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Weak suitable solutions for 3D MHD
equations for intermittent initial data

Pedro Gabriel Fernandez-Dalgo*!, Oscar Jarrin

Abstract

In this note, we extend some recent results on the local and global
existence of solutions for 3D magneto-hydrodynamics equations to the
more general setting of the intermittent initial data, which is charac-
terized through a local Morrey space. This large initial data space was
also exhibit in a contemporary work [3] in the context of 3D Navier-
Stokes equations.

Keywords : MHD equations; Local Morrey spaces; Global weak solutions;
Suitable solutions.

AMS classification : 35Q30, 76D05.

1 Introduction

In a recent work [9], P. Fernandez-Dalgo & P.G. Lemarié-Rieusset obtained
new energy controls for the homogeneous and incompressible Navier-Stokes
(NS) equations, which allowed them to develop a theory to construct weak
solutions for initial data uy belonging to the weighted space qu7 = L*(w,dz),
where, for 0 < v < 2 we define w,(z) = (1 + |z])™7. Moreover, this method
also gives a new proof of the existence of discretely self-similar solutions.
This new approach has attired the interest in the research community and
more recently, in the paper [3| written by Bradshaw, Tsai & Kukavika, the
main theorem on global existence given in [9] is improved with respect to the
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initial data ug which belongs to a larger space than the weighted Lebesgue
space above. More precisely, the authors prove that if uy verifies

lim R* 2dr =0
G A<R|uo(x)| z =0,

then the (NS) system, with a zero forcing tensor, has a global solution.

Due to the structural similarity between the (NS) equations and the
magneto-hydrodynamics equations (see equations (MHD) below) it is quite
natural to extend those recent results obtained for the (NS) equations to the
more general setting of the coupled magneto-hydrodynamics system which
writes down as follows:

(MHD)

Here the fluid velocity u : [0,+00) x R* — R?, the fluid magnetic field
b : [0,+00) x R — R3, the fluid pressure p : [0, +00) x R* — R and the
term ¢ : [0,4+00) x R® — R (which appears in physical models consider-
ing Maxwell’s displacement currents [1], [18]) are the unknowns. On the
other hand, the data of the problem are given by the fluid velocity at ¢ = 0:
uy : R? — R3; the magnetic field at t = 0, by : R® — R3; and the tensors
F = (Fi,j)lgi,jg&G = (Gi,j)lgi,jgii (Where Fi,iji,j . [0, +OO) X R3 — R)
whose divergences: V-F, V-G, represent volume forces applied to the fluids.

In the setting of this coupled system, in a previous work [7], we adapted
the energy controls given in [9] for the (NS) equations to the (MHD) equa-
tions and this approach allowed us to establish the existence of discretely
self-similar solutions for discretely self-similar initial data belonging to L? ;
and moreover, the existence of global suitable weak solutions when the ini-
tial data ug, by belong to the weighted spaces qu7 (R3), for 0 < v < 2, and
the tensor forces ', G belong to the space L*((0, +00), L2, (R?)). For all the

details see Theorem 1 and Theorem 2 in [7].

In this paper, we continue with the research program started in [7] for the
(MHD) equations; and we relaz the method developed in [9] to enlarge the
initial data space. Indeed, following some ideas of [2] (for the (NS) equations)



we define By(R?) C L2 .(R?) as the Banach space of all functions u € L2
such that :

|ul|%, = sup RZ/ lul? dr < +o0.
R>1 lz|<R

Moreover, we denote By L?(0,7T) the Banach space defined as the space of all
functions u € L2 ((0,7) x R?) such that

loc

T
||u||232L2(07T) = sup R_Q/ / |ul|? dt do < +o0.
Rzl lz|<R JO

In this framework, our main theorem reads as follows:

Theorem 1 Let 0 < T < +oo. Let ug, by € By(R?) be divergence-free vector
fields. Let F and G be tensors belonging to BoL?(0,T). Then, there exists
a time 0 < Ty < T such that the system (MHD) has a solution (u, b, p,q)
which satisfies :

e u, b belong to L>=((0,Tp), Ba) and Vu, Vb belong to BoL*(0,Ty).

e The pressure p and the term q are related to u, b, F and G by:

P = Z RZR](UZUJ — bzb] — Fi,j) and q = — Z RiRj(Gi,j)a

1<4,5<3 1<4,5<3
where R; = % denotes the Riesz transform.

e Themapt € [0,T) — (u(t,-),u(t,-)) is x-weakly continuous from [0,T")
to By(R®), and for all compact set K C R3 we have:
lim || (w(t, -) — ug, b(t, ) — bo)||r2(x) = 0.

t—0

e The solution (u, b,p,q) is suitable : there exists a non-negative locally
finite measure i on (0,T) x R® such that:

2 b2 2 b2
PO v v - v <[%+%+p

LV ([(w-b)+qlb) +u- (V-F)+b-(V-G)— pu.

lul” + |b]?

Oh( 5

) =A(

In particular we have the global control on the solution: for all 0 <t < Ty,

max{]|(w, b)(t) |5, |V (w, )5, 1201} < Cll (w0, bo) 15,

t 1
T OlI(E, Gl 20y + € / o B + o B s,

3
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e Finally, if the data verify:

R—+o00

lim R_2/|<R|u0(x)|2 4 [bo(2)[2d = 0,

and oo
lim R?/ / F(t, 2)|? + [G(t, 2)[2 du ds = 0,
0 |z|<R

then (u, b, p,q) is a global weak solution.

