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Abstract

In a near future, the Surface Water Ocean Topography (SWOT) mission will provide images of
altimetric data at kilometric resolution. This unprecedented 2-dimensional data structure will
allow the estimation of geostrophy-related quantities that are essential for studying the ocean
surface dynamics and for data assimilation uses. To estimate these quantities, i.e. compute
spatial derivatives of the Sea Surface Height (SSH) measurements, the small-scale noise expected
to affect the SWOT data must be smoothed out while minimizing the loss of relevant, physical
SSH information. This paper introduces a new technique for de-noising the future SWOT
SSH images. The de-noising model is formulated as a regularized least-square problem with
a Tikhonov regularization based on the first, second, and third-order derivatives of SSH. The
method is implemented and compared to other, convolution-based filtering methods with boxcar
and Gaussian kernels. This is performed using a large set of pseudo-SWOT data generated in
the Western Mediterranean Sea, from a 1/60◦ simulation and the SWOT simulator. Based
on Root Mean Square Error and spectral diagnostics, our de-noising method shows a better
performance than the convolution-based methods. We find the optimal parametrization to be
when only the second-order SSH derivative is penalized. This de-noising reduces the spatial
scale resolved by SWOT by a factor of 2, and at 10 km wavelengths the noise level is reduced
by 104 and 103 for Summer and Winter respectively. This is encouraging for the processing of
the future SWOT data.

Keywords: SWOT, De-noising, Variational regularization, western Mediterranean

1. Introduction1

The Surface Water Ocean Topography (SWOT) [1] mission will provide an unprecedented2

two-dimensional view of ocean surface topography at a pixel resolution of 2 km. The launch3

is scheduled for 2021. SWOT’s wide-swath altimeter, based upon SAR interferometry tech-4

nology, will measure Sea Surface Height (SSH) over a 120-km wide swath with a 20-km gap5

at the nadir. The satellite will also carry a conventional nadir altimeter. SWOT will evolve6

on two different orbits: the first 3 months of scientific data production will be dedicated to a7

fast-sampling phase, where the repeat cycle will be of 1 day. Then, the satellite will be moved8

to its nominal orbit with a 20.86-day repeat cycle. SWOT is a multi-disciplinary hydrology9

and oceanography mission, and here we focus on the latter.10

11

The main oceanographic objective of SWOT is to observe the geostrophic fine-scale circula-12

tion at the global scale [2, 3]. The measurement system is designed to resolve ocean circulation13

patterns at scales down to 15 km, whereas the present-day constellation of conventional altime-14

ters only resolves scales of 150-200 km and above [3]. In addition to potentially unexpected15
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discoveries, this order-of-magnitude gain in resolution will help quantifying several oceanic pro-16

cesses much more accurately than today. Among those processes are vertical motions, which17

are key to the vertical exchanges between the ocean surface and the atmosphere, and between18

the ocean surface and the deep ocean [4, 5, 6, 7, 8, 9]; and the dissipation of kinetic energy,19

which partly determines the climatic role of the global ocean [10, 11].20

21

The SWOT mission objectives will be reached if we can accurately estimate gridded maps of22

at least the first and second-order horizontal derivatives of SSH. Altimetry describes the upper23

ocean dynamics through geostrophy, which involves the horizontal SSH gradients. Geostrophy24

is a fairly good approximation of mesoscale dynamics, i.e. at scales larger than the for first25

Rossby deformation radius (about 10-15 km in our region [12]), for which Rossby numbers are26

typically smaller than 1. Kinetic energy dissipation is driven by the horizontal strain rates of27

the ocean surface flow [e.g. 13]. Complete, gridded maps of SSH derivatives are required for28

climate studies and short-term operational applications. One way to make gridded maps from29

incomplete SSH observations (including SWOT, but not only) is to assimilate those data into30

dynamical models. The assimilation of SWOT is expected to be challenging because of the31

spatially correlated noise, and promising solutions to this rely upon the joint assimilation of32

SSH and its derivatives [14, 15]. All these considerations compel the scientific community to33

strive for getting accurate estimates of SSH derivatives.34

35

Unfortunately, SWOT data will very likely be contaminated by small-scale noise that pre-36

vents the direct computation of SSH derivatives. The noise expected to contaminate SWOT37

measurements gathers several components with different spatial coherences and different am-38

plitudes. Details are provided in the SWOT mission performance and error budget document39

[16]. To be prepared to exploit the future SWOT data, the SWOT simulator for ocean science40

has been developed to simulate realistic realizations of SWOT uncertainties [17]. Some are41

illustrated on Figure 2. Errors due to the satellite roll, the baseline dilation, and the path42

delay induced by atmospheric humidity, exhibit significant spatial correlations with different43

characteristic patterns. The system timing error presents errors invariant across-track, but with44

possible small-scale variations along-track. The KaRIn (Ka-band Radar Interferometer) noise45

is spatially uncorrelated, with higher amplitudes at nadir and near the edges of the swath. The46

path-delay component also exhibits small-scale variations due to sharp changes in air humidity.47

Efforts have already been undertaken to filter out SWOT small-scale noise by Gómez-Navarro48

et al. [18]. The authors show that the implementation of a diffusion-based filter allows to49

retrieve the dynamical spectral signature down to 40-60 km scales (20-30 km in terms of dy-50

namical pattern scales). However, the de-noising approach here is not specifically designed51

to retrieve SSH derivatives, and we believe there is room for improvement in the scales to be52

retrieved.53

54

This paper presents a method designed to remove the small-scale noise of the future SWOT55

data, which explicitly relies upon the regularity (bounded variations) of the first three orders56

of SSH derivatives. This de-noising method is rooted in image restoration techniques of the57

variational type [19, 20, 21, 22]. The range of image restoration techniques is extremely wide58

and diversified. Testing all existing methods is out of reach and irrelevant here. Our approach59

is then to acknowledge that our image is a smooth physical field with relatively smooth deriva-60

tives, and that the estimation of derivatives is an important issue. This consideration guides61

the design of the de-noising method presented in Section 2. The method involves a set of pa-62

rameters that must be adjusted. An essential task is to identify optimal sets of parameters.63

