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The pyramidalization angle and spherical curvature are well known quantities used to characterize the local geometry

of a molecule and to provide a measure of regio-chemical activity of molecules. In this paper, we give a self contain

presentation of these two concepts and discuss their limitations. These limitations can be bypass thanks to the

introduction of the notions of angular defect and discrete Gauss curvature coming from discrete differential geometry.

In particular, these quantities can be easily computed for arbitrary molecules, trivalent or not, with bond of equal

lengths or not. All these quantities have been implemented. We then compute all these quantities over the Tománek

database covering an almost exhaustive list of fullerene molecules. In particular, we discuss the interdependence of

the pyramidalization angle with the spherical curvature, angular defect and hybridization numbers. We also explore

the dependence of the pyramidalization angle with respect to some characteristics of the molecule like the number of

atoms, group of symmetry and with respect to the geometrical optimization process.

I. INTRODUCTION

It is well known that the geometry of a molecule plays

an important role in its chemical and physical properties.

Many authors have focus on some quantities reflecting the

"shape" of the molecule and particular properties like regio-

reactivity. The most famous quantity is known as the pyra-

midalization angle (Pyr(A)) developed by R. C. Haddon

during the years 901–3. A second quantity introduced by R.

C. Haddon1 is the spherical curvature (SC) which aims to

be a discrete analogue of the classical curvature in differen-

tial geometry.

Despite its ubiquity in many articles, the theoretical back-

ground of the pyramidalization angle or the spherical cur-

vature were not reviewed or discussed in recent years up to

our knowledge. However, such a discussion is necessary as

many articles exchange different notions of curvatures, some

related to classical differential geometry and some related to

discrete differential geometry. It was in fact the aim of R.

C. Haddon in his article1 to clarify this point. Moreover, the

Haddon’s pyramidalization or spherical curvature can not be

applied to arbitrary molecules and are in fact restricted most

of the time to trivalent molecules.

In this paper, we give a self contain presentation of the

Haddon’s pyramidalization angle and the spherical cur-

vature. We give a detailed derivation of these quantities and

some examples of explicit computations. We give a complete

a)Electronic mail: didier.begue@univ-pau.fr
b)Electronic mail: jacky.cresson@univ-pau.fr

discussion of the relation existing between the pyramidal-

ization angle and the hybridization properties of carbon

molecules. Our main concern is also to give a precise ac-

count of the limitations of these quantities. We then discuss

the use of another quantity called the discrete Gauss cur-

vature and the angular defect (AD) as a tool to cover cases

for which the Haddon’s pyramidalization angle and spherical

curvature is defined.

All the quantities are implemented4 and can be used to

obtain cartography of molecules representing the variation

of the pyramidalization angle, spherical curvature or angular

defect along the molecule.

As an example, we provide a full statistical analysis of the

Tománek database5 and corresponding to a more or less ex-

haustive list of fullerenes molecules. In particular, we study

the dependence of the pyramidalization angle with respect

to the number of atoms, group of symmetry, geometric opti-

mization and hybridization. As a special case, we consider

the C32 isomers.

The paper is organized as follows:

In part II, we define and discuss the pyramidalization angle

as initiated by R. C. Haddon2,3. Detailed proofs are given.

In particular, the connection between the pyramidalization

angle and the molecular orbitals is given. We give a full

discussion of the limitations of this tool as well as explicit

examples.

In part III, we define and discuss the notion of spherical cur-

vature as initiated by R. C. Haddon in his work2,3. The con-

struction is already restricted to the trivalent case. We discuss

the limitations of this tool and we give explicit examples.
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In part IV, in order to bypass the limitations describes in sec-

tion II and part III, we introduce the notion of angular defect

and discrete Gauss curvature. We give explicit examples.

Part V, we explore the Tománek database for fullerene

molecules. We compute all the relevant quantities (pyra-

midalization angle, spherical curvature, angular defect, hy-

bridization number) and study the dependence of all these

quantities between them and also with respect to some char-

acteristic of the molecules like the number of atoms, group

of symmetry and geometric optimization.

Finally, we explore some perspectives raised by our results.

Note. All the figures given in this article can be obtained us-

ing the online program provide at https://pychemapps.univ-

pau.fr/mosaica/.

A. Haddon’s representation problem

In his seminal paper1, R. C. Haddon sets the following in-

triguing question: does the fullerene C60 is a sphere or a

polyhedron ? Of course, such a question has no meaning

without precisions because has already reported in the previ-

ous sections, there exist no canonical continuous or discrete

representation of a molecule. It seems that R. C. Haddon was

thinking about a geometric representation of the molecule

which has some "real" content. Indeed, as he remarked just

after his question "Of course, in reality the answer is well-

known, and neither the sphere nor the polyhedron represent

C60, which lie other molecules exists as a collection of nuclei

with an associated distribution of electron density.". He then

precised his idea asking "which of these conventional repre-

sentations is most relevant for the fullerenes and in particular

the language most appropriate to the description of the shape

of these molecules and the geometry of the carbon atoms."

Unfortunately, these precisions do not give a more well de-

fined problem as the shape of a molecule is precisely a matter

of representation and the geometry of carbon atoms is not de-

fined in the text of R. C. Haddon. However, the work of R.

C. Haddon suggests that by "geometry of carbon atoms", he

focus on the data of atomic orbitals and how these atomic

orbitals interact due to the shape of the molecule to produce

molecular orbitals following in this way Hückel’s approach

to the computation of molecular orbitals. As a consequence,

the problem formulated by R. C. Haddon is in fact related

to the problem of a selection between two geometric repre-

sentations of a given molecule with respect to its chemical

properties, precisely the interplay between the local carbon

atoms geometry related to atomic orbitals and the global ge-

ometry.

One can then generalize the representation problem of R. C.

Haddon in the following way:

Haddon’s representation problem: Let M = (A ,R) be a

given molecule admitting a continuous representation M .

Let P be a physical or chemical property of MA. Which rep-

resentation of M, given by the continuous M or the skeleton

one S(M) is the most appropriate to study this property ?

Of course, depending on the property of the molecule under

investigation, the answer can be different. R. C. Haddon has

in particular formulated the previous problem concerning the

study of fullerene in the context of the reactivity property of

the molecule, even if it is not explicitly written.

In his reference paper1, R. C. Haddon introduces two quan-

tities which are of current used in the community: the pyra-

midalization angle and the curvature. In the following, we

first discuss these two quantities and precise their domain of

application.

II. HADDON’S PYRAMIDALIZATION ANGLE

In this section, we define and discuss the pyramidalization

angle introduced by R. C. Haddon in a series of articles1–3.

We first restrict our attention to molecules having all bonds

of equal lengths and trivalents. This case cover well known

molecules as the fullerenes and graphene. The definition of

a pyramidalization angle in a given atom A of the molecule

is associated to the existence of a particular vector called

the POAV (A) (π-Orbital Axis Vector) vector which has the

property to make a constant angle with each bonds of con-

nected to A6. Generalization of this vector to arbitrary triva-

lent molecules is made trough a notion of regularized star

for a given atom. We then discuss the relevance of this an-

gle for chemistry. In particular, we derive a detailed anal-

ysis of the structure of the molecular orbital in A with ex-

plicit expressions making clear the connection between the

orbitals and the pyramidalization angle. We then propose a

way to generalize the pyramidalization angle for more gen-

eral molecules. We finally discuss the limitations of the pyra-

midalization angle.

A. Haddon’s pyramidalization for trivalent molecules

We follow the presentation made in Haddon and al.

papers1–3.

1. Construction in the trivalent regular case

We first restrict our attention to trivalent regular molecules,

meaning that we assume that all the bonds are of equal

lengths and that each atom of the molecule is connected to

three atoms. In this case, we have the following Lemma,

which is the main ingredient of the construction of the pyra-

midalization angle:

Lemma 1 (POAV). Let M be a trivalent regular molecule.

In each atom A of the molecule M, there exists a unique uni-

tary vector denoted by POAV (A) such that POAV (A) makes

a constant angle denoted by θ with each line segment AB

where B ∈ ⋆(A) such that π
2
≤ θ < π .
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Proof. Let A be a given atom of M. As the molecule M is

trivalent, we have three connected atoms B1, B2, B3 con-

nected to A. These three atoms define a plane P(A). As

the three bonds are equal by assumption on M, the atom A

belongs to the intersection of each mediating plane, then in

particular to the line passing trough A and the intersection

of the mediating line in the triangle defined by B1, B2 and

B3. Let us denote by I the intersection point of all mediating

line in the plane P(A). We define POAV (A) as the unique

unitary vector directed from I to A. It remains to prove that

FIG. 1: Construction in a trivalent regular case.

POAV (A) is such that the angle with each bond is constant.

We first remark that the vector POAV (A) is normal to the

plane P(A). Indeed, the line (IA) belongs to the intersec-

tion of two intersecting planes which are normal to the plane

P(A). It follows that POAV (A) is a normal vector in A.