Remark 1.1 A wvector field w denotes the vector (uy, uq, us) and for a tensor
F = (F,;) we use V - F to denote the vector (Y, 0;F;1,Y ., 0iF;2, Y . 0iF;3).
Thus, if V - w = 0 then we can write (b-V)u=V - (b® u).

It is worth to make the following comments on this result. Remark first
that we prove a global control on the solutions which is not exhibited in
[3]. This new control is also valid for the (NS) equations (takingb = 0, by =0
and G = 0 in the (MHD) system). On the other hand, it is interesting to
note that the main difference between this result and our previous work [7]
is that, in the more general setting of the space By(IR?), the control on the
pressure p and the term ¢ is a little more technical, and so the method seems
not to be adaptable to study the existence of self-similar solutions of equa-
tions (MHD) as done in Theorem 2 in [7].

Getting back to the (NS) equations, the global existence and uniqueness
of solutions for the 2D case with initial data uy € By(R?) is an open problem
proposed by A. Basson in [2]. In further research, we thing that it would be
interesting to study this problem in the simplest and closest cases with an
initial data in ug € By o(R?) (see Sectionfor a definition) or ug € L7, (R?)
with 0 < v < 2.

This paper is organized as follows. In Section[2| we state some useful tools
on the local Morrey spaces. Section [3|is devoted to some a priori estimates
and stability results on the (MHD) equations, which will allow us to prove
our main result in the last Section

2 The local Morrey space B!

In order to understand how Theorem (1| generalizes the results obtained by
[9], we recall some useful results obtained in [8]. We consider the space R?
only in this section.



Definition 2.1 Let vy > 0 and 1 < p < +oo. We denote BY(R?) the Banach
space of all functions u € LY (RY) such that :

loc

1 1/p
ol = s (75 [ el dr) < o0

Moreover, for 0 < T < +o0, BQLP(O, T) is the Banach space of all functions
u C (LYLP)16e([0,T] x RY) such that

||lull 52 e _sup( // u(t, )| > dx dt < +oo0.
BELP(0,T) o o)

In what follows, we will denote BE(R?) = B? and B3 = Bs.

Also, the space B -0 18 defined as the subspace of all functions u € BY such

1
that lim — [u(x)[P dr = 0; and similar, BY ,L7(0, T) is the subspace
R—+o00 R’Y B(O,R)

of all functions u € BELP(0,T) such that lim —/ / u(t,z)|P dx dt = 0.
B(0,R)

R—+o0 R
The following result shows how B? is strongly lied with the weighted
spaces Lf, = LP(w, dz) (where w, = (1 + |z|)~7) considered in [7] and [9].

Lemma 2.1 Consider v > 0 and let v < 6 < +o00. We have the continuous
embedding
P
Ly, CB),CB)CLy,.

Moreover, for all 0 < T < 400 we have:
Lp((O,T),LfUW) C Bﬁ}OLP(O,T) C BQ’L”(O,T) C LP((0,T),LE, ).

Proof. Only the embedding LP((0,7), L%, ) C BY,LP(0,T) is not proved in
[8] and we prove it. Let A > 1 and n € N, let u,(t,z) = u(t, \"z). We have:

/ / )P de d N AP did
u(t, z)|P dx dt = sup // u(t, \"x)|P dx dt
/\ R Ix‘<AnR R>1 RY |z|<R

and we conclude by dominated convergence. o

Thereafter, we have the following result involving the interpolation theory
of Banach spaces:



Theorem 2 ([8]) The space B can be obtained by interpolation: for all
0 < v <d < oo we have BY = [LP, L}, ]2 ; and the norms || - ||pz and
| - ”[LP,LZ&]W are equivalents.

5

This theorem has a useful corollary and in order to state it we need first the
following result on the Muckenhoupt weights (see [L0] for a definition).

Lemma 2.2 (Muckenhoupt weights, [9]) If0 < § < dand 1 < p <
+00. Then, ws(x) = (1 + |z])~° belongs to the Muckenhoupt class A,(R?).
Moreover we have:

e The Riesz transforms R; are bounded on LY, | R;f|l1 < Cpsllflls,

o The Hardy-Littlewood mazimal function operator is bounded on L%,

||Mf||LP

UJ»Y

< Cpsll flles.,-

With this lemma at hand, the next important corollary of Theorem
follows:

Corollary 2.1 I[f0<d <d and 1 < p < 400, then we have:
o The Riesz transforms R; are bounded on By : ||R;fl|gr < Cpsl|fl 2

e The Hardy-Littlewood mazimal function operator is bounded on B :
Mz < Cpsll fll 52

Proof. Remark that Theorem [2 implies BY = [L?, Lﬁ’éo] LA for some
§ < dyp < d. So, we conclude directly by Lemma[2.2] ’ o

3 Some results for the (M HD*) system

Our main theorem bases on the two following results for the equations:

([ Ou=Au—(v-V)u+(c-V)b—-Vp+ V. F,
Ob=Ab—(v-V)b+ (c-V)u—-Vq¢+ V-G,
V-u=0,V-b=0,

u(0,-) = uy, b(0,-) = by.

(MHD")

\

In this system, the functions (v, c) are defined as follows:

6



e when we will consider the (MHD) equations we have (v,c) = (u, b).

e when we will consider the regularized (MHD) equations we have (v, c) =
(ux*60.,bx6,.), where, for 0 < ¢ < 1 and for a fixed, non-negative and
radially non increasing test function § € D(R?) which is equals to 0 for
|z] > 1 and [ 0dx = 1; we define 0.(x) = 50(z/e).

