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Abstract

In this paper we propose to generalize the recent works of [4] and [3] on the
comparison of the marginal distributions of two strictly stationary processes.
Our aim is to test the equality the whole distributions of two such processes.
For that task, we compare all possible d dimensional joint distributions of both
processes. Our procedure consist in expanding their densities in a multivariate
orthogonal basis and comparing their k �rst coe�cients. The number d of
dimensions to consider and the number k of coe�cients to compare in view to
perform the test can growth with the sample size and are automatically selected
by a two step data driven procedure. The method works for possibly paired,
short or long range dependent processes. A simulation study shows the good
behavior of the test procedure. In particular we apply our method to compare
ARFIMA processes. Real data sets also illustrate this approach.

Keywords: Goodness of �t test, Orthogonal polynomials Stationary process,
Smooth test, Short memory, Smooth test, Two step data driven procedure

1. Introduction

There exists a recent literature in statistics concerned by the comparison of
two stationary processes with short or long range dependence. Usually the null
hypothesis is restricted to the equality of the processes margins as in [4] and [3].
Comparison of two joint distributions has been considered in [10] or [2]. But
these authors consider �xed dimension of the joint distribution and indepen-
dent samples. Then the criticism about all these approaches are essentially that
the full law of the processes are not compared, but only a marginal or a �xed
order �nite-dimensional distribution. In this paper, we consider the more gen-
eral problem of testing whether two strictly stationary processes have the same
distribution. More precisely, let (Xt)t>0 and (Yt)t>0 be two strictly stationary
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processes taking values in a real space E. Note that E can be continuous as
well as discrete. The aim of this paper is to test the null hypothesis:

H0 : L(X) = L(Y ),

where L denotes the law of the process, wholly characterized by its �nite-
dimensional distributions. This testing problem is of interest in �nance when we
want to compare di�erent time series. For instance [4] compared three �nancial
index time series: the Dow Jones Composite Average, the NASDAQ Composite
and the NYSE International 100 Index. But these authors only considered the
restricted null hypothesis fX = fY , where fX and fY stands for the marginal
densities of the stationary processes. We propose here to extend the previous
works by considering the general null hypothesis H0. Since the processes are
stationary, the hypothesis H0 may be rewritten as

H0 : L(X1, · · · , Xd) = L(Y1, · · · , Yd), for all integer d > 0.

Hereafter, we propose a smooth test allowing to compare the coe�cients of
suitable expansions of the d-dimensional density functions of X and Y . For
that task, we use a sequence of test statistics indexed by d and for each we
associate a k(d)-th order expansion of the density in the d-dimensional basis.
Our approach consists in selecting an optimal couple (d, k(d)) by a two-step date-
driven penalization procedure. The dimension d and the number of coe�cients
k(d) can growth with the sample size.

Under the null, we show that this rule selects simultaneously the �rst dimen-
sion d = 1, and the �rst component k(1) = 1. Therefore, the null distribution of
the resulting test statistic coincides with that of a comparison of margins, as in
[4] or [3], and we can use their previous results to obtain the limit distribution
of the test statistic in di�erent contexts of Short Range Dependence (SRD) and
Long Range Dependence (LRD) of the processes. The detection of alternatives
is more re�ned, because there are two directions to be detected:

• the dimension d, meaning that the d-dimensional joint distributions of
both processes may di�er.

• the order k(d) of the coe�cients to take into account in the expansions,
meaning that the di�erence between the two processes can be related to the
k(d)-th coe�cients of the expansions of their d-dimensional joint densities.

Under the alternative the test procedure selects such directions and the test
statistic is asymptotically divergent. A simulation study on SRD and LRD
processes is displayed in order to investigate the �nite sample performances
of the test. We studied in particular Autoregressive Fractionally Integrated
Moving Average (ARFIMA) models. Moreover, our test is applied on the data
set of �nancial assets of the US economic sector considered in [4], allowing to
complete their study. A second illustration of the behavior our test is displayed
on a data set from Kepler campaigns, obtained from the Center for Astrophysics
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Harvard & Smithsonian (CfA), where light curves are compared to determinate
which galaxies companion of the Milky Way could have signi�cant di�erent �ux.

The rest of the paper is organized as follows: in Section 2 we present the
general methodology of the test. Section 3 describes the two step data driven
procedure and studies the asymptotic distribution of our test statistic under the
null. Section 4 shows the convergence of the test under alternatives. Section
5 contains simulation results for short and long range dependent processes and
Section 6 deals with the real data set. A discussion closes the paper in Section
7. In Appendix 1 we recall previous results on short and long memory processes
and we show how our test procedure can be adapted in this context. All proofs
are relegated in Appendix 2.

2. Description of the method

Let X and Y be two possibly correlated strictly stationary discrete time
processes de�ned on some probability space (Ω,A,P) and taking values on a
real space E. We wish to test

H0 : L(X) = L(Y ) again H1 : L(X) 6= L(Y ) (1)

based on sample paths (X1, · · · , XnX
) and (Y1, · · · , YnY

) of X and Y . For
the sake of simplicity, we assume throughout that nX = nY = n (the general
case may be handled similarly as soon as we assume that nX/nY → a 6= 0).
To compare L(X) and L(Y ) we propose to compare their d dimensional joint
distributions. For that task, let us consider for all integer d > 0, a reference
probability measure µd on E⊗d such that there exists Qd = {Qk,d; k ∈ Nd},
a dense µd-orthogonal basis of d-dimensional functions of L2(µd), the space of
square integrable functions with respect to µd, satisfying Q0,d(x) = 1 and∫

Ed

Qj,d(x)Qk,d(x)µd(dx) = δjk,

where δjk = 1 if j = k and 0 otherwise (see Remark 1 for an example of
construction of µd and Qd).