Let B be an atom of ⋆(A) in P(A). Let us denote by l the

bond length between A and atoms of ⋆(A) and zA the height

IA of A with respect to the plane P(A). We denote by θAB

the angle between POAV (A) and the bond AB. The angle θAB

FIG. 2: Angle between a bond and the POAV (A) vector.

satisfies:

cos(π −θAB) =
zA

l
, sin(π −θAB) =

IB

l
(1)

As θAB satisfies π
2
≤ θAB < π , we have 0 ≤ π − θAB < π

2
and the value of the arccos is sufficient to determine π −θAB

completely. As seen in the formula, the angle θAB depends

only on zA and l which are quantities independent of B. As

a consequence, θAB is a quantity only depending on A and

the length of the bond but independent of B. As a result,

that the angle between the vector POAV (A) and each bond is

constant. This concludes the proof.

The previous Lemma was discussed (in an informal way) in

the original paper2 (Appendix) by R. C. Haddon and L. T.

Scott as an answer to there colleagues disbelieving the exis-

tence of such a vector.

Remark 1. The existence of the POAV (A) vector can be re-

lated to the existence of a cone in A which is tangent to each

face containing A. Such a property for a mesh was intro-

duced by Y. Liu, and co-writers7 under the name of coni-

cal meshes in particular with the problem of constructing

offsets (see Chap.5,§.5 p.1348). In particular, the previous

result shows that any meshes whose vertex are trivalent is

conic (see Proposition 8 p.1378). We refer to proposition 9 of

Romon’s book8 (p.137), where an explicit condition is given

for a mesh whose all vertex are of order 4 to be conic and so,

in particular, for which a POAV vector can be defined.

We are now ready to give the definition of the pyramidal-

ization angle as defined by Haddon1:

Definition 1 (Pyramidalization angle). Let us consider a

trivalent regular molecule M and an atom A of M. Let B be

an atom of ⋆(A). We denote by θ the angle between any bond

vector AB, B ∈ ⋆(A) and the POAV (A) vector. The pyrami-

dalization angle in A, denoted by Pyr(A) is then defined by:

Pyr(A) = θ − π

2
(2)

We then have that Pyr(A) = 0 when the molecule is locally

planar and 3−D if Pyr(A) 6= 0.

2. Construction in the trivalent non regular case

The POAV vector can be defined even for non regular triva-

lent molecules. This construction was not given in the arti-

cles of R. C. Haddon and coworkers1–3.

This main ingredient of the construction if the notion of reg-

ularized star of a given atom in a molecule.

Definition 2 (ε-Regularized star). Let us consider a trivalent

molecule M and A a given atom of M. Let us denote by ε > 0.

For each B ∈ ⋆(A), we denote by Regε B the point on AB such

that AB = ε called the regularization of B with respect to A.

We denote by Reg⋆(A) the set of regularized B ∈ ⋆(A) with

respect to A called the ε-regularized star of A.

The previous construction corresponds to the statement of R.

C. Haddon1 that "the POAV1 theory of pyramidalization may

be related to the construction of a sphere of arbitrary radius

with its center at point A. The intersection of the three bonds

to the neighboring atoms with the surface of the sphere then

defines a circle, and this circle together with the center of the
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FIG. 3: Construction in a non trivalent regular case .

sphere leads to a right cone. This one generates the family

of all bonds directions for a given pyramidalization angle".

The definition of Regε(B) is easily implemented thanks to

the relation:

−−−−−−→
ARegε(B) =

ε

AB

−→
AB, ∀B ∈ ⋆(A) (3)

One can fix a particular choice of ε by taking for example:

ε(A) = min
B∈⋆(A)

AB, (4)

corresponding to the minimum of the bond lengths starting

in A.

Using the regularized star of a given atom, one easily extends

the notion of pyramidalization angle:

Definition 3. Let M be a trivalent molecule and A be an

atom of M. Let ε > 0, the ε-pyramidalization angle of M in

A is defined as the pyramidalization angle associated to A

and the ε-regularized star of A.

Of course, having a definition depending on ε is not satisfy-

ing. Fortunately, we have the following Lemma:

Lemma 2. Let M be a trivalent molecule and A an atom of

M. Let ε > 0 and POAVε(A) the vector defined in Lemma 1.

The vector POAVε(A) is independent of ε .

Proof. The POAVε(A) vector is only defined by the local ge-

ometry of the molecule in a given atom A and precisely only

on the relative angles of the bonds starting in A. By construc-

tion, all regularized vector
−−−−−−→
ARegε(B) for B ∈ ⋆(A) satisfy the

relation (3) meaning that if POAVε(A) makes a constant an-

gle with all the vectors
−−−−−−→
ARegε(B) for B ∈ ⋆(A), this vector

makes also a constant angle with all vectors in
−−−−−−→
ARegε ′(B)

with B ∈ ⋆(A) for any ε ′ > 0. As a consequence, the vector

POAV (A)ε vector is independent of ε .

We then deduce an important property of the ε-

pyramidalization angle :

Lemma 3. Let M be a trivalent molecule and A an atom in

M. For ε > 0, the ε-pyramidalization angle in A is indepen-

dent of ε .

This property can be used to compute explicitly the pyrami-

dalization angle in concrete molecules where bond lengths

are different. This result corresponds to the statement by R.

C. Haddon that "the pyramidalization angle is independent

of bond lengths" used for example by Haddon1(p.1798).

B. The pyramidalization angle and chemistry

The definition of the pyramidalization angle in the previous

section was made as a pure geometrical construction in order

to put in evidence the geometrical assumptions underlying

the definition of this angle. As indicated by R. C. Haddon

and L. T. Scott2, the pyramidalization angle provides a "con-

venient index of the degree of nonplanarity" at a given atom

of the molecule. However, the main concern of R. C. Had-

don was chemistry and in particular the chemical properties

of a given molecule related to its geometry. We need to in-

terpret the pyramidalization angle in this context. The basic

idea is that the pyramidalization angle is related to the hy-

bridization of atomic orbitals and in particular is a measure

of the distortion a given π-electron system locally in a given

molecule. We follow the presentation made by Haddon3.

1. Hybridization

We consider the orbitals for a conjugated nonplanar system.

We first discuss the form of the hybrid σ -orbitals. We de-

note by h1, h2, h3 which are obtained as linear combination

of the s-orbital, and the px, py and pz orbitals. The general

form of such orbital is given by:

hi = ci,1s+ ci,2 px + ci,3 py + ci,4 pz (5)

The idea of hybridization is to choose the orbitals in order to

obtain the maximal overlap along the bonds. We then intro-

duce three vectors p1, p2 and p3 respecting this constraint:

Definition 4 (Adapted p-orbitals). Let M be a molecule and

A an atom of M. We denote by p1(A), p2(A) and p3(A) the

three p-orbitals, defined by:

pi = ci,2 px + ci,3 py + ci,4 pz, i = 1,2,3, (6)

where the vector ci = (ci,2,ci,3,ci,4) is such that each pi is

directed along a given internuclear axes between A and an

atom of ⋆(A).

Using adapted p-orbitals, one can rewrite h1, h2 and h3 as:

hi = ci,1s+λi pi, i = 1,2,3. (7)
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In order to describe the hybrid π-orbital denoted by hπ , we

introduce following R. C. Haddon and L. T. Scott2, the no-

tion of π-orbital axis vector:

Definition 5 (The π-Orbital Axis Vector). The π-orbital axis

vector, also denoted POAV , is the vector which makes equal

angles to the σ -bonds at a conjugated atom.

The π-orbital axis vector does not always exist as discussed

in the previous section. When it exists it coincides with the

normal vector nA. The existence of the π-orbital axis vector

for trivalent molecules follows directly from Lemma 1.

Remark 2. R. C. Haddon and L. T. Scott2 indicated that a

similar approach was performed by J.G. Radziszewski and

al.9.

The hybrid π-orbital is then defined as:

hπ = cπ s+λπ pπ (8)

By definition of the POAV , denoting by θi,π , i = 1,2,3 the

angle between pπ and the pi, the main assumption on the

π-orbital is then equivalent to:

θ1,π = θ2,π = θ3,π (9)

We denote by θσ ,π this common angle. Clearly the pyrami-

dalization angle Pyr(A) is then related to θσ ,π by the relation:

Pyr(A) = θσ ,π −
π

2
(10)

2. Adapted reference frame

The previous geometrical picture can be made easier by look-

ing for an adapted reference frame. We first put the origin of

the reference frame at the atom under consideration. We then

consider that the POAV vector pπ is colinear to pz so that:

hπ = cπ s+λπ pz (11)

We denote by P the orthogonal plane to pz passing trough

O. By assumption on the POAV, the σ -orbitals h1, h2 and h3

make an angle given by Pyr(A) with the plane P and then
π
2
+Pyr(A) with pz. The picture that we obtain corresponds

to the one given by R. C. haddon2 (Figure 2 p.138).

Following R. C. Haddon and L. T. Scott2 (p.138), the pre-

vious situation can then be understood as an intermediate

hybridization between sp2 and sp3 depending on the pyra-

midalization angle.

