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Adaptive-Gains Enforcing Constraints in Closed-Loop QP Control

Mohamed Djeha1, Arnaud Tanguy2, and Abderrahmane Kheddar3

Abstract— We revisit an open problem of a class of con-
straints obtained through derivation in task-space control
frameworks formulated as quadratic programs. It is common
that weighted or strict-hierarchy task-space formulation result
in a set of constraints to fulfill strictly and others to meet at best.
In most implementation implying dynamics, the decision vari-
ables are: robot’s joints acceleration, interaction forces (mostly
physical contacts), and robot torques (that can be eliminated
if torque bounds are known). However many constraints, e.g.
joint constraints, do not write straightforwardly in terms of one
of these decision variables. Previous work proposed solutions to
write and enforce joint constraints. Yet, none of them worked
properly in a closed-loop formulation of the QP when bounds
are reached or when bounds change. In this letter, we show
that joint constraints are part of a more general class of
constraints such as collision avoidance, bounds of center of
mass, constraints on field-of-view, Cartesian bounds on a given
link, etc. We propose a general solution not only to enforce
such a class of constraints at their bounds but also eliminating
the chattering observed in all the existing methods; and more
importantly, a systematic way to set the gains that allow stable
behavior when bounds are reached in closed-loop.

I. INTRODUCTION

Task-space multi-objective and multi-sensory control by

means of soft or strict hierarchy quadratic programming (QP)

is demonstrated in state-of-the-art humanoid robots handling

complex task objectives and behaviors. To cite a few ex-

amples: momentum control of Sarcos humanoid robot lower

body [1]; stabilization of the planned footsteps trajectories

for Atlas humanoid robot [2]; multi-robot control [3]; wrench

distribution for walking stabilization [4], [5]; impact tasks

awareness at contacts [6], [7]; and an integration in humanoid

aircraft manufacturing [8].

In almost all existing QP formulated controllers, the de-

cision variables, when dynamics is involved, are the contact

forces, the torques and the robot state acceleration. These

are the output of the task-space controller sent as desired

input to the low-level (actuators) controller. The motivation

of this paper came first from an experimental observation. In

the frame of aircraft robot manufacturing applications [8],

we shall demonstrate the capability of humanoid robots

(in our case, HRP-4) in accessing narrow and confined

spaces. In one specific use-case experiments, our closed-

loop QP controller [3] unexpectedly failed in the course of
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the execution in some extreme configurations. The log data

revealed that these failures happened when the joints reached

their bounds, or in cases where joint velocities were too high.

We also discovered later on that the QP either failed, or

generated oscillatory and discontinuous motions in closed-

loop for other bounds (e.g. collision avoidance). Similar

experimental issues encountered in closed-loop control have

been reported in [9].

How to write constraints, originally written in terms of

position (or velocity), in terms or their derivative decision

variables, is not new and several authors have proposed

different formulations. It is important to reach any bound

with feasible velocity and acceleration drops. The earlier

work tackling this topic is presented in [10] where a velocity

linear damper was formulated to prevent collision of a

robotic manipulator links with the environment obstacles.

This formulation has been applied at the joints level in [11],

and implemented in term of acceleration in [12], [13]. In

order to avoid unfeasible decelerations near the distance

bounds, a velocity constraint is formulated at the task-space

assuming a constant deceleration in [14]. This method has

been improved and applied at the joint level in [15]. In [16]

and [17], Taylor expansion is assumed to make use of

the acceleration from joint position and velocity constraints

where the expansion time step is taken to be a multiple of

the control time step. In [18], joint position is not considered

into the QP constraints. Instead, a deceleration is explicitly

applied to push back a joint if it gets closer to its limit.

In [19], a parametrization of the feasible joint-space has

been proposed which should prevent the joints trajectories

from collision with the bounds. However, this method suffers

from singularities which makes it difficult to perform on real

platforms. In [20], a position-dependent velocity constraint

has been proposed to avoid QP failure when the humanoid

robot knees are fully stretched while walking. The same

formulation is given in [21] for redundant robotic manip-

ulators. This constraint is also known as viability constraint

in [22], where a discrete-time implementation in term of

joint acceleration is provided. All these approaches have

the following shortcomings (explicitly acknowledged by the

authors):

• An exact knowledge of the robot state is necessary and

hence assumed;

• Undesirable discontinuous motions (chattering) near the

constraints limits, in closed-loop;

• Mostly applied for joints limits and few in collision

avoidance;

• They do not handle variable bounds.