We denote by fX,d and fY,d the joint densities of (X1, · · · , Xd) and (Y1, · · · , Yd)
with respect to the reference measure µd. We assume that for all d ∈ N∗, fX,d
and fY,d belong to L2(µd) so that for all x ∈ E⊗d = E ⊗ · · · ⊗ E, we can write

fX,d(x) =
∑
k∈Nd

a(k, d)Qk,d(x) and fY,d(x) =
∑
k∈Nd

b(k, d)Qk,d(x),

with

a(k, d) =

∫
Xd

Qk,d(x)fX,d(x)µd(dx) = E(Qk,d(X1, · · · , Xd)),

b(k, d) =

∫
Xd

Qk,d(x)fY,d(x)µd(dx) = E(Qk,d(X1, · · · , Xd)).
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Notice that since Q0,d(x) = 1, we have a0,d = b0,d = 1 for all d ∈ N∗.
Therefore, in this setting, H0 can be rewritten as

H0 : a(k, d) = b(k, d), for all d ∈ N∗ and for all k ∈ N∗d. (2)

In order to construct a suitable test statistic for (2), we can compare the
empirical estimates of a(k, d) and b(k, d). They are de�ned for k > 0 and d < n
by

an(k, d) :=
1

un

n−d+1∑
i=1

Qk,d(Xi,d), (3)

bn(k, d) :=
1

un

n−d+1∑
i=1

Qk,d(Yi,d), (4)

where Xi,d = (Xi, · · · , Xi+d−1) (res. Yi,d = (Yi, · · · , Yi+d−1)) is a d-dimensional
vector with joint distribution fX,d (resp. fY,d) and un → ∞ is a conveniently
chosen sequence, depending on the nature of the dependence range of X and Y
(SRD or LRD) to obtain their consistency. So, our test procedure will be based
on the sequences of vectors of di�erences

rn(k, d) := an(k, d)− bn(k, d) =
1

un

n−d+1∑
i=1

V
(i)
k,d ,

for d < n, with

V
(i)
k,d = (Qk,d(Xi,d)−Qk,d(Yi,d)). (5)

In order to select automatically the number of polynomial coe�cients we
introduce the notion of total order de�ned for any vector j = (j1, · · · , jd) by

|j| = j1 + · · ·+ jd.

Then, we de�ne the sequence of test statistics

Tn(k, d) =
∑

j∈Nd;0<|j|6|k|

r̃n(j, d)2 :=
∑

j∈Nd;0<|j|6k

rn(j, d)2

max(σ̂2
n, en)

, (6)

for d < n. Here σ̂2
n is a convergent estimator of the asymptotic variance of

rn(1, 1). It will be seen in Section 7 that such a normalization by the variance
allows to get a parameter free distribution for the statistic. The sequence en is
a sequence of trimming terms satisfying en → 0, allowing to avoid instability of
the test statistic.

Notice that Tn(k, d) is a proper statistic for testing that a(j, d) = b(j, d), j ∈
N∗d, |j| = 1, ..., k.More precisely, each component r̃n(j, d) is used to compare the
coe�cients a(j, d) and b(j, d) in the expansion of the d-dimensional distributions
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in order to detect the alternative. Thus we need to let |k| tend to in�nity to
detect all possible alternatives. However, choosing too large parameters tends
to power dilution of the test. Hereafter, we propose to construct a penalized
selection of these parameters by a two step data driven procedure.

Remark 1. A simple construction of µd is to �x µd = µ⊗· · ·⊗µ (d times), where
µ is a probability measure on E with associated orthonormal basis {Qk; k ∈ N}.
Their existence is related to moments conditions (see for instance [1]) and is
satis�ed in particular if there exists a > 0 such that

∫
ea|x|µ(dx) < ∞. An

associated µd-orthogonal basis is then given by Qd = {Qk,d; k = (k1, · · · , kd) ∈
Nd}, with Qk,d(x1, · · · , xd) = Qk1(x1)⊗ · · · ⊗Qkd(xd).

3. A two step data driven procedure

3.1. Selecting k for �xed dimension d

Following [9] and [8], we suggest a �rst data driven procedure to select
automatically the number of coe�cients when the dimension d is �xed. For
that task, we introduce a penalized rule allowing to pick the best total order |k|
to test the hypothesis fX,d = fY,d. Namely, we set

kn(d) := min
{
argmax
16|k|6Kn

(Tn(k, d)− [k]d log(n))
}
, (7)

where

[k]d =

k∑
j=1

(j + d− 1)!

j!(d− 1)!

and Kn → +∞ as n → +∞. Clearly [k]d denotes the number of coe�cients
with total order lower or equal to |k|, or in other words, the number of terms in
Tn(k, d). For instance, for |k| = 1 and d = 1 we must have k = 1. But if d = 2
we have two possibilities for |k| = 1: k = (1, 0) and k = (0, 1).

Then, setting

σn(k, d) =

n−1∑
i=0

|E0

(
V

(0)
k,d V

(i)
k,d

)
|,

the partial sums of the absolute series of the auto-covariances of the process
de�ned in (5) and assuming

(A1) Kn = o(log(n)en).

(A2) There exists M > 0 such that for all n ∈ N and for all integers d < n,

1

Kn

∑
k∈Nd,|k|6Kn

σn(k, d)
(n− d)

u2n
< M,

we have
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Theorem 1. If (A1-A2) hold, then, under H0, for all integer 0 < d < n,

kn(d)
P−→ 1

as n→ +∞.

Theorem 1 says that, whatever the dimension of the joint distribution, under
the null the penalized coe�cient retained is always asymptotically the �rst.

Remark 2. It has been mentioned earlier and it will be made clearer in Section
7 that un is the rate at which a (non) central limit theorem holds for the partial
sums of the processes Vk,d. In cases where such processes are SRD (or i.i.d.),
un =

√
n and the absolute series of the auto-covariances converges so that

σn(k, d) is bounded (σn(k, d) = E0(V
(0)
k,d )2 in the i.i.d. case) and Assumption

(A2) is automatically satis�ed. When the Vk,d's are LRD, a non central limit
theorems holds in some cases (see Section 7) at rates un such that

√
n/un → 0,

while σn(k, d) diverge. In such cases, (A2) will be satis�ed as soon as σn(k, d)
do not diverge too fast.

3.2. Selecting the dimension d

We use a second data driven procedure to select the best dimension d among
the d-dimensional distributions to detect alternative. From (3) and (4) we must
have d < n. Then for any integer δ < n we de�ne

dn(δ) := min
{
argmax
16d6δ

(Tn(kn(d), d)− [kn(d)]d log(n))
}
. (8)

Thus, one has

Theorem 2. If (A1�A2) hold, then, under H0, for any integer δ,

dn(δ)
P−→ 1

as n→ +∞.

Theorem 2 says that under the null the penalized dimension retained is
always asymptotically the �rst.

