the model outputs) with specific 
statistical tools. The result of such a family of runs 
is called ensemble, and each individual run is 
called a member. Ensembles are multivariate, 
which means that a simulation is run several times 
with varying parameters. Their members are 
multidimensional (both in space and time) and 
multivalued (several quantities such as 
temperature, pressure or velocity are 
considered). The usual way to deal with these 
kinds of outputs (as a temporal function, a spatial 
map or a spatio-temporal output) is to limit the 
analysis to several probes in the temporal/spatial 
domain [1-4]. To deal with this problem, taking 
ideas from the visualization community seems 
particularly interesting. Indeed, one of its current 
challenges is how to deal with the multivariate 
nature of the ensembles [6-8]. Furthermore 

uncertainty visualization has been long advocated 
as one of the top challenges in visualization [9-11]. 

The goal of this work is to propose 
methodologies and tools for researchers and 
engineers performing uncertainty studies by 
analyzing ensembles. An example of such a 
strategy can be a hydraulics engineer studying 
results generated by a multi-run finite-elements 
simulation. In this case, the ensemble could be a 
fixed 3D mesh for all members and a varying field 
(temperature, water height, pressure, etc.) that 
depends on the experimental design used to 
sample the parameters controlling the 
simulations. Thus, when the engineer applies a 
probe on a node of the mesh she/he obtains not 
the evolution of a quantity (temperature, water 
height, pressure, etc.) over time but another 
smaller ensemble of functional outputs or curves. 
We should then not only deal with an ensemble of 
functional outputs but also with their associated 
simulation parameters. We call this kind of data 
an augmented ensemble of curves. 

A non-augmented ensemble of curves 
presents already a first problem of visual clutter, 
which is well known in the visualization 
community. When a large number of curves are 
superposed to one another, the overall 
perception of the graphs is lost, and the user 
cannot analyze the ensemble. As an example, 
Figure 1 depicts 1,500 curves coming from 
different runs of the same numerical simulation 
(from a hydraulics application). When looking at 
the overall behavior of an ensemble of curves, 
such as Figure 1, the first set of basic questions 
that arise are the following: 

 What is the median curve? 

 Can we define some confidence interval curves 
containing most of the curves (as done usually 
for scalar random variables with the boxplot 
tool)? 

 Can we detect some abnormal curves, in the 
sense of a strong difference from the majority 
of the curves (as outliers for scalar variables)? 

 Are there some clusters, which correspond to 
different behaviors of the physical model that 
generated these outputs? 

These questions can be answered by 
methods found in the recent technical literature 
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by the way of Principal Component Analysis (PCA) 
methods, with a statistical viewpoint [12-14] or 
with a visualization viewpoint [15-17]. However, 
for augmented ensembles new challenges arise 
because a member of such ensemble consists of a 
set of input parameters (which drove a numerical 
simulation) and its associated functional output. 
First, the interactive exploration needs a 
methodology able to visually provide, to the 
analyst, the statistical structure of the curves and 
the identification of clusters. Second, if the 
clusters of functional outputs correspond to 
groups of coherent behaviors of the simulations, 
is it possible to visually study the relationship 
between these behaviors and the input 
parameters? This question implies the realization 
of a visual sensitivity analysis that we realize by 
linking the classical tool of the cobweb plot in 
sensitivity analysis [4] and the ensemble of curves 
visualization described before. 

The following section lists the important 
and main previous works on the subjects covered 
by this paper.  The third section explains the 
method used for estimating functional quantiles 
while the fourth section describes how to perform 
the visual sensitivity analysis. In the fifth section, 
applications of the methodology are given on toy 
examples and an industrial example. The two last 
sections provide a discussion on software 
implementation and a conclusion. 

 

BACKGROUND AND RELATED WORK 
 

First of all, our work relates to uncertainty 
and sensitivity analysis.  In particular, global 
sensitivity analysis is an ensemble of techniques 
which aim to identify the influential and non-
influential inputs on some computer model 
outputs [4]. In particular, quantitative global 
sensitivity analysis deals with a probabilistic 
representation of the input parameters to 
consider their overall variation range. Variance-
based sensitivity measures, also called Sobol’ 
indices [18], are currently the most popular 
method for global sensitivity analysis [5]. The 
principle of Sobol’ indices is to decompose the 
variance of the output, Y, of the simulation into 
fractions, which can be attributed to each of the 
random model input Xi (with i=1,…,p where p is 
the number of inputs). When Y is a scalar output, 
these percentages are directly interpreted as 
measures of sensitivity. However, sensitivity 
analysis for large scale numerical systems that 
simulate complex spatial and temporal evolutions 
remains very challenging because of the 
treatment of uncertainty [2], the treatment of the 
functional nature of the output [19,20] and the 
large volumes of data that could be produced [21]. 
Our main contribution is the realization of a visual 
sensitivity analysis, linking the cobweb plot (a 
classical graphical tool in sensitivity analysis [4]) 
and the ensemble of curves visualization. 

