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 but lowering signicantly the algorithmic complexity with respect to the number of clusters. An empirical study states the relevance of our iterative process and a confrontation on simulated multivariate and functional data shows the benets of our algorithm.

Introduction

Clustering consists in partitioning a set of unlabeled objects into homogeneous groups (or clusters), so that the data in each subset share some common trait (see [START_REF] Kaufman | Finding Groups in Data: an Introduction to Cluster Analysis[END_REF] for a thorough introduction to the subject) . Over the years, many methods have been proposed to deal with clustering : density based clustering [START_REF] Sander | Density-based clustering in spatial databases: The algorithm gdbscan and its applications[END_REF], Hierarchical clustering [START_REF] Zhao | Hierarchical clustering algorithms for document datasets[END_REF] and partitioning clustering... We focus in this paper on the last one. More precisely we use a method coming from the signal compression theory : the quantization [START_REF] Linder | Learning-theoretic methods in vector quantization[END_REF].

The proximity notion is crucial in the denition of what is a "good clustering". We propose here to rely on the method proposed in [START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF] which is based on a L 1 (or Manhattan) distance. The algorithm (called Alter) proposed to perform the clustering is proved to be consistent but suers from a high complexity. A rst alternative has been proposed in [START_REF] Laloë | The X-Alter algorithm : a parameter-free method to perform unsupervised clustering[END_REF] to lower the complexity, adapting the X-means approach proposed in [START_REF] Pelleg | X-means: Extending k-means with ecient estimation of the number of clusters[END_REF].

The purpose of this paper is to propose a new alternative to lower the complexity of the Alter algorithm (with respect to the number of clusters), best preserving its ability to converge to the global optimum.

The paper is organized as follows: the Alter algorithm and its theoretical properties are summarized in Section 2. Then our new algorithm is presented in Section 3. Finally, a comparative study on simulated data is provided in Section 4.

Quantization based clustering

Let us summarize the Alter algorithm. All the theoretical results presented in this section come from [START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF]. The method is based on quantization, which is a commonly used technique in signal compression [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Linder | Learning-theoretic methods in vector quantization[END_REF]. Consider (H, . ) a normed space and let X be a Hvalued random variable with distribution µ such as E X < ∞. Given a set C of points in H k , any Borel function q : H → C is called a quantizer. The set C is called a codebook, and the error made by replacing X by q(X) is measured by the distortion:

D(µ, q) = E X -q(X) = H x -q(x) µ(dx).
Note that D(µ, q) < ∞ since E X < ∞. For a given k, the aim is to minimize D(µ, .) among the set Q k of all possible k-quantizers. The optimal distortion is then dened by

D * k (µ) = inf q∈Q k D(µ, q).
When it exists, a quantizer q * satisfying D(µ, q * ) = D * k (µ) is said to be an optimal quantizer.

As detailed in [START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF], a quantizer is characterized by its codebook C = {y i } k i=1 and a partition of H in cells

S i = {x ∈ H : q(x) = y i }, i = 1, . . . , k via the rule q(x) = y i ⇐⇒ x ∈ S i .
Moreover it is proved in [START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF] that for a given codebook an optimal partition is a nearest neighbor one. So we can consider only nearest neighbor quantizers, which means that a quantizer q will be characterized by its codebook C = {y i } k i=1 and the rule q(x) = y i ⇐⇒ ∀1 ≤ j ≤ k, j = i, x-y i ≤ x-y j , with ties arbitrary broken. Thus, a quantizer can be dened by its codebook only. Moreover the aim is to minimize the distortion among all possible nearest neighbor quantizers. However, in practice, the distribution µ of the observations is unknown, and we only have at hand n independent observations X 1 , . . . , X n with the same distribution than X. The goal is then to minimize the empirical distortion:

1 n n i=1 X i -q(X i ) .
Then, clustering is done by regrouping the observations that have the same image by q. More precisely, we dene a cluster C by C = {X i : q(X i ) = xC }, xC being the representative of cluster C.