3.3. A data-driven test

Let us de�ne for our testing problem the test statistic for any integer δ < n,

T̃n(δ) = Tn(kn(dn(δ)), dn(δ)),

where dn and kn are de�ned by (7) and (8). In the following section, we will
study the test based on its asymptotic distribution under the null. With this in
mind, we give below a preliminary result. Let us assume

(B) There exists σ > 0 such that under H0, rn(1, 1)
L−→ U, where U follows a

N (0, σ2).
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It is important to note that Tn(1, 1) = r̃2n(1, 1) = r2n(1, 1)/max(σ̂2
n, en),

where en → 0 and where σ̂2
n is a consistent estimator of the asymptotic variance

of rn(1, 1). Thus, combining Theorems 1 and 2 we have

Theorem 3. If (A1�A2) and (B) hold, then, under H0, for any integer δ,

T̃n(δ)
L−→ Z

as n → +∞, where Z follows a chi-squared distribution with one degree of
freedom.

Thus, in order to test (1) at a nominal level α, we can use T̃n(δ) and the
(1− α)th-percentile of the chi-squared distribution with one degree of freedom.

Theorem 3 shows that under the null, the test statistic selects simultaneously
the �rst dimension, that is d = 1, and the �rst order, that is kn(1) → 1,
asymptotically. Finally, under the null, we only have to consider the distribution
of the �rst statistic related to the margins of X and Y . Then we can adapt
Doukhan et al (2015, 2019)'s to obtain the limit distribution of T̃n(δ) in the
various situations of dependence they consider, including SRD and LRD cases.
These adaptations are described in Appendix 1 where we focus on α-mixing
processes, θ dependent processes, function of Gaussian processes, and linear
processes.

Remark 3. Assumption (B) amounts to say that there exists a (non) central
limit theorem for the partial sums of the process V1,1. Such a result essentially
rely on the dependence range of this process, itself depending on that of X and
Y and on the nature of Q1,1 as it will be detailed in the next sections.

4. Behavior under alternatives

Finally, we study the behaviour of the test procedure under alternatives.
First recall that H0 can be rewritten as a(k, d) = b(k, d) for all d ∈ N∗ and for
all k ∈ N∗d. For any positive integers k1 and d1 we consider alternatives of the
form

H1(k1, d1) : a(k, d) = b(k, d), ∀d < d1 and ∀k ∈ N∗d

a(k, d1) = b(k, d1), ∀|k| < |k1| with k ∈ N∗d1

a(k1, d1) 6= b(k1, d1).

If d1 = 1, H1(k1, d1) means that X and Y do not have the same marginal
density and this di�erence appears in their k1-th order expansion coe�cients.
If d1 > 1, H1(k1, d1) means that for all d < d1 the �rst d joint distributions of
X and Y coincide, but their d1 dimensional margins di�er, and this di�erence
can be detected from their k1-th order expansion coe�cients.

We assume here that the multivariate bases are embedded, that is,

Qd = {Qk,d, k ∈ Nd} ⊂ Qd1 = {Qk,d1 , k ∈ Nd1} ∀d < d1. (9)
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This condition is satis�ed as soon as we use the formal construction evoked in
Remark 1, which is very natural and which is used in our numerical studies.
Combining (9) and the construction given in (6), we can see that for d > 1:

Tn(k, d) = Tn(k, d− 1) +
∑

j∈Nd
∗;0<|j|6|k|

r̃n(j, d)2,

where N∗ = {1, 2, · · · }.
We need the following assumption that we check for LRD processes in Ap-

pendix 3.

(C) Write δ1 = a(k1, d1) − b(k1, d1). There exists σ > 0 such that under

H1(k1, d1), r̃n(k1, d1)− n

un
δ1 converges as n tends to in�nity to a random

variable Z such that P(Z < +∞) = 1.

Proposition 1. Assume that (C) holds. Under H1(k1, d1), for all δ > 0,

T̃n(δ)→ +∞ when n tends to in�nity.

5. Simulation results

Hereafter, we run Monte-Carlo simulations with 1000 replications for two
types of memory processes: α-mixing processes and LRD Autoregressive Frac-
tionally Integrated Moving Average (ARFIMA) processes. The nominal level
is �xed at α = 5%. We present below the models and tests as well as the ob-
tained results. According to the support R of the processes considered in our
simulation study, we used here the standard Gaussian distribution and its as-
sociated Hermite polynomials. More precisely, we consider µd = µ⊗ · · · ⊗ µ (d
times), where µ is the standard Gaussian measure on R, with Qk,d(x1, · · · , xd) =
Hk1(x1)⊗ · · · ⊗Hkd(xd), where Hk is the kth normalized Hermite polynomial.

We �xed en = 1/(10n), Kn = 6 and δ = 4. The choice en = 1/(10n)
permits to avoid too small values for the variance estimator in (6). The choice
of Kn is dictated by the previous numerical studies done in [3], in which it has
been observed that coe�cients of order greater than 6 are rarely chosen under
alternative hypotheses and this choice does not modify the level of the test.
The choice δ = 4 means that we are not able to detect the di�erence in law
of processes having equal common joint density up to dimension 4, but with a
di�erence for a greater dimension. However, δ has to be small enough to have an
e�cient and faster program. To give an order of idea, the number [j]d gives 209
coe�cients to be evaluated for j = 6 and d = 4. For d = 5 we obtain [j]d = 461
which leads to an important number of estimations. In our simulation study,
we only study departures from the null up to the dimension 4.

5.1. α-mixing processes

Model. The simulated examples are based on the observation of sequences of
size n ∈ {100, 200, 500, 1000} of the following θ dependent processes Z = (X,Y ):

Zt = C + ΘZt−1 + εt, t ∈ Z, (10)
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where C = (0, c)′, Θ is a diagonal matrix with main diagonal vector θ =
(θX , θY )′ such that |θX | < 1 and |θY | < 1 and (εt)t∈Z is a bivariate white
noise with mean zero and auto-covariance structure E(εtε

′
t+h) = Σ−ΘΣΘ′ for

h = 0 and zero otherwise, where Σ is a symmetric square matrix of order 2 with
main diagonal vector (1, σ2

Y )′ and cross term v.
Therefore, Zt has a mean vector (0, µ), with µ = c/(1− θY ))′ and an auto-

covariance matrix E(ZtZ
′
t+h) = ΘhΣ.

The underlying process Z is α-mixing, de�ned as a stationary bivariate vec-
tor autoregressive process of order one, X has a standard Gaussian marginal
distribution while Y has a Gaussian marginal distribution with mean µ and
variance σ2

Y . Then:

• The null hypothesis corresponds to µ = 0, σ2
Y = 1 and θX = θY .

• The null distribution of our test statistic T̃n(δ) is given by Theorem 2,
with un =

√
n and σ̂2

n the Kernel HAC estimator de�ned as in [4].