We propose a general formulation for distance and velocity

constraints in term of acceleration that expand for a much

larger (almost all) type of constraints. Our method is based

on the Ordinary Differential Inequality (ODI) solutions [23].

It does not rely on any assumption about the robot state,

and generates a smooth motion near the constraints limits.

In Section II, we give an overview of the the QP multi-

task control formulation. In Section III, we investigate and

explicit the drawbacks of two state-of-the-art methods [12]

and [22]. Then, we provide the details of the proposed

formulation, based on an adaptive-gains method. Finally,

Section IV assesses several constraints bound reaching ex-

periments with the HRP-4 humanoid robot in closed-loop

control.

The following notations are adopted throughout the paper:

• t ∈ R
+ denotes time, in seconds;

• dt denotes the control time-step, in seconds;

• ε(idt)
△
= εi, i ∈ N;

• superscript ∗ denotes a desired entity;

• gxT =
[

eT ėT
]

, cxT =
[

hT ḣT
]

, rxT =
[

qT q̇T
]

de-

note the task-state, constraint-state and robot-state vec-

tors, respectively.

II. QUADRATIC-PROGRAMMING CONTROL

FORMULATION

A. Equation of Motion

The Equation of Motion (EoM) that describes a robot with

a floating base is given by:

[

M(q̂) −S −JT
tr

]

χ +N(q̂,v) = 0 (1)

where: χT =
[

v̇T τT f T
]

, (q̂,v) is the full state of the

system including the floating base. q̂T =
{

qT ξ T
}

stacks the

actuated joints vector q and the root SE(3) of the robot,

and vT = [q̇T υT ] where q̇ = dq/dt and υ denotes linear and

angular velocities of the robot base frame. M(q̂) is the inertia

matrix. N(q̂,v) encompasses the non linear terms (Coriolis-

centrifugal and gravitational terms). S is a diagonal selection

matrix for actuated joints. f denotes the external contact

forces and Jtr the translational Jacobians at contact points.

Each non-sliding contact force f is constrained to remain

strictly within the linearized friction cone K mapped by a

finite set of generator vectors {ρ j} j=1,··· ,µ [24]:

f ≤
µ

∑
j=1

β jρ j, β j ≥ 0 (2)

This robot’s motion shall be restricted by a set of limitations:

• torque range limits:

τmin ≤ τ ≤ τmax (3)

• a set of constraints of the form:

H(q, q̇)≤ 0 (4)

where H(q, q̇) encompasses different types of constraints, for

example:

• joint position constraint:

qmin ≤ q ≤ qmax (5)

• joint velocity constraint:

q̇min ≤ q̇ ≤ q̇max (6)

• center-of-mass CoM(q) equilibrium [25] or any other

constraint (eventually implying CoM velocity):

CoM(q) ∈ P or
⋃

CoM(q)≤ ∆ (7)

where P is a given polyhedron that can be rewritten

into a set of inequalities; ∆ being the given lower

distance bound vector.

• distance constraint δ (q) to avoid none-desired colli-

sions [12]:

δ (q)≥ δmin (8)

• field-of-view FoV(q) inclusion constraints in visual ser-

voing or vision-based object tracking. One need to keep

the object of interest O within the field-of-view of the

robot embedded camera, and out of any known possible

occlusions. There are linked to the robot configuration:

FoV(q) ∋ O (9)

the inclusion also writes equivalently into a set of

inequalities, see e.g. [26].

There are many other constraints that write in the form of (4)

and that we do not mention here. Notice that the QP decision

variables do not appear explicitly in such constraints. This

is why their integration into the QP controller formulation

cannot be made under this form. When possible, one needs

to rewrite such constraints in the form:

A(q, q̇)χ +b(q̇,q)≤ 0 (10)

where A is a matrix and b a vector of appropriate dimensions,

and χ is the decision variable vector. In this work, we will

show how to stabilize constraints like (10) that are originally

written as (4) in the context of closed-loop QP control.

