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ABSTRACT

The purpose of this paper is to study the Stochastic Volatility Inspired model (SVI) as implied
volatility model: we study the analytic part of the SVI with the arbitrage conditions, we establish
the initial guess and the parameter’s boundaries. Until recently it was not possible to find sufficient
conditions that would guarantee an SVI model calibration arbitrage-free. The main contribution in
this paper is that we provide two methods to resolve the arbitrage problem (butterfly and calendar
spread): the first one is numerical using the Sequential Least-Squares Quadratic Programming
(SLSQP) algorithm, and the second one is analytical by using sufficient conditions that guarantee
an SVI arbitrage-free.

Our method guarantee to get SVI calibration with butterfly and calendar spread arbitrage-free,
We provide many numerical examples with arbitrage such as Vogt Axel example and we show how
to fix them. The calibration method is tested on 23 equity indexes with 14 maturities each and we
get 322 slices fits using the same initial guess and the SVI parameters boundaries for all indexes.

This new calibration method is very important and it meets practical need: resolving this
arbitrage problem will pave the way to the surface calibration and the transition from implied
volatility to local volatility using Dupire’s formula, therefore, it allows price different kind of path-
dependent options such as barrier options, and American options. The SVI model could also be
applied to price interest rate derivatives such as swaptions, interest rate caps, and floors.

Keywords: Implied/Local Volatility, SVI, Arbitrage-Free,butterfly spread, calendar spread, Cal-
ibration, Quadratic Programming.
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Introduction

The implied volatility is an important element used for pricing and hedging in the financial market.
It can be obtained by inverting Black-Scholes formula (1973) for a given strike and maturity. These
values are explicitly available only for some strikes and maturities. For this reason we need a model
that allow to obtain an accurate values close to those observed in the market.

Many interpolation techniques has been proposed in the last decades, we can class them in two
categories: mathematical interpolation models and financial interpolation models. The appropriate
model should respect some arbitrage free condition.

Many authors in the past such as Dupire (1994) [1], Derman and Kani (1994) [2], and Rubinstein
(1994) tried to model local volatility, we propose here an overview of the more recent methods used
to resolve this problem.

Kahalé (2004) [3] presented an interpolation method for implied volatilities in the equity and
forex markets using one-dimensional interpolation algorithm with smoothness properties. Kahalé
assumes arbitrage-free in the input market volatilities and computes an interpolating surface for
all strikes and maturities in three-step procedure: in the first step he interpolates the (call) price
for each maturity using piecewise convex polynomials. Hence, the call price function obtained
is arbitrage free and after he calculates the implied volatility by inverting the BS formula, in the
second step he interpolates linearly the total implied variance. Finally, he makes some adjustments
to the call prices to ensure that IVS is globally arbitrage-free.

Jim Gatheral (2004) presented for the first time the Stochastic Volatility Inspired model (SVI)
in the Global Derivatives and Risk Management conference in Madrid.

Benko et al.(2007) [4] applied non-parametric smoothing methods to estimate the implied
volatility (IV). They combine the IV smoothing with the state-price density (SPD) estimation
in order to correct the arbitrage condition reflected by the non-positive SPD, for this, they used
the local polynomial smoothing technique.

Fengler (2009) [5] proposed an approach for smoothing the implied volatility smile and provides
a methodology for arbitrage free interpolation. His methodology consists in using the natural
smoothing splines under suitable shape constraints. This method works even when the input data
is not arbitrage free.

Andreasen-Huge (2010) [6] presented an interpolation and extrapolation method of European
option prices based on a one step implicit finite difference Euler scheme applied to a local volatility
parametrization.

Glaser and Heider (2012)[7] use locally constrained least squares approximations to construct
the arbitrage-free call price surfaces. They calculate derivatives of the call surface to obtain implied
volatility, local volatility and transition probability density.

Fingler-Hin (2013) [8] use semi-nonparametric estimator for the entire call price surface based
on a tensor-product B-spline.

Gatheral & Jacquier (2014) [9] presents the stochastic volatility inspired model (SVI) a para-
metric model of the implied volatility smile. The model fits very well the equity market, however,
no condition is known that could guarantee the arbitrage free of the model. This is the main
challenge in our project.

Several problems arise in the past regarding the calibration of the SVI and simultaneously
avoiding arbitrage. Our objective is the analytic study of the SVI model, calibration of the model
and avoiding the arbitrage.

The rest of this paper is organized as follows: in the first chapter we give a brief introduction
of the local and implied volatility and we show the relation between them in the case of the SVI
model. Finally, we show the large-time asymptotic convergence of the Heston implied volatility to
SVI model.
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In chapter 2, we present the SVI model formulation and the different forms such as the natural
SVI, Jump-Wings SVI. We also define the characterization of static arbitrage: calendar spread and
butterfly. We provide for the first time an analytical sufficient conditions that guarantee an SVI
model arbitrage-free.

In chapter 3, we present a new robust calibration method for the SVI model using Sequential
Quadratic Programming (SQP) optimization method that eliminate automatically the arbitrage
during during the calibration ( even in the case where our input data contain arbitrage). We
explain the method, and we establish the SVI’s parameter boundaries and the initial guess. We
illustrate the performance of our algorithm in two numerical examples with arbitrage, one of them
in the Axel Vogt example.

Finally, we apply our calibration method to calibrate the implied volatility coming from 23
indexes with 14 maturities each (322 slices). We use also calibration with weights to improve the
performance of fitting.
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Chapter 1

Local and Implied Volatility

In this Chapter we provide brief introduction and summary of the relation between stochastic and
the local volatility. This tools are the most important ingredient used in the pricing of exotic
equity options. An excellent lecture note by Gatheral in [10] will be followed as reference for this
section.

The local volatility allows to explain why for a different strikes and maturities we can get
different prices in the Black-Scholes formula. As the distribution of the stock price returns is
characterized by high peak and fat-tailed compared to the normal distribution, this motivate to
model variance as a random variable which is a consequence of the mean reversion of volatility.

1.1 Local Volatility

The local volatility is used to price exotic options, Breeden and Litzenberger in [11] proved for the
first time that the risk neutral density RND could be calculated using the market price of European
options. Dupire (1994) [1], Derman and Kani (1994) mentioned that there exist a unique diffusion
process consistent with these distribution. This unique state-dependent diffusion coefficient is
called the local volatility function σL(S, t).

Dupire, Derman and Kani represent local volatilities as an average over all instantaneous volatil-
ities in a stochastic volatility world.

Dumas, Fleming, and Whaley (1998) confirmed by empirical analysis that the dynamic of
implied volatility surface is not consistent with the assumption of constant local volatilities.

1.1.1 Fokker-Planck equation and Dupire’s PDE

We consider an underlying asset that verify the following SDE

dSt = St(r − q)dt+ Stσ(St, t)dWt (1.1)

The Fokker-Planck’s equation is therefore

∂tP (St, t) = −∂S((r − q)StP (St, t)) + ∂SS

(
σ(St, t)

2

2
S2
t P (St, t)

)
(1.2)

Where p(., t) is the density of the underlying asset price at time t. Let’s note C(K,T ) the price
of option with strike k, maturity T at t0.

C(K,T ) = e−r(T−t0)
∫ ∞
0

(ST −K)+P (ST , T )dS (1.3)

We derive both sides of the equation with respect to t and we use (1.2), we obtain

∂tC(K,T ) =− rC(K,T ) + e−r(T−t0)
∫ ∞
0

(ST −K)+ [−∂S((r − q)SP (S, T ))

+ ∂SS

(
1

2
σ(S, T )2S2P (S, T )

)
]dS

(1.4)
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We use the integration by parts

∂tC(K,T ) =− rC(K,T )− e−r(T−t0)
∫ ∞
K

∂S

(
1

2
σ2(S, T )S2P (S, T )

)
dS

+ e−r(T−t0)
∫ ∞
0

(r − q)(ST −K)+P (S, T )dS

+K(r − q)e−r(T−t0)
∫ ∞
K

P (S, T )dS

(1.5)

∂tC(K,T ) =− rC(K,T ) + e−r(T−t0)
1

2
σ2(K,T )K2P (K,T )

+ (r − q)e−r(T−t0)
∫ ∞
0

(ST −K)+P (S, T )dS

+K(r − q)e−r(T−t0)
∫ ∞
K

P (S, T )dS

(1.6)

We have also

C(K,T ) = e−r(T−t0)
∫ ∞
0

(ST −K)+p(S, T )dS (1.7)

∂KC(K,T ) = −e−r(T−t0)
∫ ∞
K

p(S, T )dS (1.8)

∂KKC(K,T ) = e−r(T−t0)p(K,T ) (1.9)

We replace in (1.6) and we obtain

∂tC(K,T ) =− rC(K,T ) +
1

2
σ2(K,T )K2∂KKC(K,T )

+ (r − q)C(K,T )− (r − q)K∂KC(K,T )
(1.10)

Finally we get the Dupire’s PDE

∂C

∂T
(K,T ) = −qC(K,T )− (r − q)K ∂C

∂K
(K,T ) +

1

2
σ2(K,T )K2 ∂

2C

∂K2
(K,T ) (1.11)

With the boundary conditions
C (K, t0) = max (S0 −K, 0) for 0 ≤ K
limK→0 C(K,T ) = S0e

−q(T−t0) for t0 ≤ T
limK→+∞ C(K,T ) = 0 for t0 ≤ T

(1.12)

Where r(t) is the risk-free rate, and q is the dividend yield.
We can express the option price as a function of the forward price

FT = S0 exp

{∫ T

0

µ(t)dt

}
(1.13)

where µ(t) = r − q is the risk-neutral drift of the stock price process.
Finally, we would get the same expression minus the drift term as following

∂C

∂T
(K,T ) =

1

2
σ2(K,T )K2 ∂

2C

∂K2
(K,T ) (1.14)

Therefore;

σ2
loc (K,T, S0) =

∂C
∂T (K,T )

1
2K

2 ∂2C
∂K2 (K,T )

(1.15)
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1.1.2 Dupire’s Formula with Implied Volatility
Gatheral explained in his book [12] how we find the relation that combine local volatility and
implied volatility, it allows the transformation from one to the other. Therefore, we can write the
call price formula in terms of the implied total variance w.