3.1 A priori estimates

Theorem 3 Let 0 < T < +oo. Let uy, by € By be a divergence-free vector
fields and let F,G be tensors such that F,G € BoL?*(0,T). Moreover, let
(u, b,p,q) be a solution of the problem (M HD*).

We suppose that:
e u, b belongs to L°°((0,T), By) and Vu, Vb belongs to BoL*(0,T).

o The pressure p and the term q are related to w, b, F and G by

P = Z RiRj(Uin—Cibj—FiJ) and q = Z RiRj(vibj—cjui—Gij).

1<i,j<3 1<i,j<3

e The map t € [0,T) — u(t,-) is x-weakly continuous from [0,T) to By,
and for all compact set K C R? we have:
lm [ (u(t,-) — o, b(t.) — bo)| 2000 = 0.
e The solution (u, b, p,q) is suitable : there exists a non-negative locally
finite measure j on (0,T) x R® such that

ul* | |6

2 b2 2 b2
Pl 100y _ A (LT Gup —jwap— v ((—+—)v+pu>

2 2
+V-((u-bc+gb)+u-(V-F)+b-(V-G)—p.

at( ): A(

2 2

(2)

Then, exists a constant C' > 1, which does not depend on T, and not on uy,
by u, b, F, G nor e, such that:

e We have the following control on [0,T):
max{]|(w, b)(t)[|5,. IV (w, b) 15,200} < Cll(uo, bo)ll,

t 3
T OlI(F, Gl 120y + C / o B + s B ds.

7



o Moreover, if Ty < T is small enough:

2
C (14 1w, B3, + |, ©)lE,co0m) To <1,
then the following control respect to the data holds:
sup max{[|(u, b)(t, )5, [V (w b5, 120}

0<t<Ty

2 ) (4)
<C (1 + || (o, bo) I, + II(F, G)||BQL2<0,T0)> :

Proof. In this proof, we will focus only in the case (v,c) = (ux6.,b x 6.)
(the case (v,c) = (u,b) can be treated in a similar way). The proof of this
theorem follows similar ideas of the proof of Theorem 3 in [7] and we will
only detail the main computations.

We start by proving the global control . The idea is to apply the
energy balance to a suitable test function. Let 0 < ty < t; < T. We
consider a function a4, which converges almost everywhere to 1y, ¢, and
such that O, 4, is the difference between two identity approximations,
the first one in t; and the second one in ¢;. For this, we take a non-
decreasing function a € C*(RR) which is equals to 0 on (—oo, 3) and is equals
to 1 on (1,+00). Then, for 0 < n < min(%,T — #;) we set the function

t—t, t—t
Ao (1) = a(——=) —

negative function ¢ € D(R?) which is equals to 1 for |z| < 1/2 and is equals
to 0 for |x| > 1; and for R > 1 we set ¢r(x) = gb(%)
Thus, by the energy balance (2)) we can write

\u|2 |b’2 2 2
— T —— 04 4o 1, PR d ds + |Vu|” + |Vb|* oy 1.1, Prdz ds
2 b 2
</ /M%mm "

|11|2 |b|2
+Z +_ Vi +puz]antot13¢3dxds

+ Z //[(u ) b)ci + qbi]an,to,tla¢¢3 dx ds
=1
I / / Fijujcm o, 0iPp du ds + / / Fi j0iu; o g0, ¢ dx ds)

1<i,5<3

- //G”b Qo to,t z(dea:ds—i-/ G,j0ib; o 1o, Or dx ds),

1<4,5<3

). On the other hand, we consider a non-



and taking the limit when 7 goes to 0, by the dominated convergence theorem
we obtain (when the limit in the left side is well-defined):

2 b2
—lim//| ul bl atantothdemds—i—/ /|Vu|2—|—|Vb|2 ¢Ordxds

n—0
2 2
< / / MAgbRaMds
2 2
—|—Z/ / ﬂ—f—ﬁ Jvi + pu;i|0;pr dx ds
+ Z/ /[(u -b)e; + qbi]didr dx ds
t1
/ / UjﬁngRdl'dS—f-/ /Fiyj&‘uj ¢Rd$d5)
1<4,5<3
/ /G”b @gdexds—f—/ /Gwab prdxds).
1<4,5<3

We define now the quantity

An(t) = / (ut, o) + [b(t, 2)P)ér(x) dz

hence, if ¢y and t; are Lebesgue points of Ag(t) and moreover, due to the
fact that

ul> |b?
—//(| 2| | | )(9toznt0t1(dede———/&gantotlAR( )d

we have

n—0 2

2 b|? 1
hm — //(M + %)8ﬁaﬂ7to,t1¢R dI dS = §(AR(t1> — AR(to))

Then, since ¢ is a support compact function we can let ¢y go to 0 and
thus we can replace ¢y by 0 in this inequality. Moreover, if we let ¢; go to t,
then by the x-weak continuity we have Ag(t) < limy, 4 Agr(t1), and thus we



may replace t; by t € (0,7). In this way, for every ¢t € (0,7") we can write:

2 2 t
/’u(t’x)’ ;lb(w)l ¢>Rdx+/ /(|Vu|2+lvb|2) ¢r ds dx

o [ I IR g,
+Z// A BB pu)arondr s

+ Z / [l bjes + abjoronds ds

/ / SO drds + / t / F 0y o e ds)
S ([ [eupaonisiss [ [ G, outsa

In this inequality, we still need to estimate the terms in the right-hand side.
For the second term, as R > 1 we write