One can choose the reference frame in order to have one in-

ternuclear axe in the x,z-plane, so that for example h1 takes

the form:

h1 = c1,1s+ c1,2 px + c1,4 pz (12)

The two remaining σ -orbitals take the form:

hi = ci,1s+ ci,2 px + ci,3 py + ci,4 pz, i = 2,3. (13)

3. The orthogonality assumption

We make the following assumption:

Orthogonality assumption: The hybrids h1, h2, h3 and hπ

are mutually orthogonal.

We then have the following result:

Lemma 4. If the hybrids satisfy the orthogonality assump-

tion then we have:

ci,1cπ + ci,4λπ = 0, i = 1,2,3. (14)

Proof. Denoting by h·, ·i the usual scalar product on the or-

bitals, we have:

hhπ ,h1i= ci,1cπhs,si+ ci,4λπhpz, pzi= 0, i = 1,2,3, (15)

using the fact that hpz, pxi = hpz, pyi = 0. Moreover as

hs,si= 1 and hpz, pzi= 1 this concludes the proof.

As a consequence, there exists µi such that:

ci,1 = µiλπ , ci,4 =−µicπ , i = 1,2,3, (16)

As the angle is the same between pz and each hi, we must

have:

µ1 = µ2 = µ3 = µ (17)

The σ -orbitals look like:

h1 = µ(λπ s− cπ pz)+ c1,2 px,

h2 = µ(λπ s− cπ pz)+ c2,2 px + c2,3 py,

h3 = µ(λπ s− cπ pz)+ c3,2 px + c3,3 py

(18)

4. The normalization assumption

First we impose that the π-orbital is normalize, then we must

have:

c2
π +λ 2

π = 1 (19)

Next, we impose that the contribution of the s orbital and pz

orbital is normalized. We then obtain:

Lemma 5. The normalization assumption of the s and pz

contribution of (h1,h2,h3,hπ) gives:

h1 =
1√
3
(λπ s− cπ pz)+ c1,2 px,

h2 =
1√
3
(λπ s− cπ pz)+ c2,2 px + c2,3 py,

h3 =
1√
3
(λπ s− cπ pz)+ c3,2 px + c3,3 py

(20)

See the proof of the lemma in the appendix.
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5. The sp3 normalization assumption

R. C. Haddon impose in3 what he called an sp3 normaliza-

tion assumption that can be translate as follows:

c2
1,2 + c2

2,2 + c2
3,2 = 1, and c2

2,3 + c2
3,3 = 1, (21)

which are the classical constraints in the pure sp3 case.

This assumption is not sufficient to fix the value of the co-

efficients c1,2, c2,2, c3,2, c2,3 and c3,3. However, imposing

some special constraints like a C3v symmetry, we can obtain

explicit quantities (see section II B 7).

6. Computation of the POAV vector

It remains to give an explicit formula for the coefficient cπ

and λπ determining the POAV vector. These coefficients are

related via the normalization. The explicit value must depend

on the pyramidalization angle. This is indeed the case.

We have:

Lemma 6. The coefficient cπ is given by:

cπ =
√

3c1,2 tan(Pyr(A)) (22)

The coefficient λπ is given by:

λπ =
�

1−3c2
1,2 tan2(Pyr(A)) (23)

Proof. The POAV vector is such that the angle between the

hπ orbital and each orbital h1, h2, h3 is π
2
+ Pyr(A). The

vector associated to hπ is vπ = (0,0,λπ) and the one with h1

is v1 = (c1,2,0,
−cπ√

3
). The scalar product between the two

vectors gives vπ · v1 =− 1√
3

cπ λπ .

This scalar product is also equal to k vπ kk v1 k cos(vπ ,v1).

As k vπ k2= λ 2
π and k v1 k2=

3c2
1,2+c2

π

3
, we obtain taking the

square on each side of the equality:

λ 2
π c2

π

3
=

3c2
1,2 + c2

π

3
λ 2

π cos2
�π

2
+Pyr(A)

�
(24)

We then have:

λ 2
π

�
c2

π − (3c2
1,2 + c2

π)cos2
�π

2
+Pyr(A)

��
= 0 (25)

As λπ 6= 0, we obtain:

c2
π

�
1− cos2

�π

2
+Pyr(A)

��
= 3c2

1,2 cos2
�π

2
+Pyr(A)

�

(26)

Using the fact that:

1− cos2(π
2
+Pyr(A)) = sin2(π

2
+Pyr(A))

and the equality:

cos(π
2
+Pyr(A)) =−sin(Pyr(A)) and

sin(π
2
+Pyr(A)) = cos(Pyr(A)),

we deduce that:

c2
π cos2(Pyr(A)) = 3c2

1,2 sin2(Pyr(A)) (27)

Assuming that Pyr(A) 6= π
2

, we obtain:

c2
π = 3c2

1,2

sin2(Pyr(A))

cos2(Pyr(A))
= 3c2

1,2 tan2(Pyr(A)), (28)

which concludes the proof.

The expression of the coefficient cπ was computed by R. C.

Haddon and L. T. Scott2 (p.138) in the particular case where

the molecule possesses a local C3v symmetry.

7. Special case: Hybridization for molecules with a C3v

symmetry

R. C. Haddon3 made a symmetry assumption, called the C3v

symmetry which is implicitly used in2 and which implies the

following constraints in the adapted reference frame:

c2,2 = c3,2 < 0, c2,3 =−c3,3, (29)

and the fact that we have three σv planes of symmetry in the

plane (px, py) leads to:

c2
2,2 + c2

2,3 = c2
1,2, (30)

which corresponds to the fact that we have an equilateral

triangle with c1,2 > 0.

The σ -hybrids are then given by:

h1 =
1√
3
(λπ s− cπ pz)+ c1,2 px,

h2 =
1√
3
(λπ s− cπ pz)+ c2,2 px + c2,3 py,

h3 =
1√
3
(λπ s− cπ pz)+ c2,2 px − c2,3 py

(31)

with the condition (30). Coupling this assumption with the

sp3 normalization conditions, we obtain the following form

for the σ -hybrids:

Lemma 7 (sp3 normalization). The sp3 normalization as-

sumption of (h1,h2,h3,hπ) gives:

h1 =
1√
3
(λπ s− cπ pz)+

√
2√
3

px,

h2 =
1√
3
(λπ s− cπ pz)−

1√
6

px −
1√
2

py,

h3 =
1√
3
(λπ s− cπ pz)−

1√
6

px +
1√
2

py

(32)
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Proof. This follows from c2
2,3+c2

3,3 = 2c2
2,3 = 1, which gives

for example c2,3 =± 1√
2

and c3,3 =∓ 1√
2
.

The second normalization gives c2
1,2 +2c2

2,2 = 1.

The symmetry condition (30) with c2
2,3 =

1
2

leads to the rela-

tion c2
2,2 +

1
2
= c2

1,2. Putting this expression in the normaliza-

tion equation gives c2
2,2 +

1
2
+2c2

2,2 = 1.

We deduce that 3c2
2,2 =

1
2

or c2
2,2 =

1
6

and so c2
1,2 =

2
3
.

The previous form of the σ -hybrids coincide with the ones

given by R. C. Haddon and L. T. Scott2 (p.138).

8. Relative weight for orbitals and hybridization numbers

a. A notion of relative weight for orbitals For a given or-

bital hi, one can be interested in measuring which part of the

constituting orbitals is playing a major role with respect to

the others. We then introduce a notion of weight for a given

orbital and of relative weight between the constitutive ele-

ments of an orbital.

Definition 6 (Weight of a given atomic orbital). Let h be an

orbital of the form:

h = ass+ax px +ay py +az pz, (33)

where (as,ax,ay,az) are real coefficients. The weight of the

atomic orbital p⋆, ⋆ ∈ {s,x,y,z} in the molecular orbital h

denoted by w⋆(h) is the quantity w⋆(h) = a2
⋆.

A comparison between the contribution of each orbitals is

then resumed by the notion of relative weight between two

orbitals.

Definition 7 (Relative weight for orbitals).

h = ass+ax px +ay py +az pz, (34)

where (as,ax,ay,az) are real coefficients. We call (s,x)-
relative weight of the atomic orbital s in the molecular or-

bital h in regards of the weight of the atomic orbital x in the

same orbital h and we denote by ws,x the quantity:

ws,x(h) =
ws(h)

wx(h)
, (35)

as long as wx(h) 6= 0. The relative weights for y,z are defined

in the same way.

A more global weight can be defined denoting by p = ax px +
ay py+az pz. In this case, the (s, p)-relative weight is denoted

by:

ws,p =
ws(h)

wx(h)+wy(h)+wz(h)
(36)

A main property of the relative weight is that they are invari-

ant when the orbital is multiplied by a scalar µ ∈R. The rel-

ative weights are naturally related to the hybridization num-

bers introduced by R. C. Haddon2.