Let’s consider the following call price

C (S0,K, T ) = CBS (S0,K, σBS (S0,K, T ) , T ) (1.16)

Where σBS (K,T ;S0) is the Black-Scholes implied volatility. The implied total variance is
defined by:

w (S0,K, T ) ≡ σ2
BS (S0,K, T )T

and the logforward moneyness is:

x = ln

(
K

FT

)
, with FT = S0 exp

{∫ T

0

dtµ(t)

}

The Black-Scholes formula with this variable change becomes

CBS (FT , x,w) = FT {N (d1)− exN (d2)}

= FT

{
N

(
− x√

w
+

√
W

2

)
− exN

(
− x√

w
−
√

w

2

)} (1.17)

The Dupire equation in (1.11) will be

∂C

∂T
=
vL
2

{
∂2C

∂x2
− ∂C

∂x

}
+ µ(T )C (1.18)

Where the local variance is: vL = σ2 (S0,K, T ).
Now we calculate the derivatives of the Black-Scoles formula in (1.17)

∂2CBS
∂W2

=

(
−1

8
− 1

2w
+

x2

2w2

)
∂CBS
∂w

∂2CBS
∂x∂w

=

(
1

2
− x

w

)
∂CBS
∂w

∂2CBS
∂x2

− ∂CBS
∂x

= 2
∂CBS
∂w

(1.19)

We rewrite (1.18) in terms of the implied variance w and we get

∂C

∂x
=
∂CBS
∂x

+
∂CBS
∂w

∂w

∂x

∂2C

∂x2
=
∂2CBS
∂x2

+ 2
∂2CBS
∂x∂w

∂W

∂x
+
∂2CBS
∂W2

(
∂w

∂x

)2

+
∂CBS
∂w

∂2W

∂x2

∂C

∂T
=
∂CBS
∂T

+
∂CBS
∂w

∂w

∂T
=
∂CBS
∂w

∂w

∂T
+ µ(T )CBS (1.20)

Note that the dependence on time T in (1.17) is only in the term of the forward price FT .
Equation (1.11) becomes

∂CBS
∂w

∂w

∂T

=
vL
2

{
−∂CBS

∂x
+
∂2CBS
∂x2

− ∂CBS
∂w

∂w

∂x
+ 2

∂2CBS
∂x∂w

∂w

∂x
+
∂2CBS
∂w2

(
∂w

∂x

)2

+
∂CBS
∂w

∂2w

∂x2

}

=
vL
2

∂CBS
∂w

{
2− ∂w

∂x
+ 2

(
1

2
− x

w

)
∂w

∂x
+

(
−1

8
− 1

2w
+

y2

2w2

)(
∂w

∂x

)2

+
∂2w

∂x2

}
(1.21)
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After simplification we get

∂W

∂T
= vL

{
1− x

w

∂w

∂x
+

1

4

(
−1

4
− 1

w
+
x2

w2

)(
∂w

∂x

)2

+
1

2

∂2w

∂x2

}
(1.22)

Finally, the local volatility expression in terms of the total variance ( the implied volatility) is

vL =
∂w
∂T

1− x
w
∂w
∂x + 1

4

(
− 1

4 −
1
w + x2

w2

) (
∂w
∂x

)2
+ 1

2
∂2w
∂x2

=
∂w
∂T

g(x)
(1.23)

With;
w (S0,K, T ) ≡ σ2

BS (S0,K, T )T

and;

g(x) = 1− x

w

∂w

∂x
+

1

4

(
−1

4
− 1

w
+
x2

w2

)(
∂w

∂x

)2

+
1

2

∂2w

∂x2
(1.24)

We will see after, in the SVI calibration section, the relation between the g(x) and the butterfly
arbitrage condition. As a first condition, in order to get a positive local volatility, both numerator
∂w
∂T and denominator g(x) should to be strictly positive.

1.2 The Roger Lee’s Moment Formula

Roger Lee shows in [13] that the total implied variance is bounded by a linear function in the
extreme strikes, and the maximum slope of the total variance w (S0,K, T ) ≡ σ2

BS (S0,K, T )T
is 2. This propriety is very important and any interpolation model should be consistent with this
condition in the large-strikes.
Roger shows the relation between the maximal finite moments of the underlying process and the
gradient of the wings.

Let’s define F0 = E(ST ) the forward price of the payoff ST , and the log forward moneyness x is

x ≡ log (K/F0)

I(x) is the Black-Scholes implied volatility at moneyness x that solve

C(K(x)) = CBS(x, I(x)) (1.25)

With;

CBS(x, σ) := B0 (F0Φ (d+)−K(x)Φ (d−)) , d± :=
−x
σ
√
T
± σ
√
T

2
(1.26)

1.2.1 The Large-Strike Tail
The Large-Strike tail is a reference to the right wing in the zone with large positive strike K, or
log forward moneyness x positive or OTM call.

First, we present an asymptotic formula for the implied volatility I(x) with a large strike and
next the moment formula.

Lemma: There exists x∗ > 0 such that for all x > x∗,

I(x) <
√

2|x|/T

Proof. We know that CBS(x, I(x)) is strictly monotone function with respect to the second argu-
ment I(x), hence, we need only to show the inequality

CBS(x, I(x)) < CBS(x,
√

2|x|/T ) x > x∗ (1.27)

By dominated convergence, and as E(ST ) <∞ the limit in the left side is

lim
x→∞

C(K(x)) = lim
K→∞

B0E (ST −K)
+

= 0 (1.28)
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Using L’Hopital’s rule, and we get in the right side

lim
x→∞

CBS(x,
√

2|x|/T ) = B0F0

[
Φ(0)− lim

x→∞
exΦ(−

√
2|x|)

]
= B0F0/2 (1.29)

Comparing (1.28) and (1.29), it’s clearly that the relation in (1.27), and we conclude that:

I(x) <
√

2|x|/T

The interpretation of this lemma is: given the total implied variance

w (S0,K, T ) ≡ σ2
BS (S0,K, T )T = I(x)2T < 2|x| (1.30)

In the large strikes zone, the total variance in the right wing is linear and the maximum value
for the slope is 2.

Theorem (The Moment Formula For the right wing)
Let

p̃ := sup
{
p : ES1+p

T <∞
}

βR := lim sup
x→∞

I2(x)

|x|/T
Then;

βR ∈ [0, 2] and p̃ := sup
{
p : ES1+p

T <∞
}

=
1

2βR
+
βR
8
− 1

2

and by inverting this, we get;
βR = 2− 4

(√
p̃2 + p̃− p̃

)
1.2.2 The Small-Strike Tail
As for the Large-Strike, we consider the Small-Strike for the left wing or small K or negative x or
OTM put. We show that the tail slope is no larger than 2.

Lemma : For any β > 2 there exists x∗ such that for all x < x∗,

I(x) <
√
β|x|/T

For the limit case with β = 2, we get the same inequality if ST satisfies P (ST = 0) < 1/2

Proof. For β > 2, there exists x∗ such that for all x < x∗,

P (ST < F0e
x) < Φ

(
−
√
f−(β)|x|

)
− e−xΦ

(
−
√
f+(β)|x|

)
(1.31)

The left hand is approximated to P (ST = 0) for x → −∞, and the right side is approximated to
1 for β > 2 and 1/2 for β = 2.
So we have for all x < x∗

PBS(x, I(x)) = B0E (K(x)− ST )
+
B0K(x)P (ST < F0e

x) < PBS(x,
√
β|x|/T ) (1.32)

Or, PBS(x, I(x)) is strict monotone with respect to the second argument and we can conclude
that;

I(x) <
√
β|x|/T (1.33)

For β = 2, and for the same reason of monotonicity of PBS(x, I(x)), we get for all x > x∗

B0K(x)/2 > PBS(x,
√

2|x|/T ) > B0E (K(x)− ST )
+
B0K(x)P (ST = 0) (1.34)

We obtain the result by dividing by B0K(x).
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Theorem (The Moment Formula For the left wing)
If we have;

q̃ := sup
{
q : ES−qT <∞

}
βL := lim sup

x→−∞

I2(x)

|x|/T

Then; βL ∈ [0, 2] and q̃ = 1
2βL

+ βL

8 −
1
2

By inverting q̃ we get

βL = 2− 4
(√

q̃2 + q̃ − q̃
)

Where for q̃ =∞ , βL = 0

1.3 Convergence Heston Model to SVI

Gatheral and Jacquier show in [14] the large-time asymptotic convergence of the Heston implied
volatility to a sampler expression consistent with the Stochastic Volatility Inspired (SVI param-
eterization). In order to interpret the SVI parameters in terms of the implied volatility in the
Heston model. SVI could be consider the limit of Heston model in the large maturity (T →∞).

Let’s consider the expression of the SVI parametrization

σ2
SV I(x) =

ω1

2

(
1 + ω2ρx+

√
(ω2x+ ρ)

2
+ 1− ρ2

)
, for all x ∈ R (1.35)

Where x is the log-froward moneyness.
We consider the Heston model where (St)t≥0 follow the process

dSt =
√
vtStdWt, S0 ∈ R∗+

dvt = κ (θ − vt) dt+ σ
√
vtdZt, v0 ∈ R∗+

d〈W,Z〉t = ρdt

(1.36)

with ρ ∈ [−1, 1], κ, θ, σ and v0 are strictly positive and 2κθ ≥ σ2 (the Feller condition).

Proposition Under κ− ρσ > 0 assumption σ2
SV I(x) = σ2

∞(x) for all x ∈ R

Now we will interpret the SVI parameters in function of the Heston parameters model We proceed
to the following parametrization

ω1 :=
4κθ

σ2 (1− ρ2)

(√
(2κ− ρσ)2 + σ2 (1− ρ2)− (2κ− ρσ)

)
, and ω2 :=

σ

κθ

and we find;

a =
ω1

2

(
1− ρ2

)
b =

ω1ω2

2T
ρ̃ = ρ

m = −ρT
ω2

σ̃ =

√
1− ρ2T
ω2

(1.37)

Proof The proof of this proposition is voluntarily omitted and it could be found in [14]
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Chapter 2

Stochastic Volatility Inspired SVI

In this section, we will focus on the stochastic volatility inspired model SVI. We start by presenting
the general framework of the model as presented by Jim Gatheral and Antoine Jacquier in [9]. Next,
we describe the characterisation of static arbitrage which includes calender spread arbitrage and
butterfly arbitrage. Finally, we calibrate the SVI model using real market data of different indexes
such as the Eurostoxx 50, FTSIE, DAX...etc.

2.1 History of SVI

The stochastic volatility inspired model (SVI) was used for the first time at Merrill Lynch in 1999
by Jim Gatheral, and presented in 2004 at the annual conference of Global Derivatives in Madrid.
As traders and practitioners require intuitive interpretation of the SVI parameters, Gatheral and
Jacquier show in [14] that the SVI model could be the convergence of the total implied variance
under Heston model for large enough maturity T , additionally, they provide an intuitive interpre-
tation of SVI parameters.

The success of this model is due to its particular features:

1. For a fixed time to expiry T , the implied Black-Scholes variance σ2
BS(k, T ) is linear, with

respect to the log forward moneyness strike k := log(K/FT ) as |k| → ∞ ,where K is the
strike and FT is the forward price of the stock.This linearity is consistent with Roger Lee’s
moment formula [13].