B. Task-Space QP Formulation

Let g and gref be the current and reference tasks respec-

tively. Let us define: e = g−gref, ė = ġ− ġref and ë = g̈− g̈ref

where: ė = Jgq̇, ë = Jgq̈+ J̇gq̇, and Jg is the task Jacobian.

The task state-space representation is given by the following

canonical form:

gẋ =

[

0 I

0 0

]

gx+

[

0

1

]

u (11)

One classical way to stabilize the system (11) is to choose

a linear state-feedback control-law:

u =−
[

P D
]

gx (12)

where P and D are diagonal matrices of appropriate di-

mensions denoting the proportional and derivative feedback

gains. Hence, the system (11) takes the closed-loop form:

gẋ = Γ gx, Γ =

[

0 I

−P −D

]

(13)



where P and D are chosen so that Γ is Hurwitz [27], [28].

The goal is to have at best: ë= u, while considering explicitly

the constraints (10). This is handled by means of a QP

minimization:

min
χ

1

2
||ë−u||2

subject to: (10)

(14)

If there are more than one task to achieve, they need to

be ordered either by means of strict [29], or soft [3], [16]

hierarchy formulation.

At each control step, closed-loop QP (14) is built online,

where the cost-function and the constraints are updated based

on the current measured/estimated robot state rx. Taylor

expansion is widely used –e.g. [3], [13], [17], [22], [30],

[31]; to describe rx∗i+1 given q̈∗i , solution of (14):

q∗i+1 = q∗i + q̇∗i dt +
1

2
q̈∗i dt2

q̇∗i+1 = q̇∗i + q̈∗i dt

(15)

where q∗i+1 is the input for the joint-level controllers in the

case of position-controlled robots like the HRP humanoids

series and most industrial robots at large.

III. CONSTRAINT IMPLEMENTATION IN CLOSED LOOP

BASED ON FEEDBACK ADAPTIVE GAINS

For the sake of comparison with previous works (that

didn’t address a large panel of constraints), and without loss

of generality, the constraints (4) are in practice either as a

distance constraint:

h(q)≥ 0 (16)

or as a velocity constraint:

ḣ(q, q̇)≥ 0 (17)

Most of the existing approaches are based on the following

approximations:

hi+1 = hi + ḣidt +
1

2
ḧidt2 (18a)

ḣi+1 = ḣi + ḧidt (18b)

where: ḣ = Jhq̇, ḧ = Jhq̈+ J̇hq̇, Jh being the constraint Jaco-

bian, to transform constraints (16), (17) into the form (10). To

ensure that (16) will be satisfied, the velocity ḣ(q, q̇) should

be enforced to decrease until stop when h(q) = 0.

In what follows, we review two state-of-the-art methods:

velocity linear damper [12] and viability formulation [22].

There are two reasons for this choice: beside the fact that [22]

is the most up-to-date work in this topic, both of [12]

and [22] considered the acceleration as a decision variable

(in contrast to [14], [15] where the velocity is considered as

a decision variable, kinematics only).

A. Related Works

1) Velocity Linear Damper: enforces ḣ to decrease lin-

early w.r.t h given the following formula [10]–[12]:

ḣi+1 +αhi ≥ 0 (19)

where α > 0 is a tuning parameter. Considering (18b), the

second order form of (19) is given as, see e.g. [12]:

ḧi +
1

dt
ḣi +

α

dt
hi ≥ 0 (20)

Resulting in a second order linear form where the stiffness

Kp and damping Kv gains are given by: Kp =
α
dt

, and Kv =
1
dt

.

The gains tuning of this implementation is limited. Indeed,

the damping is constant and only the stiffness is variable.

2) Viability Formulation: this formulation is based on the

assumption of constant deceleration ḧconst, such that:

ḣi+1 +
√

αhi+1 ≥ 0 (21)

where α = 2ḧconst. Considering (18a) and (18b), the imple-

mentation proposed in [22] is based on a switching logic that

guarantees the assumption of a constant deceleration and stop

at h = 0. The resulting second order form is nonlinear and

complex, but can be further simplified to:

switching logic →







ḧi +
1
dt

ḣi ≥ 0

or

ḧi +
1
dt

ḣi +
1
dt

√
αhi ≥ 0

(22)

If ḧconst can be well estimated for the joint constraints [22],

it is difficult and non-trivial to estimate if one wants to

extend this formulation to other types of constraints: collision

avoidance, CoM constraints, etc.