The notion of weight for a given orbital can be extended to a

finite family of orbitals representing a particular local geom-

etry.

Definition 8 (Relative weight of a system of orbitals). Let

h = (hi)i=1,...,4 be a family of orbitals. The (s,⋆)-relative

weight of h is define by:

ws,⋆(h) =
4

∑
i=1

ws,⋆(hi), (37)

where ⋆ ∈ {x,y,z}.

b. Hybridization numbers R. C. Haddon and L. T. Scott2

(p.2938) introduced two numbers in order to characterize the

relative weight of each orbitals in the system (32) defined by

hπ and hσ = (h1,h2,h3) and to illustrate how a system with a

given pyramidalization number evolves between the sp2 and

sp3 case.

We first rewrite the set of orbitals as follows:

hπ = Nπ(s+ λ̃π pπ), hi = Ni(s+λi pi), i = 1,2,3, (38)

where k pi k= 1 for i = 1,2,3 and

λ̃ 2 =
λ 2

π

c2
π

. (39)

We then define the two quantities :

m =
1

λ̃ 2
π

, (40)

and

n = λ̃ 2
1 + λ̃ 2

2 + λ̃ 2
3 (41)

We see that these hybridization numbers correspond to what

we have called relative weight of orbitals, and precisely:

m = ws,z(hπ) =
ws(hπ)

wz(hπ)
=

1

λ̃ 2
π

=
c2

π

λ 2
π

(42)

and

n = wz,s(hσ )+wx(hσ )+wy(hσ ) (43)

In the case where the system (hπ ,hσ ) is given by (32), we

have:

m =
2tan2(Pyr(A))

1−2tan2(Pyr(A))
=

c2
π

λ 2
π

(44)

Moreover, we have:

wz,s(h1) = wz,s(h2) = wz,s(h3) =
( cπ√

3
)2

( λπ√
3
)2

=
c2

π

λ 2
π

= m, (45)
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and

wx(hσ ) = wy(hσ ) = 1, (46)

so that:

n = 3m+2. (47)

Explicit computation depending on the pyramidalization

number shows the path between sp2 and sp3, see table I. The

previous number can then be understood as hybridization of

the form:

sλπ
2

pn−3m
x,y p

c2
π

z (48)

for the σ orbitals (hi) and

sc2
π p

λ 2
π

z (49)

for the π −orbitals (hπ ) .

The classical sp2 situation is then understood in term of

(sp2
x,y p0

z )σ (s
0 p1

z )π = (sp2)σ (p1
z )π .

The classical sp3 situation corresponds to λπ = 0.866 and

cπ = 1
2

i.e. (s0.75 p2.00
x,y p0.25

z )σ = (s0.75 p2.25)σ (s
0.25 p0.75)π .

Hybridization is then well defined. As an illustration, calcu-

lations were carried out on the C32 and C80 that have allowed

the construction of the cartographies in the figure 4. Note

that, the cartographies are sorted according to the energetic

order of the isomers, starting from the most stable and the

C80 hybridization values are given in relation to the mean

C60 value. However, in 2001, R. C. Haddon was forced to

clarify his definition of hybridization6. If, at first glance, the

definitions give in his paper seem different from equations

48 and 49, we easily show that they are, at the end, identical

in all respects.

For R. C. Haddon, the hybridization of the π-orbital (sm p)

is obtained from the value of the m parameter. To relate this

definition to equation 49, it is just sufficient to express the

weight of the s-orbital in the hybrid π-orbital (hπ ) in propor-

tion to that of a single pz-orbital:

sc2
π p

λ 2
π

z ⇐⇒ s

c2
π

λ2
π pz (50)

From equation 44, the ratio
c2

π

λ 2
π

explicitly corresponds to the

m parameter.

According to R. C. Haddon6, the average hybridization of

the σ -orbitals (spñ) is given by:

ñ = 3m+2 (51)

To link this definition to equation 48, it is sufficient to ex-

press the weight of the p-orbitals in the σ -orbitals (hi) in

proportion to that of a single s-orbital:

sλ 2
π p2+c2

π ⇐⇒ sp

2+c2
π

λ2
π ⇐⇒ sp

2

λ2
π
+

c2
π

λ2
π ⇐⇒ sp

2

λ2
π
+m

(52)

sp3m+2 = spñ (53)

Proof. We know that :

m =
cπ2

λ 2
π

=
1−λ 2

π

λ 2
π

=
1

λ 2
π

−1

then,

3m+2 =
2

λ 2
π

+m = ñ

These definitions allow us to get closer to the notion of the σ -

hybridization used by the chemists. Figure 5 illustrates this

σ hybridization as a function of the number of atoms for the

complete basis of Tománek. As normally expected, the high-

est hybridizations are observed for the smaller fullerenes.

What is less intuitive is both the very large disparity of these

values and a large sp > 3 situations (i.e. Pyr(A) > 109.5◦)

for all medium size systems below C60. Because the no-

tion of sp > 3 is not physically well-defined, the use of the

σ -hybridization is therefore not the most suitable for car-

tographied the hybridization as a function of the curvature of

carbon systems. A most relevant information which reflects

the notion of hybridization seems to be the one contained in

equation 48. In this formula, the weight of the p-orbitals in

the σ -system is equal to 2+ c2
π . In particular, the weight of

the pz orbital distributed in each of the 3 directions h1,h2,

and h3 is equivalent to
c2

π
3

. This new parameter, denoted Y ,

is also related to m parameter, as Y = m
λ 2

π
3

. It mainly serves

to describe the deviation from the conjugation of a system.

Last, but not least, Y quantifies the participation of the pz or-

bital (hybridization) on each hi orbital in consideration of the

topology of the system (Pyr(A)) (figures 6 and 7). All right,

it is always permissible to rewrite the hybridization in term

of Y without any changes for the chemists :

spñ = sp
2

λ2
π
+m

= sp
2+3Y

λ2
π (54)

Figure 7 shows the cartographies of C32 and C80 relative to

the Y parameter. The scale have been adapted following the

observations of figure 6. Here again, the energy order of the

different symmetries is respected.

C. A generalization of the pyramidalization angle for
general molecules

In order to generalize the Haddon’s pyramidalization angle

for a general molecule M, meaning not restricted to trivalent

molecules, we need to be able to define for each atom of M

the analogue of the POAV (A) vector. We then restrict our

attention to a special class of molecules called admissible

molecules.

Definition 9 (Admissible molecule). A molecule M is said

to be admissible if for each atom A of M and ε > 0, there

exists a plane Pε(A) such that Regε(⋆(A))⊂ Pε(A).
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TABLE I: The pyramidalization path between sp2 and sp3

θ Pyr(A) c2
π λ 2

π m n Hybridization

90.0 0.0 0.000 1.000 0.000 2.000 (s1.000 p2.000
x,y p0.000

z )σ (s
0.000 p1.000

z )π

92.0 2.0 0.002 0.998 0.002 2.007 (s0.998 p2.000
x,y p0.002

z )σ (s
0.002 p0.998

z )π

94.0 4.0 0.010 0.990 0.010 2.030 (s0.990 p2.000
x,y p0.001

z )σ (s
0.001 p0.999

z )π

96.0 6.0 0.022 0.978 0.023 2.068 (s0.978 p2.000
x,y p0.022

z )σ (s
0.022 p0.978

z )π

98.0 8.0 0.040 0.960 0.041 2.123 (s0.960 p2.000
x,y p0.040

z )σ (s
0.040 p0.960

z )π

100.0 10.0 0.062 0.938 0.066 2.199 (s0.938 p2.000
x,y p0.062

z )σ (s
0.062 p0.938

z )π

102.0 12.0 0.090 0.910 0.099 2.298 (s0.910 p2.000
x,y p0.090

z )σ (s
0.090 p0.910

z )π

104.0 14.0 0.124 0.876 0.142 2.426 (s0.876 p2.000
x,y p0.124

z )σ (s
0.124 p0.876

z )π

106.0 16.0 0.164 0.836 0.197 2.590 (s0.836 p2.000
x,y p0.164

z )σ (s
0.164 p0.836

z )π

107.0 17.0 0.187 0.813 0.230 2.690 (s0.813 p2.000
x,y p0.187

z )σ (s
0.187 p0.813

z )π

108.0 18.0 0.211 0.789 0.268 2.803 (s0.789 p2.000
x,y p0.211

z )σ (s
0.211 p0.789

z )π

109.0 19.0 0.237 0.763 0.311 2.932 (s0.763 p2.000
x,y p0.237

z )σ (s
0.237 p0.763

z )π

109.5 19.5 0.250 0.750 0.333 3.000 (s0.750 p2.000
x,y p0.250

z )σ (s
0.250 p0.750

z )π

110.0 20.0 0.265 0.735 0.360 3.081 (s0.735 p2.000
x,y p0.265

z )σ (s
0.265 p0.735

z )π

112.0 22.0 0.326 0.674 0.485 3.454 (s0.674 p2.000
x,y p0.326

z )σ (s
0.326 p0.674

z )π

114.0 24.0 0.396 0.604 0.657 3.971 (s0.604 p2.000
x,y p0.396

z )σ (s
0.396 p0.604

z )π

116.0 26.0 0.476 0.524 0.908 4.723 (s0.524 p2.000
x,y p0.476

z )σ (s
0.476 p0.524

z )π

The geometry of the previous conditions can be resumed as

follows: If the atom A does not belong to the same plane as

the atoms of Regε(⋆(A)), then it belongs to the intersection

of all the mediating plane of the line segment between two

arbitrary atoms of Regε(⋆(A)). As the intersection of two

planes already define a line, it gives huge constraints on the

positioning of each atom of Regε(⋆(A)), in particular that

they belong to a circle Cε in the plane Pε(A). If we denote

by Oε the center of Cε , then A belongs to the line passing

trough Oε and normal to Pε(A).
The previous remark can be used to define the POAV (A) vec-

tor in this general situation:

Definition 10 (POAV). Let M be an admissible molecule and

A be an atom of M. Let ε > 0 be given. We denote by Cε the

circle in Pε(A) such that Regε(⋆(A))⊂Cε . We denote by Oε

the center of Cε . We denote by POAV (A) the normal unitary

vector to Pε(A) defined by:

POAV (A) =
~Oε A

Oε A
. (55)

As usual, the POAV vector is defined trough quantities de-

pending on ε so that it is not a priori trivial that it gives a

well defined quantity. However, by construction, the set of

points Regε(⋆(A)) and Regε ′(⋆(A)) for two different ε , ε ′

are homothetic as Regε is a homothety of center A for all ε .

In particular, homothety are affine transformations which

send a line to a parallel line. As Regε(⋆(A)) belongs to a

plane Pε(A), then Regε ′(⋆(A)) belongs to a plane Pε ′(A)
parallel to Pε(A) and have the same normal vector. By nor-

malization, we obtain a unique vector POAV (A) normal to

all the plane Pε(A) for ε > 0.

Having the POAV vector, one can directly generalize the no-

tion of pyramidalization angle:

Definition 11 (Pyramidalization angle). Let M be an admis-

sible molecule and A be a given atom of M. The pyramidal-

ization angle in A denoted by Pyr(A) is the angle between

the vector POAV (A) and each bonds AB, B ∈ ⋆(A).

The proof that this angle is well defined follows the same

line as in the trivalent case. Let ε > 0 be given and denote by

zA,ε the distance Oε A. Then, we have for a given bond AB,

B ∈ ⋆(A) that:

sin(Pyr(A)) =
zA,ε

ε
(56)

This quantity does not depend on B and is in fact independent

of ε .

Indeed, let us consider ε ′ = λε , then zA,ε ′ = λ zA,ε and
zA,ε ′

ε ′ =
zA,ε

ε .

The previous definition is of course far from being satisfy-

ing as it works for a very restrictive class of molecules. We

discuss more precisely the restriction associated to the use of

the pyramidalization angle in the next section.
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FIG. 4: Cartographies of C32 and C80 for the hybridization. The value reported in white corresponds to the average

hybridization value in the C60 system.4

FIG. 5: Boxplot of the hybridization, as a function of the

number of atom in the isomer. Dashed lines indicate values

of the C60 isomers and the boundary between a sp2 and sp3

situations.

D. Limitations of the pyramidalization angle

The definition of the pyramidalization angle is connected

with the existence of the POAV (A) vector at each atom A

FIG. 6: Representation of the Y parameter and λ 2
π as a

function of the pyramidalization angle (in degrees).

of the molecule. The explicit construction of the POAV (A)
vector for general trivalent molecules can be used to prove

that the pyramidalization angle can not be define for arbi-

trary molecules. More precisely, the pyramidalization angle

can not be extend outside the family of admissible molecules.
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FIG. 7: Cartographies of C32 and C80 for the Y parameter (
c2

π
3

hybridization sigma).4 Note that C80 presents a weak

hybridization compared to C32 thus the scale of the cartographies had to be adapted.

FIG. 8: Geometry of an admissible molecule.

1. Indeed, the existence of a POAV (A) vector implies that

POAV (A) has to be normal to any plane Pε(A). In

fact, if POAV (A) exists and is different from nA, the

unique unitary vector to all plane Pε(A), then it makes

a given angle α > 0 with nA. The POAV (A) vector then

generate a cone based in A by rotation around the axes

nA corresponding to all the vectors v such that v makes

an angle α with the normal axe. As a consequence, for

each bond corresponds a different vector, except when

α = 0 corresponding to the normal vector (figure 9).

2. From now, we assume that POAV (A) is normal to

any Pε(A). For each triple choice T of elements

in Regε(star(A)), the explicit construction of the

POAV (A) vector in section II A 2 gives a unique vector

POAVT (A) which is colinear to the vector IT A where IT

is the intersection of the mediating line in the triangle

defined by T . In general, other choice of triples will

lead to different IT . As A must belong to each line per-

pendicular to Pε(A) and passing trough IT for each T ,

this is not possible in general unless all the IT coincide

meaning that all the atoms of Regε(⋆(A)) belong to a

circle.

FIG. 9: Representation of the pyramidalization angle .

The two characteristics correspond to the definition of ad-

missible molecules.

As a consequence, one must think to other characteriza-

tions of the local geometry of a molecule in order to study

molecules of order ≥ 4 in some atoms.

The Pyr(A) was studied for the C32 and C80 which allowed

us to carry out the cartographies figure 10. As in the case of

hybridization, the cartographies are sorted according to the

energetic order of the isomers, starting from the most stable

and the C80 Pyr(A) values are given in relation to the mean

C60 value.
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FIG. 10: Cartographies of C32 and C80 for the pyramidalization angle4

III. HADDON’S CURVATURE FOR TRIVALENT
MOLECULES

In "C60 : Sphere or polyhedron ?"1, R. C. Haddon introduced

the notion of spherical curvature as an answer to many ar-

ticles interchanging the term of pyramidalization angle and

curvature to describe the shape of the molecule. He first

noted that the word curvature is well defined in classical dif-

ferential geometry for smooth surfaces. The corresponding

notion for discrete (polyhedral) surfaces is more complex.

We give a complete construction of the spherical curvature

following Haddon’s work1 and we provide the connection

with the pyramidalization angle.

A. Osculating sphere and spherical curvature

For a smooth curve in R
2, we have a natural notion of curva-

ture which is related to the notion of osculating circle. The

basic idea is to approximate locally up to order 2 the curve

by an arc of a circle. The curvature is then given by 1
R

where

R is the radius of the circle. When one consider a surface in

R
3, a natural idea is to approximate locally the surface by a

portion of a sphere. However, it is not in general possible to

construct such a sphere.

In his work1, R. C. Haddon stated the following result:

Lemma 8 (Osculating sphere). Let M be a molecule satis-

fying assumption (A) and trivalent. For each atom A, there

exists a unique sphere S(A) such that A ∈ S(A) and for all

B ∈ ⋆(A), B ∈ S(A). The sphere S(A) is called the osculating

sphere to M in A.

The proof is constructive and can be used in concrete exam-

ples.

Proof. Let A be a given atom of M and B1, B2 and B3 the

three atoms of ⋆(A). Let us denote by PA the plane con-

taining B1, B2 and B3. The three mediating planes to the

line segments B1B2, B2B3 and B3B1 intersect along a line L

orthogonal to PA. As all the bonds are equal, the three medi-

ating planes to the line segments AB1, AB2 and AB3 intersect

the line L in a point O which by definition is the center of

the sphere passing trough A and the elements of ⋆(A). By

construction, this sphere is unique.

The previous result allows us to define the notion of spheri-

cal curvature.

Definition 12. (Spherical curvature) Let M be a molecule

satisfying assumption (A) and trivalent. For each atom A, we

denote by κ(A) and we call spherical curvature to M at point

A the quantity:

κ(A) =
1

RA

, (57)

where RA is the radius of the osculating sphere to M in A.

We now give an explicit connection between the pyramidal-

ization angle and the spherical curvature.
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FIG. 11: Osculating sphere

B. Spherical curvature versus the pyramidalization angle

The connection between the pyramidalization angle and the

spherical curvature is very simple although nonlinear.

Lemma 9. Let M be a regular trivalent molecule. We denote

by a the uniform bond lengths. For each atom A, we denote

by κ(A) the spherical curvature and Pyr(A) the pyramidal-

ization angle to M in A. Then, we have:

κ(A) =
2sin(Pyr(A))

a
. (58)

Proof. Let B ∈ ⋆(A) and I the middle point between A

and B. Let us denote by O the center of the osculating

sphere of radius RA and κ(A) = 1
RA

. We have AB = a,

AI = a
2

and AO = RA. The right triangle AIO is such that

the angle �OAI = π
2
−Pyr(A). As a consequence, we have

cos
�π

2
−Pyr(A)

�
=

AI

AO
=

a

2RA

. As cos(π
2
− Pyr(A)) =

sin(Pyr(A)), this concludes the proof.