Unfortunately, the minimization of the empirical distortion is not possible in practice and that is why an alternative is proposed: the Alter algorithm. The idea is to select an optimal codebook among the data set. More precisely the outline of the algorithm is:

1. List all possible code books , i.e., all possible k-tuples of data;

2. Compute the empirical distortion associated to the rst codebook. Each observation X i is associated with its closed center;

3. For each successive codebook, compute the associated empirical distortion. Each time a codebook has an associated empirical distortion smaller than the previous smallest one, store the codebook;

4. Return the codebook that has the smallest distortion.

It is proved that the convergence rate is of the same order than the theoretical method described above (minimization of the empirical distortion over all possible quantizers). Moreover, this algorithm does not depend on initial conditions (unlike the K-Means or K-Medians algorithm) and it converges to the optimal distortion. Unfortunately its complexity is O(n k+1 ) and it is impossible to use it for high values of n or k. Worse, even for small n, it is not possible to consider large number of clusters. That is why we wanted to propose the Iterative Alter algorithm.

Iterative Alter

Let us now present our alternative to lower the complexity of the algorithm. For the sake of simplicity, let us take the case where the data belong to R, and where we try to cluster them into two groups. If we perform Alter, we have to compute the distortion with centers given by any pair of data. Figure 1 show the behavior of the distortion with respect to the values of the two centers and Figure 2 show the behavior of the distortion with respect to one center while the other is xed.

Looking at this gures it seems possible to get the best pair of centers by successively optimizing each center (xing the other). Thus the process could be :

Step 1 : Select (randomly) two data to be the initial pair of center;

Step 2 : Fix the rst center and optimize the distortion on the second;

Step 3 : Fix the second center (with the value obtained at Step 1) and optimize the distortion on the rst center;

Step 4 : Repeat Steps 2 and 3 until the centers no longer change.

The generalization to k clusters is then trivial :

Step 1 : Select (randomly) k data to be the rst center and optimize the distortion on the second center;

Steps 2 : For i from 1 to k, x all centers expect the ith one and optimize the distortion on this one;

Step 3 : Iterate until the centers no longer change. Of course we have to make the assumption that the data are continuously distributed. Otherwise specic Each curve correspond to one value of the rst center.

counter example can be constructed. Before performing a comparative study, we empirically justify this procedure.

Empirical justication

In this section we propose to empirically justify our algorithm, showing that we indeed get the global minimum of the distortion. We begin by a multivariate case, before looking at a functional case.

Multivariate case

We simulate data sets (of size n = 50, 100 and 500) of six clusters in R 2 (see Figure 3) and perform our algorithm with k ∈ {2, 4, 6} clusters. The cluster are centered around (-7, -5), (-7, 0), (-7, 5), (7, -5), (7, 0) and [START_REF] Linder | Learning-theoretic methods in vector quantization[END_REF][START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF], and in each cluster the data are normally distributed around the center (with a standard deviation equal to 2). Moreover we add a "noise" cluster containing 10% of the data, centered on 0 and with standard deviation equal to 8.

For each conguration (i.e. couple (n, k), Figure 4 present the evolution of the averaged (over M = 50 repetition of the simulation process) distortion according to the number of cycles performed (a cycle is an iteration of Steps 2 and 3). In such a simple scenario we are also able to compute the real optimal distortion.
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Functional case

Now we want to consider functional data. We take functions f 1 (x) = x 0.1 + cos(10x + π/2 -10)/5, f 2 (x) = x + cos(10x + π/2 -10)/5, f 3 (x) = x 2 + cos(10x + π/2 -10)/5 and f 4 (x) = x 10 + cos(10x + π/2 -10)/5 dened on [0, 1] discretized 20 times. The term cos(10x + π/2 -10)/5 is added to disturb functions x 0.1 , x, x 2 and x 10 . Each data in R 20 is noised with a vector composed by twenty Gaussian law N (0, σ) where the value of σ is selected for each data using σ ∼ N (0.1, 0.02). The idea is to simulate two clusters (of sizes randomly selected between 15 and 30) around f 2 and f 3 , and complicate the task by adding a small number (randomly selected between 1 and 5) of functions distributed around f 1 and f 4 . Figure 5 shows examples of some of the functions that we want to classify. We simulate 50 dierent data set to calculate averaged distortions, and Figure 6 play the role of Figure 4: it presents the evolution of the averaged distortion according to the number of cycles performed (a cycle is an iteration of Steps 2 and 3). As in the multivariate case we see that the number of cycles required to get the optimal distortion is really small. Now that we have empirically stated the relevance of our iterative process, we can perform a comparative study both on simulated data.