However, the main and common drawback of both velocity

linear damper and viability formulation methods is that they

have never been used in closed-loop or varying bounds. This

issue has even been explicitly stated in the conclusion section

in [22]: “an exact knowledge of the state and the model of

the robot was assumed, hence the computed bounds are not

robust to uncertainties”. In fact, the exact knowledge of the

constraint state cx is assumed in (18a) and (18b). Hereafter,

we propose a method to formulate (16) and (17) in terms of

acceleration (10) without any assumption on the knowledge

of the robot state.

B. Second Order ODI Formulation of Constraints

Let us formulate the constraints (16) and (17) as a second

order ODI:

(16) → ḧi +Kvḣi +Kphi ≥ 0 (23)

(17) → ḧi + γ ḣi ≥ 0 (24)

γ is used to tune the dynamics of (24) which is a first

order dynamics in term of velocity ḣ. However, the challenge

here is tune the stiffness and damping gains Kp and Kv,

respectively, to have a velocity damping while ensuring

that (16) is satisfied. Namely, the constraint phase trajectory

should be kept in the right half plane of the phase plot

(h, ḣ) without overshooting h = 0 axis. Ad-hoc gains-tuning

is inappropriate for a generic approach. Hence, we present a



systematic method to compute these gains. All the formulas

are considered at time t = idt, and thereby the subscript i is

dismissed.

1) Mathematical Formulation: let us consider the follow-

ing second order Ordinary Differential Equation (ODE):

ÿ+Kvẏ+Kpy = 0 (25)

which is the saturated ODI (23). ODE (25) can be written

as a system of two first-order ODE as follows:
[

ẏ

ÿ

]

=

[

0 1

−Kp −Kv

][

y

ẏ

]

= K

[

y

ẏ

]

(26)

Thanks to Petrovitch theorem [23], it is shown that:

given (23) and (25), under initial conditions h(t0) = y(t0),
ḣ(t0) = ẏ(t0) for t = t0, we get:

h(t)≥ y(t), ∀t ≥ t0

This theorem means that the ODE solution y(t) is the lower

bound for all the ODI solutions h(t). Hence, if y(t) ≥ 0 ⇒
h(t)≥ 0. Hereafter, we will focus on the solution y(t).

Given that Kv = 2ξ
√

Kp where ξ is the damping coeffi-

cient, the eigenvalues λ1,2 of K are:

λ1,2 = Kv(−
1

2
± 1

2

√

1−ξ−2), ξ ≥ 1 (27)

where λ1 ≥ λ2, ℜ(λ1,2) < 0 so that K is Hurwitz. The

corresponding eigenvectors µ1,2 are:

µT
1,2 =

[

1 λ1,2

]

(28)

For computation-time efficiency, (23) is inserted into the

constraints set of (14) only if h ≤ hd , where hd is the safety

margin, and we say that the constraint (16) is active. Given an

initial state (y0, ẏ0) = (h0, ḣ0), the phase trajectory converges

asymptotically to the origin (0,0) if (27) holds. However,

the phase trajectory shape does not depend solely on the

eigenvalues. It depends also on the initial state. As it is shown

in Fig.1, we can have different phase trajectories shapes for

different initial states, but yet for the same eigenvalues. In the

worst case, y(t) can overshoot the axis y = 0, losing thereby

any guarantee that (16) holds. This case happens if the initial

condition is in the blue area in Fig. 1. We propose to call

this area: the unviable region in contrast to the viable region,

denoted in green, where y(t) ≥ 0, ∀t ≥ t0. Hence, it is not

trivial to find the suitable gains, since the constraint (16) can

become active with many initial states. In what follows, we

propose a systematic method to overcome this issue.

C. Gains Adaptation Method

In order to avoid overshooting, the initial state must not

be in the unviable region. One solution is to adapt the gains

to change the shape of the viable region so that the initial

state is included. Since the eigenvector µ2 is the border limit

between the viable and unviable regions, the idea is to look

for the suitable gains that bring µ2 to pass by the initial state

(h0, ḣ0). This enforces the phase trajectory to remain within

the viable region.