When the pyramidalization angle is small, the previous rela-

tion becomes linear and we have:

κ(A)∼ 2

a
Pyr(A). (59)

FIG. 12: Construction of the connection between the

pyramidalization angle and the spherical curvature .

C. Extension to non regular molecules

We generalize the previous construction for trivalent

molecules which are not regular, covering then real

molecules.

The former construction of the osculating sphere was made

easy by the fact that all the bonds between atoms were as-

sumed to be equal. However, we can generalize this con-

struction to the general case and we obtain:

Lemma 10 (Osculating sphere - General case). Let M be a

trivalent molecule. Let A be a given atom of M and ⋆(A) =
(B,C,D). Let O be the intersection of the mediating line in

the triangle BCD and P the plane define by ⋆(A). Let L be

the normal line to P passing trough O and R a reference

frame centered in O where (x,y) are in P and z along L . If

A 6∈P , there exists a unique osculating sphere whose center

Oz = (0,0,z) is defined by:

z =
L2 + z2

A − l2

2zA

, (60)

where zA is the z coordinate of A in R, l = OB = OC = OD

and L = OzA
A.

The spherical curvature κ(A) at the atom A is then given by:

κ(A) =
1�

l2 +
(L2 + z2

A − l2)2

4z2
A

=
1�

l2 +
(OA2 − l2)2

4z2
A

.

(61)

Proof. By definition, the line L corresponds to the set of

points at equal distance of B, C and D. The center of the

osculating sphere must belong to L . The center Oz is then

of the form Oz = (0,0,z) with z ∈ R in the reference frame

R.

We look for a point Oz such that OzA = OzB = OzC = OzD.

As OzB = OzC = OzD by construction, we have only to en-

sure OzA = OzB.

By the Pythagorean theorem, we have OzB
2 = z2 + l2 and

OzA
2 =OzO

2
zA
+OzA

A2 = L2+(zA−z)2 = L2+z2
A+z2−2zzA

so that OzB
2 = OzA

2 implies 2zzA = L2 + z2
A − l2.

As A 6∈ P then zA 6= 0 and z =
L2+z2

A−l2

2zA
.

This concludes the proof.

In "C60 : Sphere or polyhedron ?"1 the construction of the

osculating sphere is not done. R. C. Haddon indicated only

that one has to solve a "system of nonhomogeneous equa-

tions" and was incorporated in his program POAV310. ù

D. Limitations of the spherical curvature

In the trivalent case, the spherical curvature provides a

very nice way to characterize the non planarity of a given
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FIG. 13: Construction of the osculation sphere for non

regular molecules .

molecule. However, the generalization to molecules which

are not trivalent leads to severe difficulties and is in gen-

eral impossible.

Indeed, let us consider a molecule which is of order 4 in

some atoms. Let A be such an atom. Then ⋆(A) is made of

4 points B, C, D and E. In order to generalize the notion

of spherical curvature, one has to construct a sphere inter-

polating the 5 points. The geometric construction of the os-

culating sphere made in section III C for trivalent molecules

determine a unique sphere interpolating 4 atoms. As a con-

sequence, selecting any triple of points in ⋆(A) denoted by T ,

one construct a unique osculating sphere in A with respect to

T denoted by S(A)T . In general, all these spheres are differ-

ent and there exists no osculating sphere to the molecule in

A.

IV. ANGULAR DEFECT AND GAUSS DISCRETE
CURVATURE

We introduce the notion of angular defect and Gauss dis-

crete curvature which are classical in discrete differential

geometry. These quantities are always defined contrary to the

pyramidalization angle or the spherical curvature and can be

used as a convenient alternative quantity to measure the local

shape of the molecule.

A. Gauss curvature of a surface

The Gauss curvature of a surface Σ at a point p can be de-

fines as follows: consider a circle of radius r around p, mean-

ing that for a given metric d on Σ, we look at the set of point

x ∈ Σ such that d(x, p) = r. We denote by P(r) the circum-

ference of this circle. The Gauss curvature is then obtained

by comparing the classical circumference of a circle in the

plane given by 2πr to the value of P on Σ. As an example, a

circle of radius r at a point of a sphere of radius 1, one obtain

P(r) = 2π sin(r).

The Gauss curvature G(p) is then obtain by expending the

previous quantity and we obtain:

P(r) = 2πr−G(p)π
r3

3
+ . . . (62)

B. Angular defect at a vertex of a polyhedron

A convenient way to generalize the previous definition is to

consider the quantity defined by:

K(p) = 2π − P(r)

r
(63)

If one consider a solid representation of a given molecule M,

one see that the previous quantity is zero along the edges and

for any point in a given face of M. As a consequence, the

curvature is "concentrated" at the vertex of M.

One can verify that K(p) is well defined and does not depend

on r. Precisely, we have:

Theorem 1. Let M be a molecule and A a given atom then

K(A) = 2π − ∑
F∈⋆(A)

αF , (64)

where αF is the angle at the vertex A of the face F ∈ ⋆(A).

The quantity 2π − ∑
F∈⋆(A)

αF is called the angular defect of

M in A and is naturally connected with the classical definition

of the Gauss curvature.

We are lead to the following definition of the discrete Gauss

curvature:

Definition 13. Let M be a molecule and A an atom in M. The

discrete Gauss curvature of M in A is the quantity denoted by

G(A) and defined by:

G(A) = 3
K(A)

| ⋆(A) | , (65)

where | ⋆(A) | denotes the area of the faces having A as a

vertex.

The main property of the previous quantity is the following

discrete analogue of the Gauss-Bonet theorem:

Theorem 2. Let M be a molecule. The global curvature of

M, denoted by K(M) is defined as:

K(M) = ∑
A∈M

K(A) (66)

Let nA, nE , nF be the number of atoms, edges and faces de-

fined by M. We have:

K(M) = 2π(nA −nE +nF) = 2πξ (M), (67)

where ξ (S) is called the Euler-Poincaré characteristic of

M.

The Euler-Poincaré characteristic is a topological invariant.
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C. Connection between the angular defect and the
pyramidalization angle

In this section, we consider a trivalent regular molecule M

and we denote by l the common length of the bonds.

Let A be a given atom in M. Let us consider the triangle

defined by the points A and B1,B2 ∈ ⋆(A). The angle at the

vertex A of F is denoted by α1(A). We denote in the same

way the angles α2(A) and α3(A), the angles at the vertex A

of the triangles B2AB3 and B3AB1 respectively.

By definition, we have:

α1(A)+α2(A)+α3(A) = 2π −K(A) (68)

We denote by P(A) the plane defined by ⋆(A) and O the

intersection of the mediating line for the triangle defined by

⋆(A). Let us denote by θ1(A) the angle at the vertex O of the

triangle B1OB2. We denote in the same way by θ2(A) and

θ3(A) the angle at the vertex O of the triangle B2OB3 and

B3OB1 respectively.

We have the following relations:

Lemma 11. Let M be a regular trivalent molecule. In each

atom A of M, we have the following relation between Pyr(A),
(αi(A))i=1,2,3 and (θi(A))i=1,2,3:

cos(Pyr(A))
3

∑
i=1

sin(
θi(A)

2
) =

3

∑
i=1

sin(
αi(A)

2
) (69)

cosαF(A) = cos2 Pyr(A) cosθF(A)+ sin2 Pyr(A) (70)

Proof. By definition, we have:

θ1(A)+θ2(A)+θ3(A) = 2π (71)

By construction, we have OB1 = OB2 = OB3 = R the radius

of the circumcircle for the triangle B1B2B3.

The triangle AOB1 is rectangle in O by construction. By def-

inition of the pyramidalization angle, we have:

OB1 = l cos(Pyr(A)), (72)

So that,

R = l cos(Pyr(A)) (73)

Using this quantity, one can compute the quantity B1B2 +
B2B3 +B3B1 which is the perimeter of the triangle B1B2B3

in P(A). We have two ways to compute this quantity:

- First, using the fact that in the triangle B1OB2, the length

B1B2 is given by 2Rsin
�

θ1(A)
2

�
and similar expressions for

B2B3, B3B1. We then obtain:

B1B2 +B2B3 +B3B1 =

2R

�
sin

�
θ1(A)

2

�
+ sin

�
θ2(A)

2

�
+ sin

�
θ3(A)

2

��
(74)

- Second, using the fact that in the triangle B1AB2, the length

B1B2 is given by 2l sin
�

α1(A)
2

�
and similar expressions for

B2B3, B3B1. We then obtain:

B1B2 +B2B3 +B3B1 =

2l

�
sin

�
α1(A)

2

�
+ sin

�
α2(A)

2

�
+ sin

�
α3(A)

2

��
(75)

Replacing R by its expression, and writing the equality of

these two expressions, we deduce that:

cos(Pyr(A))

�
sin

�
θ1(A)

2

�
+ sin

�
θ2(A)

2

�
+ sin

�
θ3(A)

2

��
=

�
sin

�
α1(A)

2

�
+ sin

�
α2(A)

2

�
+ sin

�
α3(A)

2

��
(76)

The pyramidalization angle is then to be understood as a

measure for the difference between the angles θi(A) and

αi(A), i = 1,2,3.