2. It fits very well listed option prices, and careful choice of parameters allows for an arbitrage
free interpolation.

2.2 SVI Model Formulation

The original SVI formulation is the so called the raw SVI presented in 2004. This formulation is
very tractable. However, it’s very difficult to find the precise condition to prevent arbitrage. We
will present other formulation such as: the natural SVI parameterization and the SVI Jump-Wings
(SVI-JW) parameterization.

2.2.1 The raw SVI parameterization

The raw SVI parameterization is a parametric model with 5 parameters χR = {a, b, ρ,m, σ}, it’s a
model of the total implied variance w (k;χR) := σ2

imp(k;χR)T.

w (k;χR) = a+ b
{
ρ(k −m) +

√
(k −m)2 + σ2

}
(2.1)

Where k := log( KFT
) is the log forward moneyness and K is the strike.

For every k ∈ IR , and the set of the models parameters χR is given by

11



a ∈ IR

b ≥ 0

|ρ| < 1

m ∈ IR

σ > 0

a+ bσ
√

1− ρ2 ≥ 0

The last condition is calculated using the fact that the minimum of the total implied variance is
positive; w(k;χR) ≥ 0.
Note that some papers use the forward log-moneyness or log-strike k := log

(
K
FT

)
notation instead

of using the strike K.
This choice is motivated by scaling reason: dividing the strike by the forward price and taking the
logarithm does not change our computation. We adapt in the following section the notation of
forward log-moneyness strike k.

w (k;χR) = σ2
SV I (k;χR) = a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
(2.2)

In practical applications, the model parameters are adopted to each option expiry. For a fixed
maturity T , the smile (or slice) is a function σ(k, t), this function is modeled by

w (k;χR) := σ2
imp(k;χR)T.

We define also:

• The total implied variance: w(k, T ) = Tσ2
BS(k, T )

• The implied variance: v(k, T ) = σ2
BS(k, T ) = w(k, T )/T

• The map of the volatility surface: (k, T ) 7−→ w(k, T )

• The slice function: for any fixed expiry T > 0, k 7→ w(k, T )

Now we consider the effects and the interpretation of changing the parameters χR = {a, b, ρ,m, σ}
as describes in the figure (2.1).

• a: determines the overall level of variance: an increasing a increases the general level of
variance, a vertical translation of the smile.

• b: controls the angle between the left and right asymptotes: Increasing b increases the slopes
of both the put and call wings, tightening the smile.

• ρ: determines the orientation of the graph: increasing ρ decreases the slope of the left wing,
and increases the slope of the right wing a counter-clockwise rotation of the smile.

• m: translates the graph: increasing m translates the smile to the right.

• σ: determines curvature of the smile: Increasing σ reduces the at-the-money (ATM) curvature
of the smile.

The total implied variance w (k;χN ) has the left and right asymptotes that respect the assumption
of linear wings, this result is consistent with the Roger Lee’s moment formula mentioned above:

WL(k) = a+ b(ρ− 1)(k −m) k → −∞
WR(k) = a+ b(ρ+ 1)(k −m) k →∞

(2.3)
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Figure 2.1: The effects of the parameters χR = {a, b, ρ,m, σ} in SVI model

2.2.2 The natural SVI parameterization
Gatheral and Jacquier propose in [9] another formulation of the natural SVI parameterization, it
describes the total implied variance with parameters χN = {∆, µ, ρ, ω, ζ}.

w (k;χN ) = ∆ +
ω

2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1− ρ2)

}
(2.4)

with ω ≥ 0,∆ ∈ IR, µ ∈ IR, |ρ| < 1 and ζ > 0

We can show the relationship between the raw and the natural SVI model.

Lemma The parametrisation between the raw and the natural SVI is given by

(a, b, ρ,m, σ) =

(
∆ +

ω

2

(
1− ρ2

)
,
ωζ

2
, ρ, µ− ρ

ζ
,

√
1− ρ2
ζ

)
(2.5)

and the inverse mapping between the natural and the raw SVI is

(∆, µ, ρ, ω, ζ) =

(
a− ω

2

(
1− ρ2

)
,m+

ρσ√
1− ρ2

, ρ,
2bσ√
1− ρ2

,

√
1− ρ2
σ

)
(2.6)
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2.2.3 The SVI Jump-Wings (SVI-JW) Parameterization
The SVI-Jump-Wings (SVI-JW) is parameterization of the implied variance v(k, T ) rather than
the implied total variance w(k, T ). This kind of parameterization is intuitive for traders, and the
parameters have a financial meaning. The model’s parameterization was inspired by a similar
parameterization attributed by Gatheral to Tim Klassen.

For a fixed time to expiry t > 0, and a parameters set χJ = {vt, ψt, pt, ct, ṽt}, the (SVI-JW)
parameters defined from the row SVI is given by

vt =
a+ b

{
−ρm+

√
m2 + σ2

}
t

ψt =
1
√
wt

b

2

(
− m√

m2 + σ2
+ ρ

)
pt =

1
√
wt
b(1− ρ)

ct =
1
√
wt
b(1 + ρ)

ṽt =
1

t

(
a+ bσ

√
1− ρ2

)
(2.7)

Setting wt := vtt, we notice that this parametrization dependency on time to expiration t, hence
the (SVI-JW) could be view as a generalisation of the raw SVI.

The SVI-JW parameters interpretation is as following :

• vt is the ATM variance.

• pt is the slope of the left (put) wing.

• ct is the slope of the right (call) wing.

• vt is the minimum implied variance.

2.3 Characterisation of Static Arbitrage

In this section we present the definition of static arbitrage in volatility and the necessary conditions
to prevent it in our model. A static arbitrage is an arbitrage that does not require rebalancing of
positions.

The total implied variance w(·, t) should satisfy the following conditions to be arbitrage free as
presented in the following theorem [15].

Theorem 3.3 If the two-dimensional map w : IR× IR+ → IR+ satisfies:
(i) w(·, t) is of class C2(IR) for each t ≥ 0
(ii) w(k, t) > 0 for all (k, t) ∈ IR× IR∗+
(iii) w(k, ·) is non-decreasing for each k ∈ IR
(iv) for each (k, t) ∈ IR× IR∗,+ probability density function P (k), is non-negative
(v) w(k, 0) = 0 for all k ∈ IR
(vi) limk↑∞ d+(k,w(k, t)) = −∞, for each t > 0

Then the corresponding call price surface (K, t) 7→ BS(K,w(log(K), t)) is free of static arbi-
trage.

Definition 3.3. Let w : IR × IR∗+ → IR+ be a two-dimensional map satisfying Theorem
3.3(i)-(ii)

• w is said to be free of calendar spread arbitrage if condition (iii) in Theorem 3.3 holds;

• w is said to be free of butterfly arbitrage if condition (iv) in Theorem 3.3 holds.
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To check the arbitrage as explained in [16] and [17], we have to verify that the risk neutral den-
sity (RND) produces a volatility curve that is arbitrage-free. This RND will be used to calculate
the price of our call/put options that should be also arbitrage-free.

There are two ways to check for arbitrage:

1. The risk neutral density (RND) test for butterfly arbitrage.

2. The test based on option strategies for butterfly and calendar spread arbitrage.

Breeden and Litzenberger [11], derive an expression of the discounted risk neutral density
fST

(S∗) as function of the second derivative of the call price C(K) with respect to the strike K

e−rT fST
(S∗) =

∂2C

∂K2

∣∣∣∣
K=S∗

(2.8)

2.3.1 RND tests for arbitrage
To satisfy this type of test we have to check the most common feature for a density function:

• Using the RND, we can obtain the call/put prices observed in the market by numerical
integration of the RND.

• The RND is a positive function and its integral is equal to the one.

• Using the call price function C(K), with strike K, the RND should produce monotonically
decreasing call option prices with respect to the strike K.

The call price C(K) is

C(K) = e−rT
∫ ∞
K

(ST −K) fST
(s)ds (2.9)

and we should ensure that the first derivative with respect to the strike is negative as follows

∂C

∂K

∣∣∣∣
K=K1

= −e−rT
∫ ∞
K1

fST
(s)ds < 0 (2.10)

• The last condition is the convexity of the call price C(K) with respect to the strike K If we
consider to strikes K1 < K2 then the first derivative mentionned above should increase in
strike

∂C

∂K

∣∣∣∣
K=K2

− ∂C

∂K

∣∣∣∣
K=K1

= e−rT
∫ K2

K1

fST
(s)ds > 0 (2.11)

Defnition 1. A volatility surface is free of static arbitrage if and only if both of the following
conditions are satisfied:

1. It is free of calendar spread arbitrage;

2. Each time slice is free of butterfly arbitrage.

Note that the first condition guarantees the monotonicity of European call option prices with
respect to theirs maturities. The butterfly arbitrage guarantees the existence of a non negative
probability density. Now, we will analyze each condition separately.

2.3.2 Calendar Spread Arbitrage
Calendar spread arbitrage refers to the monotonicity of European call option prices with respect
to maturity. In order to obtain no arbitrage condition with respect to implied volatility, we need
to transform this condition.

To obtain a calendar spread, we will buy and sell options with the same strike price but for
different maturities. For simplify, we assume also that there are no dividend or interest rate.
Let C(T,K) the price of a call with expiry T and strike K. We know that if T1 < T2 then we have
calendar spread arbitrage if C(T1,K) > C(T2,K).
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Our strategy: we buy (long) call option C(T2,K) (the cheap) and we sell (short) the call C(T1,K)
(the expensive), then, the difference will be x = C(T1,K)− C(T2,K) > 0.

At T1 our position is x+ C (T2)−max {ST1 −K, 0}

• If (ST1
≤ K), then the total profit is: x+ C (T2)

• If (ST1
> K), and the profit will be: x+ C (T2)− ST1

+K

At T2 :

• If (ST2 > K), we buy the stock by paying the amount K that we had received at T1, and
return the stock that we had short at T1. The net profit for our trading strategy is x > 0.

• If (ST2
< K), we buy the stock by paying T2 and return the stock that we short at T1. Note

that, we had received k at time T1, our net profit is then K − ST2
+ x > x > 0.