This model allows us to investigate several degrees of between and within sample
dependence:

• within sample dependence is controlled by θX and θY and increases with
their absolute values. The case (θX , θY ) = (0, 0) corresponds to the within
sample independence while other values of the pair θ correspond to either
positive or negative within dependence.

• Dependence between samples is controlled by the cross-term v of Σ and
increases with its absolute value. We chose v ∈ {0, 0.5, 0.9}. The case
v = 0 corresponds to independent sequences.

• The null hypothesis is denoted by H0(θ, v). It corresponds to the case
where µ = 0, σ2

Y = 1 and θX = θY = θ.

• Alternative hypotheses related to a change of mean (mean deviation) or
variance (variance deviation) impact directly the marginal distribution.
Such alternatives have been studied in Doukhan et al. (2015) and are
well detected. Here we focus our study on more re�ned alternative hy-
pothesis, when µ = 0, σ2

Y = 1 and θY 6= θX . In that case both marginal
distributions of X and Y are equal. But the two processes are di�erent
and their joint distribution are not the same. We write H1(θX , θY , v) this
alternative.

Empirical levels. Figure 1 shows the empirical levels based on 1000 replications
under H0(θ, v) for θ = θX = θY ∈ {0, 0.5}, σ2

Y = 1, µ = 0 and v ∈ {0, 0.5}. We
observe a fast convergence to the theoretical level of 5%.
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θX =  θY = 0       v = 0
θX =  θY = 0       v = 0.5
θX =  θY = 0.5    v = 0
θX =  θY = 0.5    v = 0.5

Figure 1: Empirical levels (in % of rejects) under H0(θ, v) for θ = θX = θY ∈ {0, 0.5}, σ2
Y = 1,

µ = 0 and v ∈ {0, 0.5}.

Empirical powers. The case of independent processes is represented in Figure
2, where v = 0 and θX 6= θY . Here both marginal densities are equal, but
the dependence and then joint densities di�er. Then the test should detect a
di�erence for d = 2, that is for the dimension where the joint densities di�er. As
expected, Figure 2 shows that the empirical power is greater for larger di�erence
between the two memory parameters. In more than 90% of the rejected cases
the choice of the dimension d is equal to 2, as expected. It means that the test
detects di�erences between the bivariate densities of the two processes.

Figures 3-4 represent the case where X and Y are dependent processes, with
v 6= 0. Both processes have the marginal distribution. In Figure 3, v = 0.5
and in Figure 4, v = 0.9. We observe a larger empirical power than in the
independent case. The power is greater for larger value of v, that is, for greater
dependence. Again the larger the di�erence between θX and θY , the greater
the power is. The selected dimension in case of rejection is essentially 2, as
expected, that is the test detects a di�erence between the bivariate densities.
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Figure 2: Empirical powers (in % of rejects) under H1(θX , θY , v) for θX 6= θY and v = 0.
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Figure 3: Empirical powers (in % of rejects) under H1(θX , θY , v) for θX 6= θY and v = 0.5.
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Figure 4: Empirical powers (in % of rejects) under H1(θX , θY , v) for θX 6= θY and v = 0.9

5.2. ARFIMA processes

In this section, we consider Autoregressive Fractionally Integrated Mov-
ing Average (ARFIMA) models, with di�erent long memory parameters. The
ARFIMA processes are one of the best-known classes of long-memory models
used in �nance and our method gives a way to compare such processes.

Models. The simulations consist of sequences with respective sizes n ∈ {100, 200, 500, 1000}
of independent ARFIMA processes X and Y that we brie�y describe here
(see [5] and [7] for more details). Setting Bkxt = xt−k, recall that X is an
ARFIMA(p, θ, q) with mean µ if

Φ(B)(1−B)θ(Xt − µ) = Θ(B)εt, (11)

with

Φ(B) = 1− Φ1B − · · · − ΦpB
p, Θ(B) = 1 + Θ1B + · · ·+ ΘqB

q,

(1−B)θ =

∞∑
k=0

Γ(k − θ)
Γ(−d)Γ(k + 1)

Bk,

and the εi's are a white noise sequence with mean zero and variance σ2
ε . We �x

Φ = 0 (resp. Θ = 0) if p = 0 (resp. q = 0). Parameters p and q model short
term dependency e�ects. The memory parameter θ is allowed to assume every
real value. The restriction of θ to integer values gives rise to classical ARIMA
processes. For |θ| > 1/2, this is a non-stationary process. For θ ∈ (0, 1/2),
the process is long memory and for θ ∈ (−1/2, 0) this is negative memory. For
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θ = 0, this is a particular case of short-memory process, which corresponds to
a stationary ARMA model.

Here in our design, X is a pure fractional model ARFIMA(0, θX , 0) with
θX ∈ (0, 1/2). This model has the moving average representation:

Xt = µ+

∞∑
k=0

αkB
kεk, with αk =

Γ(k + θX)

Γ(θX)Γ(k + 1)
.

When the innovations are Gaussian the marginal distribution of X is gaussian
with mean µ and variance

σ2
X = σ2

ε

Γ(1− 2θ)

(Γ(1− θ))2
. (12)

The joint distribution is more complex, but clearly depends of the memory pa-
rameter. Hereafter, we denote byM(p, θ, µ, σ2

ε ) the ARFIMA(p, θ, 0) with mean
µ and variance innovation σ2

ε . With this notation we choose X asM(0, θX , 0, 1).
Varying the parameters θ, µ and σ2

ε , we investigate null and alternative distri-
butions of the process Y. The null hypothesis is represented when the process Y
isM(0, θY , 0, 1), with θY = θX , that is both processes X and Y are the same.
We consider various values θX ∈ {0.1, 0.2, 0.3, 0.4}. We write H0(θX) such a
null hypothesis. Classical alternatives such mean deviation or variance devi-
ation, coincide with a di�erence of marginal distributions for X and Y . Such
alternatives have been largely studied in Doukhan et al (2019) and are relatively
well detected. We consider brie�y the variance deviation case in our simulation,
where X isM(0, θX , 0, 1) and Y isM(0, θY , 0, σ

2
ε with σ

2
ε ) 6= 1.