Comparative study

We perform here an empirical study to show the relevance of our method. We confront our method to various simulated data sets, but also on classical real data sets. In order to evaluate the relevance we consider the Adjusted Rand Index (A.R.I.) [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF][START_REF] Hubert | Comparing partitions[END_REF]. Moreover, we compare our method to a K-Medians algorithm proposed by [START_REF] Cardot | A fast and recursive algorithm for clustering large datasets with k-medians[END_REF].

Multivariate case

We perform here tests with a little more complicated data sets than in Section 3.1.1: each data set is composed of k cluster, and each cluster (C i , i = 1, . . . , k) contains n i data normally distributed around m i (in R d ) and with standard deviation σ i . All the parameters are randomly selected :

• k is uniformly selected in {2, 3, . . . , 8};

• the n i are uniformly selected between 5 and 25 ;

• each coordinate of each m i are uniformly selected between -20 and 20 ;

• the σ i are uniformly selected between 2 and 5 .

The K-Medians algorithm may strongly depend on the initial conditions. However it is possible to overcome this performing multiple intializations (we will call this R-K-Median, with R the number of initializations). Table 1 summaries the results averaged on simulations (each run is done with a new set of randomly selected parameters), and for dierent values of the dimension of the data (d = 2, d = 5 and d = 10). It seems here that our algorithm and the K-Medians have similar performance. However if we look more precisely things are a little dierent. Figures 7,8,9 show the distribution (over 300 repetitions of the previous process) of the averaged ARI for dimension d = 2, 5, and 10. With the increasing of the dimension, we clearly see the benets of our algorithm. This is not surprising since the underlying method of our algorithm (see [START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF]) is thought for functional data. This benet is even more signicant if we look at the distribution of the minimal ARI ( Figures 10,[START_REF] Zhao | Hierarchical clustering algorithms for document datasets[END_REF] around f 1 and f 4 (as a reminder one can look at Figure 5). The results presented in Table 4.2 are averaged over 50 simulated data sets.

As in the previous section we present in Figure 13 the boxplot of the minimum ARI obtained at each of the M repetitions. Once again, our method appears to be more reliable than the R-K-Medians, due to the consistency properties of the Alter algorithm. 

Conclusion

We have presented a simple new algorithm to perform clustering, based on the Alter algorithm proposed in [START_REF] Laloë | L 1 quantization and clustering in banach spaces[END_REF]. With this algorithm we lower signicantly the algorithmic complexity. An empirical study stated the relevance of our iterative process and a confrontation on simulated data showed the benets of our algorithm. However, theoretical guarantees remains to be proved and we did not address the problem of the selection of the numbers of cluster. This should be the subject of a future work.
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Table 1 :

 1 Comparative study in the multivariate case.

	Algorithm	Iter Alter 1-K-Medians 10-K-Medians 20-K-Medians
	ARI dim 2	0.7	0.7	0.7	0.7
	ARI dim 5	0.96	0.96	0.96	0.96
	ARI dim 10	1	0.99	0.99	0.99

In the next section we consider functional data and we will see that this benet is even more pronounced.

Functional case

Now we want to consider functional data. We take the same conguration as in Section 3.1.2: We take functions Each data in R 20 is noised with a vector composed by twenty Gaussian law N (0, σ) where the value of σ is selected for each data using σ ∼ N (0.1, 0.02).

We simulate two clusters (of sizes randomly selected between 15 and 30) around f 2 and f 3 , and complicate the task by adding a small number (randomly selected between 1 and 5) of functions distributed