Fig. 1. Second order ODE (25) solutions (in black solid) depending
on the initial states (nodes at y = 1), for the same eigenvalues where
the corresponding eigenvectors are shown but red dashed arrows. The
green zone represents the viable region where all the solutions satisfy the
constraint (16). The blue zone denotes the unviable region where all the
solutions overshoot the axis y = 0.

Fig. 2. Second order ODE (25) solutions (solid) with the adaptive gains
method. The viable region changes its shape according the initial state
(nodes at y = 1). The eigenvectors (dashed arrows) are delimiting the viable
regions. The unviable regions are not shown for clarity of the illustration.

Given that µ2 slope is equal to λ2, the following formulas

should be satisfied:

ḣ0

h0
= λ2 ⇒







Kv =
2(ḣ0/h0)

−1−
√

1−ξ−2

Kp = (Kv

2ξ
)2

(29)

where ξ is to be chosen according to the desired dynamics:

critically damped or overdamped. The gains are computed

once, at each time the constraint is active (see Fig. 2)

The main advantage of this method is to be adaptive to

any initial state. In fact, the latter depends on the dynamics

resulting from the tasks and the current active constraints.

One may choose a high Kp and Kv gains which will result on

a wide viable region. However, it is not recommended to use

high gains in closed-loop: it will result on strong vibrations

and chattering.

However, because of noises and non modeled nonlineari-

ties like flexibility and friction, the phase trajectory may get

off slightly from the viable region. As a consequence, it may

lead to a slight overshot before converging to zero. For this

reason, we proposed to improve this method by considering

a nonlinear-gains feedback: Kp = fp(h), Kv = fv(h).

D. Nonlinear-Gains based Feedback

Formulation (25) can be seen a normalized spring-damper

model equation. Let us assume a nonlinear model, which



means that Kp and Kv are not constant and depend on h.

Let us consider the scheme in Fig. 3. It shows a virtual

deformable object, constituted by a set of parallel layers of

identical springs and dampers. These layers are shifted from

each other by an infinitesimal distance dθ . Equivalently, this

model can be seen as nonlinear spring and damper, where the

goal is to compute the equivalent stiffness and damping gains

K
eq
p and K

eq
v , respectively, that correspond to the nonlinear

spring and damper coefficients.

Let us have:

Keq
p (h) = Kp +Kdisp

p (h)

where Kp is obtained by (29), and K
disp
p is the varying part

which is added due to the displacement. Hence,

Kdisp
p (h) =−

∫ h

hd

Kpϕp(θ)dθ

where ϕp(θ) denotes the springs density per displacement

dθ . If ϕp(θ) = ϕp constant, we get:

Kdisp
p (h) = Kpϕp(hd −h)

and finally:

Keq
p (h) = Kp[1+ϕp(hd −h)] (30)

Similarly, we have:

Keq
v (h) = Kv +Kdisp

v (h)

Following the same approach to obtain (30), we get:

Keq
v (h) = Kv[1+ϕv(hd −h)] (31)

where ϕv is the dampers density per displacement dθ , and

which is chosen to be constant. From (30) and (31), ξ eq is

obtained as:

ξ eq(h) =
K

eq
v (h)

2

√

K
eq
p (h)

= ξ
1+ϕv(hd −h)

√

1+ϕp(hd −h)
(32)

If ϕv = ϕp = ϕ , this yields to:

ξ eq(h) = ξ
√

1+ϕ(hd −h) (33)

The resulting feedback gains (30) and (31) increase lin-

early while the phase trajectory is converging to zero. In

addition, if ξ = 1, the constraint dynamics is changing from

critically damped to more and more overdamped. From a

physical standpoint, this has the effect of absorbing the ki-

netic energy as the deceleration time increases proportionally

to ξ eq.

IV. EXPERIMENTAL RESULTS

To validate our approach, we use a position-controlled

humanoid robot HRP-4. The mc rtc1 framework is used

to control the robot. The control loop runs at a frequency

of 200 Hz. At each control cycle, the joints positions are

provided by the encoders, and the joints velocity is esti-

mated using finite difference. In return, mc rtc provides the

1https://jrl-umi3218.github.io/mc rtc/index.html

dθ

dθ

Kp

Kv

hd0 h

Keq
p

Keq
v

Fig. 3. Nonlinear spring-damper model.

desired joints positions q∗. Different experimental scenarios

are performed in closed-loop. First, we compare between

the state-of-the-art methods and our approach applied for

collision avoidance constraints. Then, we extend and test our

approach for other class of constraints like joint limits, CoM

and velocity constraints.