Lemma A volatility surface w is free of calendar spread arbitrage if

∂Tw(k, T ) ≥ 0, for all k ∈ IR and T > 0

Proof : Let (Xt)t≥0 be a martingale, L ≥ 0 and 0 ≤ t1 < t2. Then the inequality is true

E
[
(Xt2 − L)

+
]
≥ E

[
(Xt1 − L)

+
]

(2.12)

Let consider two options C1, C2with strikes K1, K2 and expiry time t1,t2 respectively.
If the two options have the same moneyness (log-moneyness or log-strike := log

(
K
FT

)
) we get:

K1

Ft1
=
K2

Ft2
=: ek (2.13)

Then, the process (Xt)t≥0 defined by Xt := St/Ft is martingale for all t ≥ 0 , and the following
relation holds if the dividends are proportional :

C2

K2
= e−kE

[(
Xt2 − ek

)+] ≥ e−kE
[(
Xt1 − ek

)+]
=
C1

K1
(2.14)

This means that if the moneyness is constant, option prices are non-decreasing in time to
maturity (∂tCBS(k, ω(k, t)) ≥ 0 . If this is valid for the Black-Scholes prices CBS(y, ω(k, t)), then
ω(k, t) is strictly increasing, i.e (∂tw(k, t) ≥ 0).
We can interpret the absence of calender spread by the fact that there are no cross lines on the
total variance : when the maturity goes up , the SVI slice will be translated up.

2.3.3 Butterfly arbitrage
We consider the butterfly arbitrage for the slice of implied volatility k 7→ w(k, t).

In the real market the butterfly spread is a strategy with options, which combines simultaneous
buying and selling of three similar types options (either calls or puts) with strikesK−ε < K < K+ε
and which have the following characteristics:

• The options have the same maturity

• The options are listed on the same underlying

• The strike K − ε and K + ε are equidistant from K as in figure (2.2).

The butterfly consists of the purchase of a call option with strike K − ε, the sale of 2 call options
with strike K and the purchase of a third option with strike K + ε.

In other side, we know that the second derivative of the call price with respect to the strike k
is

d2C(K,T )

dK2
= lim
ε→0

C(K − ε, T )− 2C(K,T ) + C(K + ε, T )

ε2
(2.15)

We consider the following European payoff:
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Figure 2.2: Butterfly Spread

• 1
ε2 calls with strike K − ε

• 1
ε2 calls with strikes K + ε

• −2ε2 calls with strikes k

This strategy is called the butterfly spread, and the absence of butterfly arbitrage implies that
the price of a butterfly spread is positive and the call price must to be convex with

C(K − ε, T )− 2C(K,T ) + C(K + ε, T ) ≥ 0 (2.16)

Let’s back to the our SVI model, we will find an equivalent condition to the call price convexity
in (2.15) in terms of the implied total variance w(k).

recall the Black-Scholes formula for a European call option price in terms of the total implied
variance w(k)

CBS(k,w(k)) = S
(
N (d+(k))− ekN (d−(k))

)
, for all k ∈ IR (2.17)

with;
d±(k) := −k/

√
w(k)±

√
w(k)/2

Let P be the probability density function of ST , then

p(k) =
∂2C(k)

∂K2

∣∣∣∣
K=Ftek

=
∂2CBS(k,w(k))

∂K2

∣∣∣∣
K=Ftek

, k ∈ IR (2.18)

p(k) =
g(k)√
2πw(k)

exp

(
−d−(k)2

2

)
(2.19)

Where the function g : IR→ IR

g(k) :=

(
1− kw′(k)

2w(k)

)2

− w′(k)2

4

(
1

w(k)
+

1

4

)
+
w′′(k)

2
(2.20)

The condition g(k) > 0 is equivalent to the market implied volatility density P (k) is positive.

Example: butterfly arbitrage with Calls
We consider the practical example with three calls options traded on the real market and listed

to the same underlying. The three options have the same maturity and strikes: k1 = 10, k2 = 20
and k3 = 30.
The three options are quoted as following:

Call(k1 = 10) = 12$, Call(k1 = 20) = 7$, Call(k1 = 30) = 1$ (2.21)

The question: is there any arbitrage opportunity?
Response: As we know that the call option price is a convex function with respect to the strike.

Let’s consider C(K) , the call price function with strike K, and we have only to check the convexity
criterion using (2.3.3).
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The C(K) is convex if and only if

C

(
K1 +K3

2

)
≤ 1

2
(C (K1) + C (K3)) (2.22)

This is equivalent to check the inequality

C(20) ≤ 1

2
(C(10) + C(30)) = 6.5 (2.23)

However, C(20) = 7 and the inequality is not satisfied, therefore, there is a butterfly arbitrage
opportunity.

In this case, our arbitrage strategy is to take advantage (profit) in this situation: we short (i.e.,
sell) the options that are over-priced (i.e Call(k1 = 20) = 7), and we long (i.e., buy) the options
that are under-priced (i.e Call(k1 = 10) = 12$ and Call(k1 = 30) = 1$).

We short two calls options Call(k1 = 20) and long the two others calls Call(k1 = 10)$ and
Call(k1 = 30)$
The profit at the present time t is : 2× 7− 12− 1 = 1$.
At maturity the pay-off will be always positive as below

(ST − 10)
+

+ (ST − 30)
+ − 2 (ST − 20)

+
=


0, if ST ≤ 10
ST − 10, if 10 ≤ ST ≤ 20
30− ST , if 20 ≤ ST ≤ 30
0, if ST ≥ 30

(2.24)

We note that we have guaranteed profit at the start time t and also at maturity T .

Note that we can also use another method to verify the butterfly arbitrage. In fact, we have no
butterfly arbitrage in our input data if and only if the slope is decreasing in the call function C(k)
which is can be written as

Ci+1 − Ci
Ki+1 −Ki

≥ Ci − Ci−1
Ki −Ki−1

(2.25)

If the slope increasing, this mean that C(k) is convex. We use this to check in our example

Call(k1 = 10) = 12$, Call(k2 = 20) = 7$, Call(k3 = 30) = 1$

1− 7

30− 20
≥ 7− 12

20− 10

We get

−6

10
≥ −5

10

The inequality is not verified, hence, there is a butterfly arbitrage.

Example: Butterfly arbitrage with two Puts
In order to construct a butterfly arbitrage, we will use in this example two European puts with

non-dividend and the following characteristics:

Put(k2 = 80) = 8$ Put(k3 = 90) = 9$ (2.26)

The same question as with the previous example: is there any arbitrage opportunity?
Response: Let’s consider Put(K), the put price function with strike K, and we can check the
convexity criterion using (2.26). In fact, we need a third point to calculate the convexity criterion,
hence, and we consider the three points

K1 = 0, K2 = 80, K3 = 90

Where Put(k1 = 0) = 0$, then we can write

K2 = 1/9K1 + 8/9K3 (2.27)
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The function Put(K) is convex if and only if

Put (K2) = Put

(
1

9
K1 +

8

9
K3

)
≤ 1

9
Put (K1) +

8

9
Put (K3)

=
8

9
Put (K3)

(2.28)

Therefore, the inequality is satisfied, and the put in convex, hence, there are no arbitrage in
this example.
Defnition 2.1 A slice is said to be free of buttery arbitrage if the corresponding density define in
(2.19) is non-negative, which is equivalent to g(k) ≥ 0.

Lemma 2.2 The map k 7→ w(k, t) is free arbitrage if and only if g(k) ≥ 0 for all k ∈ IR and
limt→+∞ d+(k) = −∞

Proof : Let P the probability density function that can be calculated from the call price function
C(k) using the formula of Breeden-Litzemberger is:

p(k) =
∂2C(k)

∂K2

∣∣∣∣
K=Ftek

=
∂2CBS(k,w(k))

∂K2

∣∣∣∣
K=Ftek

, k ∈ IR (2.29)

By diferentiating the Black-Scholes formula for any k ∈ IR, we get ;

p(k) =
g(k)√
2πw(k)

exp

(
−d−(k)2

2

)
(2.30)

We note that the integral of the density function may not all time equal to 1 , and we need to
impose asymptotic boundary conditions. The limit of the call option limk→+∞ CBS(k,w(k)) = 0,
which is equivalent to limk→+∞ d+(k) = −∞.

Now we will summarize the characterisation of static arbitrage that we will use in practice in the
next section of calibration.

AOA Characterisation Call criterion equivalent criterion equivalent criterion
Butterfly arbitrage (Convexity) ∂2C(k)

∂K2

∣∣∣
K=Ftek

≥ 0 p(k) ≥ 0 g(k) ≥ 0

Limit Price function limK→+∞ CBS(T, k) = 0 limt→+∞ d+(k) = −∞ b(1 + ρ) < 2

Calendar Spread (Monotonicity) T −→ CBS(T,K)↗ ∂CBS(T,x)
∂T ≥ 0 ∂Tw(k, T ) ≥ 0

Table 2.1: Summary of the static arbitrage
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Axel Vogt example of arbitrage: generated by a parametrisation of SVI with T=1

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) (2.31)

These parameters give a positive total variance function w,however, the density function p(k) and
g(k) defined in (3.20), are negative. We will show explicitly, in the next section, how to tackle this
problem.

Figure 2.3: Plots of the total variance smile w (left) and the function g (right), using Axel Vogt’s
parameters

2.4 Volatility on the wings

Inspired by the work done by Jäckel in [18], in this section In this section we will proceed to an
asymptotic study of the function g(k), for large strikes, in order to get sufficient conditions that
ensure a probability density function P (k) positive and hence, an SVI butterfly arbitrage free.

We recall the g : IR→ IR

g(k) :=

(
1− kw′(k)

2w(k)

)2

− w′(k)2

4

(
1

w(k)
+

1

4

)
+
w′′(k)

2
(2.32)

In the wings we know that the total implied variance w (k;χN ) has the left and right asymptotes
that respect the assumption of linear wings, this result is consistent with the Roger Lee’s moment
formula mentioned above.{

WR(k) = b(ρ+ 1)k + [a− bm(ρ+ 1)] k → +∞
WL(k) = b(ρ− 1)k + [a− bm(ρ− 1)] k → −∞ (2.33)

In the general case (left and right wing), we consider the total implied variance w (k;χN ) for
large strikes.

w(k) = α+ βk, and w′(k) = β, w′′(k) = 0

We replace in (2.32) and we get

g(k) =

(
1− k

2

β

(α+ βk)

)2

− β2

4

(
1

α+ βk
+

1

4

)
(2.34)

After simplification we get the following quadratic equation

g(k) =
β2

4

(
1− β2

4

)
k2 +

1

4

(
4αβ − β3 − αβ3

2

)
k +

1

4

(
4α2 − αβ2 − α2β2

4

)
(2.35)

We calculate the discriminant ∆ of the quadratic function g(k) and we get

∆ =
β4

16

(
β2 + α2 − 4α

)
(2.36)
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In order to guarantee that the function g(k) is positive, we will be interested to the case where
the discriminant ∆ of the quadratic function g(k) is strictly negative in both wings sides (∆ < 0)
and the first coefficient of the k2 is strictly positive also.

Figure 2.4: Large strikes asymptotic for the g(k) function

We study both wings, right and left, to find sufficient conditions for the butterfly arbitrage.

2.4.1 The right wing
We avoid the arbitrage in the right wing by considering that the discriminant ∆R is negative in
the right side of the function g(k).