This study suggests a methodology to identify them. The experimental setup is described in64

Section 3. Sections 4 and 5 present the results and Section 6 summarizes the study, draws the65
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most relevant conclusions, discusses them, and suggests possible future research paths.66

67

2. Variational de-noising of SWOT images with penalization of derivatives68

2.1. Formulation of the image de-noising problem69

The primary purpose of image de-noising here is to allow the computation of first and second-70

order SSH spatial derivatives of SWOT data as accurately as possible. The two reasons, already71

mentioned in the introduction, are: (i) these quantities represent geostrophic velocities and rel-72

ative vorticity, respectively, whose estimation is central to the success of SWOT mission; and73

(ii) these quantities can be needed to draw maximum benefits from the assimilation of SWOT74

data into ocean circulation models [14, 15]. We therefore propose a method that explicitly75

constrains these derivatives.76

77

The proposed de-noising model is formulated as a regularized least-square problem with
a Tikhonov regularization. The de-noised SWOT image h is searched for by minimizing the
following cost function:

J(h) =
1

2
‖m ◦ (h− hobs)‖2 +

λ1
2
‖∇h‖2 +

λ2
2
‖∆h‖2 +

λ3
2
‖∇∆h‖2 (1)

where ‖ ‖ represents the L2-norm, hobs is the original noisy image (i.e., our observation, the78

pseudo-SWOT data) , ∇ = (∂/∂x, ∂/∂y) is the gradient operator, and ∆ = ∂2/∂x2 + ∂2/∂y279

is the Laplacian operator. Letter m and sign ◦ represent a mask and the entrywise matrix80

product, respectively. They can be ignored for the present and the next sub-section: their role81

is discussed in Section 2.3 below. The regularization terms impose regularity constraints on82

geostrophic velocity, vorticity, and vorticity gradient, respectively. Parameters λ1 λ2 and λ383

must be prescribed. The search for their optimal values is reported in Section 3.3.84

85

2.2. Resolution of the variational problem86

The variational problem displayed in eq. 1 is solved using a gradient descent method [23].
The gradient of J is written:

∇J(h) = m ◦ (h− hobs)− λ1∆h+ λ2∆∆h− λ3∆∆∆h (2)

so that the solution can be reached after convergence of the following iterations:

hk+1 = hk + τ
(
m ◦ (hobs − hk) + λ1∆h

k − λ2∆∆hk + λ3∆∆∆hk
)

(3)

Stability of iterations is guaranteed if τ ≤ (1 + 8λ1 + 64λ2 + 512λ3)
−1. In practice, it is87

taken equal to this value. Two improvements on the method’s implementation accelerate the88

gradient descent: Firstly, iterations are started with a preconditioned image obtained by ap-89

plying a Gaussian filter onto the original image, including inpainting as discussed in Sections90

2.3 and 2.4 (note that hobs remains the original, unfiltered image). Preconditioning consider-91

ably speeds up the algorithm convergence, in particular for the inpainted regions. Secondly,92

iterations are actually implemented with an acceleration of the scheme 3, based on the Fast93

Iterative Shrinkage-Thresholding Algorithm (FISTA) [24], detailed in Appendix B. Iterations94

are stopped when ‖hk+1−hk‖ < 10−9 or if k = 104. Those values have been fixed after a careful95

search of a trade-off between accuracy and numerical efficiency.96

97
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The Laplacian operator is discretized with finite differences using the five-point stencils of98

the image pixels. As commonly done in image processing, the division by pixel size is ignored;99

this also reduces the probability of truncation errors due to operations with terms different by100

too many orders of magnitude. Pixels located at the boundaries, where the stencil is incomplete,101

must have a Laplacian value attributed yet; otherwise, the image would become smaller at each102

iteration of the gradient descent. The implementation of the Laplacian operator follows [22]103

and is detailed in Appendix A.104

2.3. Dealing with gaps in the image105

An inpainting method is implemented to deal with islands, continents, and the 20-km wide106

gap at the SWOT nadir, which all represent obstacles to the calculation of the second deriva-107

tives of images. Inpainting consists in filling the gaps consistently with the neighbouring water108

pixels. This is done by (i) extending images hobs and h with pixels in the gaps, and (ii) filling109

mask m with ones in water pixels of the original image, and zeros in the gaps. Differential110

operators can then be applied to every image pixel, and the gradient descent iterations are111

carried out smoothly. Mask m is applied to the resulting image to obtain the final, filtered112

image with islands, continents, and the nadir gap.113

114

Inpainting should not be only considered as a trick to facilitate the gradient descent im-115

plementation, but also as an opportunity to fill the nadir gap for calibration, validation and116

reconstruction purposes. In the gaps, the image resulting from the iterations is determined only117

by the neighbouring water pixels and regularity constraints. The gap width (20 km) appears118

reasonably small in comparison with spatial scales of SSH variations in most parts of the mid-119

latitude, open ocean. The image values obtained at nadir may thus be comparable to those120

collected by the nadir instrument carried by SWOT, allowing calibration of the radar interfer-121

ometer, validation of data and reconstruction of SSH in gap-free images. Such opportunities122

will be explored in a future work.123

2.4. Comparison with convolution-based filters124

In Section 4, the image de-noising technique described above will be compared with standard-125

type filters, namely convolution-based filters. In our experiments we test the two commonly126

used boxcar and Gaussian convolution kernels, with a large range of parameters, and we shortly127

refer to the boxcar filter and the Gaussian filter. Their parameters are the box size (or foot-128

print) and the standard deviation for the Gaussian kernel (hereinafter referred to as σ). Gaps129

in the SWOT swath (lands, islands, and nadir gap) are inpainted to facilitate filtering and to130

ensure the smoothness of SSH fields. Then, SSH values created in gaps are removed for the131

evaluation of the methods using the mask m. Inpainting is implemented as follows: (i) Image132

gaps are filled with zeros; (ii) both the filled image and the mask m are filtered with the same133

kernel; and (iv) the filtered filled image is divided entrywise by the filtered mask. Note that in134

an earlier study [18], a Laplacian diffusion filter was experimented. It is not reproduced here,135

since it is equivalent to the Gaussian filter implemented in this study.136

3. Experimental setup137

3.1. Simulated SWOT dataset138

The input of our database is a 15-month North Atlantic simulation at a resolution of 1/60◦.139