 

 
 

 
Figure 1. Raw visualization of curves coming from a multi-run hydraulics simulation: 1500 curves of 
water height evolving over time. 
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One of the difficulty when visualizing 
several one-dimensional curves is to avoid visual 
clutter. An interesting solution is given by [22] 
which proposes a “curve density estimation” 
directly in the curves’ space. Other visualizations 
may represent overlaid function graphs as 
envelopes [23], semi-transparent graphs [24], and 
offer brushing techniques to highlight selected 
subsets of the functions [23-25]. Another 
approach offers a re-orderable matrix of time 
series charts [26]. The way these methods deal 
with visual clutter is very different from our 
approach, which offers quantified statistical 
information by calculating quantile bands and 
outliers. 

In our work, we use the extension of the 
classical boxplot to functions: the functional 
boxplot proposed in [12,27]. A boxplot for scalar 
variables allows summarizing the main 
information of a data sample: median, first and 
third quartiles, and an interquantile-based 
interval which define the limit of non-outliers 
data. First step to build such boxplot is to rank 
data thanks to a statistical order or data depth; 
such order has first to be defined for functional 
data [28], which has led to numerous research 
works in the literature. The concept of functional 
data depth has been generalized to contours by 
[15], which displays boxplots for two-dimensional 
simulation data in weather forecasting and 
computational fluid dynamics. The so-called band 
depth, defined by [28], is particularly relevant for 
the goals of [15]. Band depth is defined on an 
ensemble of functions, the band depth of each 
function is the probability that the function lies 
within the band defined by a random selection of 
other functions from the distribution. The band 
depth is computed for each member of the 
ensemble and can be used, as described in [27], to 
visualize summary statistics for an ensemble of 
functions. Our methodology differs from [15] 
because we do not use data depth, the functional 
summary statistics are calculated through and 
alternative method based on a PCA projection. 
Furthermore, our focus is in augmented 
ensembles and not in ensembles of contours. 

In our method, the functional curves are 
handled by reducing their dimension via 

projection, using PCA as in [12] (which is limited to 
the two first components). [13] has introduced 
this PCA-based approach for visualizing (but non-
interactively) functional outputs of computer 
experiments. Later, [14] has extended the 
technique to selecting and modeling more than 
two PCA components by advanced statistical 
techniques. Our choice of using PCA is firstly 
motivated by our idea to jointly interact with the 
PCA-plane (defined in section “Projecting on the 
PCA bivariate plane”) in which each function is 
represented by a 2d-point. Thus, in this aspect the 
method relates to dimensionality reduction 
techniques but using a human-in-the-loop 
approach; see [29] for a structured literature 
review and references on this field. Furthermore, 
the PCA-plane allows, at the same time, to 
calculate functional quantiles and to study the 
multimodal nature of ensembles. We remark that 
data depth based techniques of [27] do not deal 
with multimodality. 

The PCA technique reduces the data 
dimension via a linear transformation. In some 
cases, such a transformation does not work due to 
the underlying structure of the data (see an 
engineering example in [30]). Non-linear 
dimension reduction techniques (non-linear PCA, 
kernel PCA, Riemannian manifold learning, locally 
linear embedding, etc., see [31]) can then be used 
with a certain increase in complexity and 
computational cost. The pragmatic approach 
consists in first applying a PCA, and then turning 
to non-linear methods if the data variability is not 
well captures by a small number of PCA 
components. Using non-linear dimension 
reduction techniques is beyond the scope of this 
paper and will be studied in future works. 

Reference [17] presents a method for 
computing streamline variability plots. It consists 
on the transformation, via PCA, of the set of 
streamlines, into a lower dimension space in 
which clustering can be performed. Clustering by 
fitting geometric medians and confidence ellipses 
is performed in PCA- space. Finally, medians and 
ellipses are transformed back to the domain space 
and yield the variability plot of the streamline 
ensemble. Reference [16], of the same authors, 
applies similar techniques to ensembles of iso-
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surfaces. Our methodology also uses PCA in order 
to work into a lower dimension space and then re-
project to the original dual space. However, the 
operations performed in the PCA-space are very 
different, [16, 17] perform clustering while we 
calculate HDR (High Density Regions). This 
operation necessitates an estimate of the 
empirical density function in the PCA space, which 
uses kernels thus avoiding fitting a parametric 
model (such as ellipses). HDR presents a unique 
and strict mathematical definition, and are at the 
core of the method to calculate quantitative and 
non-parametric variability of the data. HDR can 
also be used for clustering, in our current 
implementation they assist the users in this task. 