We recall the asymptotic formula, for large strikes, for the total implied variance

WR(k) = b(ρ+ 1)k + [a− bm(ρ+ 1)] = α+ βk k → +∞

Where;
α = a− bm(ρ+ 1), β = b(ρ+ 1)

The discriminant ∆R is calculated by replacing α and β in (2.36)

∆R =
b4(ρ+ 1)4

16

[
b2(ρ+ 1)2 + (a−mb(ρ+ 1))2 − 4(a− bm(ρ+ 1))

]
(2.37)

As the term b4(ρ+1)4

16 is strictly positive, the sign of ∆R will be decided by the second term,
and we get

(
∆R < 0

)
⇐⇒

(
b2(ρ+ 1)2 + (a−mb(ρ+ 1))2 − 4(a− bm(ρ+ 1)) < 0

)
⇐⇒ b2(ρ+ 1)2 <

(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
⇐⇒

(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
b2(ρ+ 1)2

> 1

Where; b2(ρ+ 1)2 > 0

∆R is negative, hence, the quadratic function g(k) is strictly positive if the first coefficient of
this quadratic function is positive, i.e

β2

4

(
1− β2

4

)
> 0 ⇐⇒ b2(ρ+ 1)2

4

(
1− b2(ρ+ 1)2

4

)
> 0

⇐⇒ 0 < b2(ρ+ 1)2 < 4
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Finally, for the right wing, gR(k) is strictly positive if the following two conditions satisfies


(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
b2(ρ+ 1)2

> 1

0 < b2(ρ+ 1)2 < 4

(2.38)

2.4.2 The left wing
We fellow the same analysis as the previous one, the calculus is the same we change only the term
(ρ+ 1) by (ρ− 1).

We can avoid the arbitrage in the left wing by considering that the discriminant ∆L is negative
in the left side of the function gL(k).

We recall the total implied variance left asymptotic formula for the large strikes

WL(k) = b(ρ− 1)k + [a− bm(ρ− 1)] = α+ βk k → +∞

Where;
α = a− bm(ρ− 1), β = b(ρ− 1)

The discriminant ∆L is calculated by replacing α and β in (2.36)

∆R =
b4(ρ− 1)4

16

[
b2(ρ− 1)2 + (a−mb(ρ− 1))2 − 4(a− bm(ρ− 1))

]
(2.39)

As the term b4(ρ−1)4
16 is strictly positive, the sign of ∆L will be decided by the second term, and

we get

(
∆L < 0

)
⇐⇒

(
b2(ρ− 1)2 + (a−mb(ρ− 1))2 − 4(a− bm(ρ− 1)) < 0

)
⇐⇒ b2(ρ− 1)2 <

(
a−mb(ρ− 1)

)(
4− a+ bm(ρ− 1)

)
⇐⇒

(
a−mb(ρ− 1)

)(
4− a+ bm(ρ− 1)

)
b2(ρ− 1)2

> 1

Where; b2(ρ− 1)2 > 0

∆L is negative, hence, the quadratic function gL(k) is strictly positive if the first coefficient of
this quadratic function is positive, i.e

β2

4

(
1− β2

4

)
> 0 ⇐⇒ b2(ρ− 1)2

4

(
1− b2(ρ− 1)2

4

)
> 0

⇐⇒ 0 < b2(ρ− 1)2 < 4

Finally, for the right wing, gR(k) is strictly positive if the following two conditions are satisfied


(
a−mb(ρ− 1)

)(
4− a+ bm(ρ− 1)

)
b2(ρ− 1)2

> 1

0 < b2(ρ− 1)2 < 4

(2.40)

We summary the necessary conditions that guarantee a butterfly arbitrage free for SVI model
as following
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Theorem 2.2
The total implied variance w(k, t) in the SVI model is said to be free of butterfly arbitrage if the
following conditions holds 

(
a−mb(ρ+ 1)

)(
4− a+ bm(ρ+ 1)

)
b2(ρ+ 1)2

> 1(
a−mb(ρ− 1)

)(
4− a+ bm(ρ− 1)

)
b2(ρ− 1)2

> 1

0 < b2(ρ+ 1)2 < 4

0 < b2(ρ− 1)2 < 4

23



Chapter 3

Robust Calibration For SVI
Arbitrage Free

In this chapter we present our main result: robust calibration that produces an arbitrage free set
of raw SVI parameters. One of the desirable features of the SVI model is that it fits the input
data very well especially in the equity market.The main weakness of this model is that arbitrage-
freeness in strike and maturity is not guarantee and it’s not automatically verified during the
calibration step. More often, we calibrate the model and next we check the arbitrage condition via
the risk neutral density(RND) if it’s positive. In practice, this is a quiet inconvenience and most
practitioners require a more robust approach.

We implement and test a robust calibration method using the Sequential Quadratic Program-
ming (SQP) optimization method with constraints that allow to calibrate the SVI model and also
to eliminate the arbitrage automatically during the calibration step. We no longueur need to check
the positivity of the density function p(k). This calibration method is very important in practice:
it allows to implement the model in the pricing library and also to calculate the local volatility
using the implied volatility. Finally, we give two examples with arbitrage (one of them is Axel
Vogt) and we show in practice how our algorithm could perform in this case.

Finally, we test the performance of our calibration method using the implied volatility extracted
from call/put option price listed in 23 indexes, each one with 14 maturities.

3.1 The Raw SVI Calibration

The raw SVI model represents the total variance or the implied volatility of the call or put options
observed in the market. Therefore, we define a loss function to be optimized. This function is the
difference between the value of variance given by our SVI model and the value of implied volatil-
ity observed in the market. The minimization of this function will permit us to calibrate SVI to
observed implied volatilities.

Most algorithms require an initial guess of the model parameters, as well as boundaries conditions
and an objective function. The resulting parameters should respect the arbitrage free conditions:
butterfly arbitrage and calendar spread arbitrage.
Recall the expression of the raw SVI model with 5 parameters χR = {a, b, ρ,m, σ}.

wTotal (k;χR) = a+ b
{
ρ(k −m) +

√
(k −m)2 + σ2

}
(3.1)

For every strike k ∈ IR, and

a ∈ IR

b ≥ 0

|ρ| < 1

m ∈ IR

σ > 0

a+ bσ
√

1− ρ2 ≥ 0

(3.2)
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3.2 SVI’s Parameters Boundaries

The purpose of this section is to determine lower and upper boundaries of each of the SVI param-
eters (a, b, ρ,m, σ) in order to run an efficient calibration that respect conditions related to the
model and also to avoid arbitrage.

We have some restrictions on the parameters that follow from the parameterization of the model
in (2.1), such as:

b ≥ 0; | ρ |< 1; σ > 0.

Zeliade [19] present some parameter constraints and limiting cases. They incorporate also some
boundaries that are deduced the no arbitrage conditions. We present them bellow.

• Parameter a and SVI Minimum
In this part we define the lower and upper bound of the parameter a.
w (k;χR) has a unique minimum if ρ2 6= 1 and it’s value is

Wmin(k) = a+ b σ
√

1− ρ2 (3.3)

This minimum is located at the point: k∗ = m− ρσ√
1−ρ2

.

We replace the positivity condition: a+ b σ
√

1− ρ2 > 0 by the restriction a > 0

which is stronger as both parameters b and σ are positive and obviously
√

1− ρ2 also. Finally,
we can conclude that the conditions

Wmin(k) = a+ b σ
√

1− ρ2 > 0 ⇐⇒ (a > 0) (3.4)

If we impose the condition a > 0, the question came up: which lower bound could a take.
This is a very important question that we will discuss it in the calibration section.

At present we take an arbitrary small value amin = 10−5.

For the upper bound, and as the parameter a represents the overall level of total variance or
the vertical translation, hence, it could not suitable to get a value of a greater than the largest
value of the observed total variance. Therefore we impose for a the following boundaries

0 < amin = 10−5 ≤ a ≤ max(Wmarket
SV I ) (3.5)

• Parameter b and left wing
we can estimate the left and the right SVI asymptotes:

WL(k) = a+ b(ρ− 1)(k −m)

WR(k) = a+ b(ρ+ 1)(k −m)
(3.6)

For the right wing the slop is b(ρ+ 1) and it should not exceed to 2 which is consistent with
Roger Lee formula value of implied volatility for the large strike tail [13].

We can also take the advantage from the others arbitrage constraints such as

lim
K→+∞

CBS(T, k) = 0 ⇐⇒ lim
t→+∞

d+(k) = −∞ (3.7)

We show that the condition limk→∞ d1(k,w(k)) = −∞, i.e :

lim
k→∞

d1 (k,wSVI(k)) = lim
k→∞

(
− k√

wSVI(k)
+

1

2

√
wSVI(k)

)
= −∞ (3.8)

Is satisfied for a function w(k) if:

lim sup
k→∞

w(k)

2k
< 1. (3.9)
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Or we have :
lim sup
k→∞

w(k)

k
= b(ρ+ 1) (3.10)

Finally, to be consistent with the Roger Lee’s moment formula, the right slope condition
should satisfy the inequality:

b(ρ+ 1) < 2. (3.11)

Using this last inequality we can conclude that for ρ 6= −1

b <
2

(ρ+ 1)
(3.12)

For any | ρ |< 1, the minimum of the function f(ρ) = 2
(ρ+1) is f(1) = 1, (with | ρ |< 1).

For the b lower bound, we can take a small value around bmin = 10−2.

Finally we obtain that the b boundaries are:

0 < bmin = 10−2 < b < 1 (3.13)

• Correlation Parameter ρ
The correlation coefficient between the Brownian motion of the underlying and the implied
variance process is ρ, hence, it’s value will be in the interval ]− 1, 1[

• Translation Parameter m
By the same way, m is the translation of the smile to the right, and as the smile could not
more out side the zone limited by the log forward moneyness of our input data, hence, we
can cap it at some reasonably translation level as following.

2 min
i
ki ≤ m ≤ 2 max

i
ki (3.14)

Where ki is the log forward moneyness or log strike: ki := log
(
Ki

FT

)
.

• Curvature Parameter σ
The positive value of sigma (σ > 0) means that the total implied variance has a positive
at-the-money curvature.
As σ represents the curvature, it’s rare to see σ takes values larger than 1: in general, σ
takes small values around 0.01 or 0.02 for the short maturities and it goes more large for long
maturities, like 0.2 or 0.3 for 10 years time to expiry.
For this reason, we can cap sigma by any arbitrary reasonable value σmax = constant value
such as 1, 2 or other number.