We use the NEMO3.6 ocean model coupled to LIM2 ice model, with atmospheric forcing from140

a global ocean reanalysis at 1/4◦ (GLORYS-v3) and ocean-atmosphere boundary conditions141

of Drakkar Forcing Set (DFS5.2), based on ERA-interim reanalysis. It has no high frequency142

forcing, thus does not include tides. The domain covers the North Atlantic from 25◦N to 66◦N.143
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The horizontal resolution is between 0.8 and 1.6 km (depending on latitude), and the grid has144

300 vertical levels. This NEMO model configuration is referred to as NAtl60 and the source145

files and codes are available in [25]. The particular simulation used herein has been described146

in [26, 27, 28]. Lastly, the simulation time span is from mid-June 2012 to October 2013. [29]147

148

The SWOT simulator for Ocean Science (version 2.21) [17] is run to generate pseudo-SWOT149

scenes from the NAtl60 simulation. The SWOT simulator first builds the SWOT observation150

grid, based on the provided satellite orbit. In this study, SWOT grid resolution is fixed at151

1 km. After this work started, the resolution of the basic SWOT level 2 SSH data products152

has been fixed to 2 km, but this small mismatch does not modify the general approach. After153

building the grid, the simulator reads SSH data from NAtl60 and linearly interpolates them154

from model to SWOT grid (rendering the variable SSH model). In a last step, it computes155

random realizations of observation errors and adds them to the interpolated SSH data (ren-156

dering SSH obs). Observation errors considered at the moment are KaRIn errors, roll errors,157

phase errors, baseline dilation errors, timing errors, and errors due to signal alternation by158

atmospheric humidity. Among these errors, only the KaRIn noise is expected to be spatially159

uncorrelated. Technically, the SWOT simulator provides simulations of the noise-free SSH ob-160

served by SWOT, and of the noisy data that SWOT will actually yield (sum of the former161

and the noise: SSH obs = SSH model + noises/errors). For the evaluation of image de-noising162

methods, it thus provides ”true”, noise-free images (htrue) along with the realistic SWOT data163

(hobs) to process and compare with the truth.164

165

A set of 543, 121×200 km2 pseudo-SWOT scenes are generated in the western Mediter-166

ranean Sea, covering one Winter and two Summer seasons (choice limited by the model’s time167

span). SWOT scenes are sampled from the fast-sampling phase satellite orbit, focusing on a168

cross-over region, i.e., where an ascending pass crosses a descending pass, therefore providing169

2 passes per day. The SWOT data simulation is carried out over three 3-month periods: July170

to September 2012 and 2013 (JAS12 and JAS13 hereafter), representing the Summer season,171

and February to April 2013 (FMA13) representing the Winter season. Summer periods provide172

92 (resp. 91) of ascending (resp. descending) passes; the Winter period provides 89 (resp.173

88) passes. The selected region belongs to the fast-sampling phase crossover in the western174

Mediterranean Sea. This is one of the regions selected for calibration/validation (Cal/Val) [30]175

in which in situ measurements have been made in the frame of SWOT [31]. To mitigate the176

computational complexity of the study and avoid the presence of continents and islands, limited177

subregions of the SWOT swaths are sampled. These subregions are 121 km-wide (the width178

of 2 SWOT swaths plus the gap) and 200 km-long. The region, the SWOT passes and the179

subregions are shown in Figure 1. It is worth noting that each scene is affected by a unique180

realization of the SWOT error.181

182

In this work, image de-noising techniques are first applied to the pseudo-SWOT scenes af-183

fected by the KaRIn noise only (SSH obs K), then to the scenes containing all errors (SSH obs).184

This approach allows to discriminate the effects and the performance of image de-noising in185

presence of the spatially correlated SWOT errors. A few realizations of the different compo-186

nents of the SWOT error are shown on Figure 2, where we can observe how most errors exhibit187

strong and long-range correlations, whilst the KaRIn error does not show any correlation at188

all.189
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Figure 1: SSH model outputs [m] for cycle 1 of pass 9 (left) and 22 (right) of the JAS12 dataset. In red the
subregions selected.
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(a)

(b)

Figure 2: Examples of noises and errors [m] added by this SWOT simulator version 2.21 to our study region
fast-sampling phase for JAS12 pass 9 (a) and 22 (b). Note that these simulations are performed without the
20-km gap at nadir.