Denoting by I1 the middle of the segment B1B2 and using

the triangle AOI1 which is rectangle in O, we obtain using

the Pythagorean Theorem:

cosαF(A) = cos2 Pyr(A) cosθF(A)+ sin2 Pyr(A) (77)

This conclude the proof.

As already mentioned, we have αF(A) = θF(A) if and only

if Pyr(A) = 0.

It must be noted however, that the relation between K(A)
and Pyr(A) is not "simple" and that no closed formula was

founded. Using a Taylor expansion for the sin(αi(A)
2

) and

sin( θi(A)
2

) up to order 3, we can nevertheless give an approx-

imation formula:

cos(Pyr(A))

�
π − 1

48

3

∑
i=1

θi(A)
3

�
∼ 1

2
K(A)− 1

48

3

∑
i=1

αi(A)
3

(78)

The angular defect values calculated for C32 and C80 allowed

to perform cartographies figure 14. As well as the Pyr(A),
the cartographies are presented according to the energetic

order of the isomers, starting from the most stable and the

values of the angular defect of C80 are given in relation to the

mean value of C60.

V. DISTRIBUTION OF THE PYRAMIDALIZATION
ANGLE, SPHERICAL CURVATURE AND ANGULAR
DEFECT OVER FULLERENE MOLECULES

In this section, we compute the pyramidalization angle, the

spherical curvature and the angular defect over the database
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FIG. 14: Cartographies of C32 and C80 for the angular defect4

provided by Tománek and al.5 containing a more or less ex-

haustive list of existing fullerene molecules. In particular, we

illustrate the relationships between all these quantities stud-

ied in section III B and IV C. Since the range of objects in-

volves only carbon molecules, we can use the results exposed

in section II B to study the notion of carbon hybridization.

A. About the Tománek and al. database for fullerene
molecules

The database used in this article comes from the work of

Tománek and al.5 which provides a more or less exhaustive

list of all existing fullerene molecules. This basis presents a

huge number of isomers in each Cn fullerene family, with n

being the number of atoms. The total number of isomers in

the complete database is 2487 (with n between n = 20 and

720 atoms).

Figure 15 presents the number of isomers in each Cn

fullerenes family. We can clearly distinguish three families

that we call small, medium and large:

1. small corresponds to fullerenes with n between 20 and

60.

2. medium corresponds to fullerenes with n between 60

and 100.

FIG. 15: Number of isomers for a given number of atoms.

3. Finally, large corresponds to fullerenes with n ≥ 100.

Four families of Cn was last chosen to conclude this study

i.e. n = 32, 40, 60 and 80 (these 4 families being located in

each of the three domains previously identified). Only the

study of the C32 family will be presented in detail in the arti-

cle. The data inherent to the other three families are reported
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in SI.

To appreciate the difference between molecular dynamics

structural parameters (as reported in the Tománek basis)

and an ’all-electron’ calculation, we decided to calculate

in addition the total electronic energy of the four selected

fullerenes families (C32, C40, C60 and C80) using ab initio

density functional theory (DFT) as implemented in the Gaus-

sian code11. Our choice was the use of a DFT Hamiltonian

type B3LYP12,13. A double zeta atomic orbital base 6-31-G*

completed the calculation conditions. The set of coordinates

optimized in DFT is reported in the SI.

B. Statistical study of the Tománek database

It can reasonably be assumed that this working base is suf-

ficiently complete to ensure that the objects are of sizes,

shapes and local curvatures of all the states of hybridization

that can be encountered for atoms involved in carbon struc-

tures.

An overview of the results obtained on the complete database

is given in Table II. We give further details in the following.

However, one can make already a few comments:

1. The range of pyramidalization angles (Pyr(max)−
Pyr(min) = 24◦) is sufficiently wide to include prac-

tically all the cases existing between the hybrid situ-

ations sp2 (Pyr(A) = 0◦) and sp3 (Pyr(A) = 19,5◦)

acoording to the result of section II B 8.

As a consequence, we cover all commonly encoun-

tered hybrid situations for the carbon atoms involved

in structures like carbon nanotubes (CNT), fullerenes

(n ≥ 60), nanodiamonds (NDs) and graphenes (plane

and folded)14–17.

2. Situations beyond (Pyr(A) = 19,5◦) are also present.

These sp(>3) hybridization situations are also impor-

tant since they are potentially found into various re-

cently discovered objects18–29 and thus, deserves to be

studied in this work.

We now give a detailed study of all the quantities.

1. Distribution of the pyramidalization angle

The high Pyr(A) values are all observed for smaller struc-

tures up to n < 60. The very large dispersion of Pyr(A) as-

sociated to these small systems (figure 16 and table II) is at

the source of this situation. On the contrary, beyond n = 60,

only few values of Pyr(A) exceed the median value approx-

imately given by the C60 fullerene (11.64◦). This median

value clearly marks a frankly separation existing between

the smallest and the largest of carbon clusters. On the other

hand, if the well-known fullerene is the C60 molecule, it can

clearly be seen in figure 16 and table II that the average

FIG. 16: Boxplot of the pyramidalization angle Pyr(A) in

degrees, as a function of the number of atom in the isomer.

Dashed lines indicate values of the C60 isomers and the

boundary between a sp2 and sp3 situations.

Pyr(A) and hybridization values of this cluster are not out

of the ordinary and follow the ’normal’ evolution of Pyr(A)
and hybridizations properties.

2. Pyramidalization angle versus symmetries

A natural question is to look for the dependence of the pyra-

midalization angle with respect to the symmetry group of the

underlying molecule.

Figure 17 presents the amount of isomers presents in the

data base sorted by symmetry group. Green bars correspond

to the most abundant symmetry groups, C1, C2 and Cs, the

amount of isomers of these groups is given below each bars.

On each line, the percentage represents the amount of iso-

mers with this group among the whole number of isomers.

Using this result, one can plot the valued of the pyramidali-

FIG. 17: Number of isomers by group symmetry.

sation angle observed in each category of symmetry.

Table III presents an ensemble of isomers sorted along the
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TABLE II: Statistical descriptors of the angular defect (degrees), Pyr(A), the pyramidalization angle (degrees), the spherical

curvature κ(A), the hybridization coefficients c2
π and λ 2

π , the hybridization numbers m and n, and the hybridization.

Pyr(A)
Angular

Defect

Spherical

Curvature c2
π λ 2

π m n Hybridization

mean 10.49 10.42 0.262 0.074 0.926 0.084 2.252 (s0.926 p2.000
x,y p0.074

z )σ (s
0.074 p0.926

z )π

std 2.83 6.04 0.072 0.048 0.048 0.067 0.201 (s0.048 p0.000
x,y p0.048

z )σ (s
0.048 p0.0048

z )π

min 2.60 0.61 0.065 0.004 0.485 0.004 2.012 (s0.485 p2.000
x,y p0.004

z )σ (s
0.004 p0.485

z )π

25% 8.72 6.84 0.217 0.047 0.918 0.049 2.148 (s0.918 p2.001
x,y p0.047

z )σ (s
0.047 p0.918

z )π

50% 9.80 8.59 0.246 0.060 0.940 0.063 2.190 (s0.940 p2.001
x,y p0.060

z )σ (s
0.060 p0.940

z )π

75% 11.45 11.64 0.288 0.082 0.953 0.089 2.268 (s0.953 p2.001
x,y p0.082

z )σ (s
0.082 p0.953

z )π

max 26.90 59.67 0.637 0.515 0.996 1.061 5.184 (s0.996 p2.001
x,y p0.515

z )σ (s
0.515 p0.996

z )π

standard deviation of the pyramidalization angle. One can

see strongly anisotropic isomers and more spherical ones.

The C60 isomer is presented as a reference system. On the

contrary, table IV, lists the isomers that present the largest

deviation standard of the pyramidalization angle (σPyr(A) >

4.5o). In the two cases, the symmetry does not seem to be

related to the computed value of the pyramidalization angle

and not a function of stability either.

3. Relation between the pyramidalization angle, angular
defect and spherical curvature

We have provided in sections II B, III B, and IV C analyti-

cal formulas relating the pyramidalization angle, the angular

defect, the spherical curvature and the way the pyramidaliza-

tion angle enters in the hybridization. We illustrate all these

results directly using the Tománek database.

Computations made over the previous database are summa-

rized in the following figure 18. As shown in the figure 18,

and explained in section V A there exists different sizes of

isomers. The arbitrary choice of these three categories of

objects is based on the following remarks:

1. First, there is a clear relationship between the four

quantities. The pairwise relationship between Pyr(A)
and the Spherical Curvature is linear. That was ex-

pected for small Pyr(A) values as proved in section

III B.