1
R?

1<4,5<3

1<4,5<3

C
(lu]* + [b[*)A¢r dz < @/ (luf” + [b[*) dz < C(||lull3, + [[bliE,)-
B(0,R)

The third and fourth terms are estimates as follows. We consider first the
expressions where the pressure terms p and ¢ do not appear. Using the
Holder inequalities and the Sobolev embeddings we have:

3
(u-b)
Z/ 5 (i x0)0iordr < lull 1z oo o DI 2 g gy I * OcllLoso,r) IV OR L
i=1
3/4 1/4 3/4 5/4
” 172 oR))HuHLe‘(B(OR [bl|72 B(0,R)) HbHLG (B(0,R+1))

3/4 3/4 1/4 5/4
HbH sy [0 ot 0.y U B,

where we have denoted the quantities

1/2 1/2
U= (/‘¢2RVU|2de) + (/ \u\zd:c>
|z[<2R
1/2 1/2
= </ ‘¢2(R+1)Vb’2d$> + (/ \b\zd:c) .
|z|<2(R+1)

10
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Thus, we can write (by the Young’s inequalities for products with 1 = é +
1,15

stst3)

8 T8T3

1 <~ [ (u-b)
2 —(bi *95)@'@5 dx
}WZ;/ 2 R

ullz2(B0,r Ibllz2(B(0,7 U B
< Of (B( )))3/4( (B( )))3/4( )1/4( )5/4

R R R’ ‘R

C
< Cll(w,b)|5, + Cli(w, b)|5, + 32 / |62r VUl + |do(rr1) VDI do

where Cy > 0 is an arbitrarily small constant.

Now, in order to estimate the expressions where the pressure terms p and
q appear, we need the following technical lemma which will be proved at the
end of this section.

Lemma 3.1 Within the hypothesis of Theorem[3, the terms p and q belong
Lf’o/f. Moreover, there exist an arbitrarily small constant Cy > 0 and a con-
stant C' > 0, which do not depend on T, u, b, ugy, by, F, G nor €; such that

for all R > 1 and for all 0 <t < T we have:

1 [
R Z/o /(puz + gb;) O;pr ds dz
i=1
t
<C|(F,G)|I5,L2(00) + C/O [(w, B) ()15, + || (w, B)(s)]|%,

C t
+R—2// |S02(5R+1)VU|2‘|‘|902(51—2+1)Vb|2 dz.
0

Finally, the fifth and sixth terms (which involve the tensor forces F and G)
are easily estimate as follows. We will write down only the estimates for F
since the estimates for G are completely similar:

1 t
R? > //E,j(aiuj)¢adxds
0

1<i,j<3

Cy [*
SCHF||2BQL2(0¢)+ﬁ/O /| R|VU‘2dl‘dS,
x|<

and

1 t
ﬁ Z / / F,;Ju,-@j ((bR) dx ds
0

1<i,j<3

t
<COIF, 20 + C / lu(s)[13, ds.

11



where Cy > 0 always denote a small enough constant.

Once we dispose of all these estimates, we are able to write

2
/(|u(t72$)| N \b(t z)|” d)Rder/ / (IVul? + |Vb[?) ¢rdsde

</(Iu(O o)l \b(OQIB)I

)or dx + C|[(F,G) |5, 120, ds
#0 [ D)o, + b)),

+ @//0 [@are1)Vul® + [0 R V| dz,

where the desired energy control follows. To finish this proof, the esti-
mate follows directly from and the Lemma 3.1 in [7] (see the proof of
Corollary 3.3, page 17, for all the details). o

Proof of Lemma As in the proof of the theorem above, we will
consider only the case (v,c) = (u#* 6., b *0.). Moreover, we will focus only
on the expression which involves the pressure p, since the computations for
the other expression, where the term ¢ appears, are completely similar.

Wewrlte—Z/ /gc|<R lpuk|| Okdr|dxds < E / /|I<R |pug| dz ds,
( —_

and recalling that D=2 1<ije3 RiRi((ui % 0c)uy F, ), the last
expression allow us to write

ug|| 0, dz ds
RQZ/ /x|<R pug|| Oxdr|
3
_R3 Z/ / |, Z RiR;((u; * 0:)u;)| dx ds
|z|<R

ij=1
3
Z/ /<R e YRR (b * 0.)b; — F )| da ds,
|z i,j=1

and since we have the same information on u and b it is enough to study the
last term above. For R > 1 we define the following expressions:

=3 RiR;(Uy<sr(c % b)bj), po=— Y RiR;(Lyzs5n(0e * b;)b)),

,J 1,

12



and
ZRR (Ly<srFij), pa= ZRR (L >5F5;),

2 i,J

and then, by the Young’s inequalities (for products), we have

3
3 Z/ /|<R ur > RiR;((bi * 02)b; — Fi )| da ds

ij=1
<o [P P bl Il + e ds,
=R l2|<R
where we will study each term separately.
To study py, by the continuity of R; on L2 (R3), since the test function 6.

verifies [ 6.(z)dx =1 and supp(6.) C B(0,1) and moreover, by the Fubini’s
theorem we can write

/ p1[PPde < C / 1 [PPde < C / |(Ljaj<5: (0 * b) @ b)|*2dx
|z|<R

([ imctocw dx) ( 1t<onbP o) ”2
C (/x|<5R /x_z<1 O(z — Z)|b(z)|3dzdx> </ ‘(]l|y<5Rb)|3dq;) 1/2
¢ (/arlsm /Z|§5R+1 Oc(z — z)’b(z)l?’dzd:c) v (/ (1 -snb)[? dx) 1/2

< C/ bl dz.
|z|<5R+1

With this estimate at hand, we see that

/ ' 4 [p 2 de < © / [uf® + [bf* da,
|z|<R

|z|<5R+1

I/\

IN

IN

and using the Sobolev embedding we write

C

C
_ 3 3/2 3/2
R /|<5R+1 ulde < 75 HuHLQ(B 0,5R+1 )HU‘HL6 (B(0,5R+1))
xT

3/2
a2, (1 [ 16 1)Vu\2dx)l/2+<1 / \umx)”?
- —— + —_—
R3/2 B(0,5R+1)) R2 R Jyy<ainen)

C
< Cllully, + Colllfy, + 3y [ oxmen Ve,

13



where Cy > 0 is a arbitrarily small constant. Similar bounds works for b.