3.2. Diagnostics for evaluation190

The quantitative evaluation of de-noising methods is carried out computing Root Mean191

Square Errors (RMSE) and Mean Spectral Ratios (MSR). RMSE for a single de-noised SWOT192

field h is computed as the Euclidean distance to the corresponding original, noise-free field htrue:193

RMSE(h) =

√√√√ 1

N

N∑
i=1

(hi − htrue
i )2 (4)

where N is the number of pixels and i a pixel index. Single image RMSEs are then averaged out194

by season for the 3 seasons considered, and are computed for SSH, |∇SSH| and ∆SSH. Thus,195

the test of a de-noising method with a specific set of parameters results in 9 RMSE values.196

To evaluate the improvement after the application of the different de-noising techniques and197
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parameters, we also calculate the percentage of the initial RMSE left. We calculate this RMSE198

residual (RMSEr) as:199

RMSEr(h) =
RMSE(h)

RMSE(hobs)
× 100, (5)

where h is the de-noised field and hobs the original noisy field (SSH obs K or SSH obs).200

201

The spatial spectra of the de-noised SWOT SSH are compared with the spectra of the noise-202

free and the noisy SWOT SSH. For each pass, we calculate the cross-track averaged, along-track203

power spectrum. The spectra are then averaged out over each season, leading to one spectrum204

per season. Information on the wavenumber spectrum calculations is given in Appendix C.205

Again, to evaluate the improvement after the application of the different de-noising techniques206

and parameters, we compare the noise-free and de-noised fields. To do so, the Mean Spectral207

Ratio (MSR) is computed from the power spectral densities (PSD) of SSH. For each season,208

MSR is computed as:209

MSR =

√√√√ 1∑Nk

j=1 δkj

Nk∑
j=1

((
log10

(
PSDj(htrue)

PSDj(h)

))2

× δkj

)
, (6)

210

where Nk is the number of wavelengths considered; PSDj(h
true) and PSDj(h) are the power211

spectral density values at wavelength j for the original, noise-free SWOT field and the de-212

noised SWOT field, respectively. The considered wavelengths span the interval from 9 km, the213

approximate effective resolution of NAtl60, to 200 km, the size of images along-track. MSR is214

defined above so that the best score is 0.215

216

3.3. Exploring parameters of the de-noising methods217

For all de-noising methods, a wide range of parameters are tested to identify optimal pa-218

rameters according to the diagnostics presented in Section 3.2. The convolution-based methods219

use a single parameter that can easily be compared with the image dimensions in pixels. For220

the boxcar kernel, the tested parameter values go from 3 to 200 km, and correspond to the221

size of the box in pixels (1 km in our case). For the Gaussian kernel, the tested parameters go222

from 0.25 to 300 and correspond to the standard deviation, in pixels (we test up to a big sigma223

to have a highly oversmoothed image to reach the limit of the method). On the contrary, the224

geometric interpretation of the parameters of the variational method is not straightforward,225

and a wide exploration of the parameter space must be undertaken. However, due to computa-226

tion time limitations, this cannot be performed in a strictly systematic manner. The adopted227

procedure is detailed below.228

3.3.1. Orders of magnitude of the cost function terms229

The orders of magnitude of the terms ‖∇h‖2, ‖∆h‖2 and ‖∇∆h‖2 composing the cost func-230

tion (eq. 1) are estimated to coarsely scale the parameters λ1, λ2 and λ3. The rationale is, for231

one of these terms (with its weight) to have some impact on the solution, it must be of an order232

of magnitude not too different from the background term ‖m ◦ (h − hobs)‖2. Figure 3 shows233

the seasonal evolution of the derivative terms, computed from the model in a 2◦ × 2◦ region234

containing the SWOT passes used in this study. The relative ratios between ‖∇h‖2, ‖∆h‖2235

and ‖∇∆h‖2 are approximately 1000:10:1. Therefore, if we want to include all three terms in236

the cost function, the ratios between λ1, λ2 and λ3 should coarsely be 1:100:1000. Those ratios237

must be only considered as a guideline to start the investigation, not a strict rule. Note that the238

order of magnitude of the background term after minimization of the cost function is thought239
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to be in the range 1 to 100 in the same region. This has been estimated using the noise-free field.240

241

Figure 3: Seasonal variations of the cost function terms ‖∇h‖2, ‖∆h‖2 and ‖∇∆h‖2, from top to bottom.
Shaded areas indicate the JAS12, FMA13 and JAS13 periods from left to right, respectively. The mean and
median values are printed for each period and for the whole year (upper right corners, in bold).

3.3.2. Finding optimal sets of parameters242

First, we created an exponential series of values to be tested for the three lambdas, con-243

sistently with the previously estimated relative ratios. For λ1, the series is chosen as {4n, n =244

0, ..., 7}. For λ2 and λ3, the series are {10 × 4n, n = 0, ..., 7} and {100 × 4n, n = 0, ..., 7},245

respectively. With these, six scenarios of DP de-noising are investigated, including one, two,246

or three penalization terms in the cost function 1. Three scenarios out of the six considered247

include a single penalization term (mono-parametric) of order 1, 2 and 3, successively. The248

other scenarios are made of terms of orders 1 and 2, 2 and 3 and the last one includes the three249

orders. For conciseness, particularly in the next section, we refer to the variational method250

with the first order term only as the λ1-method. We similarly refer to the λ2-method and to251

the (λ1 + λ2)-method when the first two penalization terms are considered, and so on.252

253

For each scenario, a two-step procedure is implemented to identify an optimal set of pa-254

rameters. In a first step, de-noising of the full set of images is performed with all possible255

combinations of parameters permitted by the scenario and the parameter series defined previ-256

ously. RMSEs and MSR are computed for all the combinations. In a second step, refined series257

of parameters are created in the neighborhood of the combination of parameters that yields the258

minimum RMSE and MSR scores. Image de-noising is then carried out again with all possible259

combinations of these series.260
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4. Optimal de-noising method261

In this Section, the optimal de-noising method is searched for based on the RMSE and MSR262

scores described in Section 3. We investigate the KaRIn-noise-only scenario, then the all noises263

scenario, and finally have a closer look at the method identified as optimal. As it becomes264

clear in what follows, the notion of optimality does not only refer to qualitative measures.265

The design of a single index summarizing the performance of the method for the different266