Brushing and linking is extensively used in 
our system but we have no new contribution in 
this area, the interactions we use were already 
described in classical works such as [32,33]. Other 
works have applied these classical techniques to 
ensembles of functions, for instance [34] for the 
investigation of families of data surfaces, [35] to 
analyze 2D function ensembles in the 
development process of powertrain systems and 
[36] for the interactive visual exploration of large 
3D scalar ensembles. These references 
demonstrate the necessity for a flexible visual 
analysis system that integrates many different 
linked views for making sense of this complex 
data. In this context, using brushing and linking 
and statistical aggregations, as [34,36] is seducing; 
we differentiate from these works because we do 
not perform any statistical aggregation, i.e. the 
computation of statistical moments, and prefer 
quantile analysis that does not introduce any 
hypothesis about the underlying data distribution.  

We finally remark that our work is 
inscribed in the field of visual parameter space 
analysis. This approach was used by [37] in an 
interactive system called HyperMoVal that was 
designed to support model validation. These 
models related to the development of car engines 
for tasks which require a prediction of results in 
real-time. Other examples of this visual analysis 
include [38], which combined a sensitivity analysis 
with a linked multi-dimensional visualization 
providing a way to analyze the behavior of an 
artificial neural network. Reference [39] 

addresses the problem of parameter-finding in 
image segmentation by visually guiding the user 
towards areas that need refinement, in a sparse 
sampled parameter space, by placing additional 
sample points. In a second stage the user 
navigates through the parameter space in order to 
determine areas where the response value 
(goodness of segmentation) is high. 
 Reference [40] presents a conceptual 
framework in which six typical analysis task can be 
performed: optimization, partitioning, fitting, 
outliers, uncertainty and sensitivity. Numerous 
examples exist of space analysis for optimization, 
such as [37] or [39]. Our work differs from most 
references [34-38] in the analysis tasks we focus 
on (detecting outliers, partitioning and visualizing 
sensitivities). In fact, our main contribution is the 
realization of a visual sensitivity study in the 
context of time-evolving numerical simulations. 
 
ESTIMATING FUNCTIONAL QUANTILES AND 
OUTLIERS 
 

The estimation of the quantiles and 
outliers of an ensemble of functions is performed 
on a plane defined by the first two vectors of its 
Principal Component Analysis (PCA). The method 
is divided into 3 main steps: 
1. Project the functions into the PCA bivariate 

plane; 
2. Perform the estimation of the Probability 

Density Function (PDF) on this plane, which 
allows for the estimation of Highest Density 
Regions (HDR) which boundaries are 
isoprobability contours; 

3. Project the HDR boundaries back into the 
space of curves. The functional quantiles and 
outliers are then computed. 

 
Projecting on the PCA bivariate plane 
 

PCA is a technique of dimensionality 
reduction, whose purpose is to represent the 
source data into a new space of lower dimensions. 
It is mathematically defined as an orthogonal 
linear transformation, which maps the data to a 
new coordinate system such that the greatest 
variance comes to lie on the first coordinate 
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(called the first principal component), the second 
greatest variance on the second coordinate 
(called the second principal component), and so 
on. Projecting the curves into the PCA bivariate 
plane means that only the first and second 
principal components are kept, thus each curve is 
represented by a point in a two-dimensional space 
(the bivariate plane). 

There is an underlying condition for PCA 
reduction: the transformation should keep 
enough information about the source data, while 
allowing to simplify the analysis. In this article, we 
limit our scope to a bivariate plane for simplicity 
but an extension to larger dimensions is possible. 
Moreover, our examples have a high explained 
variance using the first two PCA components 
(which means that the two-dimensional reduced 
PCA basis correctly reproduces the overall 
variability of the ensemble of curves). This 

explained variance e is calculated from the n 
singular values of the covariance matrix 
(𝜎1, 𝜎2..., 𝜎𝑛) in the following way: 

 

𝑣𝑒 =
𝜎1 + 𝜎2

𝜎1 + 𝜎2 + ... + 𝜎𝑛
 

 
where 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑛are the ordered singular 
values representing the importance of the 
variance of each principal component. In our 
implementations, this quantity is systematically 
visualized on the diagrams containing the 
bivariate plane. 

As said before, working with three or 
more PCA components is also possible.  We have 
prepared a prototype that uses an interactive 
Scatter Plot Matrix view, based on [41], for the 
interaction with the n-dimensional space of PCA 
dimensions. However, the real challenge in this 
case is the computational complexity associated 
to the estimation of densities in higher 
dimensions. The work of [14] allows to solve this 
problem.  