2. Small isomers are those which exhibits larger curva-

ture. When the size of the object increases, the pyra-

midalization angles tend to zero. Then, if these do-

mains concern clusters of very different sizes, shapes

and, particularly, local curvatures, it is important to

note that there is no discontinuity in the relationships

FIG. 18: Pairwise relationship between Pyr(A), the angular

defect, the spherical curvature and the hybridization on the

whole isomers of the data base.

between all these properties. This observation is in

line with equations 57, 58 and 78 established here but

also with those reported in R. C. Haddon’s work.

Notably, figure 18 extends the initial work1 of R. C. Had-

don. In particular, we complete the calculations related to

hybridization and to the relation between the spherical curva-

ture and the pyramidalization angle that R. C. Haddon gives

only for the C60 and C70 systems (see figure 630).

This figure implies that:

1. The relation linking the curvature and the pyramidal-

ization angle given by the lemma 9 and which is quasi
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TABLE III: View of several isomer structures for a range of values of the standard deviation of the pyramidalization angle.

Compound File # Atom Symmetry hPyr(A)i σPyr(A)

C52 C52-D2-2 52 D2 13.61 5.10

C50 C50-D5h-1 50 D5h 14.12 4.93

C52 C52-Cs-3 52 Cs 13.21 4.29

C44 C44-C2v-13 44 C2v 14.08 3.59

C52 C52-C1-98 52 C1 12.81 2.93

C96 C96-C1-131 96 C1 9.22 0.90

C60 C60-Ih 60 Ih 11.64 0.22

TABLE IV: Isomers that present the largest deviation

standard of the pyramidalization angle, σPyr(A) > 4.5o

Compound File # Atom Symmetry hPyr(A)i σPyr(A)

C48 C48-D2-2 48 D2 13.87 5.73

C44 C44-D3-35 44 D3 13.95 5.46

C36 C36-D2-2 36 D2 15.48 5.23

C50 C50-D3h-3 50 D3h 13.86 5.18

C44 C44-D2-2 44 D2 14.41 5.15

C50 C50-C2v-13 50 C2v 13.33 5.14

C52 C52-D2-58 52 D2 12.88 5.14

C52 C52-D2-2 52 D2 13.61 5.10

C50 C50-D5h-1 50 D5h 14.12 4.93

C44 C44-D3d-3 44 D3d 14.47 4.79

C40 C40-D5d-1 40 D5d 15.23 4.77

C48 C48-C2-5 48 C2 13.68 4.77

C52 C52-C1-17 52 C1 13.11 4.75

C48 C48-C1-49 48 C1 13.40 4.73

C52 C52-C1-45 52 C1 13.01 4.73

C40 C40-D2-3 40 D2 14.95 4.68

C52 C52-C2-1 52 C2 13.42 4.61

C52 C52-D2d-313 52 D2d 12.94 4.60

C44 C44-C1-10 44 C1 14.28 4.55

C50 C50-C2-18 50 C2 13.25 4.53

C52 C52-C1-14 52 C1 13.07 4.52

C50 C50-C2-2 50 C2 13.61 4.52

C52 C52-C2-15 52 C2 13.27 4.51

C48 C48-C1-12 48 C1 13.53 4.51

linear for angles of low values persists for large value.

2. The relation between the angular defect and the pyra-

midalization angle discussed in section IV C is not

simple from the analytic view point. The previous fig-

ure justifies firstly the existence of the relation between

the angle of pyramidalization and the angular defect.

This last point is crucial as we propose the angular de-

fect as an alternative to the pyramidalization angle in

situations where it is not defined (see section II D).

3. An extension to the properties cπ , n and of the hy-

bridization (see section II B 8 b) is proposed in figures

S3-S6 in the supplementary information.

C. The C32 isomers

Table V lists the statistical descriptors of the geometrical

quantities for the six isomers of the C32 family after opti-

mization. The main results obtained for the six conformers

of the C32 family are reported in the table S5 and in fig-

ures 19, 20, and S7. We can, first of all, point out that the

explicit consideration of the electronic correlation through

quantum calculations does not change the conclusions previ-

ously established. In particular, even if the C32 clusters are

those with the highest pyramidalization angles distribution,

the quasi linear relation between Pyr(A) and SC (or AD) re-

mains perfectly valid (figure S7).

We also observe that these dependency relationships do not

vary according to the symmetry and/or energy stability of the

cluster.

1. Dependence to geometrical optimization

The coordinates provided by the Tománek database corre-

spond to non optimized moecules. A natural question is then
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TABLE V: Statistical descriptors of isomers of the C32 family.

Pyr(A)
Angular

Defect

Spherical

Curvature c2
π λ 2

π m n Hybridization

mean 16.46 23.67 0.391 0.180 0.820 0.229 2.686 (s0.820 p1.999
x,y p0.180

z )σ (s
0.180 p0.820

z )π

std 2.58 7.07 0.060 0.064 0.064 0.116 0.347 (s0.064 p0.000
x,y p0.064

z )σ (s
0.064 p0.064

z )π

min 10.58 9.88 0.249 0.070 0.512 0.075 2.225 (s0.512 p2.000
x,y p0.070

z )σ (s
0.070 p0.512

z )π

25% 14.24 17.68 0.339 0.129 0.800 0.148 2.443 (s0.800 p1.999
x,y p0.129

z )σ (s
0.129 p0.800

z )π

50% 16.52 23.51 0.394 0.176 0.824 0.213 2.640 (s0.824 p2.001
x,y p0.180

z )σ (s
0.180 p0.824

z )π

75% 17.54 26.29 0.420 0.200 0.871 0.250 2.749 (s0.871 p1.999
x,y p0.200

z )σ (s
0.200 p0.871

z )π

max 26.28 54.33 0.613 0.488 0.930 0.951 4.854 (s0.930 p2.001
x,y p0.488

z )σ (s
0.488 p0.930

z )π

to determine to which extend the pyramidalization angle, the

hybridization numbers, etc, depends on the geometrical op-

timization process.

Figure 19 and 20 present both the distributions of the pyra-

midalization angle and the hybridization of the atoms in C32

isomers before (initial) and after (optimized) a geometrical

optimization using quantum chemistry, respectively. From

FIG. 19: Pyramidalization angle distributions of the C32

isomers before and after the geometrical optimization. The

vertical line shows the value of the pyramidalization angle

of the C60 isomer. The energies are relative to the most

stable isomer.

these figures, one can see that the geometrical optimization

restored the symmetry of the systems. As expected, all the

C32 isomers present higher Pyr(A) than the C60 isomer.

FIG. 20: Hybridization of the C32 isomers before and after

the geometrical optimization. The vertical line shows the

value of the pyramidalization angle of the C60 isomer. The

energies are relative to the most stable isomer.

2. Stability versus pyramidalization angle and symmetries

Looking at the relative energies between isomers, the most

stable isomers is not the one which presents the lowest pyra-

midalization angles nor the one with the higher symmetry.

On the contrary, the relative stability of the isomers seems

to be linked to the pyramidalization angles distributions and

thus to the heterogeneity of the structures. However, this ob-

servation should be tempered since, contrary to C40 and C32

isomers, the energies of C80 isomers increase when the width

of the Pyr(A) distributions increase. Once again, we see that

there are two types of behaviour depending on whether we

study a cluster beyond or within the C60 boundary.
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D. Conclusion

In conclusion, all the quantum results obtained on the four

families n = 32, 40, 60 and 80 allow us to validate the sta-

tistical study carried out on the basis of structural data from

molecular dynamics.

VI. CONCLUSION AND PERSPECTIVES

The pyramidalization angle and the spherical curvature were

introduced in the seminal work of R. C. Haddon2,3. How-

ever, it suffer from severe limitations. In particular, except in

some very exceptional cases, these quantities are not defined

for molecules which are not trivalent. The angular defect

and the associated discrete Gauss curvature provide an ef-

fective and explicit quantity reflecting the local geometry of

the molecule.

In this work, we have provided a self-contained presentation

of the pyramidalization angle, the spherical curvature and the

angular defect as well as the relationship between all these

quantities. We have completed and extended previous results

of R. C. Haddon in particular concerning a description of the

hybridization as a function of the pyramidalization angle.

Moreover, we have developed an online program which can

be used to compute all these quantities. This program was

used to give an overview and a statistical study of these quan-

tities over the Tománek database covering most of the exist-

ing fullerene molecules.

It remains to prove that the previous quantity provide an ef-

ficient way to quantify the regio-reactivity of a molecule, ex-

tending the previous work of R. C. Haddon and other31–33

for trivalent molecules and a previous study of the authors in

this direction34.
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APPENDIX

Proof associated with the Lemma 5:

Proof. The normalization on the s component of

(h1,h2,h3,hπ) gives:

c2
π +3µ2λ 2

π = 1, (79)

and the one on the pz component gives:

λ 2
π +3µ2c2

π = 1. (80)

We then obtain by addition of the two previous equations:

(c2
π +λ 2

π )(1+3µ2) = 2 (81)

As c2
π +λ 2

π = 1, this gives:

µ =
1√
3

(82)

This concludes the proof.
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