RMSEs is indeed subjective. Moreover, we take into account the ease of implementation and267

parameterization as a criteria in the final decision. Minimum values of RSME and MSR for268

each season, method, and variable are reported in tables 1 and 2 for the KaRIn-only and all269

noises scenarios, respectively. RMSE scores are actually expressed as the percentage of the270

original RMSEs, i.e. those of the original, noisy data. For SSH, |∇SSH| and ∆SSH RMSE271

and MSR of each de-noising configuration and parameterization, the scores do not necessarily272

correspond to the same optimal parameter (box size, σ or λ).273

4.1. RMSE and MSR scores with KaRIn noise only274

For all variables (h, ∇h, and ∆h), all seasons and all de-noising methods, minimum RMSEs275

are smaller in Summer than in Winter (table 1). This is expected because the oceanic surface276

features in Winter are smaller than in Summer [32], so their observation is more affected by the277

KaRIn noise. Also, smaller structures are more affected by the smoothing due to the de-noising.278

279

For all three seasons and all three variables, RMSEs and MSRs from the convolution-based280

methods and from the λ1-method are larger than RMSEs and MSRs from all other variational281

methods. Also, the λ3-method provides MSRs significantly higher than the other variational282

methods. None of these methods is the optimal de-noising one in this KaRIn-only noise con-283

figuration, and are not further discussed in the following.284

285

In terms of both RMSEs and MSRs, and among the methods still on course, no method286

outperforms the others systematically and distinctly. For all three variables, RMSEs are close287

to each other, with differences less than a very few percents. MSRs are a bit more scattered, but288

without any clear predominance of a specific method in all seasons. However, the λ2-method289

exhibits the lowest MSR values in Summer, and the second lowest value in Winter, close to the290

λ2 + λ3-method.291

292

Finally, this analysis persuades us to further examine the λ2-method for the KaRIn-only293

scenario (see Section 4.3). This choice is supported by the RMSE and MSR analysis above,294

which shows that other methods do not beat it clearly, but also by the fact that it is much295

easier to parametrize a single-parameter method rather than a two or three-parameter method.296

4.2. RMSE and MSR scores with all noises297

Normalized minimum RMSEs for h and |∇h| are higher than in the KaRIn-only scenario,298

by factors of 6− 12 for h, and 1.5− 4 for |∇h| (table 2). This is obviously due to the spatially299

correlated component of the noise (see Figure 2), which is not filtered out by any of the methods300

used here. Other approaches must be used to remove the correlated noise in order to obtain301

more accurate estimates.302

303

Contrary to h and ∇h, RMSEs for ∆h are comparable with those obtained in the KaRIn-304

only case. They are 5% higher only. This slight increase in RMSE is the signature of the305

nonlinear (quadratic, more precisely) component of the correlated error, due to the baseline di-306

lation [17, 16]. The other components are constant, linear or piecewise linear, thus are removed307
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by the second-order derivatives.308

309

Considering only RMSEs on ∆h, except for the boxcar and the λ1, no method performs310

significantly better than the others, and RMSEs are higher in Winter than in Summer. This311

is similar to the KaRIn-only scenario. The Gaussian filter performs comparatively better than312

in the KaRIn-only scenario.313

314

In terms of MSRs, the methods involving λ2 perform significantly better than the others,315

including the λ3- and the Gaussian methods. These last two exhibit MSR larger than the others316

by factors of 1.5 to 4. In Winter, the λ2-method is a little less effective than the multi-parameter317

methods, with a MSR twice as large.318

319

The de-noising experiments with all noises, like those with the KaRIn noise only, lead us to320

favor the λ2-method. The reasons are similar: based on RMSEs and MSRs, the method com-321

pares favorably with the others, and a single-parameter method is much easier to parametrize.322

The only result speaking against this choice is the MSR in Winter. Considering the score value323

though, and after the examination of the wavenumber spectra (see Figure 7), this point hardly324

justifies the disqualification of the λ2-method.325

4.3. A focus on the second-order variational method326

This Section investigates the sensitivity of the λ2-de-noising to the parameter value. Figure327

4 shows the RMSEs for h, |∇h|, and ∆h, and the MSR for h as functions of λ2. On each328

graph, the three seasons are shown for both KaRIn-only (solid lines) and all noises (dashed329

lines) scenarios, making a total of 6 curves.330

331

Except for h and |∇h| RMSEs in the all noises scenario, all RMSE and MSR curves exhibit a332

clear minimum point, which indicates the existence of an optimal, or a range of close-to-optimal333

λ2 values for the de-noising. Optimal values are larger in Summer than in Winter. This is very334

likely because small-scale dynamics are amplified in Winter [10]. Large λ2 values tend to over-335

smooth the SSH field in Winter, leading to higher residual errors. The seasonal difference in336

optimal λ2 values is particularly evident with MSR, with 100 in Winter, and 350 in Summer.337

RMSEs for h and ∇h in the all noises scenario are dominated by the correlated SWOT errors,338

which remain present after de-noising. Consistently with the analysis of the previous section,339

those RMSEs are much higher in the all noises than in the KaRIn-only scenario.340

341

In Summer, it is possible to identify a range of λ2 values that are close-to-optimal for the342

four scores concomitantly. The same holds in Winter for the two scores not dominated by the343

correlated errors (RMSEs on ∆h and MSR). On Figure 4, horizontal error bars indicate the344

range of λ2 values that provide scores higher than the minimum by less than 5%. Subjectively345

based on this information, we propose λ2 intervals of [300 − 400] in Summer and [100 − 120]346

in Winter. MSR results for the two Summer seasons indicate slightly different optimal values,347

suggesting that the choice of a λ2 is inevitably subject to a part of subjectivity if no additional348

information on the ocean surface dynamics is available. Not detailed here, the results from the349

other (single or multiple-parameter) configurations of variational de-noising also exhibit such350

overlaps of intervals, except for λ1.351
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Table 1: Scores summary of the different de-noising methods for the just KaRIn dataset (h=SSH).