0 < σmin = 0.01 ≤ σ ≤ σmax = 1 (3.15)

We can summarize the obvious boundaries for the SVI raw parameters model as following:



0 < amin = 10−5 ≤ a ≤ max(WSV I)

0 < bmin = 0.001 < b < 1

−1 < ρ < 1

2 min
i
ki ≤ m ≤ 2 max

i
ki

0 < σmin = 0.01 ≤ σ ≤ σmax = 1

(3.16)

The boundaries presented in (3.72) are very important to satisfy during the calibration,
respecting these values will allow us to take an advantage and to avoid some arbitrage zones.
The last point to care about is the butterfly arbitrage related to guarantee that the probability
density function is positive, this is what we will see in the next section.
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3.2.1 The Initial Guess
In order to run our calibration algorithm, we need to define the initial guess parameter’s values,
this values are very important and we should to care when we choose these right values. Also, the
initial point should below to the boundaries intervals for each variable.

For the first parameter a that represent the vertical translation, one of the reasonable value is
to be close to the minimum of the market total variance value, hence, we can take it

a =
1

2
min(WSV I)

The parameter b could be taken as b = 0.1, in general this value is the middle between the b
value for the short maturities of one weeks to the large maturities of 10 years.

For the correlation parameter ρ, it’s obvious to guess it’s initial value for the equity market, we
are sure that it takes negative value and the initial guess should be

ρ = −0.5

Note that the extreme values of ρ are -1 and 1, for ρ = 1, the SVI model is graphically similar to
the payoff of the call, and for ρ = −1, the ρ = -1 , the SVI model ( the smile) is similar to the put
payoff.

Therefore ρ = −0.5, is a reasonable value for the smile in the equity market. We will see after
calibration that ρ vary with respect to the time to expiry: more the time to expiry is large, more
will decrease taking small negative values.

Regarding the horizontal translation parameter m: we notice that m can take as positive or
negative values: more the m value is high , more the smile will be translated to the right and vice
versa. The initial value m = 0.1, is a resealable value between the short and long maturities.

The last parameter is the curvature parameter σ which is strictly positive in general it’s values
are small around 0.01 for the short maturities ( weekly or monthly) and 0.2 for the large maturities
of 10 years, hence, taking σ = 0.1 will be acceptable value valid for the short and the long
maturities.

Note that these values are arbitrary and any other values close could be work also, finally, we
summarize the initial guess values for the SVI calibration in the box bellow.l



a =
1

2
min(WSV I)

b = 0.1

ρ = −0.5

m = 0.1

σ = 0.1

(3.17)

3.2.2 The Butterfly Arbitrage Constraints
Let’s recall the expression of P , the probability density function that can be calculated from the
call price function C(k) using the formula of Breeden-Litzemberger [11]:

p(k) =
∂2C(k)

∂K2

∣∣∣∣
K=Ftek

=
∂2CBS(k,w(k))

∂K2

∣∣∣∣
K=Ftek

, k ∈ IR (3.18)

By diferentiating the Black-Scholes formula for any k ∈ IR, we get ;

p(k) =
g(k)√
2πw(k)

exp

(
−d−(k)2

2

)
(3.19)

The limit of the call option limk→+∞ CBS(k,w(k)) = 0, which is equivalent to:

lim
k→+∞

d+(k) = −∞

Our model is butterfly arbitrage free if the SVI parameters could guarantee that the probability
density function P is positive for any log forwad moneyness k,hence, p(k) is positive if and only if
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the function is also positive (g(k) > 0).

Where the function g : IR→ IR

g(k) :=

(
1− kw′(k)

2w(k)

)2

− w′(k)2

4

(
1

w(k)
+

1

4

)
+
w′′(k)

2
(3.20)

Finally, we can summarize all the constraints that could guarantee to get SVI model with ar-
bitrage free following these conditions:



0 < amin = 10−5 ≤ a ≤ max(WSV I)

0 < bmin = 0.001 ≤ b < 1

−1 < ρ < 1

2 min
i
ki ≤ m ≤ 2 max

i
ki

0 < σmin = 0.01 ≤ σ ≤ σmax = 1

g(k) > 0

(3.21)

3.3 Input Data

We download Market data for example CallBS(k,w(k)) or PutBS(k,w(k)), for an expiry time T fix
with strikes K, and next we can extract the implied volatility from this market call or put prices
by inverting the black Scholes formula, finally, we get what we call the implied variance σ2

BS(k, T ).

We calculate the total implied variance : ωmarketTotal(i) = Tσ2
BS(k, T )

Calculate the log forward moneyness or log strike: x := log
(
K
FT

)
, where FT is the forward

price.1

Our data is the prices of index options Call and Put listed on 23 indexes such as: EURO STOXX
50, CAC 40, NIKKEI 225, FTSE Mid 250 Index, SWISS MARKET IND, Hang Seng, NASDAQ
100, FTSE 100, MSCI world TR Index, Sao Paulo SE Bovespa Index,...etc

We display a sample of data call and put prices listed in the EURO STOXX 50 index in the figure
(3.1).

Strikes Implied volatility % Call Put
2068.48 24.93 1268.59 7.25
2413.23 22.3 936.83 21.56
2757.98 19.39 621.99 52.79
3016.54 17.17 407.05 97.39
3585.37 12.86 77.18 338.53
3964.59 12.22 15.1 657.11
4481.71 12.98 1.87 1162.98
4998.83 14.17 0.35 1680.55
5688.33 15.65 0.05 2372.38
6033.07 16.32 0.02 2718.41
6377.82 16.96 0.01 3064.46
6722.57 17.56 0.01 3410.52
6894.94 17.86 0 3583.55

Table 3.1: Call and Put Price on 2019 /04/05 with, T =1.01 Y, from EURO STOXX 50

We can note in the figure (3.1) that our data respect some proprieties such positivity of both prices
call and put and secondly monotonicity: put options price are increasing, and call options price

1Some times the strike is a large number, to reduce this strike scale, we should use this variable change to the
logarithmic scale in order to get a small numbers in the x-axis.
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Figure 3.1: Call and Put option prices from Eurostoxx50, (T : 2019/04/05 to 2020/04/06 )

are decreasing with respect to the strike. These proprieties are the basic requirements that our
data should respect. Note also that we can check the convexity of our option prices ensuring that
the second derivative is positive point by point.

3.4 Sequential Quadratic Programming For SVI Calibration

Sequential Least-Squares Quadratic Programming (SLSQP) is a sequential quadratic programming
(SQP) algorithm for nonlinearly constrained gradient-based optimization. Sequential quadratic
programming method SQP is proposed for the first time by Wilson in his PhD thesis (1963).

This method is used for constrained nonlinear optimization problems with any combination
of bounds. The idea behind this method is to reformulate and to solve the original function to a
sub-problem in each iteration by linearization of the constraints and approximating the Lagrangian
function.

This method is the exact solution to our problem which is a non linear optimization with non
linear constraints. First, we present an overview of this method in the general case as presented
by Dieter Kraft in [20].

First, we start by defining the convergence rates of sequence as define in [21].

Definition 4.4 We consider
(
xk
)
k∈N0

a sequence of iterates converging to x∗, the sequence is said
to convergence

• Linearly, if there exist 0 < q < 1 and kmax ≥ 0 such that for all k ≥ k∥∥xk+1 − x∗
∥∥ ≤ q ∥∥xk − x∗∥∥

• Superlinearly, if there exist a null sequence (qk)k∈N0
of positive numbers and kmax ≥ 0 such

that for all k ≥ kmax ∥∥xk+1 − x∗
∥∥ ≤ qk ∥∥xk − x∗∥∥

• Quadratically, if there exist c > 0 and kmax ≥ 0 such that for all k ≥ kmax∥∥xk+1 − x∗
∥∥ ≤ c∥∥xk − x∗∥∥2

• R-linearly, if there exist 0 < q < 1 such that

lim sup
k→∞

k

√
‖xk − x∗‖ ≤ k

√
q
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3.4.1 The Nonlinear Programming Problem NLP
A nonlinear programming problem is the minimization of non linear objective function f(x),
x ∈ IRn with n variables subject to equation or inequality constraints, and the general form is
as following.

The Non Linear Problem (NLP)

(NLP) : min
x∈Rn

f(x) (3.22)

Subject to

gj(x) = 0, j = 1, . . . ,mc (3.23)

gj(x) ≥ 0, j = me + 1, . . . ,m (3.24)

xl ≤ x ≤ xn (3.25)

Where the functions f : Rn → R1 and g : Rn → Rm are continuously differentiable and don’t
have a specific structure.

The solution of the (NLP) problem is iteratively: we start with initial value of the parameter’s
vector x0, and the (k+1) interation of xk+1 will be obtained from the previous one of xk.

xk+1 := xk + αkdk (3.26)

Where dk is the search direction in the kth step and αth is the step length.

The Search Direction
To find the search direction dk, we reformulate the original (NLP) problem to a quadratic

programming subproblem by a quadratic approximation of the Lagrange function of the (NLP)
problem and a linear approximation of the constraints function gj .

The Lagrange function of the (NLP) problem is defined by

L(x, λ) = f(x)−
m∑
j=1

λjgj(x) (3.27)

Where λj is the Lagrange multiplier.
The SQP algorithm replace the objective function by its local quadratic approximation,

f(x) ≈ f
(
xk
)

+∇f
(
xk
) (
x− xk

)
+

1

2

(
x− xk

)T
Hf

(
xk
) (
x− xk

)
(3.28)

and similarly the constraint function will be replaced by

g(x) ≈ g
(
xk
)

+∇g
(
xk
) (
x− xk

)
(3.29)

We define,
d(x) := x− xk , Bk := Hf

(
xk
)

Where H is the Hessian matrix.
The formulation of the subproblem will be

(QP) : min
d∈Rn

1

2
dTBkd+∇f

(
xk
)
d (3.30)

Subject to

∇gj
(
xk
)
d+ gj

(
xk
)

= 0, j = 1, . . . ,me (3.31)

∇gj
(
xk
)
d+ gj

(
xk
)
≥ 0, j = me + 1, . . . ,m (3.32)

Where ;
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∇f(x) and ∇gj(x) are the gradients of the functions f and g respectively and B is the search
direction proposed for the first time by Wilson in 1963 and defined by

B := ∇2
xxL(x, λ) (3.33)

Evaluate The B-Matrix
In order to compute the B-Matrix ,defined in (3.33), in every iteration using the first order

information to approximate the Hess-Matrix of the Lagrange function.
We replace this B-Matrix by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update approxi-

mation.
Powell proposed in [22] a formula for the constrained optimization

Bk+1 := Bk +
qk
(
qk
)T

(qk)
T
sk
−
Bksk

(
sk
)T
Bk

(sk)
T
Bksk

(3.34)

Where
sk := xk+1 − xk = αkdk (3.35)

and
qk := θkηk +

(
1− θk

)
Bksk (3.36)

ηk : is the difference of Lagrange function

ηk := ∇xL
(
xk+1, λk

)
−∇xL

(
xk · λk

)
(3.37)

and θk ∈ [0, 1) that guarantee (
sk
)T
qk ≥ 0.2

(
sk
)T
Bksk (3.38)

The Karush-Kuhn-Tucker (KTT) Conditions

The Karush Kuhn Tucker (KKT) Conditions are the necessary conditions for a constrained
local optimum. The KKT conditions for problem (QP) are

(KKT) : ∇xL(x, λ) = 0 (3.39)

gj(x) = 0, j = 1, . . . ,mc (3.40)

gj(x) ≥ 0, j = me + 1, . . . ,m (3.41)

λj(x) ≥ 0, j = me + 1, . . . ,m (3.42)

gj(x)λj(x) = 0, j = me + 1, . . . ,m (3.43)

We recall that the Lagrange function of the (NLP) problem is defined by

L(x, λ) = f(x)−
m∑
j=1

λjgj(x) (3.44)

The first condition (3.39) is the gradient condition: it guarantee that there is not another
direction that could improve the objective function.