 
Highest Density Regions method 
 

Once the functional variable has been 
transformed to a fewer component space (in our 
case the bivariate plane), the next step is to 

estimate the quantiles, which also allows outliers 
to be detected. Conceptually, two basic 
operations should be performed to build the 
quantiles: i) create a density map on the plane and 
ii) calculate iso-probability curves of this map. So 
as to implement these operations we follow the 
method of Highest Density Regions of [12]. Full 
mathematical details are given in [12] but the 
principle of this method is to assimilate 
observations in the bivariate plane of principal 
components to the realizations of a random 
vector with density f. By calculating an estimate of 
the density map f, the quantiles can then be 
computed.  

We start from the sample 
(𝑋𝑖)𝑖=1…𝑛  which stands for n observations of 

the vector X of dimension p=2. The following 
smoothing process is used: 

 

𝑓(𝑋) =
1

𝑛
∑ 𝐾𝐻(𝑋 − 𝑋𝑖)

𝑛

𝑖=1

 

 
where 𝐾𝐻 is the Gaussian smoothing kernel which 
writes 
 

𝐾𝐻(𝑋) = |𝐻|−1 2⁄ 𝐾(𝐻−1 2⁄ 𝑋)  

 

with 𝐾(𝑋) =
1

2𝜋
𝑒𝑥𝑝 (−

1

2
⟨𝑋, 𝑋⟩) the “standard” 

Gaussian kernel and H the matrix containing the 
smoothing parameters (extension in p dimensions 
of a smoothing parameter h in dimension 1). 
Depending on this matrix (diagonal or not), some 
preferential smoothing directions can be chosen. 
In our implementation, we first generate a grid 
covering the bivariate plane, which is initialized to 
100x100 but can be customized by means of the 
user interface. We subsequently apply an 
isotropic kernel, whose width is automatically 
initialized by use of the rule of Silverman [42].  

Once the estimate of the density map 𝑓 is 
obtained, the Highest Density Regions method 
(HDR) gives a description of important statistical 
information. It is defined as 

 

𝑅𝛼 = {𝑍: 𝑓(𝑍) ≥ 𝑓𝛼} 
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where  is the order of the quantile we choose 
and the quantile value 𝑓𝛼 is such that 

∫ 𝑓(𝑍)𝑑𝑍 = 1 − 𝛼
𝑅𝛼

, that defines the region with 

probability coverage 1 − 𝛼. It means that 𝑓𝛼 is 
such that all points within the region 𝑅𝛼 have a 
higher density estimate than any of the points 
outside the region, hence the name highest 
density region. For a density map, the HDRs can be 
considered as regions bounded by contours, with 
an expanding coverage as α decreases. In our 
implementation we compute two HDRs: 

 An inner HDR with probability coverage α = 
50%  that corresponds to the central 
interquartile zone; 

 An outer HDR where α can interactively be 
modified via a slider (default value α = 95%). 

We consider that all points excluded from 
the outer HDR can be some outliers. This allows to 
interactively changing the threshold that is used 
to compute the outliers.  
 
Back into the curves space 
 

Once both HDRs are calculated, we would 
like to see them in the original space of the curves. 
We recall that a point in the PCA plane 
corresponds to a curve. However, HDRs represent 
areas of the PCA plane, which boundaries are 
contours. It is then necessary to run an algorithm 
that converts these contours into their associated 
functional quantiles. We propose a first exact 
algorithm by traversing all points corresponding 
to the discretized boundary and choosing the 

maximum and minimum values on the curves 
space. This process generates functional quantiles 
that are not necessarily existing curves on the 
ensemble.  

Figure 2 shows the analysis of the dataset 
shown in Figure 1: the 50% inter-quantile area is 
represented in light red, dark red is used for the 
95% inter-quantile zone. The median curve (in 
black) is calculated by finding the point in the 
bivariate plane that presents the highest value of 
the density map. 

 
Information contained in the bivariate plane 
 

The bivariate PCA plane presents some 
important characteristics worth discussing: 

 It provides a data reduction and visually 
understandable representation, where each curve 
is represented by a point; 

 The probability density map associated to the 
bivariate plane allows for the calculation of the 
median curve, functional quantiles and outliers; 

 The density map conveys important information 
about the modality of the curves dataset. Indeed, 
statistical multimodality is normally associated 
with a mixture of unimodal distributions. Each of 
the underlying modes defines different behaviors 
of the curves and thus the original data can be 
divided in clusters. The HDR exposes the mono or 
multi-modal nature of the dataset. If an HDR is 
formed by disjoint areas, the distribution is 
multimodal. 