Season
De-noising RMSEr Minimum MSR

Method SSH |∇SSH| ∆SSH

JAS12

Boxcar 12.43 0.094 0.300 0.2010

Gaussian 12.88 0.084 0.251 0.1111

DP

1 12.55 0.084 0.279 0.2028

2 08.71 0.050 0.247 0.0143

3 09.06 0.051 0.247 0.1021

1 + 2 08.72 0.050 0.247 0.0192

2 + 3 08.68 0.049 0.247 0.0205

1 + 2 + 3 08.66 0.049 0.246 0.0259

FMA13

Boxcar 15.04 0.177 0.511 0.1066

Gaussian 13.60 0.153 0.437 0.0746

DP

1 15.41 0.173 0.483 0.1498

2 10.92 0.115 0.420 0.0178

3 10.86 0.113 0.416 0.0682

1 + 2 10.92 0.115 0.420 0.0208

2 + 3 10.79 0.113 0.416 0.0168

1 + 2 + 3 10.82 0.113 0.416 0.0255

JAS13

Boxcar 11.98 0.086 0.326 0.1796

Gaussian 12.81 0.076 0.277 0.0911

DP

1 12.78 0.083 0.309 0.2031

2 08.96 0.053 0.274 0.0216

3 09.11 0.053 0.273 0.1010

1 + 2 08.97 0.053 0.274 0.0394

2 + 3 08.84 0.052 0.272 0.0243

1 + 2 + 3 08.84 0.052 0.272 0.0269

352
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Table 2: Scores summary of the different de-noising methods for the all noises dataset (h=SSH).

Season
De-noising RMSEr Minimum MSR

Method SSH |∇SSH| ∆SSH

JAS12

Boxcar 90.31 0.171 0.303 0.2024

Gaussian 90.10 0.156 0.264 0.1181

DP

1 87.60 0.159 0.281 0.1922

2 90.57 0.174 0.261 0.0307

3 90.22 0.156 0.265 0.1359

1 + 2 87.61 0.158 0.262 0.0328

2 + 3 90.22 0.156 0.261 0.0391

1 + 2 + 3 87.40 0.156 0.261 0.0395

FMA13

Boxcar 90.88 0.250 0.511 0.1274

Gaussian 90.76 0.221 0.435 0.0515

DP

1 89.89 0.237 0.484 0.1415

2 91.11 0.226 0.432 0.0314

3 90.96 0.226 0.432 0.0868

1 + 2 89.90 0.223 0.435 0.0160

2 + 3 91.00 0.226 0.430 0.0177

1 + 2 + 3 89.82 0.220 0.430 0.0203

JAS13

Boxcar 89.73 0.137 0.328 0.1792

Gaussian 89.18 0.126 0.289 0.1152

DP

1 84.30 0.131 0.310 0.1895

2 90.36 0.142 0.287 0.0254

3 89.66 0.127 0.290 0.1251

1 + 2 84.19 0.131 0.287 0.0237

2 + 3 89.66 0.127 0.286 0.0285

1 + 2 + 3 83.75 0.127 0.286 0.0267

353
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Figure 4: Scores of RMSE and MSR of λ2-method from just KaRIn (solid line) and all noises (dashed line)
for all 3 seasons. Horizontal error bars in the RMSE plots show the the range of λ2 values that provide scores
higher than the minimum RMSE by less than 5%.
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5. Retrieved SWOT fields and spatial spectra354

Figures 5 and 6 illustrate the de-noising with the λ2-method on SWOT passes, and are355

presented in the same format: h on the top panel, |∇h| on the central panel, and ∆h on the356

bottom panel. The first panel shows, from left to right: the original, noise-free h field, h with357

KaRIn noise only, h with all sources of noise, the de-noised KaRIn-only h, and the de-noised358

all noises h. The second and third panels show the corresponding |∇h| and ∆h, respectively.359

Figures 5a and 5b exhibit Summer time scenes with high and low correlated SWOT noise,360

respectively; Figures 6a and 6b are similar for Winter.361

362

In all cases, de-noising leads to correct orders of magnitude for all fields, and particularly363

for |∇h| and ∆h. As expected and already shown by [18, 33], the original SWOT data affected364

by small-scale noise does not provide any useful information about SSH derivatives. The de-365

noising method corrects this efficiently, and makes it possible to identify the main structural366

characteristics of the fields.367

368

A strong spatially-correlated noise shows strong signatures on h, moderate signatures on369

|∇h|, and low signatures on ∆h, except at the outer boundaries of the swath. The low signature370

on ∆h was already observed in the RMSEs, and is due to the specific spatial structure of this371

noise. Most components are linear in the across-track direction. In the along-track direction,372

error correlations are high (Figure 2). Therefore, the correlated noise has a low effect on the373

second-order derivatives. The remaining noise at the outer boundaries is due to the finite dif-374

ference method used to compute the derivatives described in Appendix A.375

376

Although the resulting fields of ∆h fall in correct orders of magnitude and capture the377

structure of the true fields at the scale of the swath, the kilometric-scale fronts and filaments378

are smoothed out by the de-noising. Solving this issue would require the development of more379

sophisticated de-noising techniques, or a post-processing of the present result including, for380

example, some ocean dynamics through data assimilation techniques. This will be a natural381

step forward, since the first motivation for developing a de-noising technique constraining ∆h382

is precisely the combined assimilation of h and its first two derivatives, as stated in the intro-383

duction.384

385

Figure 7 shows power spectral densities (PSD) of h. The rows distinguish the just KaRIn386

noise added and the all noises cases. The columns are for Summer 2012, Winter 2013, and387