The second condition include (3.40) and (3.41), are the feasible constraints, they ensure that
equality and inequality constraints are satisfied at the optimal point.

The third and the forth conditions is the positive Lagrange multipliers, it ensures to get a
positive Lagrange multiplier when the constraint is active (equal to zero) ,and a zero Lagrange
multiplier when the constraint is inactive (strictly greater than zero).

To resolve the problem we have two cases:

1. Case with inequality constrained that use the notion of the active sets, and that will see later.

2. The case with equality constrained that we consider now to continue resolving the problem.
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We consider the problem with equality constrained presented in (3.22) and (3.23) then the
following condition is satisfied

e(x, λ) :=

(
∇f(x)−A(x)λ

g(x)

)
=

(
0
0

)
(3.45)

iteration defined by

∇e
(
xk, λk

)( ∆x
∆λ

)
= −e

(
xk, λk

)
(3.46)

Where the n×me Jacobi matrix is

AT (x) :=

 ∇g1(x)
...

∇gme
(x)

 (3.47)

System Solution by Newton’s Algorithm
Now we can use Newton’s algorithm to resolve this system of n + me equations (3.45) with

n+me unknowns (x, λ)T .
Let

(
xk, λk

)T is the kth iteration defined by

∇e
(
xk, λk

)( ∆x
∆λ

)
= −e

(
xk, λk

)
(3.48)

We define (
xk+1

λk+1

)
:=

(
xk

λk

)
+

(
∆x
∆λ

)
(3.49)

Where the Jacobian of e(x, λ) with respect to (x, λ)T in the kth iteration is

∇e
(
xk, λk

)
=

(
H
(
xk, λk

)
−Λ

(
xk
)

A
(
xk
)T

0

)
(3.50)

and the Hessian matrix of the Lagrange function L(x, λ) is

H
(
xk, λk

)
= ∇2

xf
(
xk
)
−

me∑
j=1

λkj gj
(
xk
)

(3.51)

We replace (3.50 and 3.45) in (3.48) and we get(
H
(
xk, λk

)
−Λ

(
xk
)

A
(
xk
)T

0

) (
∆x
∆λ

)
=

(
−∇f(xk) +A(xk)λ

g(xk)

)
(3.52)

We replace (3.49) in (3.52) and we get(
H
(
xk, λk

)
−Λ

(
xk
)

A
(
xk
)T

0

)(
d

λk+1

)
=

(
∇f

(
xk
)

g
(
xk
) )

(3.53)

Finally we have choice to use any method to resolve the system in (3.53) and obtain the solution.

Active Set Method
In the inequality constrained case, we present here the active set method for solving the general

quadratic problem with inequalities. We assume that the B-matrix is positive definite, and we
suppose a given feasible iterate xk satisfying the constraints (3.23) and(3.24).

The active set is index set Ikaof all t
k active constraints at the point xk

Iha := {j = 1, . . . ,me} ∪
{
j = me + 1, . . . ,m| aTj

(
xk
)
d− ckj = 0

}
(3.54)

The other inactive inequalities with aTj
(
xk
)
d− ckj > 0 will be temporarily disregarded.
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The Quadratic programming problem with active constraints will be

(EQP) : min
d∈Rn

1

2
dTBkd+∇f

(
xk
)
d (3.55)

Subject to

∇gj
(
xk
)
d+ gj

(
xk
)

= 0, j = 1, . . . , lk (3.56)

In order to solve this problem, we consider the solution
(
dk, λk

)T and we move in this direction

xk+1 := xk + αkdk (3.57)

respecting the restrictions

f
(
xk + αktk

)
< f

(
xk
)

(3.58)

and

α? ≤ α̂k =

{
min

cj−aTj x
k

aTj d
k , if aTj dk < 0 for some j /∈ Ika

+∞, if aTj dk ≥ 0 for all j /∈ Ika
(3.59)

α̂k is positive because the index j does not belong to the active set and the condition (3.59)
means:

• If aTj dk ≥ 0 all step along dk will not violate the inactive constraint j.

• If aTj dk < 0 there exist a step αj in which the activates constraint j : cj−aTj
(
xk + αjd

k
)

= 0

Now we have the necessary ingredients to tackle the arbitrage problem in the axe of strikes. We
show in two examples how our calibration method can guarantee the arbitrage free propriety, where
we avoid the butterfly arbitrage during the calibration.

Return to our problem SVI calibration, we apply the Sequential Least-Squares Quadratic Pro-
gramming (SLSQP) method to our problem defined by the objective function f (k;χR) and the
parameters boundaries mentioned in (3.4.1), subject to the constraint function g(k) > 0.

xk+1 := xk + d (3.60)

• Let’s define the least-Squares objective function f (k;χR) to optimize, where χR = {a, b, ρ,m, σ}
is the set of the parameters model, for an expiry time fix T .

f (k;χR) =

n∑
i=1

(
ωmodelSV I(i) − ω

market
Total(i)

)2
(3.61)

f (k;χR) =

n∑
i=1

[
a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
− ωmarketTotal(i)

]2
(3.62)

Where ki := log
(
Ki

FT

)
• The problem reduced to find the optimal model’s parameters χR = (a∗, b∗, ρ∗,m∗, σ∗) s.t:



(NLP) : min
x∈R5

f (k;χR)

ad ≤ a ≤ au
bd ≤ b < bu

ρd < ρ < ρu

md ≤ m ≤ mu

σd ≤ σ ≤ σu
g (k;χR) > ε ε = constant

(3.63)
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Where the functions f : R5 → R1 and g : R5 → R1 are continuously differentiable and they
don’t have a specific structure.

The Lagrange function of the (NLP) SVI optimization problem is

L (k;χR) = f (k;χR)−
m∑
j=1

λj [gj(k;χR)− ε] (3.64)

3.5 Numerical Applications

We present in this section two numerical examples with arbitrage, the first one is the Axel Vogt
example presented for the first time in Wilmott to demonstrate that SVI calibration was not
arbitrage free rather with positive value of implied variance. The second example is our creation,
we apply our calibration algorithm to both problems and we show how we can perform and resolve
both problems by applying the sequential Quadratic Programming algorithm.

3.5.1 Some Arbitrage Examples
Example Arbitrage 01 (Axel Vogt From wilmott.com)
We consider the raw SVI parameters:

(a, b,m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) (3.65)

With T = 1
The Axel Vogt famous example prove that until recently, it’s impossible to obtain an SVI pa-

rameters after calibration that could guarantee that our model is arbitrage free.

Using our calibration method of Sequential Least-Squares Quadratic Programming (SLSQP), al-
lowed us to tackle this problem and to calibrate the SVI with arbitrage free as presented below.

Note that we took as lower bond for the function g(k) a value ε = 0.05 i.e g(k) > 0.05.

Figure 3.2: Axel Vogt example, Plots of the total variance (left) and the function g(k) (right), with
and without arbitrage

The new SVI parameters after calibration are :

(a, b,m, ρ, σ) = (10−5, 0.08414, 0.24957, 0.16962, 0.1321) (3.66)

Example Arbitrage 02
We present another example of SVI with arbitrage and we show how our algorithm can perform
to eliminate the arbitrage in this case. In fact, we can found many examples similar to the Axel
Vogt example: we can just to fix a positive minimum of SVI and next to move the right or the left
wing up by change in the b value nad ρ.

Let’s consider the following example

(a, b,m, ρ, σ) = (0.001, 0.6,−0.5, 0.07, 0.1) (3.67)
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Some thing interesting in our example is that the SVI parameters even when they respect the
boundaries conditions (3.72), we can have an arbitrage.

We display in the figure (3.3) below both: SVI with arbitrage calculated using the parameters
from the example (3.67) above.

Figure 3.3: SVI with arbitrage (dash blue) and SVI arbitrage free (continue red)

Now let’s verify the arbitrage condition by displaying the g(k) function, and also the density
function. Similarly as in example 01, we took as lower bond for the function g(k) a value ε = 0.05
i.e g(k) > 0.05.

Figure 3.4: Plots of the density (left) and the function g (right), with and without arbitrage

The new SVI parameters with arbitrage free after calibration are:

(a, b,m, ρ, σ) = (10−5, 0.5691,−0.4345, 0.1318, 0.1428) (3.68)

By analyzing the two examples, we can see the performance of our algorithm to eliminate the
arbitrage, and to keep the SVI model as close as possible to the input data (data with arbitrage).
In these examples, we capped the arbitrage function by 0.1 (g(k) > 0.1).
To guarantee that g(k) is positive during the calibration, we can take g(k) > ε, where ε could take
any arbitrary positive value such as: 0.01, 0.1 , 0.2,...etc.

3.5.2 Equity Indexes Calibration
After testing our algorithm in two arbitrage examples, in this section we will test the performance
of our algorithm. The input data is the options prices (Call and Put) listed on 23 indexes such as:
EURO STOXX 50, CAC 40, NIKKEI 225, FTSE Mid 250 Index, SWISS MARKET IND, Hang
Seng, NASDAQ 100, FTSE 100, MSCI world TR Index, Sao Paulo SE Bovespa Index,...etc

Our algorithm perform well with the 23 indexes, using the same starting initial point for the SVI
parameters, and keeping the same boundaries as described in (3.4.1).
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We used the data for two different dates: 05th April, 2019 and another date 19th March,2013.

We display the calibration result for one slice with options listed on the EURO STOXX 50, with
maturity ( T = 1.01 ) and we check the arbitrage conditions which is already incorporated in our
calibration method just to ensure that our algorithm respect these conditions.
After calibration, we obtained the total variance model in the figure 3.5.