  

 
 

Figure 2. The functional quantiles and the median (black line) of the multi-run hydraulics simulation 
curves shown in Figure 1. 

  



8 

 

In the presented method, both the 
diagram containing the curves or functional 
boxplot and the bivariate PCA plane are jointly 
visualized by use of a brushing and linking 
strategy. In our system brushing corresponds to a 
selection operation. Thus, we offer tools to select 
individual or subsets of points in the bivariate 
plane, which highlights its corresponding curves. 
The opposite schema “select curve, highlight 
point” is also available. We also set meaningful 
limits to the exploration by drawing two iso-
probability curves. First contour is fixed at 
probability 50% while the outer one is controlled 
by a slider in the user’s interface. We finally define 
a blue vs red colormap to help the visual 
interaction with the plane (blue meaning low 
probability and red high probability). 
 
LINKING WITH THE INPUT PARAMETERS 
 

The proposed methodology also allows 
for the study of the augmented ensemble, each 
member of such ensemble is a couple consisting of 
the input parameters and a functional output. 
Thus, a member is represented as a couple (pN, f) 
where pN is a list of N parameters and f is a 
function. We will constrain our current study to 
one-dimensional f functions (curves). We also 
remark that the number N of input parameters is 
not necessarily small. Current numerical 
simulations can easily present N=50. The whole 
ensemble is represented as (pN, f)M where M is the 
number of couples or, equivalently, the number of 
members in the ensemble. We remark that input 
parameters and functional outputs both possess a 
common index M on the ensemble. Thus, it is 
technically possible to share the same selection 
strategy between them. Indeed, our linking 
strategy allows the use of fully coupled diagrams 
in order to interact, simultaneously, with the input 
parameters and functional outputs of the multi-
run simulations.  

One important consequence of this joint 
visualization is that it allows for what we define as 
a visual sensitivity analysis. As a matter of fact, 
multi-run simulations are often used to determine 
the impact of input parameters on the results of 
the simulations, which is called a sensitivity 

analysis [4]. Our system propagates the selections 
performed on the bivariate plane or on the 
functional boxplot to the diagrams associated to 
the input parameters. This allows the exploration 
of complex input-output relationships. 

 
RESULTS 
 

In this section, we discuss experimental 
results to demonstrate the utility of the proposed 
PCA-based functional boxplot, which allows:  
1. To study the variance of the curves generated 

from a multi-run numerical simulation;  
2. To detect functional outliers; 
3. To identify clusters of curves that correspond 

to different behaviors of members of the 
ensemble; 

4. To perform a visual sensitivity study.  
The discussion is started with two 

synthetic examples and then an industrial use-
case concerning a marine current study using a 
hydraulic solver is presented. 
 

Oscillating tangents 
 

Our first synthetic example consists of an 
ensemble of time-oscillating analytical functions 
coming from the following equation: 

 
𝑦(𝑡) = 𝑎𝑡𝑎𝑛(𝑋1)𝑐𝑜𝑠(𝑡) + 𝑎𝑡𝑎𝑛(𝑋2)𝑠𝑖𝑛(𝑡) 

 
where 𝑋1 and 𝑋2 are the input parameters and t 
represents the time, which is regularly sampled in 
the interval [0, 2π]. Thus we generate an 
ensemble of 400 curves by Monte Carlo sampling 
of both 𝑋1 and 𝑋2 based on a uniform distribution 
in the interval [-7, 7].  

In Figure 3, we show some results 
concerning this ensemble of temporal oscillating 
functions. On the top panel (a) all 400 generated 
curves are shown. Figure 4 (b) shows the result of 
a user interaction with the PCA bivariate plane of 
the 400 curves, where a blue to red colormap is 
applied. The explained variance is equal to 100%. 
This surprising result is explained by the fact that 
curves of the oscillating tangents function are 
regular sinusoids only tuned by their amplitude 
and frequency. 
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(a) 

 

 
 

(b) 

Figure 3. Top panel (a) shows 400 curves generated by the temporal oscillating tangents experiment. 
Bottom panel (b) shows the results of a user interaction where the analyst has selected (pink points) one 
of the clusters of the PCA plane. 

 
We can see that four clusters appear, 
indicating a multi-modal structure of the 
oscillating curves. The analyst has selected one 
of these cluster, then the propagated selection 
on the curves is highlighted, this selection 
corresponds to variations of the same 
oscillating mode. This example demonstrates 
the interest of visualizing and interacting with 
the PCA bivariate plane in the context of a 
partitioning task [40]. Understanding a 

multimodal ensemble of curves is indeed a 
complex analysis task. 