Eventually, we focus on a more re�ned alternative, leading to the same
marginal distributions for both processes, but with θX 6= θY , that is a di�erence
of their joint distributions. We construct the alternative as follows: we consider
the process Y asM(0, θY , 0, σ

2
ε ), such that

σ2
ε =

Γ(1− 2θX)

(Γ(1− θX))2
· Γ(1− 2θY )

(Γ(1− θY ))2
. (13)

In such a way X and Y have the same marginal distribution N (0, σ2) with

σ2 =
Γ(1− 2θX)

(Γ(1− θX))2
,

from (12). But their joint distributions di�er since θX 6= θY . Then our test
procedure will attend to detect this departure.

The ARFIMA sequences where computed using the fracdi� package R. We
used a burn-in period of 10000. The null distribution of our test statistic T̃n is
given by Theorem 4, with un = n1/2+θX and σ̂2

n the Whittle estimator of the
asymptotic variance of rn(1, 1) as de�ned as in [4].
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Empirical levels. Figure 5 show the empirical level for di�erent values of θX .
We can observe an unstable level for small sample sizes, but the convergence to
the nominal level seems correct for values of θX not too close of 0 or 0.5. This
unstable phenomena is more pronounced when the memory parameter was too
close to 0, as θ = 0.1 (proximity to the short memory case), or too close to 0.5,
as θ = 0.4 (proximity to the non stationary case).
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Empirical levels

size

●

●

● ●

●

θX =  θY = 0.1
θX =  θY = 0.2
θX =  θY = 0.3
θX =  θY = 0.4

Figure 5: Empirical levels (in % of rejects) H0(θX) for θX = θY ∈ {0.1, 0.2, 0.3, 0.4}, σ2
ε = 1,

µ = 0.

Empirical powers. First we consider classical alternatives as memory parameter
deviations, or variance deviations. We then consider the case where θX 6= θY ,
but µ = 0 and σ2

ε = 1, that is a change of the memory parameter. In that case,
both marginal densities are centered Gaussian, since µ = 0, with variance given
by (13). We also consider the case where θX = θY , µ = 0, but σ2

ε 6= 1, that is
again a change of the variance, but with the same dependence. In both cases
the marginal densities are di�erent and the test should reject the null hypothesis
based on the selection of �rst dimension, that is, d = 1.

Second we consider the more re�ned change, with θX 6= θY and with σ2
ε

given by (13) with gives the same marginal distributions for both processes but
with di�erent joint densities.

Figure 6 shows empirical powers when memory parameters are di�erent. In
such a case the marginal densities are di�erent and the test reject the null hy-
pothesis selecting the �rst dimension and the second polynomial order indicating
a di�erence of the second moments of the margins.

Figures 7-8 present the empirical powers when θX = θY , µ = 0, and σ2
ε ∈

{0.5, 1.5}. The power is greater when θX is small. It can be explained by the
rate of convergence un = n1/2+θX . Globally the power seems relatively good.
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Figure 9 represents the power under the particular alternative from (12),
when θX 6= θY but with the same marginal distributions for both processes.
Clearly the joint distributions di�er because of the di�erent range of dependence
and we expect that the test procedure will detect such a change among the d
dimensional joint densities. As seen in the �gure, the powers are relatively good
for large di�erence between θX and θY . In that case, when the null hypothesis is
rejected, the choice of the dimension is more than 90% the third, meaning that
the di�erence is more signi�cative for the three-dimensional joint distribution.
We can observe that if θX and θY are too close, the test cannot detect well the
alternative, as illustrated when θX = 0.3 and θY = 0.2.

200 400 600 800 1000

10
20

30
40

50
60

70
80

Empirical powers

size

●

●

●

●
●

θX = 0.4 θY = 0.1
θX = 0.4 θY = 0.3
θX = 0.3 θY = 0.2
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Figure 6: Empirical powers (in % of rejects) for θX 6= θY , µ = 0 and σ2
ε = 1.
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Figure 7: Empirical powers (in % of rejects) for θX = θY , µ = 0 and σ2
ε = 1.5.
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Figure 8: Empirical powers (in % of rejects) for θX = θY , µ = 0 and σ2
ε = 0.5.
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Figure 9: Empirical powers (in % of rejects) for θX 6= θY but with same marginal.

6. Data study

6.1. NYSE versus Down Jones

We consider two �nancial assets of the US economic sectors studied in
Doukhan et al. (2015). The data consist in monthly rates from January 2004 to
August 2013. We consider two indices: the Dow Jones Composite Average and
the NYSE International 100 Index. The �rst one is a stock index that tracks 65
prominent companies and the last one tracks the largest 100 non-U.S. common
stocks listed on the New York Stock Exchange. To get stationary processes we
consider the associated variations processes de�ned by Xt+1−Xt. We compare
the equality of these two increments processes.

In [4] the test of equality of margins gave a p-value around 0.75, meaning
that the margins of the increments of NYSE and Down Jones indexes from 2004
to 2013 can be considered as identically distributed.

We apply our test procedure to detect a possible di�erence in their joint
distributions. We obtain a p-value equal to 0.26, selecting the �rst dimension
and the �rst order coe�cient, and we then do not reject the equality of the
processes.

6.2. Light curves from Kepler mission

We consider light curves available via the Center for Astrophysics Harvard
& Smithsonian (CfA). The data consist of observations of reduced light curves
from regions of the Milky Way galaxy. There are 20 campaigns, each with hun-
dreds of data recolted during the K2 mission. We give two illustrations of light
curves comparison, with abbreviated names as follows: EPIC3738, EPIC154 and
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EPIC479. Figures 6.2 represents the three original light curves. We compare
the integrated processes derived from these data, that is we aim to compare the
dynamic of such a processes.
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Considering the derivative processes as stationary processes, we apply our
testing procedure to compare the �rst two curves and the last two curves. We
obtain

• EPIC3738 vs EPIC154: the retained dimension is dn = 2 and the retained
order is kn = 2, with a p-value < 10−6. Then the test detects a signi�cant
di�erence between the bivariate joint distributions of the �rst two curves.
Moreover, since kn = 2, the rejection is due to the di�erence of their
moments of second order, that is E(Qk,2(X1X2)) for |k| = 2.

• EPIC479 vs EPIC154: The retained dimension is dn = 1 and the retained
order is kn = 1, with a p-value = 0.08. The decision here depends on the
threshold: we reject at 10% but not at 5%.

In conclusion, we reject clearly the equality of the dynamic of the �rst two
curves, but there is not a strong signi�cant di�erence between the two last ones.