We study now the term po. Remark first that there exist a constant C' > 0
(which does not depend on R > 1) such that for all |z| < R and all |y| > 5R,
the kernel K; ; of the operator R,R; verifies |K; ;(z — y)| < % (see [10] for

a proof) and then we write:

(/MR |p2|3/2dx)2/3
3/2 2/3
<Cy </| (15t = 1160 )] Ly / dx)

3/2 2/3
<C / </ 0 *b)®b|dy) dx
lz|<R \J|y|>5R \y|

1
< ORQ/ _|(6, + b) @ bldy
ly|>5R ’Z/‘

1/2
< COR? (/ —=|0c * b dy) (/ —|b| dy)
ly|>5R |y| wi>sr Y2
1 1/2
< COR? (/ — 0.(y — 2)|b(2)| dzdy) ( —=|bl dy)
wizsr [P Jly—z1<1 \y|>5R |y|

1/2
cow ([ [ -2 dzdy) ()
ly|>5R J| |>5R 1 2] ly|>5R ]y|

< CRQ/ —|b| dz.
|z|>5R—1 |2[?

With this estimate, and the fact that By(R?) C L?;(R?), we finally obtain

C 3/2 1 2 G 3
Y=

It remains to estimate the terms p3 and p4 which involve the tensor F. For
p3, using the continuity of the Riesz transform R, on L?, we obtain directly:

c t/ C t
3 |ps*de ds < —; / / F; j|*dz ds < C||F||%, 12(0.4-
R3 /0 lz|<R R? %: o Jigj<sr " PLA0

14



For the term p4, remark first that we have

1/2 2 1/2
(/ |p4|2dx> C < Z / (/ Kij(z — y)Fij| dy) dx
|z|<R i |z|<R ly|>5R
) 1/2
<C / </ IF; dy) dx
;( |z|<R |y\>5R |y|3| J’

< CZRS/Z/
12

—=|Fi | dy.
ly|>5R ‘?J’g 7

and then, for 0 < § < 1, and by the Holder inequalities we can write:

2
pa|“dxds < C /(/ F; dx) ds
ol [ 2, \J ™

<C //—|1Fi,|2dxds
2, | wpE
1 ! )
SCZ/—<1+|:E|)2+6/O |Fi,j| del’
]

< COlIFl1%, 1200,

The lemma is proven. o

3.2 A stability result

Theorem 4 Let 0 <T < +o00. Let ug,, by, be divergence-free vector fields
such that (ugn, bo,) € By. Let F,, and G,, be tensors such that (F,,G,) €
ByL?(0,T). Let (un, by, pnqn) be a solution of the (M HD*) problem:

( Oiu, = Au, — (v, - V)u, + (¢, - V)b, — Vp, + V- F,,

ob, = Ab, — (v, - V)b, + (¢, - V)u, — Vg, + V- G,,
V-u,=0, V-b,=0, (6)
u,(0,) = o, ba(0,+) = bon.

\

which verifies the same hypothesis of Theorem [3

If (ugp, boy) is strongly convergent to (Up oo, bo) in B2, and if the se-
quence (F,,, G,,) is strongly convergent to (Foo, Go) in BoL?(0,T); then there
exists (Uso, Dooy Poo, Goo) and an increasing sequence (ng)ren with values in N
such that:

15



o (u,,,b,,) converges *~weakly to (Uno, bs) in L>((0,7"), Ba), (Vu,, Vby,,)
converges weakly to (Vue,, Vby) in BoL?(0,T).

e (u,.,b, ) converges strongly to (U, bs) in L2 ([0,T) x R?).

o For2 < v < 5/2, the sequence (pn,, qn, ) converges weakly to (Peo, goo)
in L3((0,T), LS,/%) +L((0,T), L2,).
Moreover, (Uso, boo, Poos §oo) 1S @ solution of the problem (M H D*):
( Oytoo = AUse — (Uso * V) Uso + (boo - V)boo — Voo + V - Fy,
Ot = Abs — (Uso - V)b + (boo - V)Uoo — Vo + V - G,
V-t =0, V- by =0, (M)
| e (0.) = o B0,) = by

and verifies all the hypothesis of Theorem@

Proof. We will verify that the sequence (u,,b,) satisfy the hypothesis
of the Rellich lemma (see Lemma 6 in [9]). Remark first that: since for
2 < 7 we have that u,,b, is bounded in L>((0,T), By) C L>*((0,T), L3, )
and moreover, since we have that Vu,, Vb, is bounded in BoL?*(0,T) C
L*((0,T), L3, ), then for all ¢ € D(R?) we have that (¢u,, pb,) are bounded
in L2((0,7T), H'). On the other hand, for the pressure p,, and the term ¢, we
write p, = pp1 + Pn2 With
3 3 3 3
Dna = Z Z RiRj(nitin; — Cnibnj)y Do = — Z Z RiR;(Fij),
=1 j=1 i=1 j=1
and we write g, = @n1 + gn2 With
3 3 3 3
G =YY RiRj(Wnibnj — Cojting), Gnz=—_ Y RiRj(Gniy).
i=1 j=1 i=1 j=1