Summer 2013. On each graph, the spectra are shown for the noise-free data (SSH model),388

the noisy data (SSH obs), the de-noised data (SSH obs f), the pre-de-noising noise (noise) and389

post-de-noising noise (noise f). The de-noised data have been obtained with the λ2-method390

with parameter values chosen in the intervals identified in Section 4, and indicated on each391

graph.392

393

From this spectral viewpoint, the de-noised data matches the noise-free data well at all394

scales down to ∼15 km. In the noisy data, the noise amplitude approaches the signal ampli-395

tude at wavelengths of 50 km in Summer and 40 km in Winter, and dominates the signal at396

shorter wavelengths. This is efficiently corrected by the de-noising. The process seems more397

efficient in Winter than in Summer, probably because of higher PSDs in Winter related to more398

intense ocean surface processes.399

400

Following the definition proposed by Wang et al. [34] for the spatial scale resolved by401

SWOT, the de-noising reduces this scale by a factor of 2, leading to resolved scales of between402

approximately 20 and 30 km. Wang et al. [34] define the spatial scale resolved by SWOT by403
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the wavelength at which the SWOT noise spectrum intersects the spectrum of the true signal404

(SSH model here). Figure 7 indicates resolved scales of 50, 40, and 50 km in the JAS12, FMA13405

and JAS13 scenarios respectively, in both just KaRIn and all noises cases. After de-noising,406

the resolved scales are reduced to 25, 20, 20 km in the KaRIn-only case and 30, 20, 30 in the407

all noises case. Even below these scales, the noise left is very low, and within the variability of408

SSH model (red envelope in Figure 7). At wavelengths near 10 km, the noise is reduced by 104
409

in the JAS scenarios and 103 in the FMA scenario.410

411
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(a)

(b)

Figure 5: Fields of pass 09, cycle 2 (a) and 6 (b) of JAS12 dataset compared to the fields filtered with λ2 =
430. From top to bottom: SSH, gradient of SSH and laplacian of SSH. From left to right: model interpolated to
SWOT grid (SSH model), SSH model + KaRIn noise (SSH obs K), SSH model + all noises (SSH obs), filtered
SSH obs K (SSH obs K f) and filtered SSH obs (SSH obs f).
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(a)

(b)

Figure 6: Fields of pass 09, cycle 2 (a) and 6 (b) of FMA13 dataset compared to the fields filtered with λ2 =
95. From top to bottom: SSH, gradient of SSH and laplacian of SSH. From left to right: model interpolated to
SWOT grid (SSH model), SSH model + KaRIn noise (SSH obs K), SSH model + all noises (SSH obs), filtered
SSH obs K (SSH obs K f) and filtered SSH obs (SSH obs f).
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Figure 7: Spatial spectra of the model interpolated data (SSH model) are shown in red and of the pseudo-SWOT
data (SSH obs) in black. Blue lines indicate the filtered pseudo-SWOT spectra (SSH obs f) obtained with the
optimal λ2 found with the MSR score. The dashed lines are the noise spectra of SSH obs (noise) and SSH obs f
(noise f). Shaded areas show values between the 5th and 95th percentiles, showing the PSD variability. Top
row shows pseudo-SWOT data with just KaRIn noise added and botom row with all noises. Columns represent
the different seasonal datasets from left to right: Summer 2012 (JAS12), Winter 2013 (FMA13) and Summer
2013 (JAS13).
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6. Discussion and Conclusions412

Several objectives of the SWOT mission will be met only if the small-scale noise affecting413

the data can be efficiently removed. Small-scale noise, in particular the spatially uncorrelated414

KaRIn instrument noise, prevents the computation of horizontal SSH derivatives. This limits415

both the direct estimation of relevant oceanic variables on the SWOT swath, and the use of416

SWOT data to build gridded products of altimetry.417

418

To remove the small-scale SWOT noise, we propose a de-noising method that performs419

better than conventional convolution-based methods both in terms of RMSE (physical space420

diagnostic) and spectra. The method, which originates from image processing applications, is421

based on the regularization of the SWOT SSH data by the penalization of its derivatives of422

orders 1 to 3 in a variational, optimization framework. This approach is chosen because it423

is in close connection with the oceanic variables of interest, namely geostrophic velocity and424

vorticity. After a thorough evaluation based on a large number of simulated SWOT scenes, the425

variational de-noising method exhibits better performance than standard, boxcar and Gaus-426

sian filters. We find the method performs best when only the second-order derivative (λ2) is427

considered in the cost function. Only one parameter needs to be set, which makes the parame-428

terization of the method as simple as a convolution-based method. We find that this parameter429

can be set smaller or larger in function of the characteristics of our field: the higher the intensity430

of the signal, the lower the penalization and thus the value of the parameter (as we find in the431

FMA13 λ2 values in contrast to JAS12). Also, if the noise level in our fields is higher (all noises432

scenario), the more we need to penalize and the larger the parameter value. In other words, the433

higher the signal to noise ratio (SNR) the less we need to penalize our field, and so the smaller λ2.434

435

The method will require further investigations before operational applications, since we have436

focused our attention to one particular region (the Western Mediterranean Sea), with an ocean437

circulation free of tidal forcing, and a prescribed Significant Wave Height (SWH) of 2 m. The438

present study shows that in one single region, the range of optimal parameters changes with439

the season, due to seasonal changes in the ocean surface dynamics. Similar conclusions are440

certainly expected with respect to regional and dynamical regimes. The NATL60 simulation441

used here does not include tidal forcing. The behavior and efficiency of the de-noising method442

may be questioned in presence of tidal motions and particularly tide-generated internal waves.443

Finally, the SWH prescribed in the SWOT simulator to compute the KaRIn error amplitude444

is prescribed to 2 m. As the SWH varies geographically and according to the atmospheric445

regime, KaRIn errors smaller or larger than those computed for the present study with the446