 
Campbell 1D functions 
 
Our second synthetic example is inspired by [43, 
19]. It consists of an ensemble of analytical 
functions that evolve in time. This dataset is 
generated by use of the following equation: 
 
 

Selection 

Propagated 

Selection 
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𝑦(𝜏) = 10 + 𝑋1𝑒𝑥𝑝 (
−(𝜏 − 10𝑋2)2

𝑘1𝑋1
2 + 𝑋3

2 )

+ 𝑋2𝑋4𝑒𝑥𝑝 (𝑘2𝑋1𝜏) 
 
where 𝑋1, 𝑋2, 𝑋3 and 𝑋4the input parameters and 
τ is a one by one regularly sampled variable in the 
interval [-90, 90]. The quantities 𝑘1 and 𝑘2 are 
constant, fixed to 60 and 0.002 respectively. [43] 
has introduced a slightly different version of this 
function in order to test simple sensitivity analysis 
tools when model outputs are 1D curves 
(understanding the role of each of the four inputs 
on the translation from left to right of the curve, 
on the shape of the curve peak and on the curve 
tail behavior). From this, [19] has calibrated a 
function (called Campbell2D) in order illustrate 
tools of sensitivity analysis when model outputs 
are 2D spatial functions (with strong spatial 
heterogeneities, sharp boundaries, and very 
different spatial distributions of the output values 
according to the X values).  

We generate an ensemble of 100 curves 
by Monte Carlo sampling based on a uniform 
distribution in the interval [-1, 5], the same 
sampling is used for all 𝑋𝑖. In the upper panel (a) 
of Figure 4, we show all 400 curves generated by 
the Monte Carlo sampling. At time 80 an event 
occurs and part of the curves diverge from its 
original tendency while the others keep with its 
original behavior. This can be easily understood by 
looking at the functional interquantile areas and 
to the median curve, presented in the bottom 
panel (b) of Figure 4. Indeed, the median curve 
and the 50% interquantile area are not modified 
by the event while the upper limit of the 95% 
interquantile area rises up. By looking at this 
representation, an analyst avoids visual clutter 
and easily understands that the event at time 80 
affected only the evolution in time of the top 25% 
of the curves. The explained variance by the two 
PCA components is equal to 97%. 
 

 
 

 

 

 

Figure 4. Top panel (a) shows 400 curves generated by the modified 1D Campbell function experiment. 
Bottom panel (b) shows the corresponding median curve and interquantile areas at 50% and 95% 
probability. 

 

(a) 

(b) 
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Figure 5. Realization of a visual sensitivity study over a synthetically generated ensemble using the 
modified 1D Campbell function. Two interactive linked diagrams are presented: the diagram on the top 
contains the analysis of the outputs (the curves), while the bottom parallel coordinates diagram 
represents the four input parameters of the Campbell function. The analyst has selected a group of 
curves on the top diagram thus this selection is propagated. We superpose “left bracket” symbols to 
the parallel coordinates’ diagram in order to visually reinforce the dispersion of the propagated 
selection, which is a measure of sensitivity. 

 
Once stated that there is a specific group 

of temporal evolving functions which behavior is 
modified by the event, the analyst is interested in 
knowing if some of the input parameters are 
responsible for this behavior. It is then possible to 
perform a visual sensitivity study by selecting, in 
the functional boxplot diagrams, all the curves 
ending in the upper part of the 95% interquantile 
area. Then the system propagates the selection to 
the diagrams dealing with the input parameters. 
The result of this operation is shown in Figure 5. 
In this figure, two interactive linked diagrams are 
presented, the diagram on the top contains the 
analysis of the outputs while the bottom parallel 
coordinates’ diagram represents the inputs. The 
interpretation of the diagrams is straightforward. 
Indeed, it is possible to visually assess the 
importance of each parameter by looking at the 
axis of the parallel coordinates’ diagram. In this 
case, 𝑋1 and 𝑋2 presents a high degree of 

concentration of the selection, thus they strongly 
influence the outputs. Using this simple criterion 
of “visual dispersion” the parameters can be 
ordered by importance (𝑋1, 𝑋2, 𝑋4, 𝑋3), which is 
one of the main objectives of a sensitivity analysis. 