From now on we fix v € (2,2), and using the interpolation inequalities and

the continuity of the Riesz transforms in the Lebesgue weighted spaces we
get that the sequence (p,.1,¢n.1) is bounded in L3((0,7), LSJ?7 ). Indeed, for
the term p,; recall that by Lemma we have that for 0 < v < 5/2 the
weight wg, /5 belongs to the Muckenhoupt class A,(R?) (with 1 < p < 400)

and then we can write:

3 1
1D RiRy(Wa i)y [l pors < [l (wn ® wa)wn [l o5 < v/l 22l /oyl s

i?j

3 1
< vyl (ol 2 + [l yay Va| 2)2.

16



The term g, is estimated in a similar way. Moreover we have that the
sequence and (pp2,qn2) is bounded in L*((0,7),L; ). With these infor-
mation, by equation we obtain that (¢0yu,, pd;b,) are bounded in the
space L2L? + L2W=18/5 4 [2H~1 C L[?((0,T),H~%). Thus, we can apply
the Rellich lemma and there exists an increasing sequence (ny)gen in N, and
there exist a couple of functions (u.,bs) such that (u,,,b,,) converges
strongly t0 (Uwe, boo) in L2 ([0,T) x R?). We also have that (v,,,cp,) =
(Vi * Oc,,, . % 0, ) converges strongly to (Us, boo) in L, ([0, T) x R?).

As (u,,b,) are bounded in L>*((0,T), L2, ) and (Vu,, Vb,) are bounded
in L*((0,7), L}, ), we have that (u,,,by,,) converges *-weakly to (Ua, boo)
in L>=((0,7), L3, ), and (Vuy,, Vb, ) converges weakly to (Vuu, Vby) in
L*((0,T),L;, ). Moreover, by the Sobolev embeddings and the interpola-
tion inequalities we have that (u,,,b,,) converges weakly to (U, bs) in
L*((0,7), Ly, ). Also (v, ¢n,) = (Vi * 0, ,Cny * 0, ) converges weakly

W3~ /2
t0 (Ueo, boo) in L3((0,7T), L2 ), since it is bounded in L*((0,T), L?Usvm)' In

W3~ /2
particular, we may observe that the terms vy, jun, j, Cn,.ibn,.js Ung,ibn,,; and

Cny illn, j are weakly convergent in (L5/5L5/%),,. and thus in D'((0,T) x R3).

As those terms are bounded in L3((0,T), LY ; ), they are weakly conver-
5

gent in L3((0,7), Lﬁ,/fw ); and defining pos = Poo1 + Poc,2 With

5

3 3 3 3
Poo,1 = Z Z R;R; (Uoo,z‘uoo,j - Coo,iboo,j)a P2 = — Z Z Rz‘Rj(Foo,i,j)a
=1 j=1 i=1 j=1
and Goo = (oo,1 + Go0,2 with
3 3 3 3
Goo,1 = Z Z RiRj(Voo,ibooj — Coojilicoj); G2 = — Z Z RiRj(Gooij),
i=1 j=1 i=1 j=1

we obtain that (pn, 1,¢n,1) are weakly convergent in L3((O,T),Lg}/61) to
5

(Poos Qoo ), and moreover, we get that (pj, 2,qn,2) is strongly convergent
in LQ((O,T),L?UW) t0 (Poo,2, Goo,2)- S0, we have that (e, Poo, Poo, §o) Verify
the three first equations in the system (M HD*) in D'((0,T) x R?).

It remains to verify the conditions at the time ¢ = 0. Remark that
(Osuno, O1byy) are locally in L2H 2, and then (us, by ) have representatives
such that ¢ — (us(t,.), bs(t,.)) is continuous from [0,7) to D'(R?) (hence
*-weakly continuous from [0,7) to By) and moreover, they coincide with

17



u,.(0,.)+ fot Oy, ds and b (0, .) —|—f0t Oibs ds. Thus, in D'((0,T) x R?), we
have that

N —>+00 N —>+00

t t
U, (0,.) + / Ol ds =Uo = lim u,, = lim wu,, o+ / Oy, ds
0 0

t
= Ux,0 + / atu—oo dS,
0

which implies that u.(0,.) = Uy . Similar we have the identity b (0,.) =
booo. We conclude that (Us, oo, Poos G0 ) 18 a solution of the (M H D*) equa-
tions.

Our next task is to verify the local energy equality. We define the quantity
un2+bn2 un2+bn2 un2 bn2
= oLl PP g (P )

+ Uy, (V ’ Fnk) + bnk ’ (V ’ Gnk)

Remark that by the information on (u,,b,) and by interpolation we have
(u,,,b,) are bounded in L'%3((0,T), Li/? ) and then (u,,,b,,) are locally

Ws5~/3
bounded in L;”*L”* and locally strongly convergent in L2L2. So, (4, , by, )
converges strongly in (L?L2),,.. Moreover, by Lemma we have that
(Pny,> qn,) are locally bounded in L?/ 2L§/ ?. Thus the quantity A,, converges
in the distributional sense to