A. Collision Avoidance

To compare our method to the state-of-the-art ones

previously described, we extend the viability formulation

constraint –originally implemented for the joints limits [22],

to collision avoidance constraint: h = δ − δmin ≥ 0. ḧconst

is computed such that ḧconst =
ḣ2

0
2hd

. Collision constraint is

defined between the robot waist and the right and left elbows,

respectively (see Fig. 4). We fix the minimal allowed distance

between each pair of two bodies as δmin = 6 cm with a safety

margin hd = 4 cm. The damping coefficient and the springs

and dampers density are fixed to best: ξ = 1.2 and ϕp =
ϕv =

0.5
hd

. Starting by an initial posture where the shoulder

are fully stretched, we give a joint position targets for the

shoulders so that the elbows gets close to the waist. The

experiment is performed using ‘velocity linear damper’, ‘vi-

ability formulation’ and our approach. The results are shown

in Fig. 5. The state-of-the-art methods lack of robustness

against the noises and un-modeled nonlinearites encountered

in closed-loop: oscillations and chattering especially near

δmin. In contract, our approach exhibits smooth behaviors

and the velocity decreases to reach zero when the distance

reaches its defined bounds.

Fig. 4. Initial posture and the pairs of bodies concerned by the collision
avoidance constraint (highlighted with yellow contour).



Fig. 5. Three different methods performed in closed loop: viability formulation [22] (left), velocity linear damper [13] (center) and our approach (right).
δmin (in dashed red) is the lower limit of the distance between a pair of bodies (in blue solid). The chattering is visible in the velocity (in orange solid) for
the other methods, whereas it converges to zero smoothly in our approach. The safety margin is the space between the dash dotted green and dashed red.

Fig. 6. Collision avoidance constraint with variable δmin (red dashed).
The distance δ (blue solid) converges to δmin if δmin ≥ δtarget (green dash
dotted).

An other property of the proposed approach is that it

allows to deal with variable distance bounds that are usually

assumed constant [22]. Figure 6 shows that at t = 0, the

constraint is violated h < 0. However, δ converges to δmin in

any case the latter is superior than the target δtarget and QP

does not fail even though the constraint is briefly violated.

B. Joints limits and CoM Constraints

To validate our approach on the CoM constraint, we define

an arbitrary polygon equilibrium region for the CoM [25].

Next, we define an end-effector task for the right hand for

which the target is unreachable. The aim is to push robot’s

CoM to reach the polygon bounds. Different targets are

defined to push to CoM to the different polygon boundaries

(see Fig. 7). Then, we fix the right hand target, and move

the left arm to reach the left shoulder roll and pitch joints

limits; all constraints together. The robot’s floating base is

estimated using a Kinematic Inertial Observer based on the

IMU measurement and the kinematics chains of the robot [5].

Figure 8 shows the temporal and spatial evolution of the

estimated CoM in addition to the different time-frame where

either the right or left arm is moving. We can notice that the

CoM is constrained to remain inside the polygon except in

the yellow-highlighted places representing overshoots. The

latter have a magnitude of 2 mm at maximum and occur

very briefly when the end effector task is assigned. The

Fig. 7. HRP-4 trying to reach a far right hand target in order to push the
CoM to the equilibrium polygon boundaries.

reason behind this is due to the un-modeled flexibilities at

the ankles which act as a perturbation to the constraint at

the boundary. However, these perturbations are damped and

the constraint is stabilized at the boundary. Furthermore, it is

important to notice that despite the noisy estimation of CoM,

no discontinuities or chattering have been noticed during the

experiment. Figure 9 shows how the robot adjust its whole-

body posture when the left shoulder joints are fully stretched

to maintain the CoM at the polygon boundary highlighted

with the light green area in Fig. 8. The joints positions and

velocities evolution of the left shoulder roll and pitch joints

are shown in Fig. 10, where the joints limits are reached

smoothly with a zero velocity.