7. Discussion

In this work we both theoretically and numerically addressed the compari-
son testing of two stationary processes, possibly dependent, and having short or
long range memory. The method is automatic in the sense that the dimension of
their joint distributions is chosen by a data driven technic. Simultaneously the
order of departure is obtained by another data driven step. The dimension can
grow with the sample size, but in practice, we can see that testing the �rst four
or �ve dimensional joint distribution is reasonable. To the best of our knowl-
edge this approach is the �rst permitting to detect a deviation into these two
directions. It completes the previous works on the comparison of the marginal
distributions in the sense that, if the equality between two marginal is not re-
jected, it permit to look for larger dimensional joint distributions. Simulation
con�rm the easy use of such a procedure and show the good behavior of the
test for α-mixing and ARFIMA processes. The study of real data sets con�rms
its practical importance: the decision of equality between two increments of
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�nancial assets has been con�rmed, and the comparison of series of curves can
be easily implemented.

We think that this work could be extended in two main interesting ways.
First we could consider the K-sample problem, as done for instance in [12]
in the iid case. That could be adapted to compare K stationary processes
simultaneously with techniques similar to those used in our paper. Coming
back to �nancial assets or light curves, this would allow us to consider more
than two indices or more than two regions simultaneously. Another interesting
problem would be the use of such a method to detect a rupture in stationarity
of processes, with many applications in domains where it is frequent to observe
changes in distributions.

Appendix 1: asymptotic null distribution under SRD and LRD mod-
els

Hereafter, we straightforwardly adapt Doukhan et al (2015, 2019)'s to obtain

the limit distribution of T̃n(δ) in the various situations of dependence, namely
α-mixing processes, θ dependent processes, function of Gaussian processes, and
linear processes. From now we assume that condition (A1) is satis�ed, that is
we �x:

Kn = o(log(n)en).

Assumption (A2) will be replaced case by case by speci�c conditions depending
of the features of the processes.

α-mixing processes

Let Z = (X,Y ) a bivariate strictly stationary α-mixing process in the
sense of in Rosenblatt (1956), with non-increasing mixing coe�cients sequence
(α(m))m>0 with possibly dependent coordinates. We �x un =

√
n and σ̂2

n a
consistent estimator of

σ2
SRD =

+∞∑
t=−∞

E0

(
V

(0)
1,1 V

(i)
1,1

)
. (14)

Assume that there exist C > 0, n0 > 0 and δ > 0 such that

(1.i) for all n > n0,

1

Kn

Kn∑
k=1

(
E0(|V (0)

k,d |
2+δ)

)2/(2+δ)
< C.

(1.ii)
∑
m>0

m2/δα(m) <∞.

Then we have,

Corollary 1. If (1.i) and (1.ii) hold, then (A2) and (B) hold, with σ2 = σ2
SRD,

so that Theorem 3 obtains.
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Proof. The proof follows from Corollary 2 of Doukhan et al. (2015).

θ-mixing processes

Let Z = (X,Y ) be a bivariate strictly stationary θ-dependent process in the
sense of Dedecker et al. (2007) with possibly dependent coordinate and a non-
increasing coe�cients sequence (θ(m))m>0 We �x un =

√
n and σ̂2

n a consistent
estimator of σ2

SRD de�ned by (14). Assume that there exist C > 0, n0 > 0 and
δ > 0 such that

(2.i) for all n > n0,

1

Kn

Kn∑
k=1

(
E0(|V (0)

k,d |
2+δ)

)1/(1+δ)
< C.

(2.ii)
∑
m>0

m1/δθ(m) <∞.

(2.iii) The functions (Qk,1)16k are Lipschitz.

Thus, we have

Corollary 2. If (2.i)�(2.iii) hold, then (A2) and (B) hold, with σ2 = σ2
SRD,

so that Theorem 3 obtains.

Proof. The proof follows from Corollary 3 of Doukhan et al. (2015).

Functions of long-memory Gaussian sequences

Let Z = (X,Y ) be a bivariate strictly stationary process with independent
coordinates X and Y satisfying

Xt = r1(Nt) and Yt = r2(Mt),

where r1 and r2 are measurable functions, (Nt)t∈Z and (Mt)t∈Z are independent
standard Gaussian long-range dependent processes under H0. More precisely,
we assume that there exists 0 < αN < 1, 0 < αM < 1, such that E0(N0Nt) ∼
|t|−αN and E0(M0Mt) ∼ |t|−αM . Here, the null hypothesis is equivalent to
H0 : r1 = r2

.
= r. Recall that the Hermite rank of a function f is de�ned as

min{k > 0 : E(Hk(N)f(N)) 6= 0},

where N stands for a standard normal random variable and Hk denotes the k
th

Hermite polynomial

Hk(x) = (−1)kexp(x2/2)(dk/dxk)(exp(−x2/2)).

Let mk,d be the Hermite rank of (Qk,d ◦r)∗ = Qk,d ◦r−E0(Qk,d(X0)) and write
m = min{mk,d, 1 6 k, 1 6 d} and we set for the sake of simplicity m = m1,1.
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Notice that under conditions ensuring the square-integrability of (Q1,1◦r)∗ with
respect to the standard Gaussian measure, we have the Melher formula:

(Q̃1,1 ◦ r)∗ =

∞∑
j=m

qj
j!
Hj , with qj = E0((Q̃1,1 ◦ r)∗(N0)Hj(N0)). (15)

Let us assume that

(3.i) There exist C > 0 and n0 > 0 such that for all n > n0,

1

Kn

Kn∑
k=1

E0(Qk,d(X0)2) < C.

(3.ii) m is known.

Setting α = min{αN , αM}, the convergence rate of the statistic depends on the
rate of decay α. Fix

un = max(
√
n, n1−αm/2)

so that

rn(k, d) =


n−1/2

n−d+1∑
i=1

V
(i)
k,d if αm > 1,

nαm/2−1
n−d+1∑
i=1

V
(i)
k,d if αm < 1.

where σ̂2
n is a consistent estimator of σ2

SRD and σ̂
′2
n is a consistent estimator of

(see Doukhan et al. 2015)

σ2
LRDG =

2 (q1)
2

(1− α)(1− α/2)

Then, we have

Corollary 3. If (3.i)�(3.ii) hold, then (A2) and (B) hold, with σ2 = σ2
SRD

whenever αm > 1, σ2 = σ2
LRDG whenever m = 1 and α < 1, so that Theorem 3

obtains.

Corollary 3 does not include the case where m > 1 and αm < 1. This is
because we deliberately restricted our setting to Gaussian limits. In the former
case, the limiting distribution is that of an Hermite process at point 1.