002 boo2 002 b002 002 b<>02
Aoo:_at(\u * ] I)+A(!u "+ !)_v,<<\u . \)VOO>

2 2 2 2
-V (poouoo) -V (QOObOO) + V- ((uoo : bOO)COO)
+ Uy (V- Fy)+ by (V:Goo).
Moreover, recall that by hypothesis of this theorem there exist j,, a non-
negative locally finite measure on (0,7) x R? such that

[, |* + [, |* [, [* + [P, [
2 2

u,, > |bn)?
-V <(| 9 ’ + | 9 ’ )Vnk) -V (pnkunk) -V (anbnk)

+V- ((unk bnk)cnk) + Uy, (V ’ Fnk) + bnk ' (V ’ Gnk) = Hny, -

81?( ) - yvunkP - ‘VbnkP

) = A(

Then, by definition of A,, we can write A,, = |Vu,, >+ |Vb,,|* + in,, and
thus we have Ao, = lim |Vu, > + Vb, |* + i, -

ng——+00

18



Now, let ® € D((0,T) x R?) be a non-negative function. As v/®(Vu,, +
Vb, ) is weakly convergent to v/®(Vu, 4+ Vby,) in L2L?, we have

// A ®drds = lim // A, ®dxds > limsup/ (|Vu,,|* + |Vb,, |*)® dz ds

ng—>+o0 ng—r+00

> //(yvuooF + |Vboo|*)® dz ds.

Thus, there exists a non-negative locally finite measure po, on (0,7) x R3
such that As = (|[Vus|? + [Vbso|?) + fieo, and then we obtain the desired
local energy equality:

[Uoo|* + [boc | [Uoo[* + [Poc |

e A N
. <(|u;o|2 N |b;o|2>voo> V- (paotine) — V- (gacbo)

+ V(U boo)Coo) t U - (V- Fy) + b - (V-G_) — oo

In order to finish this proof, it remains to prove the convergence to the initial
data (ug e, bo o). Once we dispose of this local energy equality, as in we
can write:

t,7)? + b, (t, x)|? ‘
LB ot [ [ (9u 41907 o ds

Ik 2 2
/[uon ‘ +’b0n( )‘ bR d:B—i—/ /MAgb dx ds

)vn,i + pnun,i]ai¢3 dz ds
+Z// u, - b an““]n nz]a¢RdId8

// i Un,j Z¢Rdxds+//Fn”8unJ ¢rdxds)
// n”bnj8¢3dxds+//6’n”8b ér dz ds).

1<i j<3

1<4,5<3
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Then we have:

unk t,l‘ 2+ bnk t,.T 2 !
[ e e [ [ (9 9 o

2 b 2 t 2 boo|?
§/|u0(x)| ;| o(2)] ¢Rdx+/ /w&b’%dm
0

3
+) t [(|u°°|2+|b°°|2)v  + Poolloo,i|0i0r dz ds
— |, 9 9 00,1 Poocloo,i|OiPR

lim sup
Nnj—>+00

3 t
+ Z/O /[(uOO : bOO)COO,i + QOoboo,l]az(bR dz ds
=1
t t
- Z (/ /Foo,i,juoo,jai(b}z dx ds +/ /Fm7i,jaiuoo,j (bR dx dS)
0 0

1<i,j<3

t t
— Z (/ /Goo,i,jboo,j@'(b}g dx ds +/ /Goo’i,jaibj ¢R dx dS)
0 0

1<i,5<3

Recalling that u,, = ug,, + fot oy, ds, we may observe that u,, (¢,.)
converges to Uy (t,.) in D'(R?), hence, it converges weakly in L% _(R?) and
we can write:

t,z)|? t,z)?
/—|u°°(2’x)| ¢Rdx§1imsup/—|u"’“(2’x)| drdx.

njp—+00

Moreover, this weakly convergence gives

¢ 9 ¢ 2
/ /—]Vuooés,xﬂ drdrds Slimsup/ /—\Vunkés,xﬂ odrdxds,
0 0

Nj—>+00

and we have the same estimates for b,,. In this way we get

oo (t, )2 + [bos(t, ) |2 '
e ondot [ [(Vusl + [Vbef?) ondrds
0

2 2 t 2 2
S/|uo<a:>| + [bo(z)| mdﬁ/ /MAWW
0

2

3
+Z ! [(’uoo|2 + |boo’2)v . 2 ]8¢) dr ds
— J, 9 9 00,1 PoolUoco,i| Ui PR
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3 t
+ Z/O /[(uoo : boo)coo,i + qooboo,i]&»gzﬁR dx ds
=1
¢ t
0 0

1<4,5<3

t t
_ Z (/ /Gw7i7jbm7j8i¢Rdx dS+/ /Goo’ivj&-boo?j gbR dCL’dS)
0 0

1<i,j<3

Finally, letting ¢ go to 0, we have:

lim sup || (oo, boo)(t, .) ||%2(¢R(x)d:ﬁ) < [[(w,005 Po,oc) ”%2(¢R(:c)da:)'

t—0

On the other hand, by weakly convergence we also have
[ (W,00, b0700)||%2(¢R(x)dx) < h?i}glf [[(Weo, Do) (2, ) ||%2(¢R(:1;)dx)’

Thus we have the strong convergence to initial data in the Hilbert space

L?(¢r(x)dz).

4 Proof of Theorem

4.1 Local in time existence

Following the ideas of [7], for the given function ¢r(r) = ¢(%) and the
Leray’s projector P, we define ug g = P(¢rug), bo.r = P(¢rbo), Fr = ¢rF,

Gr = ¢rG; and we consider the approximated problem (M HDg,):

( atuR,e = AuR,e - ((uR,e * 96) . V)UR,E + ((bR,e * 96) : v>bR,6 - va,e +V- FRa
atbR7e = AbR,E - ((uR7e * 96) . V)bR,e + ((bR,e * ‘96) : v)uR,€ - VQR,G + V- GR7
V-ug.=0,V- -bg.=0,

ur(0,-) = ugr, br(0,-) = bgr.