In our system, the analyst “asks a 
question” by using the selection. In this case the 
question was: “which parameters generated the 
curves ending with the highest values?”. Of 
course, numerous other questions are possible, 
based on the selection on the Functional Boxplot, 
the bivariate plane or other diagrams linked to the 
ensemble data. This example demonstrates that 
our system can perform a visual sensitivity 
analysis. This kind of fast and informative 
exploration could be performed before a formal 
sensitivity analysis, such as the computation of 
Sobol’ indices (see [5] for this methodological 
point of view).  
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A hydraulics study-case 
 

Our study-case concerns a maritime 
model of Alderney Ray (or Raz Blanchard in 
French), which is a strait that runs between 
Alderney (UK) and Cap de la Hague (France), a 
cape at the northwestern tip of the Cotentin 
peninsula in Normandy. This strait presents one of 
the fastest marine currents in Europe; the current 
is intermittent, varying with the tide, and can run 
up to about twelve knots during equinoctial tides. 

A study was performed in order to 
calibrate a hydrodynamic model, which is typically 
an engaged and difficult process due to the 
complexity of the flows and their interaction with 
the shoreline, the seabed and the islands. Thus, it 
was essential to understand the relationship 
between the modelling calibration parameters 
and the simulated state variables which are 
compared to the observations. A sensitivity 
analysis using Sobol’ indices was a necessary step 
prior to calibration. In this context, several multi-
run studies were performed. In this section we 
focus on a particular 1,500 runs study where five 
parameters were varied:  

 Two coefficients of friction (CF1 and CF2) 
modeling the interaction with the seabed. 

 One “SeaLevel” representing the vertical 
distance from the surface to the seabed. 

 Two parameters for tidal modeling: the tidal 
range (vertical variation range) and the tidal 
velocity. 

The maritime model includes Alderney 
and the tip of the Cotentin peninsula and covers 
an area roughly 55 km x 35 km. The finite element 
mesh is composed of 17,983 nodes and 35,361 
triangular elements. The mesh size varies from 
100 m, at the shoreline and within the areas of 
interest, to 1.8 km offshore (western and 
northern sectors of the model). The computations 
were performed by the open source fluid 
dynamics solver TELEMAC [44] 
(http://www.opentelemac.org/) that generated 
fields such as velocity, pressure, and water height. 
We extracted 1,500 curves of this multi-run study 
by use of a probe in one of the nodes of the mesh; 
this leads to the curves shown in Figure 1.  

Figure 6 shows the result of two 
interactions. A functional boxplot containing the 
analysis of the 1,500 curves is linked to the input 
parameters that are represented in a parallel 
coordinates’ diagram. In this figure, the analyst 
explores the relationship between the functional 
outputs and the parameter “Sea Level”. On the 
top panel (a) of Figure 6, the analyst selects the 
highest values of “Sea Level” while on the bottom 
panel (b) the lowest values are selected. By 
looking at the propagated selections on the 
functional boxplots (in orange), it is easily 
understood that “Sea Level” behaves like a 
vertical offset on the oscillating curves generated 
by the tide. The analyst thus understands that 
“Sea Level” strongly influences the simulations 
results. This is coherent with the formal sensitivity 
analysis that was also performed. Sobol’ indices 
were computed and they show that the 
parameter “Sea Level” strongly influences 
(around 97%) the outputs while the others 
present little influence. In addition, the 
information shown in Figure 6 is richer than the 
scalar Sobol’ indices. Sobol’ indices reveal the 
strong influence of the parameter “Sea Level” 
while Figure 6 underlines the way that this 
influence is performed (by applying a vertical shift 
to the tide). 

Hydraulics engineers were also interested 
in using our system to study or verify which 
parameters do not influence the functional 
outputs. This step is fundamental for model 
reduction where a parameter is taken out of a 
model when it is considered as non-influential. 
Figure 7 shows the result of selecting the highest 
values of CF1 (one of the coefficients of friction of 
the seabed). We observe that its propagated 
selection on the functional boxplot is visually 
disperse, which indicates that CF1 has no 
influence in the behavior of the outputs. This 
again is coherent in respect to the Sobol’ indices-
based sensitivity analysis. Moreover, physicist 
performing the study confirmed that CF1 and CF2 
should be non-influential in this case because the 
seabed is too deep for its friction to have an effect 
on the sea surface. The explained variance by the 
two PCA components is equal to 99%. 
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(a) High values of “Sea Level” 

 

 
(b) Low values of “Sea Level” 

 

Figure 6. Interactive exploration of the relationship between the functional outputs and the parameter 
“Sea Level” in a marine hydraulics multi-run study, which shows that this parameter applies a vertical 
shift to the tide. 
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Figure 7. Interactive exploration of the relationship between the functional outputs and “CF1” (coefficient 
of friction 1) shows that this parameter is not relevant for this study, due to of the high dispersion of the 
propagated selection. 