SWOT simulator can be expected [34]. The first two aspects (geographic variations of ocean447

dynamics and internal tides) are presently under study using data from several high-resolution448

simulations that include tidal forcing: the HYbrid Coordinate Ocean Model (HYCOM) [35],449

the Massachusetts Institute of Technology general circulation model (MITgcm) [36], and the450

recent extended NATL60 –eNATL60– simulation, not yet published).451

452

The method should also benefit from additional developments to reconstruct more realistic453

fields of relative vorticity on the SWOT swath, and could ultimately lead to the estimation of454

vertical velocities. The de-noising process inevitably smoothes out the very fine-scale, elongated455

structures usually visible in surface relative vorticity fields [10, e.g.]. Restoring these structures456

should be investigated, perhaps using appropriate image processing techniques [37, 38], or meth-457

ods already developed in the oceanographic community such as Lagrangian advection [39, 40].458

Dynamical models could also be used in a data assimilation framework.459

460

To conclude, the de-noising method opens the way to several relevant applications using the461
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SWOT data, possibly including SWOT data validation, assimilation, and SSH mapping. We462

mention SWOT data validation due to the in-painting capability of the variational de-noising463

method, i.e. the fact that the process naturally fills the 20-km gap of the SWOT swath (the464

gap is in-painted, and emptied again after de-noising to restore SWOT data in the original465

shape). In other words, the SWOT KaRIn data are interpolated on the track of the SWOT466

nadir altimeter. This is obviously relevant for data comparison and validation. De-noising is467

also interesting to pre-process the SWOT data before their assimilation in ocean circulation468

models. This actually was a primary motivation for the method development. Computing469

spatial derivatives of the SWOT data allows the implementation of data assimilation methods470

that account for SWOT error correlations [14, 15]. Alternatively, the relative vorticity derived471

from the de-noising can be directly assimilated. This option has not been explored yet to our472

knowledge. Finally, the de-noising can also be combined with other techniques to improve the473

assimilation. We particularly think about the technique recently developed by Metref et al.474

[41] to significantly reduce the impact of the geometrically structured, highly correlated SWOT475

errors (roll, phase, timing, and baseline errors).476

477
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Appendix A. Calculation of Laplacian590

Laplacian are computed using finite differences, following the method proposed by [22]. We
note h the image of size Nx × Ny. In a first step, the two components of the gradient are
computed as (i = 1, ..., Nx; j = 1, ..., Ny):

(∇h)xi,j = hi+1,j − hi,j if i < Nx

= 0 if i = Nx

(∇h)yi,j = hi,j+1 − hi,j if j < Ny

= 0 if j = Ny

In a second step, Laplacian is computed as the divergence of the gradient. Divergence of vector
a = (ax, ay) is computed as:

div(a) = bxi,j + byi,j

where:

bxi,j =
axi,j − axi−1,j if 1 < i < Nx

axi,j if i = 1
−axi−1,j if i = Nx

and

byi,j =

ayi,j − a
y
i,j−1 if 1 < j < Ny

ayi,j if j = 1
−ayi,j−1 if j = Ny

The scheme implemented at the boundaries preserves the image size, contrary to what a stan-591

dard five-point stencil Laplacian operator would do. Preservation of image size is essential in592

the gradient descent iterations to end up with a final image of size similar to the initial image.593

Appendix B. FISTA594

To speed up the gradient descent iterations, the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) algorithm [24] is implemented. Setting t0 = 1 and introducing an auxiliary
variable y initialized as y0 = h0, the iterative algorithm of Eq. 3 becomes:

hk+1 = hk + τ
(
m ◦ (hobs − yk) + λ1∆y

k−λ2∆∆yk + λ3∆∆∆yk
)

tk+1 = (1 +
√

1 + 4t2k)/2

yk+1 = hk+1 +
tk − 1

tk+1

(hk+1 − hk)

(B.1)

Appendix C. Calculation of spatial spectra595

The spatial spectra used as one of the scores for the de-noising parameterizations are cal-596

culated as follows:597

1. Apply a linear detrending;598

2. Remove the spatial mean;599

3. Apply a Tukey window with a 0.5 fraction of the window inside the cosine tapered region;600

4. Compute the 1D spatial Fourier power spectra along-track for each SSH swath across-track601

dimension.602
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Appendix D. Qualitative figures of different methods603

To better illustrate the advantage of our de-noising approach, we show in Figures D.8604

and D.9 the fields provided by the boxcar and Gaussian methods, corresponding to the λ2605

experiments presented in Figures 5 and 6. We only show the all noises scenario. Boxcar606

derivatives fields are very noisy, as it is specially visible for the laplacian fields. With the607

Gaussian method, the laplacian is less noisy than with our method, but the gradient is over-608

smoothed.609

Appendix E. Softwares610

• Standard image techniques: For both boxcar and Gaussian kernel python’s scipy.ndimage611

module was used with the following specific functions:612

– Boxcar filter: scipy.ndimage.generic filter()613

– Gaussian: scipy.ndimage.gaussian()614

• Variational regularization method: https://github.com/LauraGomezNavarro/SWOTmodule615
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(a)

(b)

Figure D.8: Fields of pass 09, cycle 2 (a) and 6 (b) of JAS12, all noises dataset. From left to right: comparison
between the SSH model, SSH obs, SSH obs filtered with our approach and λ2 = 430 (SSH obs f), with the
optimal boxcar (SSH obs f bc) and with the optimal Gaussian (SSH obs f ga) methods. From top to bottom:
SSH, gradient of SSH and laplacian of SSH
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(a)

(b)

Figure D.9: Fields of pass 09, cycle 2 (a) and 6 (b) of FMA13, all noises dataset. From left to right: comparison
between the SSH model, SSH obs, SSH obs filtered with our approach and λ2 = 95 (SSH obs f), with the
optimal boxcar (SSH obs f bc) and with the optimal Gaussian (SSH obs f ga) methods. From top to bottom:
SSH, gradient of SSH and laplacian of SSH
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