\

By the Appendix in [7] (see the page 35) we know that ( MHDpg,) has a
unique solution (ug., br.) in L>((0, 400), L*)NL3((0, 400), H'), and more-
over, this solution belongs to C([0, +00), L?) and it fulfills the hypothesis of
the Theorem [3] Applying this result (for the case (v,c) = (u* 6., b*0,))
there exists a constant C' > 0 such that for every time T small enough:

2
O (1+ I(or, bo) 13, + 1(Fr.cs Gl 20m ) To < 1.
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we have the controls:

sup || (uge, bre)(t)ll3, < C (1 + [|(wo,r, bo.r) B, + ||(ER,mGR,E)H%ZH(O,TO)) ;

0<t<Ty

and
IV (re b, 20 < C (141 0o Bo.s)lE, + 1(Fec Grolh, o) -

Then, in the setting of Theorem [ we set (1, bon) = (o,r,, Po.r, )
F, =Fg,, G, = G, and (u,,b,) = (ug, .., br,..); and letting R, = 400
and €, — 0 we find a local solution of the (MHD) equations which verifies
the desired properties stated in Theorem [I]

4.2 Global in time existence
Let A > 1. For n € N we consider the (MHD) equations with initial value
(W, bon) = (A"ug(A™:), A"bo(A™)),
and the forcing tensors
(Fr, Gp) = (AF(A", A™), A2"G (A2, \™)).
Then, by the local in time existence proved above, there exists a solution

(Vp,cyn) on (0,7,,), with

2
C (14 (Vo conllf, + | Fns Ga)lBy 205y o= 1.

Remark also that by the well-known scaling properties of the (MHD) equa-
tions we have

(Va(t, ), co(t, ) = (N1, (A", \"2), A"b,, (A\*"t, \"x)),

where (u,,b,,) is a solution of the (MHD) on (0, A*"T},) associated with the
initial data (up, bg) and then forcing tensors F and G.

At this point, we need the following simple remark which will be proved
at the end of this section.

Remark 4.1 If uy, by € By and F,G € ByoL*(0,+00), then for all A > 1
we have:
)\n

lim = 4-o00.
n—too 1+ |[(Vo,ns Con) |3, + I(Fn, G132
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Thus, for A > 1 fix we have lim,,_, o A\*"T}, = +00. Then, for T' > 0, let np
such that A\*"T,, > T for n > ng, then (u,,b,) is a solution of the (MHD)
equations on (0,7").

We set now (w,, (¢, x),d,,(t, 7)) = (A\"Tu,(A\2*"7t, \"Tx), \"Tb,,(A\?"Tt, \"Tx)),
where we observe that for n > ny the couple (w,,, d,,) is a solution of (MHD)
equations on (0, A\"?"7T) with initial value (Vo n,,Con,) and forcing tensor
(Fp,, G,p.). But, since we have A™"7T < T, then we obtain

T

2
c (1 + H(VO,nTv CO,nT)”QBg + ||(IF71T7 G”T)||QBQL2(O7/\_2”TT)> AT <1,
and thus, by Theorem We are able to write:

sup || (W, da)(, )17z, < COHIVonr: Come ), +HI Py s G, p20 4200

0<t<A~2nTT

and
||V(Wn, dN) ||2B2L2(07)\_2”TT) < C(1+” (VOJIT7 CO,nT) ||2Bg+” (]F"'ZT7 GnT) ||232L2(0,>\—2nTT))'
From these estimates we get the following uniforms controls for u,, and b,:
[(Wa, di) ()1, = A"l (wa, ba) (A2, )| F5,,
and
HV(Wmdn)H2BQL2(o,>f2nTT) ZA”THV(U%;bn)HQBgL%O,T)'

In order to finish this proof, observe that we have controlled uniformly u,, b,
and Vu,, Vb, on (0,7) for n > ny. Then, we may apply Theoremto ob-
tain a solution on (0,77). As T > 0 is an arbitrary time, we can use a diagonal
argument to obtain a solution u, b on (0,+00). Finally, the control for the
solution (u, b,p,q) on (0, +00) is given by Theorem o

Proof of Remark It is enough to detail the computations for the
functions ug, and F, since the computations for by, and G, follows the
same lines.

It is straightforward to see that we have

Vo5, 1 > 1 / 2
Lo gup —— N'ug(N"x)|* de = sup ——— uy(z)|” dr,
An Rz]? A" R? |z\§R| o(A"z)| Rzg (A"R)? ImISA”R| o)

23



and

1 1
lim sup ———= u 2dx = lim —/ u(z)|? dz = 0.
Potoo gop (N'R)? /|x<wz| ol@)| Rtoo R \x|§R| ol@)|

Moreover, remark that we have:

Il r2(0,400) 1 oo
) = su AF (N, A ) | dx ds
2L sy [ RO

1 /+oo / )
= sup ——— F(t,x)|" dx,
>1 (A"R)? Jy |z|<A"R [E(E, )|

and
+o0 2 +o0 )
lim su / / F(t,z)|*dxds = lim / / F(t,x)|"dxds = 0.
P—>+OOR>I})D R ‘Z‘|<R | R—+4o00 R2 0 |$|SR| ( )l

O
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