 
 

Finally, Figure 8 shows a more subtle 
result. The analyst interacted with the propagated 
selected curves of the bottom panel (b) of Figure 
6. Our system allows refining selections, then sub-
ensembles of the curves with low “Sea Level” 
values were selected and a second order or 
indirect effect was observed. Figure 8 illustrates 
this second order effect by selecting: 
(a) low “Sea Level” and high “Tidal Range” 

values, 
(b) low “Sea Level” and low “Tidal Range” values. 

Comparing the curves (in pink) selected on Figure 
8, we observe two modes of oscillation of the tide: 
for a fixed “Sea Level” the “Tidal Range” controls 
the amplitude of oscillation of the tide. The 
existence of this behavior is coherent with the 
physics of the problem but it could not be 
observed in the performed Sobol-based sensitivity 
analysis.  
 
 

SOFTWARE IMPLEMENTATION 
 

The system described in this article was 
developed by a collaboration between 
visualization scientists and statisticians. The aim is 
the development of mathematical tools to study 
and analyze multi-run simulations, before 
integrating the more efficient algorithms in the 
OpenTURNS software [45]. It was decided to 
design and implement new interactive visual 
analytics methods in OpenTURNS by integrating 
the new developments into ParaView [46].  
OpenTURNS and ParaView are both integrated in 
the SALOME open-source numerical simulation 
platform [47]. 

The original idea was to introduce a 
Functional Boxplot view in ParaView in order to 
avoid visual clutter and interactively study the 
outliers of an ensemble of curves. The bivariate 
PCA plane and the High Density Regions (HDR) 
were seen as a way of augmenting the 

High Dispersion 

Selection 
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information of the Functional Box Plot view, which 
was an advantage over functional depth methods 
like [27-28]. Data depth does not allow to display 
data multimodality but only to calculate quantiles 
of functions. In our system, if the structure is 
multi-modal then the analyst can visually identify 
the clusters, which are disjoint regions of the inner 
HDR. Furthermore, the bivariate PCA plane could 
be segmented by any automatic clustering 
algorithm. This is straightforward in our 
integration in ParaView because a clustering 
algorithm can be added to its standard 
visualization pipeline. We positively tested the 
Paraview’s native implementation of k-means. 

On the other side, interacting among 
views introduced problems in the architecture of 
ParaView and, as a consequence of this work, the 
so-called linked views mechanism was developed. 
In this context, other statistical views were also 
implemented. We remark the implementation of 
an interactive Scatter Plot Matrix view that is a 
version of the work of [41]. 

Finally, our system was fully integrated in 
ParaView and is available from version 5.0.1. This 
software being Open-Source, the examples given 
in this article can easily be reproduced. Indeed, we 
include all data presented in this article as 
supplemental material 
(https://gitlab.kitware.com/edf/visual-sensitivity-
analysis-of-curves). 

 
CONCLUSION 
 

We have designed and implemented a 
system allowing the in-depth study of augmented 
ensembles issued from multi-run numerical 

simulations dealing with uncertainty. These 
augmented ensembles are composed by functions 
and their associated parameters. The main 
contribution of our system is that a visual 
sensitivity study becomes possible by jointly 
analyzing functional outputs and their 
corresponding input parameters.  

Figure 9 synthesizes the overall 
methodology. Its principal element is based on 
HDR computed on the PCA bivariate plane. This 
allows the realization of the following tasks: 

 Avoid visual clutter by visualizing interquantile 
areas and the median curve; 
Interactively detect functional outliers; 

 Identify clusters of functions by means of the 
HDR and PCA-plane. 

Combining all these elements with the 
linking of functional outputs to their 
corresponding input parameters allows the 
realization of a visual sensitivity study. 

Two synthetic examples and one 
industrial use-case have allowed to demonstrate 
the potential of the approach which has been 
integrated in a software environment based on 
the ParaView and OpenTURNS platform. Current 
works turn to extend this method to larger 
number of components retained in the PCA step 
and to the visual sensitivity analysis of parameter-
augmented ensembles of spatial fields. Indeed, in 
a lot of applications, outputs of computer codes 
are vectors supported by surfaces (see some 
examples in [2-3, 19-20]). Future works will also 
consider non-linear dimensionality reduction 
techniques [31] in order to replace the PCA one.  

https://gitlab.kitware.com/edf/visual-sensitivity-analysis-of-curves
https://gitlab.kitware.com/edf/visual-sensitivity-analysis-of-curves
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(a) 

 

 
(b) 

 

Figure 8. Interactive exploration of a subtle phenomenon involving two parameters: “Sea Level” 
and “Tidal Range”. The effect of “Tidal Rage” is not the same depending on the value of “Sea 
Level”. 
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Figure 9. Scheme of the overall PCA-based methodology. 
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