Figure 3.5: SVI fit from least-squares ( T=1.01Y : 2019 04 05 to 2020 04 06 )

Strike k Call Market Total Variance SVI Model Total variance
2068.48 1268.59 0.06249 0.06361
2413.23 936.83 0.050 0.04935
2757.98 621.99 0.03780 0.03720
3016.54 407.05 0.02964 0.02932
3585.37 77.18 0.01662 0.01674
3964.59 15.1 0.01501 0.01470
4481.71 1.87 0.01694 0.01700
4998.83 0.35 0.02018 0.02037
5688.33 0.05 0.02462 0.02479
6033.07 0.02 0.02678 0.02688
6377.82 0.01 0.02892 0.02887
6722.57 0.1 0.0310 0.03077
6894.94 0 0.03207 0.03169

Table 3.2: SVI fit for EURO STOXX 50 implied volatility ( T=1.01Y : 2019 04 05 to 2020 04 06 )

The SVI optimal parameters are : χR = (a∗ = 0.01, b∗ = 0.07, ρ∗ = 0.43,m∗ = 0.11, σ∗ = 0.12),
these parameters respect the constraints set condition on (3.4.1) except the last one of (g(k) > 0),
although, the SVI model obtained does not guarantee that it’s arbitrage free. Hence, we shall check
the arbitrage characteristic condition of g(k) mentioned in (3.20) by visualization and estimation
of this function.

• The total variance is positive: this condition is already included in our constraints
condition in (3.4.1), with (a > 0), thus, we have only to confirm the positiveness of the total
variance given by our model SVI after calibration, to verify this condition we have just to
ensure that the minimum of the total variance a+ bσ

√
1− ρ2 is positive.

Using the optimal parameters, we can get that MinSV I = a+ bσ
√

1− ρ2 = 0.01468.

• The right slope : it’s equivalent to check the condtion b(1 + ρ) < 2 , and this condition
is already taken in the constraints condition (b < 1) in (3.4.1), thus, this condition is fully
satisfied b(1 + ρ) = 0.04.
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• Butterfly arbitrage test: to satisfy this condition, we have to check the positiveness of
our function g(k) defined on (3.20), we can calculate explicitly g(K) and we obtain g(k) for
every strike k in figure (3.6).

Figure 3.6: Test of butterfly arbitrage for SVI parameterisation (T=1.01Y: 2019 04 05)

Now we display the calibration of our 14 slices maturities, using the implied volatility of the call
options listed on date of 05, April 2019, from the Euro Stoxx 50 index, we calculate for each slice
calibration the optimal parameters model and the mean square error MSE, as illustrated in the
figure (3.7).
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Figure 3.7: Plots of the SVI fits to the call Euro Stoxx 50 implied volatilities for each of the 14th
listed starting on April 05, 2019.

We display some calibration results for the following indexes : CAC 40, NASDAQ 100 Index,
DAX 30 Index, S&P500 Index ,MSCI world TR.

The analyze of the 14th total variance slices shows that our calibration is robust and it fits very
well as for the short maturity of one week to the large maturity of 10 years.

3.5.3 Multi-Slices SVI Calibration

In this section, we will present the SVI calibration for many slices using our algorithm, the Sequen-
tial Least-Squares Quadratic Programming (SLSQP) method. We apply this method to calibrate
the SVI model in both axes: strikes and maturities. This calibration will respect the SVI’s bound-
aries and mostly both type of arbitrage: butterfly ( in the strikes axis) and calendar spread (in the
maturity axis).

We present the objective function f (k;χR) as previously, where χR = {a, b, ρ,m, σ} is the set
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of the model’s parameters, for an expiry time fix T .

f (k;χR) =

n∑
i=1

(
ωmodelSV I(i) − ω

market
Total(i)

)2
(3.69)

f (k;χR) =

n∑
i=1

[
a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
− ωmarketTotal(i)

]2
(3.70)

Where ki := log
(
Ki

FT

)
The non linear problem (NLP) is defined as



(NLP) : min
x∈R5

f (k;χR)

ad ≤ a ≤ au
bd ≤ b < bu

ρd < ρ < ρu

md ≤ m ≤ mu

σd ≤ σ ≤ σu
g (k;χR) > ε ε = constant > 0

∂Tw(k, T ) ≥ ε, ∀k ∈ IR, T > 0, ε > 0

(3.71)

In fact this calibration is similar to the previous one, however, we incorporate another constraint
that insure the calendar spread arbitrage. In practice, we start the calibration with SVI slice
corresponding to the lowest maturity and more we move up to the next maturity more we add the
constraint of non-crossing slices as bellow.

w(k, T0) > 0, ε > 0

w(k, T1) > w(k, T0)

...

w(k, Ti) > w(k, Ti−1) 1 ≤ i ≤ n

(3.72)

The Lagrange function of the (NLP) SVI optimization problem is

L (k;χR) = f (k;χR)−
m∑
j=1

λj [gj(k;χR)− ε]−
n∑
i=1

m∑
j=1

νj [wj(k;χR, Ti)−wj(k;χR, Ti−1)− ε] (3.73)

Fallowing this procedure, we can guarantee to get an SVI calibration with butterfly and cal-
endar spread arbitrage free in the same time by running only one calibration for all the slices.
Moreover, even if there is an arbitrage (butterfly or calendar spread) in our input data, our cali-
bration can avoid these arbitrages and correct the model.

Let’s show how our calibration method perform in the real market. We calibrate the SVI model
using the implied volatility extracted from options listed in threeindexes: SP ASX 200 listed on
the Australian Securities Exchange, the index (DJ Stoxx 600 Utilities Rt Inde) and Swiss Market
Index (Swiss Market Ind) on date of April 5,2019.

We note in both figures (3.9) the crossing lines in the input data represented by the dash
line, which is interpreted as our input data incorporate the calendar spread arbitrage for many
maturities. Our calibration method is efficient in both axis: strikes and maturities.

We succeed to eliminate both arbitrages: calendar spread and butterfly during the calibration
step. Our SVI’s parameters are arbitrage free. The continues lines represent the fit of the SVI
model, and we note that this lines are separated.

39



Figure 3.8: SVI calibration arbitrage free (butterfly and calendar spread) for (SP ASX 200) index
on April 5,2019.

Figure 3.9: SVI calibration for the index (DJ Stoxx 600 Utilities Rt Inde) (left) and (Swiss Market
Ind) (right), with both butterfly and calendar spread arbitrage free. Dots are implied variance
input data and continue line is SVI model

3.6 SVI Calibration with Weights

This section in motivated by the fact that we found after the SVI calibration for some maturities
that the SVI will fit all the point with same weight which is one. Or, in practice, the very important
and liquid zone is At The Money zone, hence, giving more weights to this zone is very important
comparing to the wings zone.

The most appropriate method in this case is to give weights that gradually decreases from the
ATM zone to the wings, and the loss function will be as following.

f (k;χR) =

n∑
i=1

wi

(
SV Imodel(i) − SV ImarketTotal(i)

)2
(3.74)

f (k;χR) =

n∑
i=1

wi

[
a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
− SV ImarketTotal(i)

]2
(3.75)
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Where ki := log
(
Ki

FT

)
W is the vector of weights defined by

W = (..., wi−3, wi−2, wi−1, wATM , wi, wi+1, wi+2, ...) (3.76)

We can take for example

W = (..., 1, 1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 100, ...100, .., 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 1, 1, 1, ...)

Let’s show in some examples the performance and the improvement in the SVI fit for this new
representation.

In the figure 3.10) we present the SVI fit for four maturities and we see that in the right wing
that the SVI model cross the wing’s points: this is explain that the model try to fit all points with
the same weight, hence, it took the mean error to all this points.

Figure 3.10: SVI fits without weights to the TOPIX Stock Price Index implied volatility on April
05, 2019

After the SVI calibration using weights as in (3.74) we can see that the fit of the SVI model
is improved considerably specially in the right wing: traders prefer to get less error around ATM
area rather than in the zone right and left far from the ATM. ATM zone is very important, it’s
more liquid, therefore, fitting this zone is very important in the real market.

Remark: Note that the Sequential Least-Squares Quadratic Programming (SLSQP) optimiza-
tion algorithm exists in different software library such as: in Python as SLSQP, and in R as slsqp
and also in NAG library.

41



Figure 3.11: SVI fits using weights to the TOPIX Stock Price Index implied volatility on April 05,
2019
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Chapter 4

Conclusion

In this paper we studied the Stochastic Volatility Inspired model (SVI) as implied volatility model:
we started by the analytic part of the SVI model and next we established the characterization of
static arbitrage (calendar spread and butterfly).

The SVI model had the arbitrage problem: no calibration method was able to grantee an SVI
calibration arbitrage free. The main result in this paper is the implementation of new robust cali-
bration method for the SVI model using Sequential Quadratic Programming (SQP) optimization
method that allows automatic elimination of arbitrage (butterfly and calendar spread) during the
calibration which was not possible until recently.

We provided the SVI’s parameters boundaries and the initial guess. We illustrated the perfor-
mance of our algorithm in two numerical examples with arbitrage, one of them is the famous Axel
Vogt example.

Moreover, in order to test the performance of our calibration method, we applied the method
to calibrate the implied volatility for 23 indexes with 14 maturities each (322 slices).

For more performance, we presented calibration with weights to give more importance to the
ATM zone rather than the wings: this method is useful in practice and practitioners prefer to get
more precision in this liquid zone ATM.

Using this calibration method, we can interpolate on the maturity axis in order to get the
implied volatility surface, and next we can use Dupire’s formula to get the local volatility expression
in terms of the total variance SVI (the implied volatility). This is very useful to well price different
type of path dependant options such as: barrier options, American options.

We note that the interpolation method presented by Fengler in [5] is very interesting and it’s the
most close to our calibration method: Fengler interpolate the call price point by point comparing
to our method where we use a parametric model (SVI). Also, our calibration method prevent both
arbitrage (butterfly and calendar spread) in the same step.

We can also use the method to calibration the SVI model in the FX market and also to price
different interest rates derivatives such as: swaptions, cap and floor. The advantage with this SVI
calibration is that our result is guarantee arbitrage free, and it fits well the input data comparing
to SABR model.

The prospects results in the future: we plan to make an asymptotic study of the function g(k),
and to find an analytic expression that guarantees the positivity of this function.
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Appendix A

SVI Calibration Using Indexes
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Figure A.1: SVI fits for the call CAC 40 Index implied volatility listed on date April 05, 2019
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Figure A.2: SVI fits for the call NASDAQ 100 Index implied volatility listed on date April 05,
2019
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Figure A.3: SVI fits for the call DAX 30 Index implied volatility listed on date April 05, 2019
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Figure A.4: SVI fits for the call S&P500 Index implied volatility listed on date April 05, 2019
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Figure A.5: SVI fits for the call MSCI world TR Index implied volatility listed on date April 05,
2019
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