Proof. The proof follows from Corollary 4 of Doukhan et al. (2015).
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Functions of linear processes

Let Z = (X,Y ) be a bivariate strictly stationary process with independent
coordinates X and Y satisfying X = r1(N) and Y = r2(M) with

Xt =
∑
j<t

αt−jεj , and Yt =
∑
j<t

βt−jej , (16)

where the innovations εi and ei are i.i.d. and centered standard variables,
αj ∼ cα|j|θX−1, βj ∼ cβ |j|θY −1 with θX , θY < 1/2, cα and cβ are real posi-
tive constants. For simplicity we shall set θY 6 θX .

Following Ho and Sing (1997), we introduce the notion of power rank asso-
ciated to a measurable function L such that E(L(N)) = 0. We say that L has
power rank m > 1 with respect to the linear process N if

L(m)
∞ (0) 6= 0 and L(r)

∞ (0) = 0, for all 1 6 r < m,

L(r)
∞ (w) =

∂r

∂wr
E(L(w +N0)). (17)

Hereafter, using the same notation as in the preceding subsection, we assume
that the power rank of (Q1,1 ◦ r1)∗ with respect to N and that of (Q1,1 ◦ r2)∗

with respect to M both equal 1.
Moreover, we set

(4.i) (Qk,d ◦ r1)∗ and (Qk,d ◦ r2)∗ are di�erentiable with continuous bounded
derivative.

(4.ii) (Qk,d ◦ r1)∗ and (Qk,d ◦ r2)∗ are βk,d-Lipschitz. and there exists some B

such that for all j > 0,
1

j

i∑
k=1

β2
k,d < B.

(4.iii) E0(ε40) <∞ and E0(e40) <∞.

(4.iv) E0((Q∗1,1(X0))2) <∞.

(4.v) E0(ε80) <∞ and E0(e40) <∞.

(4.vi) Q∗1,1 is has a continuous bounded third order derivative.

(4.vii) E0(ε80) <∞ and E0(e80) <∞.

We set

un =

{
n−1/2, if θX < 0,

n−1/2−θX , if θX > 0.

Write for the SRD and the LRD cases

σ2
LSRD =

∑
t∈Z

γ1(t), (18)
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with γ1(t) = E0(Q∗1,1(X0)Q∗1,1(Xt) +Q∗1,1(Y0)Q∗1,1(Yt)), and

σ2
LLRD = c2α

(
(Q̃∗1)(1)∞ (0)

)2
C(δX)2, (19)

with C(δX) =
√
B(1−2δX ,δX)
δX(1+2δX) , and B(., .) is the Beta function.Here these param-

eters are estimated with the Whittle estimator as in Doukhan et al. (2019).
Combining our Corollary 3 with Propositions 1-3 of Doukhan et al. (2019) we
obtain:

Corollary 4. Let θY 6 θX < 0. Assume that (4.i) − (4.iv) hold. Then, (A2)
and (B) hold, with σ2 given by (18), and Theorem 3 occurs.

Corollary 5. Let θY < 0 < θX . Assume that (4.ii), (4.iv)− (4.vi) hold. Then,
(A2) and (B) hold, with σ2 given by (19), and Theorem 3 occurs.

Corollary 6. Assume that (4.ii), (4.vi)− (4.vii) hold. Then

a) if 0 < θY < θX , (A2) and (B) hold with σ2 de�ned by (19),

b) if 0 < θY = θX , (A2) and (B) hold with σ2 de�ned by σ2 = (c2α +

c2β)
(

(Q∗1,1)(1)∞ (0)
)2
C(θX)2,

and in both cases Theorem 3 is obtained.
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Appendix 2: proofs

Proof of Theorem 1. We want to prove that P0(kn(d) > 2) vanishes as n→ +∞.
By de�nition of kn(d) we have:

P0(kn(d) > 2) = P0 (∃j, 2 6 |j| 6 Kn : Tn(j, d)− [j]d log (n) > Tn(1, d)− d log (n))

6
Kn∑
|j|=2

P0 (Tn(j, d)− [j]d log (n) > Tn(1, d)− d log (n))

=

Kn∑
|j|=2

P0

 ∑
|k|6|j|

r̃n(k, d)2 − [j]d log (n) >
∑
|k|=1

r̃n(k, d)2 − d log (n)


6

Kn∑
|j|=2

P0

 ∑
|k|6|j|

r̃n(k, d)2 > ([j]d − d) log (n)


6

Kn∑
|j|=2

P0

 ∑
|k|6|j|

rn(k, d)2 > ([j]d − d) log (n)en


6

Kn∑
|j|=2

P0

(
([j]d − d) sup

|k|<|j|
rn(k, d)2 > ([j]d − d) log (n)en

)

6
Kn∑
|k|=2

P0

(
rn(k, d)2 > log (n)en

)
.

By Markov inequality we deduce that

P0(kn(d) > 2) 6
1

Kn

Kn∑
|j|=2

E0(rn(k, d)2)
Kn

log(n)en
.

Classical calculations using the stationarity of the process yield

E0

(
rn(k, d)2

)
=

1

u2n

n−d∑
s=1

n−d∑
t=1

E0

(
V

(s)
k,d V

(t)
k,d

)
=

n− d
u2n

∑
|t|<n−d

(
1− |t|

n− d
)
E0

(
V

(0)
k,d V

(t)
k,d

)
6

2(n− d)

u2n
σk,d(n), (20)

which implies that

P0(kn(d) > 2) 6
1

Kn

Kn∑
|k|=2

σn(k, d)
2(n− d)

u2n

Kn

log(n)en
, (21)

and the proof follows from (A1�A2).
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Proof of Theorem 2. Let us prove that for all δ > 0, P0(dn(δ) > 2) vanishes as
n→ +∞. By de�nition of v(n) we have:

P0(dn(δ) > 2)

= P0

∃d, 2 6 d 6 L(n) :
∑

|k|6kn(d)

r̃n(k, d)2 − [kn(d)]d log (n) >
∑
|k|=1

r̃n(k, d)2 − log (n)