C. Velocity Constraint

To validate our approach for velocity constraint formula-

tion, we choose to bound the relative velocity between the

bodies highlighted in Fig. 4. As in Section IV-A, variable



Fig. 8. CoM evolution in time (top) and in space (bottom). The dark green
area denote the equilibrium region for the CoM where it should remain. The
blue and light green zones highlight the periods in time as well as in space
where CoM moves because of the right hand end effector task or because
of the left arm movement, respectively.

Fig. 9. Superposition of two pictures when two different joints limits are
reached. The blur of the whole body shows how the robot adjusts its posture
to keep the CoM at the boundary of the equilibrium polygon (green area in
the bottom Fig. 8).

velocity limits are assumed. The gain γ is fixed to γ = 10.

Figure 11 shows how the velocity evolution converges to the

limits when the latter is variable. Again, despite the noisy

estimation of the velocity, no chattering or discontinuities

have been noticed during the experiment. In [12], [22], based

on (18b), γ is taken such that: γ = 1
dt
= 200 which is a high

gain and not recommended in closed-loop. In fact, QP failed

to find a solution when the velocity approached the limit

of 0.05 m/s while attempting to perform velocity constraint

during experiment with γ = 200.

Fig. 10. Left shoulder roll (top) and pitch (bottom) joints positions (blue)
and velocities (green). The upper and lower joints limits are shown in red
dashed.

Fig. 11. Velocity (blue solid) evolution with variable bounds (red dashed).

V. CONCLUSION

In this letter, we propose a solution to deal efficiently

with a class of constraints commonly found in task-space

QP controllers that use acceleration, force and torque as

decision variables. More particularly, we address constraints

that originally do not write in the decision control variables

only after successive numerical derivations. Example of such

constraints are joint position limits, minimum allowable

distance for collision avoidance, center-of-mass subscription,

field-of-view and obstructions constraints in visual servoing,

etc. First, we show that existing approaches, mainly velocity

dampers and viability formulation have shortcomings when

they reach their bounds. The main limitations acknowledged



by their authors are: (i) the need of precise models (no

noise); (ii) they do not operate well in closed-loop scheme,

i.e. when the state of the robot is directly fed back to the

QP controller (chattering), which is the essence of anything

called control; and (iii) they do not handle variable bounds.

We first investigated the reasons that highlighted limitations

in the ‘gains’ parametrization and their subsequent tuning.

We propose another formulation for such constraints at large,

with an automated adaptive gain tuning to overcome all the

previously mentioned problems. Experiments conducted on

the HRP-4 humanoid robot confirmed our approach, which

was then integrated as part of our mc rtc controller library.

As future work, we aim at solving few shortcomings due to

the feedback on the entire controller part, i.e. considering the

cost part of the tasks with more robustness and performances.
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moyenne aux équations différentielles du premier ordre,” Mathematis-

che Annalen, vol. 54, pp. 417–436, Sep 1901.
[24] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller

to synthesize simulated humanoid robot motion with changing contact
configurations,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4414–4419, Sep. 2011.
[25] H. Audren, A. Kheddar, and P. Gergondet, “Stability polygons reshap-

ing and morphing for smooth multi-contact transitions and force con-
trol of humanoid robots,” in IEEE-RAS 16th International Conference

on Humanoid Robots (Humanoids), pp. 1037–1044, Nov 2016.
[26] D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette, “Visual

servoing in an optimization framework for the whole-body control
of humanoid robots,” IEEE Robotics and Automation Letters, vol. 2,
pp. 608–615, April 2017.

[27] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002.

[28] K. Bouyarmane and A. Kheddar, “On weight-prioritized multitask
control of humanoid robots,” IEEE Transactions on Automatic Control,
vol. 63, pp. 1632–1647, June 2018.

[29] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The

International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[30] I. Kim and J.-H. Oh, “Inverse kinematic control of humanoids under
joint constraints,” International Journal of Advanced Robotic Systems,
vol. 10, no. 1, p. 74, 2013.

[31] M. Faroni, M. Beschi, N. Pedrocchi, and A. Visioli, “Viability and
feasibility of constrained kinematic control of manipulators,” Robotics,
vol. 7, no. 3, p. 41, 2018.