6

δ∑
d=2

P0

 ∑
|k|6kn(d)

rn(k, d)2 > ([kn(d)]d − 1) log (n)en


=

δ∑
d=2

P0

 ∑
|k|6kn(d)

rn(k, d)2 > ([kn(d)]d − 1) log (n)en
⋂
kn(d) > 1


+

δ∑
d=2

P0

 ∑
|k|6kn(d)

rn(k, d)2 > ([kn(d)]d − 1) log (n)en
⋂
kn(d) = 1


6

δ∑
d=2

P0 (kn(d) > 1) + P0

 ∑
|k|=1

rn(k, d)2 > (d− 1) log (n)en


6

δ∑
d=2

P0 (kn(d) > 1) + P0

∑
|k|=1

rn(k, d)2 > log (n)en


= A+B

From (21), combining (A2) and (A3) to get

A 6
δ∑
d=2

1

Kn

Kn∑
|k|=2

σn(k, d)
2(n− d)

u2n

Kn

log(n)en

6 M
δKn

log(n)en
.

which tends to 0, as n→ +∞. By Markov inequality,

B 6
Kn∑
d=2

∑
|k|=1

E0(rn(k, d)2)
1

log(n)en
,

and from (20) we have

B 6
δ∑
d=2

∑
|k|=1

2(n− d)

u2n
σk,d(n)

1

log(n)en
.
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We now apply (A2) with Kn = 1 to get

B 6 M
δ

log(n)en
,

which tends to zero with (A3).

Proof of Proposition 1.

First step. We �rst prove that under H1(k1, d1) we have

kn(d)
P−→ 1, ∀d < d1 (22)

kn(d1)
P−→ k1, (23)

where n tend to in�nity. The proof of (22) mimics the proof of Theorem 1. To
prove (23) we write

Tn(k1, d1)− [k1]d1 log(n) >

(
(r̃n(k1, d1)− n

un
δ1) +

n

un
δ1

)2

− [k1]d1 log(n).

In the SRD case, n/un = n1/2. In the LRD case, there exists β > 0 such that

n/un = nβ . Then in both case we conclude that, Tn(k1, d1)− [k1]d1 log(n)
P−→

+∞, that is for all ε > 0 ,

P(Tn(k1, d1)− [k1]d1 log(n) > ε) → 1,

as n tends to in�nity and we get the result.

Second step. We prove that under H1(k1, d1) we have for all δ > 0, P(dn(δ) <
d1)→ 0. By construction of dn(δ), we have for all d < d1:

P (dn(δ) = d) 6 P (Tn(kn(d), d)− [kn(d)]d log(n) > Tn(kn(d1), d1)− [kn(d1)]d1 log(n)))

= P (Tn(kn(d1), d1)− Tn(kn(d), d) 6 ([kn(d1)]d1 − [kn(d)]d) log(n))

= P

 kn(d1)∑
j∈Nd1 ,|j|=1

r̃n(j, d1)2 −
kn(d)∑

j∈Nd,|j|=1

r̃n(j, d)2 6 ([kn(d1)]d1 − [kn(d)]d) log(n)


Using the embedding property of the orthogonal bases deduced from ??, we get

P (dn(δ) = d) 6 P
(
r̃n(k1, d1)2 6 ([kn(d1)]d1 − [kn(d)]d) log(n)

)
= P

(
1

log(n)
r̃n(k1, d1)2 6 [kn(d1)]d1 − [kn(d)]d

)
= P

(
1√

log(n)
|r̃n(k1, d1)| 6

√
[kn(d1)]d1 − [kn(d)]d

)
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We can decompose

1√
log(n)

r̃n(k1, d1) =
1√

log(n)
(r̃n(k1, d1)− n

un
δ1) +

n
√

log(n)

un
δ1

= A+B.

From (C), (r̃n(k1, d1) − n

un
δ1) has a limit distribution and then A converges

to a Dirac in zero. Moreover, in the SRD case, n
√

log(n)/un =
√
n log(n) and

B diverges since δ1 6= 0. Similarly, in the LRD case, there exists β > 0 such
that n

√
log(n)/un = nβ

√
log(n) and then B diverges. From (22) and (23) we

have
√

[kn(d1)]d1 − [kn(d)]d
P−→
√

[k1]d1 − [1]d < ∞ and we conclude that for
all d < d1,

P (dn(δ) = d) → 0.

Appendix 3: Illustration of assumption (C): alternative behaviour for
linear transformations

We consider the case of transformations of strictly stationary linear processes
here, but this result can be extended to Gaussian processes, α-mixing processes
or θ-dependent processes. If

Zt =
∑
j<t

αt−jεj , αj ∼ c|j|δ−1, (24)

where the εj 's are i.i.d. zero centered variables, c is a real non null constant and
δ < 1/2, we say that a measurable function L such that EL(Z) = 0 has power
rank k > 1 with respect to the linear process Z if

L(k)
∞ (0) 6= 0 and L(r)

∞ (0) = 0, for all 1 6 r < k,

L(r)
∞ (w) =

∂r

∂wr
E(L(w + Z0)). (25)

So, k = min{r > 1, L
(r)
∞ (0) 6= 0}, with L

(r)
∞ de�ned by (25). Let us set the

following assumptions:

(i) L has a continuous bounded derivative of order k + 2.

(ii) E(ε2k∨81 ) <∞

(iii) E(ε81) <∞

(iv) We have

E(L(Z1)− L(Z1,m))2
m→∞−→ 0, Z1,m =

∑
16i6m

αiε1−i.
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We recall below the result of [6] (see also [? ] for improved conditions) for the
partial sums of the process L(Z):

Proposition 2 ([6]). Let L be a measurable function such that E(L(Z1)) = 0
and E(L2(Z1)) < ∞ with Z de�ned as in (24). Let k be the power rank of L.
Assume that (i) holds. Then

• if k(1− 2δ) < 1 and (ii) holds,

nk(1/2−δ)−1
n∑
s=1

L(Zs)
L−→ T∞k,δ,c,L = ckC(δ, k)L(k)

∞ (0)Zk,1−δ(1), (26)

where

C(δ, k) =

√
k!(1− k(1/2− δ))(1− k(1− 2δ))(∫∞

0
(x+ x2)δ−1

)k , (27)

Zk,1−δ(1) is the Hermite process at point 1 (see [11]).

• if k(1− 2δ) > 1 and (iii)-(iv) hold, then

n−1/2
n∑
s=1

L(Zs)
L−→ N (0, σ2) (28)

where

σ2 = lim
1

n
var

(
n∑
s=1

L(Zs)

)
=
∑
s∈Z

E (L(Z0)L(Zs)) > 0.

If we assume that there exists two measurable functions L and L′ such that
Xt = L(Zt) and Yt = L′(Z ′t), where Zt and Z

′
t are governed by (24) with evident

notations, then (C) follows from Proposition 2 and then Proposition 1 occurs.
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